
International Journal of Statistics and Probability; Vol. 2, No. 3; 2013

ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Exponentiated T -X Family of Distributions with Some
Applications

Ahmad Alzaghal1, Felix Famoye1 & Carl Lee1

1 Department of Mathematics, Central Michigan University, Mount Pleasant, Michigan, USA

Correspondence: Felix Famoye, Dept. of Mathematics, Central Michigan University, Mt. Pleasant, Michigan

48859, USA. Tel: 1-989-774-5497. E-mail: felix.famoye@cmich.edu

Received: March 24, 2013 Accepted: June 13, 2013 Online Published: July 9, 2013

doi:10.5539/ijsp.v2n3p31 URL: http://dx.doi.org/10.5539/ijsp.v2n3p31

Abstract

In this paper, a new family of distributions called exponentiated T -X distribution is defined. Some of its properties

and special cases are discussed. A member of the family, namely, the three-parameter exponentiated Weibull-

exponential distribution is defined and studied. Some of its properties including distribution shapes, limit behavior,

hazard function, Shannon entropy, moments, skewness and kurtosis are discussed. The flexibility of the expo-

nentiated Weibull-exponential distribution is assessed by applying it to three real data sets and comparing it with

other distributions. The exponentiated Weibull-exponential distribution is found to adequately fit left-skewed and

right-skewed data sets.
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1. Introduction

Statistical distributions are very useful in describing and predicting real world phenomena. Although many distri-

butions have been developed, there are always rooms for developing distributions which are either more flexible

or for fitting specific real world scenarios. This has motivated researchers seeking and developing new and more

flexible distributions. As a result, many new distributions have been developed and studied.

Mudholkar and Srivastava (1993) proposed the exponentiated Weibull distribution to analyze bathtub failure data.

Gupta et al. (1998) introduced the general class of exponentiated distributions. Given a random variable X with

the cumulative distribution function (CDF) F(x), the class of exponentiated distributions is defined as

Gα(x) = [F(x)]α. (1)

Gupta et al. (1998) defined the exponentiated exponential distribution by taking F(x) to be the CDF of an expo-

nential distribution. The exponentiated Weibull distribution in Mudholkar and Srivastava (1993) is a member of

the class of exponentiated distributions by taking F(x) to be the CDF of a Weibull distribution. Many researchers

utilized the class of exponentiated distributions to create new distributions. For example, Nadarajah and Kotz

(2003) defined and studied the exponentiated Fréchet distribution, and Nadarajah (2005) defined and studied the

exponentiated Gumbel distribution.

Eugene et al. (2002) introduced a new class of distributions generated from the beta distribution. Given a random

variable X with the CDF F(x), the class of beta-generated distributions is defined as

GB (x) =
1

B(α, β)

∫ F(x)

0

tα−1(1 − t)β−1dt. (2)

The corresponding probability density function (PDF) of the beta-generated distribution in (2) is given by

g(x) =
1

B(α, β)
f (x)Fα−1(x)(1 − F(x))β−1.

Eugene et al. (2002) developed and studied the beta-normal distribution by taking F(x) to be the CDF of a nor-

mal distribution. Many new distributions utilizing this technique have been defined and studied. Some examples
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include the beta Gumbel distribution by Nadarajah and Kotz (2004), the beta Fréchet distribution by Nadarajah and

Gupta (2004), the beta-Weibull distribution by Famoye et al. (2005), the beta exponential distribution by Nadarajah

and Kotz (2006), the beta-gamma distribution by Kong et al. (2007), the beta-Pareto distribution by Akinsete et al.

(2008), the beta generalized exponential distribution by Barreto-Souza et al. (2010), the beta generalized Pareto

distribution by Mahmoudi (2011), and the beta-Cauchy distribution by Alshawarbeh et al. (2012). For a review of

beta-generated distributions and other generalizations, one may refer to Lee et al. (2013).

An extension of the beta-generated method was proposed in Jones (2009) and Cordeiro and de Castro (2011) by

using the Kumaraswamy distribution (Kumaraswamy, 1980), as a generator instead of beta distribution. The PDF

of the Kumaraswamy generalized distributions (KW-G) is given by

g(x) = αβ f (x)Fα−1(x)(1 − Fα(x))β−1. (3)

Recently, Alzaatreh, Lee and Famoye (2013) extended the beta-generated family of distributions by using any

non-negative continuous random variable T as the generator, in place of the beta random variable. The new class

of distributions is defined as

G(x) =

∫ − log(1−F(x))

0

r(t) dt, (4)

where r(t) is the PDF of a non-negative continuous random variable T . The corresponding PDF to the CDF in (4)

is given by

g(x) =
f (x)

1 − F(x)
r{− log(1 − F(x))}. (5)

In this new class, the distribution of the random variable T is the generator. The new family of distributions

generated from (5) is called “T -X distribution”. Alzaatreh, Famoye and Lee (2013) defined the Weibull-Pareto

distribution from (5) by taking r(t) to be the Weibull distribution and F(x) to be the Pareto distribution.

Note that the upper limit for generating the T -X distribution is − log(1 − F(x)). It is clear that one can define a

different upper limit for generating different types of T -X distributions. In this article, we define the upper limit to

be − log(1 − Fc(x)), which leads to a new family of exponentiated T -X distributions. By including the additional

parameter c, the exponentiated T -X family provides more flexible distributions for fitting real data.

The rest of this article is organized as follows. In section 2, we define the exponentiated T -X family and provide

some of its properties. Some members of exponentiated T -X distributions are discussed in section 3. In section 4,

we define the exponentiated Weibull-exponential distribution, provide some special cases of the distribution, and

discuss some properties of the distribution, including distribution shapes, limit behavior, hazard function, quantile

function, and Shannon entropy. Section 4 also contains expression for the moment generating function and the

results of investigating the skewness of the exponentiated Weibull-exponential distribution. The applications of the

exponentiated Weibull-exponential distribution to three real data sets are presented in section 5.

