
22

Exporting and Interactively Querying
Web Service-Accessed Sources:
The CLIDE System

MICHALIS PETROPOULOS

University at Buffalo, State University of New York

and

ALIN DEUTSCH, YANNIS PAPAKONSTANTINOU, and YANNIS KATSIS

University of California, San Diego

The CLIDE System assists the owners of sources that participate in Web service-based data pub-
lishing systems to publish a restricted set of parameterized queries over the schema of their sources
and package them as WSDL services. The sources may be relational databases, which naturally
have a schema, or ad hoc information/application systems whereas the owner publishes a virtual
schema. CLIDE allows information clients to pose queries over the published schema and utilizes
prior work on answering queries using views to answer queries that can be processed by combin-
ing and processing the results of one or more Web service calls. These queries are called feasible.
Contrary to prior work, where infeasible queries are rejected without an explanatory feedback,
leading the user into a frustrating trial-and-error cycle, CLIDE features a query formulation in-
terface, which extends the QBE-like query builder of Microsoft’s SQL Server with a color scheme
that guides the user toward formulating feasible queries. CLIDE guarantees that the suggested
query edit actions are complete (i.e., each feasible query can be built by following only sugges-
tions), rapidly convergent (the suggestions are tuned to lead to the closest feasible completions of
the query), and suitably summarized (at each interaction step, only a minimal number of actions
needed to preserve completeness are suggested). We present the algorithms, implementation, and
performance evaluation showing that CLIDE is a viable on-line tool.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query lan-

guages; H.2.4 [Database Management]: Systems—Query processing; relational databases; H.3.3

M. Petropoulos was supported by NSF ITR 313384. A. Deutsch was supported by the Alfred P.
Sloan Foundation and by the NSF under grant numbers IIS-0347968 (CAREER) and IIS-0415257.
Y. Papakonstantinou was supported by NSF ITR 313384, the Gordon and Betty Moore Foundation,
and the NSF Award # EAR-0225673 (GEON ITR).
Authors’ addresses: M. Petropoulos, Department of Computer Science and Engineering, Univer-
sity at Buffalo, State University of New York, 201 Bell Hall, Box 602000, Buffalo, NY 14620-2000;
email: mpetropo@cse.buffalo.edu; A. Deutsch and Y. Papakonstantinou, and Y. Katsis, Depart-
ment of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Dr.,
Mail Code 0404, La Jolla, CA 92093-0404; email: A. Deutsch and Y. Papakonstantinou, {deutsch,

yannis}@cs.ucsd.edu; Y. Katsis, ioannis@ucsd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0362-5915/2007/11-ART22 $5.00 DOI 10.1145/1292609.1292612 http://doi.acm.org/
10.1145/1292609.1292612

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:2 • M. Petropoulos et al.

[Information Storage and Retrieval]: Information Search and Retrieval—Information filter-

ing; query formulation; selection process; H.3.5 [Information Storage and Retrieval]: Online
Information Services—Data sharing; web-based services; H.5.2 [Information Interfaces and

Presentation]: User Interfaces—Graphical user interfaces (GUI); interaction styles (e.g., Com-

mands, menus, forms, direct manipulation); D.2.2 [Software Engineering]: Design Tools and
Techniques—User interfaces

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Middleware, query rewriting, limited access patterns, Web
services

ACM Reference Format:

Petropoulos, M., Deutsch, A., Papakonstantinou, Y., and Katsis, Y. 2007. Exporting and inter-
actively querying web service-accessed sources: The CLIDE system. ACM Trans. Datab. Syst.
32, 4, Article 22 (November 2007), 56 pages. DOI = 10.1145/1292609.1292612 http://doi.acm.org/
10.1145/1292609.1292612

1. INTRODUCTION

In the recent generation of Web service-based data publishing and integration
systems [Carey 2006], information source owners need to export only a lim-
ited set of calls over their sources’ schema, where these calls correspond to
parameterized queries. A typical reason for providing limited access methods
is privacy constraints [Rizvi et al. 2004; LeFevre et al. 2004; Fan et al. 2004]. In
other cases the source owners need to publish a set of services that correspond
to limited access methods because the underlying information system offers
only such [Yerneni et al. 1999; Garcia-Molina et al. 2001]. For example, an SAP
application offers a set of calls that access the underlying database but does
not offer access to the database per se. Performance of database servers is also
a major concern. Administrators want to protect their databases by control-
ling the query plans executed against them. Hence they export a limited set of
parameterized queries instead of providing full query access to their systems.

