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Summary

In this article we study some properties of a new family of distributions, namely Exponentiated Expo-
nential distribution, discussed in Gupta, Gupta, and Gupta (1998). The Exponentiated Exponential
family has two parameters (scale and shape) similar to a Weibull or a gamma family. It is observed
that many properties of this new family are quite similar to those of a Weibull or a gamma family,
therefore this distribution can be used as a possible alternative to a Weibull or a gamma distribution.
We present two real life data sets, where it is observed that in one data set exponentiated exponential
distribution has a better fit compared to Weibull or gamma distribution and in the other data set Wei-
bull has a better fit than exponentiated exponential or gamma distribution. Some numerical experiments
are performed to see how the maximum likelihood estimators and their asymptotic results work for
finite sample sizes.

Key words: Gamma distribution; Weibull distribution; Likelihood ratio ordering;
Hazard rate ordering; Stochastic ordering; Fisher Information matrix;
Maximum Likelihood Estimator.

1. Introduction

Two-parameter gamma and two-parameter Weibull are the most popular distribu-
tions for analyzing any lifetime data. Gamma has a long history and it has
several desirable properties, see Johnson, Kotz, and Balakrishnan (1994) for
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the different properties of the two-parameter gamma distribution. It has lots of
applications in different fields other than lifetime distributions, some of the refer-
ences can be made to Alexander (1962), Jackson (1963), Klinken (1961) and
Masuyama and Kuroiwa (1952). The two parameters of a gamma distribution
represent the scale and the shape parameters and because of the scale and shape
parameters, it has quite a bit of flexibility to analyze any positive real data. It
has increasing as well as decreasing failure rate depending on the shape para-
meter, which gives an extra edge over exponential distribution, which has only
constant failure rate. Since sum of independent and identically distributed (i.i.d.)
gamma random variables has a gamma distribution, it has a nice physical inter-
pretation also. If a system has one component and n-spare parts and if the com-
ponent and each spare parts have i.i.d. gamma lifetime distributions, then the
lifetime distribution of the system also follows a gamma distribution. Another
interesting property of the family of gamma distributions is that it has likelihood
ratio ordering, with respect to the shape parameter, when the scale parameter
remains constant. It naturally implies the ordering in hazard rate as well as in
distribution.

But one major disadvantage of the gamma distribution is that the distribution
function or survival function cannot be expressed in a closed form if the shape
parameter is not an integer. Since it is in terms of an incomplete gamma function,
one needs to obtain the distribution function, survival function or the failure rate
by numerical integration. This makes gamma distribution little bit unpopular com-
pared to the Weibull distribution, which has a nice distribution function, survival
function and hazard function. Weibull distribution was originally proposed by
Weibull (1939), a Swedish physicist, and he used it to represent the distribution
of the breaking strength of materials. Weibull distribution also has the scale and
shape parameters. In recent years the Weibull distribution becoming very popular
to analyze lifetime data mainly because in presence of censoring it is much easier
to handle, at least numerically, compared to a gamma distribution. It also has
increasing and decreasing failure rates depending on the shape parameter. Physi-
cally it represents a series system, because the minimum of i.i.d. Weibull distribu-
tions also follows a Weibull distribution. Several applications of the Weibull distri-
bution can be found in Plait (1962) and Johnson (1968) although some of the
negative points of the Weibull distribution can be found in Gorski (1968). One of
the disadvantages can be pointed out that the asymptotic convergence to normality
for the distribution of the maximum likelihood estimators is very slow (Bain,
1976). Therefore most of the asymptotic inferences (for example asymptotic unbia-
sedness or asymptotic confidence interval) may not be very accurate unless the
sample size is very large. Some ramifications of this problem can be found in
Bain (1976). It also does not enjoy any ordering properties like gamma distribu-
tion.

In this paper we consider a two-parameter exponentiated exponential distribu-
tion and study some of its properties. The two parameters of an exponentiated
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exponential distribution represent the shape and the scale parameter like a gamma
distribution or a Weibull distribution. It also has the increasing or decreasing failure
rate depending of the shape parameter. The density function varies significantly
depending of the shape parameter (see Figure 1). It is observed that it has lots of
properties which are quite similar to those of a gamma distribution but it has an
explicit expression of the distribution function or the survival function like a Wei-
bull distribution. It has also likelihood ratio ordering with respect to the shape
parameter, when the scale parameter is kept constant. We also observe that for
fixed scale and shape parameters there is a stochastic ordering between the three
distributions. The main aim of this paper is to introduce a new family of distribu-
tions and make comments both positive and negative of this family with respect to
a Weibull family and a gamma family and give the practitioner one more option,
with a hope that it may have a ‘better fit’ compared to a Weibull family or a
gamma family in certain situations.