2. The Exponentiated T -X Family

Let r(t) be the PDF of a non-negative continuous random variable T defined on [0,∞), and let F(x) denote the

CDF of a random variable X. We define the CDF for the exponentiated T -X class of distributions for a random

variable X as

G(x) =

∫ − log(1−Fc(x))

0

r(t) dt = R{− log(1 − Fc(x))}, (6)

where R(t) is the CDF of the random variable T . The corresponding PDF of the generalized distribution in (6) is

given by

g(x) =
c f (x) Fc−1(x)

1 − Fc(x)
r{− log(1 − Fc(x))}, c > 0. (7)

By using a similar naming convention as “T -X distribution”, we call each member of the new family of distributions

generated from (7) as “exponentiated T -X distribution”.

Some remarks on the exponentiated T -X distribution:

(a) The CDF and the PDF of exponentiated T -X distribution given in Equations (6) and (7), can be expressed

as G(x) = R
(− log (1 − Fc(x))

)
= R (H(x)) and g(x) = h(x) r (H(x)), where h(x) and H(x) are the hazard

and cumulative hazard functions of the random variable X with CDF Fc(x). Hence, the exponentiated T -X
distribution can be considered as a family of distributions arising from the hazard functions.
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(b) The relationship between the random variable X that follows the family of distribution in (7) and the ran-

dom variable T that follows the PDF r(t) is given by X = F−1 {(1 − e−T )
1/c}, which provides an easy

way to simulate the random variable X by first simulating the random variable T and then computing

X = F−1 {(1 − e−T )
1/c}, which has the CDF G(x). Therefore, E(X) can be obtained by using

E(X) = E
(
F−1

{
(1 − e−T )

1/c
})
.

(c) We can generate new families of discrete distributions by taking the random variable X to be discrete. The

probability mass function of the exponentiated T -X family of discrete distributions can be written as

g(x) = G(x) −G(x − 1) = R
{− log (1 − Fc(x))

} − R
{− log (1 − Fc(x − 1))

}
.

Alzaatreh, Lee and Famoye (2012) defined and studied the family of discrete analogues of continuous dis-

tributions namely T -geometric family using (4) by taking X to be a geometric random variable. This article

will discuss the case when X is a continuous random variable.

(d) When c = 1, an exponentiated T -X distribution reduces to T -X distribution. If in addition X follows the

exponential distribution, an exponentiated T -X distribution reduces to T distribution.

The hazard function of exponentiated T -X family is given by

h(x) =
g(x)

1 −G(x)
=

c f (x) Fc−1(x) r{− log(1 − Fc(x))}
(1 − Fc(x))

(
1 − R{− log(1 − Fc(x))}) . (8)

The quantile function for exponentiated T -X distribution, Q(λ), 0 < λ < 1, is obtained by solving G(Q(λ)) = λ,
which is given by

Q(λ) = F−1
(
1 − e−R−1(λ)

)1/c
. (9)

The quantile function depends on the exponentiated parameter c. Since 0 <
(
1 − e−R−1(λ)

)
< 1 and F is monotoni-

cally non-decreasing, then Q(λ|c < 1) ≤ Q(λ|c = 1) and Q(λ|c > 1) ≥ Q(λ|c = 1).

The entropy of a random variable X is a measure of variation of uncertainty. Entropy has several applications in

physics, chemistry, engineering, and economics. The Shannon entropy of a continuous random variable with PDF

g(x) is defined as E
[− log g(X)

]
(Shannon, 1948). The relationship between the Shannon entropy for a random

variable X that has the PDF g(x) and the Shannon entropy of a random variable T with PDF r(t) is given by the

following theorem.

Theorem 1 If T has a PDF r(t) and X follows the exponentiated T-X distribution in (7), then the Shannon entropy
of X, ηx, is given by

ηx = − log c − E
(
log f

(
F−1

{
1 − e−T

}1/c
))
+

1 − c
c

E
(
log

{
1 − e−T

})
− μT + ηT , (10)

where μT and ηT are the mean and the Shannon entropy for the random variable T .

Proof. See the Appendix. �

3. Some Members of Exponentiated T -X Family with Different T -Distributions

There are two sub-families in the exponentiated T -X family. In the first sub-family, the X distribution is the same

but the T distributions are different. In the other sub-family, the T distribution is the same but the X distributions

are different. Table 1 lists the exponentiated T -X families for different T distributions.
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Table 1. Some members of exponentiated T -X distributions for different T distributions

Name The density r(t) The density g(x) of the T -X random variable

Exponential βe−βt cβ f (x)Fc−1(x)(1 − Fc(x))β−1

Beta exponential λe−λβx(1−e−λx)
α−1

B(α,β)
cλ

B(α, β)
f (x)Fc−1(x)(1 − Fc(x))λβ−1[1 − (1 − Fc(x))λ]

α−1

Exponentiated exponential αλ(1 − e−λx)
α−1e−λx cαλ f (x)Fc−1(x)(1 − (1 − Fc(x))λ)

α−1
(1 − Fc(x))λ−1

Gamma 1
Γ(α)βα

tα−1e−t/β c
Γ(α)βα

f (x)Fc−1(x)(1 − Fc(x))
1
β−1(− log (1 − Fc(x))α−1

Half normal 1
σ

(
2
π

)1/2
e−t2/2σ2 c

σ

(
2
π

)1/2 f (x)Fc−1(x)

1−Fc(x)
exp

(
−{log(1 − Fc(x)

}2/2σ2
)

Levy
(
γ
2π

)1/2 e−γ/2t

t3/2 c
(
γ
2π

)1/2 f (x)Fc−1(x)

1−Fc(x)

exp(−γ/2(− log(1−Fc(x)))
(− log(1−Fc(x)))

3/2

Log logistic
β(t/α)β−1

α(1+(t/α)β)
2

cβ
αβ

f (x)Fc−1(x)

1−Fc(x)

{− log(1−Fc(x))}β−1(
1+{− log(1−Fc(x))/α}β)2

Rayleigh t
σ2 e−t2/2σ2 −c

σ2

f (x)Fc−1(x)

1−Fc(x)
log (1 − Fc(x)) exp

{
−(log (1 − Fc(x))

)2/2σ2
}

Type-2 Gumbel αβ e−βt−α

tα+1 cαβ f (x)Fc−1(x)

1−Fc(x)

exp
(
−β{− log(1−Fc(x))}−α)
{− log(1−Fc(x))}α+1

Lomax λk
(1+λt)k+1 ckλ f (x)Fc−1(x)