The exporting functionality of the CLIDE System, called the Relational Ser-

vices Description Language (RSDL) and presented in Section 11, assists in-
formation source owners to publish the relevant parts of the schema of the
underlying source, along with a set of calls that correspond to parameterized
queries. The same formalism can be used if the source is not a database, for
example, if it is an SAP application. In this case, the source owner publishes
a virtual schema and writes parameterized queries over this schema, whose
results are equivalent to the results of the corresponding calls. As we will see,
CLIDE allows developers to formulate queries, using SQL, against the schemas
published by the sources. This shields the developers from having to browse a
long list of Web services and having to manually construct a composition that
answers their query. The challenge in providing this functionality stems from
the fact that not all queries against published schemas are supported by com-
posing the exported parameterized queries. An unassisted developer will be
caught in a frustrating trial-and-error query formulation cycle. To avoid this
problem, CLIDE features a graphical interface which interactively guides the
developer toward formulating supported queries only.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:3

Fig. 1. Paradigm shift.

We propose a comprehensive solution for exporting semantically rich Web
services on top of relational sources, in terms of both data and functionality, and
interactively querying multiple such sources based on their exported services.
The proposed solution constitutes a paradigm shift from traditional service-
oriented architectures that target scenarios involving data sources, such as Web
data publishing, portals, enterprise information integration applications, and
workflow systems. Figure 1(a) shows a typical service-oriented architecture,
where the two participating roles are the source owners (database administra-
tors) exporting part of their data on the Web, and the developers building their
applications by querying and composing data from multiple sources.

According to current practices,1 source owners typically construct parame-
terized views over their data sources, encapsulate each one within a procedural
language, and export them as individual Web services, where the input types
describe the parameters expected by the query and the output type describes
the structure of the results. Subsequently, a developer inspects the Web ser-
vices, possibly exported by multiple data sources, decides which ones she will
use based on the input and output types, manually composes the output of some
with the input of others in order to retrieve the data needed, and then incorpo-
rates this Web service composition into her application, which will be executed
by a middleware component during run-time.

Developers and source owners have different considerations when it comes
to exporting and querying Web services on top of data sources. The task of the

1For a detailed discussion on current practices and approaches, please see Section 2.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:4 • M. Petropoulos et al.

developers becomes substantially easier if they

(D1) have a semantically rich description of the input and output types of Web
services they inspect in order to judge if a Web service is useful to their
application;

(D2) understand the relationship between the input and output of each Web
service, so that they know which input to provide in order to receive the
desired output;

(D3) know which Web services are exported on top of the same data source, so
that they don’t retrieve the same data twice and/or query the same data
source twice thus impeding the performance of their application;

(D4) locate the Web services of interest quickly, without having to browse
through a large number of them; and

(D5) can discover which Web service compositions can be executed by the mid-
dleware, without having to enumerate all of them, and then chose the one
that serves their needs; note that all possible Web service compositions are
potentially exponential in the number of Web services in consideration.

At the other end, the source owners are concerned with

(S1) control the number and granularity of the exported Web services so that
their data servers do not overload, and

(S2) use an exporting mechanism that allows them to easily manage the Web
services on top of their data servers.