The rest of the paper is organized as follows. In Section 2, we introduce the
exponentiated exponential distribution and compare its properties with the Weibull
and the gamma distributions. Some of the stochastic ordering results are presented
in Section 3. The maximum likelihood estimators and their asymptotic properties
have been discussed in Section 4. We analyze two data sets in Section 5 and some
numerical experimental results are presented in Section 6. Finally we draw conclu-
sions in Section 7.
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2. Exponentiated Exponential Distribution

The exponentiated exponential (EE) distribution is defined in the following way.
The distribution function, FEðx; a; lÞ, of EE is

FEðx; a; lÞ ¼ ð1 � e�lxÞa ; a; l; x > 0 ;

therefore it has the density function

fEðx; a; lÞ ¼ alð1 � e�lxÞa�1 e�lx :

The corresponding survival function is

SEðx; a; lÞ ¼ 1 � ð1 � e�lxÞa ;

and the hazard function is

hEðx; a; lÞ ¼ alð1 � e�lxÞa�1 e�lx

1 � ð1 � e�lxÞa :

Here a is the shape parameter and l is the scale parameter. When a ¼ 1, it repre-
sents the exponential family. Therefore, all three families, namely gamma, Weibull
and EE, are generalization of the exponential family but in different ways. The EE
distribution has a nice physical interpretation also. Suppose, there are n-compo-
nents in a parallel system and the lifetime distribution of each component is inde-
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pendent and identically distributed. If the lifetime distribution of each component
is EE, then the lifetime distribution of the system is also EE. As opposed to Wei-
bull distribution, which represents a series system, EE represents a parallel system.

The typical EE density and hazard functions with l ¼ 1, are shown in Figure 1
and Figure 2 respectively. It is an unimodal density function and for fixed scale
parameter as the shape parameter increases it is becoming more and more sym-
metric. For any l, the hazard function is a non-decreasing function if a > 1, and it
is a non-increasing function if a < 1. For a ¼ 1, it is constant. In this paper we
use the following notations of the gamma ðfGÞ distribution and the Weibull ðfWÞ
distribution:

fGðxÞ ¼
la

GðaÞ xa�1 e�lx ; a; l; x > 0 ;

fWðxÞ ¼ alðxlÞa�1 eð�lxÞa

; a; l; x > 0 :

Therefore the parameters a and l represent the shape and scale parameters respec-
tively in all the three different cases. A comparison of the three different hazard
functions are given in Table A below.

Therefore the hazard function of the EE distribution behaves like the hazard
function of the gamma distribution, which is quite different from the hazard func-
tion of the Weibull distribution. For the Weibull distribution if a > 1, the hazard
function increases from zero to 1 and if a < 1, the hazard function decreases
from 1 to zero. Many authors point out (see Bain, 1976) that since the hazard
function of a gamma distribution (for a > 1) increases from zero to a finite con-
stant, the gamma may be more appropriate as a population model when the items
in the population are in a regular maintenance program. The hazard rate may
increase initially, but after some times the system reaches a stable condition be-
cause of maintenance. The same comments hold for the EE distribution also.
Therefore, if it is known that the data are from a regular maintenance environ-
ment, it may make more sense to fit the gamma distribution or the EE distribution
than the Weibull distribution.
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Table A

Hazard Function

Parameters Gamma Weibull EE

a ¼ 1 Constant Constant Constant

a > 1 Increasing
from 0 to l

Increasing
from 0 to 1

Increasing
from 0 to l

a < 1 Decreasing
from 1 to l

Decreasing
from 1 to 0

Decreasing
from 1 to l



Now let us consider the different moments of the EE distribution. Suppose X
denote the EE random variable with parameter a and l, then

EðxkÞ ¼ al
Ð1
0

xkð1 � e�lxÞa�1e�lx dx :

Now since 0 < e�lx < 1, for l > 0 and x > 0, therefore by using the series repre-
sentation (finite or infinite) of ð1 � e�lxÞa�1

ð1 � e�lxÞa�1 ¼
P1
i¼0

ð�1Þi cða � 1; iÞ e�ilx ;

where cða � 1; iÞ ¼ ða � 1Þ . . . ða � iÞ
i!