1−Fc(x)

(
1 − λ log(1 − Fc(x))

)−k−1

Inverted beta tβ−1(1+t)−β−γ
B(β,γ)

c
B(β,γ)

f (x)Fc−1(x)

1−Fc(x)

(− log(1−Fc(x)))
β−1

{1−log(1−Fc(x))}β+γ
Burr αk tα−1

(1+tα)k+1 cαk f (x)Fc−1(x)

1−Fc(x)

(− log(1−Fc(x)))
α−1

(1+{− log(1−Fc(x))}α)k+1

Weibull α
γ

(
t
γ

)α−1
e−(t/γ)α cα

γ

f (x)Fc−1(x){− log (1−Fc(x))1/γ}α−1
exp(−{− log (1−Fc(x))1/γ}α)

1−Fc(x)

In the rest of this section, we will discuss some properties of the exponentiated T -X family for different T distri-

butions.

3.1 Exponentiated Gamma-X Family

If the random variable T follows the gamma distribution with parameters α and β, then r(t) = (Γ(α)βα)−1tα−1e−t/β,

t > 0. The PDF of exponentiated gamma-X family using (7) is defined as

g(x) =
c

Γ(α)βα
f (x)Fc−1(x)

(− log (1 − Fc(x))
)α−1(1 − Fc(x))

1
β−1. (11)

Using the incomplete gamma function δ(α, t) =
∫ t

0
uα−1e−udu, the CDF of T is R(t) = δ(α, t/β)/Γ(α). Hence, the

CDF of exponentiated gamma-X family from (11) is given by

G(x) = δ
{
α,− log (1 − Fc(x)) /β

}
/Γ(α).

The Shannon entropy of the exponentiated gamma-X family of distributions is given by

ηx = −E
(
log f

(
F−1

{
1 − e−T

}1/c
))
+

1 − c
c

E
(
log

{
1 − e−T

})
+ α(1 − β) + log

(
βΓ(α)

c

)
+ (1 − α)ψ(α),

where ψ(·) is the digamma function. The result follows from Theorem 1 by using the mean μT = αβ and the

Shannon entropy ηT = α + log βΓ(α) + (1 − α)ψ(α) for the gamma distribution, which is given by Song (2001).

Some special cases of exponentiated gamma-X family:

(1) When α = 1, the exponentiated gamma-X family reduces to

g(x) = (c/β) f (x)Fc−1(x)(1 − Fc(x))
1
β−1. (12)

By using γ = 1/β in (12), the exponentiated gamma-X family reduces to the KW-G family in (3).
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(2) When β = 1, the exponentiated gamma-X family reduces to

g(x) =
c
Γ(α)

f (x)Fc−1(x)
(− log (1 − Fc(x))

)α−1,

which is named exponentiated standard gamma-X family.

(3) When β = α = 1, the exponentiated gamma-X family reduces to the exponentiated family in (1). Hence,

all distributions that belong to the exponentiated family in (1) can be generated by using the family of

distributions in (11).

3.2 Exponentiated Weibull-X Family

If the random variable T follows the Weibull distribution with parameters α and γ, then r(t) = (α/γ)(t/γ)α−1e−(t/γ)α ,

t > 0. The PDF of exponentiated Weibull-X family using (7) is defined as

g(x) =
cα
γ

f (x)Fc−1(x)

1 − Fc(x)

{− log(1 − Fc(x))/γ
}α−1

exp
{−(− log(1 − Fc(x))/γ

)α} .
By using the CDF of Weibull distribution and (6), the CDF of exponentiated Weibull-X family is given by

G(x) = 1 − exp
{−(− log(1 − Fc(x))/γ

)α} . (13)

The Shannon entropy of the exponentiated Weibull-X family of distributions is given by

ηx = −E
(
log f

(
F−1

{
1 − e−T

}1/c
))
+

1 − c
c

E
(
log

{
1 − e−T

})
− γ Γ

(
1 +

1

α

)
+ υ

(
1 − 1

α

)
− log

(
cα
γ

)
+ 1,

where υ is the Euler’s constant. The result follows from Theorem 1 by using the mean μT = γ Γ(1 + 1/α) and the

Shannon entropy ηT = υ(1 − 1/α) − log(α/γ) + 1 for the Weibull distribution (Song, 2001).

Some special cases of exponentiated Weibull-X family:

(1) When α = 1, the exponentiated Weibull-X family reduces to

g(x) =
c
γ

f (x)Fc−1(x)(1 − Fc(x))
1
γ−1. (14)

By using λ = 1/γ in (14), the exponentiated Weibull-X family reduces to the KW-G family in (3).

(2) When α = γ = 1, the exponentiated Weibull-X family reduces to the exponentiated family in (1).

In the remaining sections, we will study the properties of a new distribution named the exponentiated Weibull-

exponential distribution by taking the random variable X to be the standard exponential distribution in the expo-

nentiated Weibull-X family.

4. The Exponentiated Weibull-Exponential Distribution

The CDF of the exponentiated Weibull-exponential distribution (EWED) when X follows the standard exponential

distribution in Equation (13) is given by

G(x) = 1 − exp
[
−
(
− log

{
1 − (

1 − e−x)c
}
/γ

)α]
, x ≥ 0, α, γ and c > 0, (15)

and the corresponding PDF of the exponentiated Weibull-exponential distribution is given by

g(x) =
cα
γ

e−x(1 − e−x)c−1

1 − (1 − e−x)c

(
− log

{
1 − (

1 − e−x)c
}
/γ

)α−1
exp

[
−
(
− log

{
1 − (

1 − e−x)c
}
/γ

)α]
. (16)

Some special cases of the EWED:

(1) When c = 1, the EWED reduces to the Weibull distribution with parameters α and γ.

(2) When c = α = 1, the EWED reduces to the exponential distribution with parameter γ.
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(3) When α = 1, the EWED reduces to KW-standard exponential distribution defined by Cordeiro and de Castro

(2011).

(4) When α = γ = 1, the EWED reduces to the standard exponentiated exponential distribution.

(5) When c = 1 and α = −k, the EWED reduces to type 2 extreme value distribution defined by Johnson et al.

(1995).