The service-oriented architecture shown in Figure 1(a) utilizes the Web
Service Definition Language (WSDL) [Christensen et al. 2001] and the XML
Schema type system [Fallside and Walmsley 2004] to describe the input and
output types of Web services, which serves points D1 and S1 well. The rest of
the points, though, are not addressed. Point D2 is not satisfied because Web
services are currently designed to encapsulate and export arbitrarily complex
software artifacts and not just declarative database queries that allow for such
relationships to be exported in a compact and informative way. Point D3 is not
satisfied either, because Web services are supposed to be treated as black boxes
by the developers, without having to expose their internal logic. Hence, there is
no way of knowing if two Web services query the same underlying data or not.
Developers rely on textual descriptions in order to choose which Web services
to use. Regarding point D4, there is an academic proposal of how to search
for Web services that could potentially be composed, based on the similarity
of their input and output types [Dong et al. 2004]. Still, the developer has to
inspect a potentially long list of results and, moreover, there is no guarantee
that the located services can be composed in a semantically “meaningful” way.
That is, the developer might not be able to formulate the query and retrieve
the information that she has in mind.

The above observation brings us to point D5; the most time- and effort-
consuming task in service-oriented application development. Currently, a de-
veloper has to discover and manually construct a web service composition that
retrieves the needed data without having an indication which compositions are

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:5

feasible (or executable) by the middleware. Moreover, if a given composition
does not provide all the data columns they need, they can’t be sure that no al-
ternative compositions exist which actually retrieve all the necessary ones. The
same argument applies when a composition is overrestricting or underrestrict-
ing a query result the developer has in mind. The task becomes harder when
taking into consideration the capabilities of middleware components, such as
mediators [Garcia-Molina et al. 2001] and distributed query processors [Borkar
et al. 2006], to postprocess the results of Web service calls by filtering, joining,
and combining them.

The CLIDE System addresses the considerations of developers and source
owners by introducing to service-oriented architectures two key components
shown in Figure 1(b); a publishing component for exporting semantically rich
Web services on top of relational sources based on the proposed Relational Ser-

vices Description Language (RSDL), and the CLIDE Interface for interactively
formulating queries on top of multiple RSDL-based Web services. We will use
the (running) example below to exhibit the characteristics of the CLIDE System
and justify the need for a new paradigm.

1.1 RSDL

Assume that Figure 1(b) shows a simple example instance of an architecture
where the CLIDE System enables a computer shopping portal user to have in-
tegrated query access to two sources, namely, Dell and Cisco. The publishing
task is accomplished by the Dell and Cisco source owners exporting a set of
RSDL-based Web services on their computer and router catalogs, respectively.
Figure 2 illustrates the signatures of four Web service operations [Christensen
et al. 2001] the source owners export, the parameterized views that are encap-
sulated by them, and the parts of their respective schema that is accessed by
the views.

The Dell schema describes computers that are characterized by their cid,
CPU model (e.g., P4), RAM installed, and price, and have a set of network
cards installed. Each network card has the cid of the computer it is installed in,
accommodates a specific data rate (e.g., 54 Mb/s), implements a standard (e.g.,
IEEE 802.11g), and communicates with a computer via a particular interface
(e.g., USB). The Web service operation ComByCpu returns the computers with a
given cpu.2 The Web service operation ComNetByCpuRate provides computers
of a given cpu that have installed network cards of a given data rate. The Cisco
source describes routers that also accommodate a specific data rate, implement
standards, have their own price, and are of a particular type. The RoutersWired

and RoutersWireless Web service operations return routers that are of either
wired or wireless type, respectively.

WSDL [Christensen et al. 2001] only exposes the Web service operations. The
novelty of RSDL is that it exports and ties together all the pieces of information
shown in Figure 2 in a single service; the Web service operations, the parame-
terized views, and the relevant part of the source schema. For each operation,

2We assume there is a Computer type defined that has the same attributes as the corresponding
Dell source relation. The same applies to the other Web service operations as well.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:6 • M. Petropoulos et al.

Fig. 2. RSDL-based Web services.

an RSDL-based Web service can provide the corresponding parameterized view
that is executed when a call is made by a middleware or a user. Hence, point
D2 is addressed since the relationship between the input and the output is ex-
pressed explicitly through a declarative parameterized view definition, and a
user knows exactly how the input affects the output.