, we obtain

EðXkÞ ¼ aGðk þ 1Þ
lk

P1
i¼0

ð�1Þi cða � 1; iÞ 1

ði þ 1Þkþ1 : ð2:1Þ

Since (2.1) is a convergent series for any k � 0, therefore all the moments exist
and for integer values of a, (2.1) can be represented as a finite series representa-
tion. Therefore putting k ¼ 1, we obtain the mean as

EðXÞ ¼ a

l

P1
i¼0

ð�1Þi cða � 1; iÞ 1

ði þ 1Þ2 ;

and putting k ¼ 2, we obtain the second moment as

EðX2Þ ¼ 2a

l2

P1
i¼0

ð�1Þi cða � 1; iÞ 1

ði þ 1Þ3 :

It is also possible to express the moment generating function in terms of the
gamma function, which in turn can be used to obtain different moments. The
moment generating function, MðtÞ, of X for 0 < t < l can be written as

MðtÞ ¼ EðetXÞ ¼ al
Ð1
0

ð1 � e�lxÞa�1 eðt�lÞ x dx : ð2:2Þ

Making the substitution y ¼ e�lx, (2.2) reduces to

MðtÞ ¼ a

ð1

0

ð1 � yÞa�1 y�
t
l dy ¼

Gða þ 1Þ G 1 � t

l

� �

G a � t

l
þ 1

� � : ð2:3Þ

Differentiating ln ðMðtÞÞ and evaluating at t ¼ 0, we get the mean and the var-
iance of X as

EðXÞ ¼ 1

l
ðyða þ 1Þ � yð1ÞÞ and var ðXÞ ¼ 1

l2 ðy0ð1Þ � y0ða þ 1ÞÞ ;

ð2:4Þ
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where yð:Þ is the digamma function and y0ð:Þ is its derivative. The higher central
moments can be obtained in terms of the polygamma functions.

3. Some Ordering Properties

Ordering of distributions, particularly among the lifetime distributions, plays an
important role in statistical literature. Johnson, Kotz, and Balakrishnan (1995,
Chap 33) have a major section on the ordering of various positive valued distribu-
tions. Pecaric, Proschan, and Tong (1992) also provide a detailed treatment of
stochastic ordering, highlighting their growing importance and illustrating their
usefulness in numerous practical applications. It might be useful to obtain the
bounds in survival functions, hazard functions or on the moments depending on
the circumstances. In this section we discuss some of the ordering properties within
each family of distribution and between the three families also. In this section we
take the scale parameter to be one throughout.

It is well known that gamma family has increasing likelihood ratio ordering in
the shape parameter for fixed scale parameter so it has the ordering in hazard rate
as well as in distribution functions. Since the gamma family has the likelihood
ratio ordering, it has the monotone likelihood ratio property. This implies there
exists a uniformly most powerful test (UMP) for any one-sided hypothesis or uni-
formly most powerful unbiased test (UMPU) for any two-sided hypothesis on the
shape parameter if the scale parameter is known. Unfortunately the Weibull family
does not have the ordering even in distribution, so naturally it does not have the
ordering in hazard rate or in likelihood ratio. It can be easily checked that for EE
family it has the ordering in likelihood ratio, so it has the ordering in hazard rate
as well as in distribution function similarly as the gamma family. Therefore, for
EE family also if the scale parameter is known, there exists a UMP test for any
one-sided hypothesis or UMPU test for any two-sided hypothesis on the shape
parameter.

Now consider some ordering properties between the families, when the shape
parameter is kept at a constant value. Since fGðxÞ=fEðxÞ is an increasing function
for a � 1 and a decreasing function for a 	 1, therefore we can say that gamma
is larger (smaller) than EE in terms of likelihood ratio ordering if a � 1ð	 1Þ and
they are equal when a ¼ 1. It is interesting to observe that a ¼ 1 plays an impor-
tant role. When a ¼ 1 all the three distributions become equal to the exponential
distribution. It can be easily seen that there is no likelihood ratio ordering between
Weibull and gamma or between Weibull and EE. But the following can be easily
observed for all values of x;

hWðxÞ � hEðxÞ � 0 if a > 1 ;

hWðxÞ � hEðxÞ 	 0 if a < 1 :
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Since there is a hazard rate ordering between the gamma and EE, we immedi-
ately obtain the following

hWðxÞ � hEðxÞ � hGðxÞ if a > 1 ;

hWðxÞ 	 hEðxÞ 	 hGðxÞ if a < 1 :