4.1 Some Properties of EWED

Transformation: The relationship between the exponentiated Weibull-exponential distribution and the uniform,

Weibull and exponential distributions is given by the following theorem.

Theorem 2

(a) If a random variable Y follows the uniform distribution, then the random variable

X = − log

{
1 −

(
1 − e−γ(− log(Y))

1/α
)1/c

}
f ollows EWED.

(b) If a random variable Y follows the Weibull distribution with parameters α and γ, then the random variable

X = − log
{
1 −

(
1 − e−Y

)1/c
}

f ollows EWED.

(c) If a random variable Y follows the standard exponential distribution, then the random variable

X = − log
{
1 −

(
1 − e−γ Y1/α

)1/c
}

f ollows EWED.

Proof. Using transformation technique, it is easy to show that the random variable X has exponentiated Weibull-

exponential density function as given in Equation (16). �
Limit behavior: The following lemma is on the limit behavior of the PDF in Equation (16).

Lemma 1 The limit of exponentiated Weibull-exponential density as x → ∞ is 0, and the limit as x → 0 is given
by

lim
n→∞ g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, cα > 1

γ−α, cα = 1

∞, cα < 1.

Proof. When x → ∞, the exponentiated Weibull-exponential density in (16) goes to 0. The limit of g(x) as x → 0

may be written as

lim
x→0

g(x) =
cα
γα

lim
x→0

(
− log

{
1 − (

1 − e−x)c
})α−1(

1 − e−x)c−1
. (17)

By using the series representation of the logarithm function when |z| ≤ 1

log(1 + z) =

∞∑
n=1

(−1)n+1

n
zn, (18)

the limit in Equation (17) can be expressed as

lim
x→0

g(x) =
cα
γα

lim
x→0

[
(1 − e−x)

c
+

(1 − e−x)2c

2
+

(1 − e−x)3c

3
+

(1 − e−x)4c

4
+ · · ·

]α−1(
1 − e−x)c−1

=
cα
γα

lim
x→0

[
1 +

(1 − e−x)c

2
+

(1 − e−x)2c

3
+

(1 − e−x)4c

4
+ · · ·

]α−1(
1 − e−x)cα−1

. (19)

The limit of the square brackets in Equation (19) as x goes to 0 is 1. Hence, we have

lim
x→0

g(x) =
cα
γα

lim
x→0

(
1 − e−x)cα−1

. (20)
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Therefore, as x→ 0 Equation (20) goes to zero when αc > 1. It goes to∞ when αc < 1 and when cα = 1 the limit

reduces to the constant γ−α. This completes the proof. �
The graphs of exponentiated Weibull-exponential distribution for various values of α, γ and c are given in Figure 1.

The figure shows that the density function can take different shapes such as left-skewed, right-skewed, symmetric

or reversed J-shape.

� � � � � �

��
�

��
�

��
�

��
�

��
�

	

��

� � ������� � ������ � ���
� � ������� � ������ � �
� � ������ � ������ � �
� � ������ � ������ � ���
� � ������� � ����� � �
� � ������� � ����� � �

�

Figure 1. Density functions for various values of α, γ, and c

Hazard function: The hazard function of EWED using Equations (15), (16) and (8) is given by

h(x) =
cα
γ

e−x(1 − e−x)c−1

1 − (1 − e−x)c

(
− log

{
1 − (

1 − e−x)c
}
/γ

)α−1
. (21)

By setting c = 1, the hazard function in (21) reduces to the hazard function of the Weibull distribution. The

following lemma addresses the limit behaviors of the hazard function in (21).

Lemma 2 The limit of exponentiated Weibull-exponential hazard function as x→ 0 is given by

lim
x→0

h(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, cα > 1

γ−α, cα = 1

∞, cα < 1,

and the limit as x→ ∞ is given by

lim
x→∞ h(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, α < 1

γ−1, α = 1

∞, α > 1.

Proof. The proof of the limit as x→ 0 follows from Lemma 1 and it is straight forward to show the result as x→ ∞
by taking the limit of exponentiated Weibull-exponential hazard function. �
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Figure 2. Hazard functions for various values of α, γ, and c
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Figure 2 displays the graph of the hazard function of the EWED for various values of α, γ and c. When α = c = 1,

the EWED has a constant failure rate (= γ−1). For cα < 1 and α < 1, the EWED has a decreasing failure rate

and when cα < 1 and α > 1, the EWED has a bathtub failure rate. When cα > 1 and α > 1, the EWED has an

increasing failure rate. When cα > 1 and α < 1, the EWED has an upside down bathtub (or unimodal) failure

rate. The exponent c gives the hazard function of the EWED more shapes than the hazard function of the Weibull

distribution.

Quantile function: The quantile function for EWED is given by

Q(λ) = − log
{
1 −

(
1 − exp

{
−γ(− log(1 − λ))1/α

})1/c
}
. (22)

The result follows by using (9) with R(t) and F(x) being the CDF of Weibull distribution and standard exponential

distribution, respectively.

Shannon entropy: The Shannon entropy for the exponentiated Weibull-exponential variable X with density g(x) is

given by the following lemma.

Lemma 3 If a random variable X follows EWED, then the Shannon entropy of X, ηx, is given by

ηx = μx +
(1 − c)α

c

∞∑
k=0

(−1)k+1

γα(k+1)k!

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=1

Γ (α(k + 1))

nα(k+1)+1

⎞⎟⎟⎟⎟⎟⎠ + γ
(
Γ

(
1 +

1

α

)
+ 1 − 1

α

)
+ log

(
γ

cα

)
+ 1,

where μx is the mean of EWED.

Proof. By using Theorem 1 and the fact that T follows a Weibull distribution with parameters α and γ, and f (x) =

e−x, Equation (10) can be written as

ηx = μx +
1 − c

c
E

(
log

{
1 − e−T

})
+ γ

(
Γ

(
1 +

1

α

)
+ 1 − 1

α

)
+ log

(
γ

cα

)
+ 1. (23)

So, to complete the proof we need to evaluate

E
(
log{1 − e−T }

)
= (α/γ)

∫ ∞

0

log(1 − e−t) (t/γ)α−1e−(t/γ)αdt. (24)

By using the series representation for the exponential function

ez =

∞∑
k=0

zk

k!
, (25)

the integral in (24) can be simplified to

E
(
log

{
1 − e−T

})
= α

∞∑
k=0

(−1)k

γα(k+1)k!