An RSDL service also exports the part of the source schema that is accessed
by the parameterized views, and logically associates it with all the operations
exported within the same service. Hence, point D3 is addressed since a devel-
oper can easily realize which services are exported on top of the same data
source. Another advantage of exporting the underlying schema is that a devel-
oper can realize the relationship among the operations exported by an RSDL
service. The source schema can carry additional semantic information, such
as foreign keys, which is not available by the Web service operations or the
parameterized views alone.

Even though the features of RSDL are required by the CLIDE Interface, as
shown in the next section, we believe RSDL can be used as a general exporting
mechanism of database functionality that can benefit source owners, middle-
ware components, and developers alike. RSDL can facilitate the development of
visual interfaces and administration consoles that will give the source owners
a coherent picture of the Web services they export on top of their data sources

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:7

and help them reduce the complexity of maintaining them, thus addressing
point S2. Moreover, RSDL has the potential to render Web services on top of
relational databases more usable for data integration and exchange tasks, such
as schema matching [Rahm and Bernstein 2001] and Web services similarity
search [Dong et al. 2004].

RSDL is not an alternative proposal to WSDL. The syntax of RSDL is a spe-
cialization of the WSDL syntax, which means that current WSDL clients are
able to import and utilize RSDL-based Web services. Vice versa, existing WSDL-
based Web services can be wrapped by RSDL services. In an alternate deploy-
ment of the architecture shown in Figure 1(b), Dell and Cisco already provide
the Web service operations shown in Figure 2 using an exporting mechanism
other than RSDL. In such case, the source owners or an independent developer
can utilize RSDL in order to publish virtual source schemas for Dell and Cisco
and the parameterized views shown in Figure 2 that explain the results of the
Web services in terms of the virtual source schemas. From now on we will refer
to source schemas, without making a distinction on whether they are the real
ones or virtual ones.

The concrete syntax and semantics of RSDL are presented in Section 11.

1.2 The CLIDE Interface

The CLIDE Interface is the second component introduced by the proposed
paradigm in Figure 1(b) and is positioned between the middleware and the
developer trying to formulate a composition of Web services. This component is
an interactive query formulation graphical interface the developer is using to
formulate queries against the RSDL-based Web services known to the middle-
ware. The CLIDE Interface effectively addresses points D4 and D5 by shielding
the developer from having to manually discover the Web service composition
she needs. Instead, the developer focuses on what information she wants to
obtain and not how to obtain it by browsing a long list of Web service opera-
tions. The CLIDE Interface consists of a front-end and a back-end modules that
achieve this goal.

The front-end initially presents to the developer the schemas exported by
the RSDL-based Web services in consideration, which are much more concise
than a long list of exported Web service operations, thus addressing point D4.
The developer formulates a query that retrieves the data she needs in a step-
by-step process by executing visual actions. The front-end of the CLIDE In-
terface is based on the well-known visual paradigm of the Microsoft Query
Builder, incorporated in Microsoft’s MS Access and MS SQL Server (go online
to http://www.microsoft.com/sql/) (see Figure 4 and Section 4 for a detailed
discussion). The Microsoft Query Builder, in turn, is based on the Query-By-
Example (QBE) [Zloof 1975] paradigm. According to this paradigm, a visual
action is the inclusion of a table in the FROM clause, the formulation of a selec-
tion/join condition in the WHERE clause, or a projection of a column in the SELECT

clause of a SQL query.
Of course, not all queries against the source schemas are feasible, since the

access to these schemas is restricted by the RSDL services. For a query to be

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:8 • M. Petropoulos et al.

feasible, there must be an equivalent Web service composition3 that retrieves
the same data and can be executed by the middleware. For this reason, and in
every step, the back-end computes all feasible Web service compositions that are
syntactic extensions of the currently formulated query, thus addressing point
D5. Once computed, the possible feasible compositions are translated by the
front-end into visual suggestions of what actions the developer can perform
next in order to reach a feasible query. This process is repeated whenever the
developer performs a visual action and until the desired and feasible compo-
sition is formulated. It is important to note that the CLIDE Interface is not
trying to guess the query the developer is trying to formulate. All feasible com-
positions that can be formulated by extending the current query are considered
when suggestions are made to the developer.