Therefore we have an ordering in distribution also between the three as follows;

FWðxÞ � FEðxÞ � FGðxÞ for a > 1 ;

FWðxÞ 	 FEðxÞ 	 FGðxÞ for a < 1 :

4. Maximum Likelihood Estimators and the Fisher Information Matrix

In this section we discuss the maximum likelihood estimators (MLE’s) of a two-
parameter EE distribution and their asymptotic properties. Let x1; . . . ; xn be a ran-
dom sample from EE, then the log likelihood function can be written as:

Lða; lÞ ¼ n ln a þ n ln l þ ða � 1Þ
Pn
i¼1

ln ð1 � e�lxiÞ � l
Pn
i¼1

xi : ð4:1Þ

Therefore, to obtain the MLE’s of a and l, either we can maximize (4.1) directly
with respect to a and l or we can solve the non-linear normal equations which
are as follows:

@L

@a
¼ n

a
þ

Pn
i¼1

ln ð1 � e�lxiÞ ¼ 0 ; ð4:2Þ

@L

@l
¼ n

l
þ ða � 1Þ

Pn
i¼1

xi e�lxi

1 � e�lxi
�

Pn
i¼1

xi ¼ 0 : ð4:3Þ

From (4.2), we obtain the MLE of a as a function of l, say âaðlÞ, as

âaðlÞ ¼ � nPn
i¼1

ln ð1 � e�lxiÞ
: ð4:4Þ

Therefore, if the scale parameter is known, the MLE of the shape parameter, âa,
can be obtained directly from (4.4). If both the parameters are unknown, first the
estimate of the scale parameter can be obtrained by maximizing directly

gðlÞ ¼ LðâaðlÞ; lÞ ¼ C � n ln �
Pn
i¼1

ln ð1 � e�lxiÞ
� �

þ n ln ðlÞ �
Pn
i¼1

ln ð1 � e�lxiÞ � l
Pn
i¼1

xi : ð4:5Þ
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with respect to l. Here C is a constant independent of l. Once l̂l is obtained, âa
can be obtrained from (4.4) as âaðl̂lÞ. Therefore it reduces the two dimensional
problem to a one dimensional problem which is relatively easier to solve.

In this situation we use the asymptotic normality results to obtain the asympto-
tic confidence interval. We can state the results as follows:ffiffiffi

n
p

ðq̂q � qÞ ! N2ð0; I�1ðqÞÞ ð4:6Þ

where IðqÞ is the Fisher Information matrix, i.e.

IðqÞ ¼ � 1

n

E
@2L

@a2

� �
E

@2L

@a @l

� �

E
@2L

@l @a

� �
E

@2L

@l2

� �

2
6664

3
7775

and q̂q ¼ ðâa; l̂lÞ, q ¼ ða; lÞ. Since for a > 0, the EE family satisfies all the regu-
larity conditions (see Bain, 1976), therefore (4.6) holds. Now, we provide the
elements of the negative Fisher Information matrix, which might be useful in prac-
tice. For a > 2

E
@2L

@a2

� �
¼ � n

a2
;

E
@2L

@a @l

� �
¼ n

l

a

ða � 1Þ ðyðaÞ � yð1ÞÞ � yða þ 1Þ � yð1ÞÞ
� �

E
@2L

@l2

� �
¼� n

l2 1 þ aða � 1Þ
ða � 2Þ ðy0ð1Þ � y0ða � 1Þ þ ðyða � 1Þ � yð1ÞÞ2

� �

� na

l2 ½ðy0ð1Þ � yðaÞ þ ðyðaÞ � yð1ÞÞ2Þ


and for 0 < a 	 2,

E
@2L

@a2

� �
¼ � n

a2
; E

@2L

@a @l

� �
¼ na

l

ð1

0

x e�2x ð1 � e�xÞa�2 dx < 1 ;

E
@2L

@l2

� �
¼ � n

l2 �
naða � 1Þ

l2

ð1

0

x e�2x ð1 � e�xÞa�2 dx < 1 :

Since q is unknown in (4.6), I�1ðqÞ is estimated by I�1ðq̂qÞ and this can be used
to obtain the asymptotic confidence intervals of a and l. In presence of Type I or
Type II censoring the results can be suitably modified. It may be mentioned that for
Type I censored data the Fisher Information matrix also can be obtained along the
same line as the complete sample case but unfortunately in case of Type II censoring
it is not possible to obtain the Fisher Information matrix in a closed form.
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5. Data Analysis

In this section we use two uncensored data sets and fit the three models namely;
gamma, Weibull and Exponentiated Exponential.