∫ ∞

0

log(1 − e−t)tα(k+1)−1 dt. (26)

By using the series representation of the logarithm function in Equation (18), Equation (26) can be expressed as

E
(
log

{
1 − e−T

})
= α

∞∑
k=0

(−1)k+1

γα(k+1)k!

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=1

1

n

∫ ∞

0

tα(k+1)−1e−ntdt

⎞⎟⎟⎟⎟⎟⎠ = α
∞∑

k=0

(−1)k+1

γα(k+1)k!

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=1

Γ (α(k + 1))

nα(k+1)+1

⎞⎟⎟⎟⎟⎟⎠ .
Therefore, Equation (23) reduces to

ηx = μx +
(1 − c)α

c

∞∑
k=0

(−1)k+1

γα(k+1)k!

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=1

Γ (α(k + 1))

nα(k+1)+1

⎞⎟⎟⎟⎟⎟⎠ + γ
(
Γ

(
1 +

1

α

)
+ 1 − 1

α

)
+ log

(
γ

cα

)
+ 1,

which completes the proof. �
4.2 Moment Generating Function

The moment generating function of EWED is given by

M(t) = E(etX) =

∫ ∞

0

etxg(x) dx =
cα
γ

∫ ∞

0

etx e−x(1 − e−x)c−1

1 − (1 − e−x)c uα−1
0 exp(−uα0 )dx, (27)
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where u0 = − log
{
1 − (1 − e−x)c} /γ. On using the substitution u = uα

0
, the integral in (27) can be simplified as

M(t) =
∫ ∞

0

etxg(x)dx =
∫ ∞

0

e−u
(
1 −

(
1 − e−γu

1/α
)1/c

)−t

du. (28)

By using the series expansion

(
1 −

(
1 − e−γu

1/α
)1/c

)−t
=

∞∑
k=0

(
t + k − 1

k

)(
1 − e−γu

1/α
)k/c
,

Equation (28) reduces to

M(t) = 1 +

∞∑
k=1

(t)k

k!

∫ ∞

0

e−u
(
1 − e− γ u1/α

)k/c

du, (29)

where (t)k = t (t + 1) · · · (t + k − 1) is the ascending factorial. By using the series expansion

(
1 − e− γ u1/α

)k/c
=

∞∑
j=0

(−1) j

j!
(k/c) je

− jγu1/α

,

Equation (29) reduces to

M(t) = 1 +

∞∑
k=1

(t)k

k!

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑
j=0

(−1) j

j!
(k/c) j

∫ ∞

0

e−u e− j γ u1/α

du

⎞⎟⎟⎟⎟⎟⎟⎠ . (30)

By using the series representation for the exponential function given in Equation (25), the integral in (30) can be

simplified to

M(t) = 1 +

∞∑
k=1

(t)k

k!

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑
j=0

(−1) j

j!
(k/c) j

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)n jn

n!
γn

∫ ∞

0

e−u un/αdu

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠ .

Thus, the moment generating function of EWED is given by

M(t) = 1 +

∞∑
k=1

(t)k

k!

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑
j=0

(−1) j

j!
(k/c) j

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)n jn

n!
γnΓ(1 + n/α)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠ .

Therefore, by taking the nth derivative of the moment generating function and evaluating it at t = 0, the nth moment

of the EWED can be obtained as

E(Xn) =

∞∑
k=1

dn(t)k

dtn

1

k!

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑
j=0

(−1) j

j!
(k/c) j

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)n jn

n!
γnΓ(1 + n/α)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the nth derivative of the ascending factorial is defined recursively as

dn(t)k

dtn

∣∣∣∣∣
t=0
=

n−1∑
r=0

(
n − 1

r

) [
ψ(n−1−r)(t + k) − ψ(n−1−r)(t)

] dr(t)k

dtr .

Therefore, the mean and the variance of EWED are respectively given by

μ = E(X) =

∞∑
k=1

1

k

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑
j=0

(−1) j

j!
(k/c) j

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)n jn

n!
γn Γ(1 + n/α)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠ ,

and

σ2 = E(X2) − μ2 =

∞∑
k=1

2 (−ψ(1) + ψ(k))

k

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑
j=0

(−1) j

j!
(k/c) j

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0

(−1)n jn

n!
γn Γ(1 + n/α)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠ − μ2.

The mean and the variance of EWED are reported in Table 2 for some values of α, γ and c. For fixed values of c
and α, the mean and the variance of EWED increase as γ increases. When the values of α and γ are fixed, the mean

and the variance of EWED increase as c increases. For fixed values of γ and c, the variance of EWED decreases

as α increases while the mean of EWED first decreases and then increases as α increases.
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Table 2. Mean and variance of EWED for some values of α, γ and c