The computation of the feasible compositions by the back-end is possible
only because RSDL-based Web services provide the parameterized views for all
exported operations. For this computation, the back-end also takes into con-
sideration the postprocessing capabilities of the middleware. These issues, as
well as the reason we need to compute the feasible compositions whenever the
developer performs a visual action, are discussed in detail in Section 6.

In every step of the query formulation, the CLIDE Interface guides the de-
veloper toward formulating feasible queries and indicates any action that will
lead toward an unsupported one. In particular, the front-end suggests to the
developer which possible actions should, should not or may be performed in
order to reach a feasible query. These different types of suggested actions are
indicated on the front-end by a color scheme. Also, a flag indicates whether the
currently formulated query is feasible or not. If it is, colored actions suggest
how to reach another feasible query, which will be a syntactic extension of the
current one.

As an example of the CLIDE Interface and the color-driven interaction, con-
sider the RSDL services shown in Figure 2. A developer uses the front-end to
formulate the query “return all P4 computers with a 54-Mb/s network card and
the compatible wireless routers” against the source schemas. The middleware
can answer this query because there is an equivalent Web service composition
that combines the answers of calls to the Web servicesCompNetByCpuRate and
RoutersWired. However, it cannot answer the query “return all computers with
1 GB of RAM.” The reader is pointed to Chapter 20.3 of Garcia-Molina et al.
[2001] for similar examples. The CLIDE Interface appropriately guides the de-
veloper toward the formulation of feasible queries by employing the following
color scheme:

—Red color indicates actions that lead to unsupported queries, regardless of
what actions are performed next. For example, conditioning the type col-
umn of Routers with a constant other than “Wired” and “Wireless” leads to
unsupported queries.

—Yellow color indicates actions that are necessary for the formulation of a feasi-
ble query. For example, conditioning the cpu of Computers will be yellow since

3Formally defined in Section 3.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:9

all equivalent Web service compositions that the middleware can execute and
involve the Computers table require a given cpu.

—Blue color indicates a set of actions where at least one of them is required to
be taken in order to reach one of the next feasible queries. Notice that one can
choose among many blue options. For example, after the cpu of Computers has
been conditioned and a feasible query has been reached, one should condition
either the ram or the price column (among other choices) in order to reach
the next feasible query.

—White color indicates selection conditions, tables, and projections whose par-
ticipation in the query is optional.

Any good interface that guides a user toward some action must be compre-
hensive (complete) and, at the same time, avoid overloading the user with infor-
mation in every step [Nielsen 2000; Tufte 1997]. The CLIDE Interface achieves
both goals since it guarantees the following important properties in every step
of the interaction:

(1) Completeness: every feasible query can be built by following suggested ac-
tions only.

(2) Minimality: the minimal set of actions that preserves completeness is sug-
gested.

(3) Rapid convergence: the shortest sequence of actions from a query to any
feasible query consists of suggested actions.

Interaction sessions between the developer and the CLIDE Interface front-
end are formalized using an Interaction Graph, which models the queries as
nodes and the actions that the developer performs as edges. Consequently, the
color of each action is formally defined as a property of the set of paths that
include the action and lead to feasible queries. Then the above guarantees are
formally expressed as graph properties.

The above properties present a challenge to the CLIDE Interface back-end
because they cannot be trivially turned into an algorithm, since they con-
ceptually require the enumeration of an infinite number of feasible queries.
Note that the number of queries is infinite for two reasons. First, there is
an infinite number of constants that may be used in selection conditions. We
tackle this problem by considering parameterized queries (similar to Sum
Microsystem’s JDBC (JDBC API; go online to http://java.sun.com/j2se/

1.5.0/docs/guide/jdbc/index.html) prepared statements) where each one
stands for infinitely many queries. Still, the number of parameterized queries
is infinite, because the size of the FROM clause is unlimited, which then leads to
unlimited size SELECT and WHERE clauses.