Data Set 1: The first data set is as follows; (Lawless, 1986 page 228). The data
given here arose in tests on endurance of deep groove ball bearings. The data are
the number of million revolutions before failure for each of the 23 ball bearings in
the life test and they are 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84,
51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12,
105.84, 127.92, 128.04 and 173.40.

We have fitted Gamma, Weibull and EE to this data set. We present the esti-
mates, the Log-likelihood (LL), the observed and the expected values and the c2

statistics. The results are as follows.
For Gamma distribution

l̂l ¼ 0:0556 ; âa ¼ 4:0196 ; LL ¼ �113:0274 ; c2 ¼ 1:040 :

For Weibull distribution

l̂l ¼ 0:0122 ; âa ¼ 2:1050 ; LL ¼ �113:6887 ; c2 ¼ 1:791 :

For EE distribution

l̂l ¼ 0:0314 ; âa ¼ 5:2589 ; LL ¼ �112:9763 ; c2 ¼ 0:783 :

The observed and the expected frequencies are as given below;

Data set 2: (Linhart and Zucchini (1986, page 69). The following data are failure
times of the air conditioning system of an airplane: 23, 261, 87, 7, 120, 14, 62, 47,
225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95.

In this case also we have fitted all the three distributions. The results are as
follows:
For Gamma distribution

l̂l ¼ 0:0136 ; âa ¼ 0:8134 ; LL ¼ �152:2312 ; c2 ¼ 3:302 :
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Table 1

Intervals Observed EE Weibull Gamma

0– 35 3 2.94 3.01 3.54
35– 55 7 5.70 5.31 4.54
55– 80 5 6.55 6.52 6.05
80–100 3 3.39 3.62 3.86

100– 5 4.43 4.54 5.02



For Weibull distribution

l̂l ¼ 0:0183 ; âa ¼ 0:8554 ; LL ¼ �152:007 ; c2 ¼ 3:056 :

For EE distribution,

l̂l ¼ 0:0145 ; âa ¼ 0:8130 ; LL ¼ �152:264 ; c2 ¼ 3:383 :

The observed and the expected frequencies are as given below;

It is observed that EE fits the best in the first data set whereas Weibull fits the best in
the second data in terms of likelihood and in terms of Chi-square. Therefore, it is not
guaranteed the EE will behave always better than Weibull or gamma but at least it can
be said in certain circumstances EE might work better than Weibull or gamma.

6. Numerical Experiments and Discussions

In this section we perform some numerical experiments to see how the MLE’s and
their asymptotic results work for finite sample. All the numerical works are per-
formed on PC-486 using the random deviate generator by Press et al. (1994). We
consider the following different model parameters:

Model 1: a ¼ 2:0, l ¼ 0:1, Model 2: a ¼ 1:0, l ¼ 0:1,
Model 3: a ¼ 0:5, l ¼ 0:1, Model 4: a ¼ 2:0, l ¼ 0:2,
Model 5: a ¼ 1:0, l ¼ 0:2, Model 6: a ¼ 0:5, l ¼ 0:2,

We consider the following sample size (SS), n ¼ 10, 15 (small), 40, 50 (mod-
erate), and 100 (large). For each model parameters and for each sample size, we
compute the MLE’s of a and l, we also compute the asymptotic confidence inter-
val in each replications. We repeat this process 1000 times and compute the aver-
age estimators (AE), the square root of the mean squared errors (SMSE) and the
coverage probabilities (CP). The results are reported in Tables 3––4.