γ = 0.5 γ = 1.0 γ = 2.0
c α Mean Variance Mean Variance Mean Variance

0.5 0.9 0.2550 0.1848 0.6728 1.0244 1.6233 4.8705

1 0.2274 0.1218 0.6137 0.7101 1.5071 3.4837

2 0.1552 0.0165 0.4586 0.1199 1.2148 0.6867

4 0.1481 0.0044 0.4497 0.0345 1.2189 0.2068

6 0.1510 0.0022 0.4601 0.0175 1.2503 0.1049

0.7 0.9 0.3691 0.2559 0.8420 1.1944 1.8458 5.1864

1 0.3414 0.1787 0.7858 0.8517 1.7353 3.7498

2 0.2731 0.0321 0.6491 0.1660 1.4758 0.7774

4 0.2732 0.0094 0.6545 0.0494 1.4993 0.2348

6 0.2797 0.0047 0.6706 0.0249 1.5369 0.1182

0.9 0.9 0.4757 0.3163 0.9868 1.3202 2.0256 5.4010

1 0.4490 0.2281 0.9334 0.9570 1.9195 3.9300

2 0.3882 0.0469 0.8127 0.2006 1.6830 0.8362

4 0.3952 0.0141 0.8287 0.0603 1.7187 0.2522

6 0.4046 0.0070 0.8486 0.0302 1.7600 0.1263

1 0.9 0.5261 0.3429 1.0522 1.3715 2.1044 5.4860

1 0.5000 0.2500 1.0000 1.0000 2.0000 4.0000

2 0.4431 0.0537 0.8862 0.2146 1.7724 0.8584

4 0.4532 0.0162 0.9064 0.0647 1.8128 0.2587

6 0.4639 0.0081 0.9277 0.0323 1.8554 0.1293

2 0.9 0.9372 0.5183 1.5439 1.6703 2.6650 5.9351

1 0.9167 0.3958 1.5000 1.2500 2.5708 4.3741

2 0.8899 0.0990 1.4279 0.2937 2.3915 0.9710

4 0.9190 0.0298 1.4705 0.0882 2.4543 0.2899

6 0.9365 0.0146 1.4992 0.0434 2.5032 0.1435

4 0.9 1.4640 0.6610 2.1209 1.8794 3.2829 6.2201

1 1.4488 0.5146 2.0833 1.4236 3.1955 4.6079

2 1.4473 0.1347 2.0401 0.3455 3.0458 1.0360

4 1.4895 0.0401 2.0964 0.1028 3.1211 0.3070

6 1.5114 0.0194 2.1292 0.0502 3.1734 0.1511

6 0.9 1.8097 0.7212 2.4850 1.9616 3.6618 6.3267

1 1.7968 0.5644 2.4500 1.4914 3.5769 4.6948

2 1.8055 0.1492 2.4177 0.3650 3.4381 1.0592

4 1.8527 0.0441 2.4790 0.1081 3.5177 0.3130

6 1.8762 0.0213 2.5133 0.0527 3.5711 0.1537

4.3 Skewness and Kurtosis Based on Moments

The skewness of Weibull distribution is approximately equal to zero, when the shape parameter α is approximately

equal to 3.60. Also, the skewness of the Weibull distribution is a decreasing function of the shape parameter (e.g.,

see Johnson et al., 1994). In this sub-section, we will investigate the skewness of the exponentiated Weibull-

exponential distribution. The skewness of the EWED is computed by using

S k =
μ3

σ3
= E

[
(X − μ)3

] (
E

[
(X − μ)2

])−3/2
. (31)

The skewness in (31) depends on the three parameters α, γ and c. In order to examine when the skewness is equal

to zero, the expression in (31) is set to zero and numerical solutions are obtained for α and c for fixed values of γ.

Note that equating (31) to zero is equivalent to equating μ3 to zero. In this analysis, we first select a fixed value of γ
and consider values of c from 1.0 to 5.0 at an increment of 0.01. For each value of c, we solve for α for which μ3 is

equal to zero. Thus, we obtain a set of (c, α) for fixed γ. Figure 3 shows the curve where the EWED is symmetric

for two different values of γ. Regression lines are drawn to estimate each curve.

40



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 3; 2013

For example, when γ = 1 and c is in the interval [1, 5], the equation of the curve is estimated by

α̂ = −0.1092ln3(c) + 0.5943ln2(c) − 1.364 ln(c) + 3.598. (32)

Thus, if the ordered pair (ln(c), α) is on the curve (32), then the EWED is symmetric. If the ordered pair (ln(c), α)

lies above (or below) the curve (32), then the distribution is skewed to the left (or right). When γ = 3 and c is in

the interval [1, 5], we obtain the equation

α̂ = −0.03184ln3(c) + 0.1892ln2(c) − 0.4722 ln(c) + 3.601.
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Figure 3. Fitted line plots of skewness for α against ln(c) when γ = 1 and 3

The skewness and kurtosis of EWED are given in Table 3 for some values of α, γ and c. When the values of γ and

c are fixed, the skewness of EWED decreases as α increases, and the distribution changes from right skewed to left

skewed; while the kurtosis of EWED first decreases and then increases as α increases. For fixed values of γ and α,

the skewness of EWED decreases as c increases. When the values of α and c < 1 are fixed, the skewness of EWED

decreases as γ increases. Also, when the values of α and c > 1 are fixed, the skewness of EWED increases as γ
increases. From Table 3, EWED can be left or right skewed and it can be leptokurtic (cone headed) or platykurtic

(flat headed). From Table 3, all the three parameters seem to affect the shape of EWED. This behavior is observed

from the graphs of EWED PDFs (not included to save space) for various values of the parameters.
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Table 3. Skewness and kurtosis of EWED for some values of α, γ and c