We describe a set of algorithms that find a finite set of closest feasible queries,
related to the current query, and prove that they are sufficient to determine the
colors of possible actions. For our purpose, we leverage prior algorithms and
implementations for rewriting queries using parameterized views [Pottinger
and Halevy 2001; Duschka et al. 2000; Rajaraman et al. 1995]. However, we
needed to significantly optimize and extend current implementations in order

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:10 • M. Petropoulos et al.

to achieve online performance and to ensure that the above properties are pre-
served. We provide a set of experiments that illustrate the class of queries and
views that the CLIDE Interface can handle, while maintaining online response.

1.3 Contributions

The CLIDE System is a comprehensive proposal for exporting semantically rich
Web services on top of relational sources and interactively querying multiple
such sources based on their exported services. More specifically, the CLIDE
System makes the following novel contributions:

(1) The Relational Services Description Language (RSDL) exports database
functionality on top of relational sources. Each RSDL-based Web service
exports and semantically connects a set of operations with the correspond-
ing parameterized views and the source schema.

(2) The CLIDE Interface front-end enables color-guided interactive query for-
mulation, based on the well-known QBE paradigm, over sources that only
allow a limited set of Web service calls over their data.

(3) The suggestions made by the CLIDE Interface front-end satisfy the com-
pleteness, minimality, and rapid convergence properties, which avoid over-
loading the developer with unnecessary suggestions.

(4) The CLIDE Interface formalizes the interaction sessions between the de-
veloper and the front-end using the Interaction Graph, which serves as the
basis for defining the action colors and the above three properties.

(5) The CLIDE Interface back-end leverages, extends, and optimizes existing
algorithms for rewriting queries using parameterized views in order to
achieve online performance and to ensure that the above properties are
preserved.

1.4 Demonstration

We implemented the front-end and all back-end algorithms of the CLIDE
Interface which is available online at http://www.clide.info.

1.5 Outline

Section 2 presents previous work related to RSDL and the CLIDE Interface,
and discusses the applicability of the CLIDE Interface to exporting mechanisms
other than RSDL. Section 3 provides definitions and notation conventions.
Section 4 discusses query formulation interfaces, focusing on issues related
to the CLIDE Interface, and introduces the interaction graph, which allows us
to formally define their behavior. Section 5 discusses the aspects of the CLIDE
Interface that pertain to interaction in the presence of a limited set of feasible
queries. Sections 6 and 7 describe the algorithms of the CLIDE Interface back-
end, and Section 10 analyzes their complexity. Section 8 describes the imple-
mentation and optimizations, which are experimentally evaluated in Section 9.
Section 11 presents the concrete syntax and semantics of RSDL and Section 12
concludes the article.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:11

2. RELATED WORK

The CLIDE System relates to both industrial systems and academic proposals.
First, we discuss the BEA AquaLogic Data Services Platform [Carey 2006], a
sophisticated data integration commercial product that relates to the CLIDE
System’s paradigm as a whole. Subsequently, we present previous work in the
following areas that relate to each component individually: (i) Database Func-

tionality Exporting Mechanisms, which relate to RSDL, (ii) Query Formulation

Interfaces, which relate to the CLIDE Interface front-end, and (iii) Answering

Queries using Views, which relate to the algorithms employed by the CLIDE
Interface back-end.