Some of the points are very clear from the numerical experiments. It is ob-
served that for all the parametric values the MSE’s and the biases decrease as the
sample size increaes. It verifies the consistency properties of the MLE’s as men-
tioned in (4.6). For fixed l as a increases the MSE’s and the biases of âa increase
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Table 2

Intervals Observed EE Weibull Gamma

0– 15 11 7.97 8.45 8.07
15– 30 5 4.91 5.06 4.94
30– 60 3 6.44 6.33 6.43
60–100 6 4.84 4.55 4.80

100– 5 5.84 5.62 5.77



where as the corresponding MSE’s and the biases of l̂l decrease for all the sample
sizes. Therefore, estimation of a becomes better as a decreases where as the esti-
mation of l becomes more accurate as a increases. On the other hand for fixed a
as l increases the MSE’s and the biases of both âa and l̂l increase. Note that for

large sample sizes
l̂l

l
remains constant for all a. It is not very surprising because l

is the scale parameter and it also follows from (4.6). Interestingly for moderate or
large sample sizes it is observed that for fixed a the MLE’s of a and the corre-
sponding MSE’s remain constant for different l. It is clear that the MLE’s of a
and l are positively biased although biases go to zero as sample size increases. It
is also interesting to observe that the asymptotic confidence interval maintains the
nominal coverage probabilities even for small sample sizes. Therefore, the MLE’s
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Table 3

SS Par a ¼ 2:0, l ¼ 0:1 a ¼ 1:0, l ¼ 0:1 a ¼ 0:5, l ¼ 0:1

AE SMSE CP AP SMSE CP AE SMSE CP

10 a
l

2.720
0.112

1.703
0.033

0.97
0.98

1.261
0.113

0.667
0.037

0.97
0.98

0.599
0.113

0.277
0.037

0.97
0.98

15 a
l

2.470
0.109

1.181
0.029

0.95
0.97

1.171
0.109

0.470
0.031

0.96
0.97

0.565
0.110

0.120
0.034

0.96
0.97

40 a
l

2.160
0.104

0.579
0.019

0.96
0.95

1.061
0.104

0.238
0.021

0.96
0.96

0.524
0.105

0.103
0.025

0.96
0.96

50 a
l

2.130
0.103

0.501
0.016

0.96
0.95

1.051
0.104

0.210
0.019

0.96
0.96

0.520
0.105

0.092
0.023

ß.06
0.96

100 a
l

2.053
0.101

0.303
0.011

0.95
0.95

1.024
0.102

0.130
0.013

0.96
0.95

0.509
0.102

0.058
0.016

0.96
0.95

Table 4

SS Par a ¼ 2:0, l ¼ 0:2 a ¼ 1:0, l ¼ 0:2 a ¼ 0:5, l ¼ 0:2

AE SMSE CP AP SMSE CP AE SMSE CP

10 a
l

2.896
0.233

2.004
0.080

0.97
0.98

1.315
0.236

0.750
0.087

0.97
0.98

0.616
0.241

0.300
0.096

0.97
0.99

15 a
l

2.558
0.221

1.375
0.066

0.95
0.97

1.201
0.225

0.520
0.074

0.96
0.97

0.575
0.230

0.211
0.084

0.96
0.97

40 a
l

2.167
0.208

0.604
0.039

0.95
0.95

1.065
0.210

0.248
0.046

0.96
0.95

0.526
0.213

0.107
0.056

0.96
0.96

50 a
l

2.131
0.206

0.504
0.034

0.96
0.95

1.052
0.208

0.213
0.040

0.96
0.95

0.521
0.212

0.093
0.050

0.96
0.96

100 a
l

2.053
0.203

0.303
0.022

0.95
0.95

1.021
0.203

0.130
0.026

0.96
0.95

0.509
0.205

0.058
0.033

0.96
0.96



and their the asymaptotic results can be used for estimation and for constructing
confidence intervals even for small sample sizes.

7. Conclusions

In this article we consider EE family of distributions. It is observed that the two-
parameter EE family are quite similar in nature to the other two-parameter family
like Weibull family or gamma family. It is observed that most of the properties of
a EE distribution are quite similar in nature to those of a gamma distribution but
computationally it is quite similar to that of a Weibull distribution. Therefore, it
can be used as an alternative to a Weibull distribution or a gamma distribution and
it is expected that in some situations it might work better (in terms of fitting) than
a Weibull distribution or a gamma distribution although it can not be guaranteed.
We present two real life data sets, where in one data set it is observed that EE has
a better fit compare to Weibull or gamma but in the other the Weibull has a better
fit than EE or gamma. Moreover it is well known that gamma has certain advan-
tages compare to Weibull in terms of the faster convergence of the MLE’s. It is
expected that EE also should enjoy those properties. Extensive simulations are
required to compare the rate of convergences of the MLE’s of the different distri-
butions. More work is needed in that direction. Primary numerical experiments
confirm that for EE family asymptotic results can be used even for small sample
sizes for different a’s and l’s.
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