γ = 0.5 γ = 1.0 γ = 2.0
c α Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

0.5 0.9 3.5175 21.8311 2.9792 16.2641 2.6335 13.3543

1 3.1264 17.6229 2.6324 13.0832 2.2982 10.6486

2 1.3316 5.1845 1.0998 4.3023 0.8858 3.6744

4 0.3487 2.7969 0.2188 2.6920 0.0842 2.6510

6 −0.0388 2.6975 −0.1391 2.7419 −0.2445 2.8320

0.7 0.9 2.8659 15.5859 2.6392 13.5795 2.4798 12.3324

1 2.4933 12.2897 2.2901 10.7260 2.1396 9.7371

2 0.9322 3.8863 0.8382 3.6268 0.7458 3.4121

4 0.1016 2.6898 0.0463 2.6835 −0.0119 2.6918

6 −0.2293 2.8402 −0.2722 2.8837 −0.3173 2.9392

0.9 0.9 2.4833 12.5254 2.4252 12.0635 2.3798 11.7002

1 2.1299 9.7929 2.0785 9.4425 2.0382 9.1952

2 0.7096 3.3843 0.6859 3.3327 0.6617 3.2854

4 −0.0381 2.7209 −0.0523 2.7250 −0.0675 2.7312

6 −0.3361 2.9781 −0.3471 2.9929 −0.3588 3.0098

1 0.9 2.3450 11.5300 2.3450 11.5300 2.3450 11.5300

1 2.0000 9.0000 2.0000 9.0000 2.0000 9.0000

2 0.6311 3.2451 0.6311 3.2451 0.6311 3.2451

4 −0.0873 2.7481 −0.0873 2.7481 −0.0873 2.7481

6 −0.3735 3.0365 −0.3735 3.0365 −0.3735 3.0365

2 0.9 1.6855 7.6029 1.9398 9.1325 2.1453 10.3432

1 1.3896 5.9861 1.6100 7.0800 1.8047 8.0716

2 0.2700 2.8647 0.3730 2.9647 0.4839 3.0966

4 −0.3105 2.9816 −0.2480 2.9118 −0.1795 2.8469

6 −0.5403 3.3649 −0.4927 3.2687 −0.4406 3.1703

4 0.9 1.3262 6.0419 1.7026 7.9638 2.0265 9.7223

1 1.0627 4.8606 1.3866 6.1936 1.6891 7.5821

2 0.0837 2.8403 0.2357 2.9073 0.4039 3.0482

4 −0.4219 3.1689 −0.3301 3.0335 −0.2273 2.9117

6 −0.6220 3.5696 −0.5526 3.4081 −0.4748 3.2465

6 0.9 1.2011 5.5961 1.6171 7.5864 1.9829 9.5049

1 0.9497 4.5525 1.3070 5.9163 1.6472 7.4161

2 0.0207 2.8594 0.1887 2.9028 0.3761 3.0369

4 −0.4588 3.2420 −0.3576 3.0805 −0.2435 2.9359

6 −0.6488 3.6444 −0.5725 3.4591 −0.4863 3.2739

4.4 Skewness and Kurtosis Based on Quantiles

Another way to study the relationships of the shape parameters α, γ and c and the skewness and kurtosis is by

using Galton’s skewness (Galton, 1883) and Moors’ kurtosis (Moors, 1988), both of which are based on the

quantile function. By using the quantile function Q(·) in Equation (22), Galton’s skewness and Moors’ kurtosis,

respectively, are given by

S =
Q (3/4) − 2Q (1/2)+Q (1/4)

Q (3/4) − Q (1/4)
,

and

K =
Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
.

Figure 4 depicts Galton’s skewness and Moors’ kurtosis for the EWED using the parameters α and c when γ = 1.
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�

Figure 4. Galton’s skewness and Moors’ kurtosis for the EWED

We created a table for Galton’s skewness and Moors’ kurtosis for the same combination of parameters in Table 3

(not included to save space). The observations made from that table are identical to the observations made from

Table 3.

5. Applications of EWED

This section presents three applications of the exponentiated Weibull-exponential distribution using real data sets.

The data sets are chosen to illustrate the ability of the EWED to fit skewed (left or right) and heavy-tailed data.

In these applications the maximum likelihood method is applied to estimate the parameters of fitted distributions.

The maximized log-likelihood, the Kolmogorov-Smirnov test (K-S) along with the corresponding p-value, the

Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) are reported in order to compare

the EWED with the other distributions. For graphical illustration of the goodness of fit, the plot of fitted density

functions along with the histogram of the data is presented.

5.1 Strengths of 1.5 cm Glass Fibers

The data set (n = 63) is on the strengths of 1.5 cm glass fibers and it is obtained from Smith and Naylor (1987).

Barreto-Souza et al. (2010) applied the beta generalized exponential distribution to fit the data and Barreto-Souza

et al. (2011) fitted the beta Fréchet distribution to the data. The MLEs of EWED parameters and the goodness of fit

statistics are reported in Table 4. The MLEs of the beta exponential distribution and beta generalized exponential

distribution (BGED) are taken from Barreto-Souza et al. (2010), and the MLEs of beta Fréchet distribution (BFD)

are from Barreto-Souza et al. (2011).

Table 4. Parameters estimates (standard error in parentheses) for the glass fibers data

Distribution Beta exponential Beta Fréchet BGED EWED

â = 17.779 (3.289) â = 0.396 (0.174) â = 0.413 (0.302) α̂ = 23.614 (3.954)

Parameter b̂ = 22.722 (33.338) b̂ = 225.727 (164.476) b̂ = 93.457 (120.085) γ̂ = 7.249 (0.994)

estimates λ̂ = 0.390 (0.455) λ̂ = 1.302 (0.270) λ̂ = 0.923 (0.501) ĉ = 0.0033 (0.003)

σ̂ = 6.863 (1.992) α̂ = 22.612 (21.925)

K-S 0.216 0.214 0.167 0.137

p-value 0.005 0.006 0.059 0.195

Log likelihood −24.13 −19.59 −15.60 −14.33

AIC 54.1 47.2 39.2 34.7

BIC 60.7 55.8 47.8 41.1

From Table 4, Both the beta generalized exponential distribution and the EWED provide adequate fit to the data

with EWED providing the best fit based on every criterion. The distribution of the data is skewed to the left

(skewness = −0.92). By using the Wald statistic to test the null hypothesis c = 1 against the alternative c � 1, we

obtain a p-value that is less than 0.0001, which shows that the parameter c is significant for fitting the data. Hence,
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the EWED is superior to using the Weibull distribution to fit the data. This application suggests that the EWED has

the ability to fit left-skewed data sets. The exponentiated parameter plays an important role in capturing the left

skewness. Figure 5 displays the estimated densities of the EWED, beta Fréchet and beta generalized exponential

distributions. The plots show that the EWED fits better than the beta generalized exponential distribution.
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Figure 5. PDFs for glass fibers data

5.2 Depressive Condition Data

The depressive condition data is obtained from a study conducted by Leiva et al. (2010) in a city located at the

south part of Chile. The data corresponds to a scale that measures the behavioral and emotional problems of

children. The score was based on a study of 19 items from a random sample of 134 children. Each item was scored

on a scale of 1 to 3, with 3 being a higher tendency towards depressiveness.

The depressive condition data was analyzed by Leiva et al. (2010), using a mixture of two skewed distributions.

Balakrishnan et al. (2011) analyzed the depressive condition data using three mixture models based on the Birn-

baum Saunders distribution. We apply the EWED to fit the depressive condition data and compare the results with

the three mixture models in Table 5. The MLEs and the goodness of fit for the three mixture models are from

Balakrishnan et al. (2011).

Table 5. Parameters estimates (standard error in parentheses) for the glass fibers data

Distribution MTBS MBSLBS RMBSLBS

Distribution Distribution Distribution EWED

(model 1) (model 2) (model 3)

α̂1 = 0.579 (0.041) α̂1 = 0.603 (0.46) α̂1 = 0.598 (0.044)

Parameter β̂1 = 7.300 (0.440) β̂1 = 7.579 (0.478) β̂1 = 5.665 (1.393) α̂ = 1.045 (0.124)

Estimates α̂2 = 0.135 (0.095) α̂2 = 61.406 (50.859) α̂2 = 0.598 (0.044) γ̂ = 5.920 (0.748)

β̂2 = 20.256 (2.674) β̂2 = 0.001 (0.006) β̂2 = 5.665 (1.393) ĉ = 25.744 (9.291)

p̂ = 0.9631 (0.041) p̂ = 0.997 (0.238) p̂ = 0.176 (0.653)

K-S 0.091 0.092 0.085 0.091

p-value 0.218 0.206 0.283 0.216

Log likelihood −387.52 −388.09 −388.73 −386.25

AIC 785.0 786.2 787.5 778.2

BIC 799.5 800.7 801.9 787.2

Balakrishnan et al. (2011) observed that model 3 provides the best fit out of the three mixture models based on

its lowest K-S statistic and highest corresponding p-value as shown in Table 5. From our analysis, the EWED
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provides a good fit; it has the highest log likelihood and lowest AIC among the four models in Table 5. The EWED

with three parameters and model 3 with five parameters both provide adequate fit to the data.

The estimated PDFs of the EWED, Model 2, and Model 3 are given in Figure 6, which show that the EWED fits

the depressive condition data very well. Based on the plots in Figure 6, one can see that the depressive condition

data is skewed to the right (skewness = 1.13) indicating that the EWED has the ability to fit right-skewed data

and capture long tails very well. The Wald statistic for testing the null hypothesis c = 1 against the alternative

c � 1 has a p-value of 0.008. Hence, we reject the null hypothesis in favor of the EWED. This indicates that the

exponentiated parameter plays a critical role in capturing the right skewness.
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Figure 6. PDFs for depressive condition data

5.3 Airborne Data

The data set in this application represents the repair times (in hours) for an airborne communication transceiver

and was originally analyzed by Von Alven (1964) by fitting a two-parameter log-normal distribution. Recently,

Cordeiro et al. (2013) analyzed the data by using the beta generalized Raleigh distribution. We also apply the

EWED to fit the airborne data and the results are given in Table 6. The parameter estimates, the K-S, AIC, and

BIC values (in Table 6) for the beta generalized Raleigh (BGR), exponentiated generalized Rayleigh (EGR), and

generalized Rayleigh distributions are taken from Cordeiro et al. (2013).

The results from Table 6 indicate that the BGR distribution provides a better fit than the EGR distribution, while

the EWED provides the best fit with the lowest K-S statistic and highest corresponding p-value. The distribution

of the data is highly skewed to the right (skewness = 2.99).

Table 6. Estimates of the model parameters (standard error in parentheses) for airborne data

Distribution Generalized EGR BGR EWED

Rayleigh

Parameter α̂ = −0.703 (0.049) â = 5.712 (2.400) â = 10.482 (0.476) α̂ = 0.498 (0.133)

Estimates θ̂ = 0.0079 (0.003) α̂ = −0.946 (0.024) b̂ = 20.761 (0.228) γ̂ = 1.279 (0.702)

θ̂ = 0.0073 (0.002) α̂ = −0.893 (0.022) ĉ = 4.512 (1.992)

θ̂ = 4.7 × 10−6 (10−5)

K-S 0.176 0.179 0.122 0.091

p-value 0.116 0.105 0.500 0.838

Log likelihood −217.10 −108.15 −99.55 −100.00

AIC 221.1 222.3 207.1 206.0

BIC 224.7 227.7 214.4 211.5
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The Wald statistic for testing the null hypothesis c = 1 against the alternative c � 1 has a p-value of 0.078 and

this is significant at 10% level. This suggests that the parameter c is critical for the EWED to be flexible for fitting

long-tailed and highly skewed data. Figure 7 displays the estimated densities of the EWED, BGR distribution, and

EGR distribution fitted to the airborne data.

� � �� �� �� ��

��
�

��
�

��
�

��
�

��
�

��"
��"
���

�
��

��
��

�

Figure 7. PDFs for Airborne data

6. Summary and Conclusion

In this article, we introduce the exponentiated T -X family, which is an extension of the T -X family proposed by

Alzaatreh, Lee and Famoye (2013). The exponentiated parameter c provides additional flexibility for fitting diverse

shapes of data. Some of its properties are derived and some members of the family are defined. A member of the

exponentiated Weibull-X family, namely, the three-parameter exponentiated Weibull-exponential distribution is

defined and studied. Various properties of the exponentiated Weibull-exponential distribution including, limiting

behavior, hazard function, moments, and Shannon entropy are derived. The EWED is applied to fit three real data

sets. These applications show that the EWED has the ability to fit skewed (left or right) and heavy-tailed data due

to its flexibility. The need for the exponentiated parameter c can be tested using the Wald statistic. Among the

three data analyzed, the parameter c is very critical for two data sets, and the third one is significant at 10% level.

Figure 8 provides the various families that can be obtained from the exponentiated T -X distributions.
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Figure 8. Families of exponentiated T -X distributions
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Appendix

Proof of Theorem 1. By the definition of Shannon entropy,

ηx = E(− log g(X)) = − log c − E(log f (X)) − E
(
log Fc−1(X) − E(− log(1 − Fc(X)))

)
+E(− log[r{− log(1 − Fc(X))}]). (A.1)

The random variable T has a PDF r(t) and using T = − log(1 − Fc(X)), we have the following E
(
log f (X)

)
=

E
(
log f

(
F−1

{
1 − e−T

}1/c
))

, E
(
log Fc−1(X)

)
= c−1

c E
(
log

(
1 − e−T

))
, E(− log(1 − Fc(X))) = E(T ) = μT , and

E(− log[r{− log(1 − Fc(X))}]) = E(− log[r(t)]) = ηT .

Applying these results in (A.1), we obtain

ηx = − log c − E
(
log f

(
F−1

{
1 − e−T

}1/c
))
+

1 − c
c

E
(
log

{
1 − e−T

})
− μT + ηT ,

which completes the proof. �
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