The BEA AquaLogic Data Services Platform (ALDSP) provides a mechanism,
called Data Services, for exporting functionality on top of databases, among
other types of data sources, which relates to RSDL. A Data Service is a col-
lection of functions all of which have a common output schema. Each function
accepts different sets of parameters and is implemented by an XQuery expres-
sion [Boag et al. 2007]. In a simplified example, a Data Service can export a
set of functions returning Customer objects where one operation takes as input
the customer’s last name, another one her city and state, and so on. Data ser-
vices are a concept internal to the ALDSP but can be deployed as WSDL-based
Web services, in which case each function becomes an operation. Data services
address points D2 and D3 as long as a developer stays within the ALDSP de-
velopment environment. Once outside, the XQuery expressions implementing
the Web service operations and the schema against which the expressions are
executed are not accessible.

Data Services can be exported directly on top of data sources, in which case
they loosely correspond to the RSDL services exported by source owners in
Figure 2, or on top of other Data Services by composing them. In the latter
case, the query expression implementing the Data Service can be thought of
as the query the developer is formulating using the CLIDE Interface. In the
ALDSP development environment, the formulation of these query expressions
is assisted by a visual XQuery Editor. The developer is presented with the out-
put schemas of the Data Services and is assisted in her effort to formulate a
feasible composition by a mechanism called Model Diagrams, which captures
relationships among Data Services. Considering the Customer Data Service
from above and assuming another one that returns Order objects, a foreign key
relationship between them captures the fact that every order has a customer.
In Model Diagrams, such relationships are implemented as Data Services and
allow a developer to retrieve a Customer object given an Order object by compos-
ing two Data Services. In effect, Model Diagrams capture “meaningful” Data
Service compositions. This paradigm is inspired by the Functional Data Model
[Shipman 1981] and the corresponding query language. Model Diagrams also
serve well point S2.

Compared to the CLIDE Interface, ALDSP uses the output schemas of the
Data Services as a basis for query formulation and not the schemas of the data
sources on top of which they are exported, which are generally much more con-
cise. This fact also forces the exposure of complex Data Service compositions

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:12 • M. Petropoulos et al.

to the developer, who focuses on how to formulate a semantically “meaningful”
and feasible one, and not just on what information she needs to retrieve. The
CLIDE Interface hides the compositions from the developer, computes all fea-
sible ones in the back-end, and uses the color scheme to guide her toward a
feasible one, while guaranteeing important properties. On the other hand, the
ALDSP paradigm scales well for integration scenarios, where Data Services can
be constructed on top of other Data Services and form arbitrarily deep hierar-
chies. Also, ALDSP is based on the XML data model and the XQuery language,
both more powerful than the relational model and the class of queries consid-
ered by the CLIDE System (see Section 3). Finally, ALDSP includes a powerful
distributed query processor, which can be used as middleware in deployments
such as the one shown in Figure 1(b).

Database Functionality Exporting Mechanisms are incorporated by most
vendors in commercial database products. Representative examples are the
IBM Document Access Definition Extension (DADX) (Db2 XML extender; go on-
line to www.306.ibm.com/software/data/db2/extenders/xmlext/) technology
and the Native XML Web Services for Microsoft SQL Server 2005 [Microsoft,
Inc. 2005].

DADX is part of the IBM DB2 XML Extender (see publication data in pre-
vious paragraph), an XML/relational mapping layer, and facilitates the devel-
opment of Web services on top of relational databases that can, among other
things, execute SQL queries and retrieve relational data as XML. The developer
incorporates into a DADX file a set of parameterized SQL queries. Subsequently,
the IBM DB2 XML Extender parses the DADX file and automatically publishes
a Web service operation for each query. The resulting services do not provide ac-
cess to the parameterized queries. Schema information is provided by a special
Web service, called dynamic query service. The same service, though, exports
an operation that takes as input an arbitrary SQL expression to be executed
against the underlying database.

The Native XML Web Services for Microsoft SQL Server 2005 [Microsoft, Inc.
2005] provide similar functionality through HTTP Endpoints, but no schema
information is provided.

Other mechanisms have been proposed by previous academic work for com-
pact descriptions of infinite sets of views, such as binding patterns [Duschka
et al. 2000; Li and Chang 2001; Rajaraman et al. 1995; Yerneni et al. 1999]
and parameterized views described by the infinite unfoldings of recursive Dat-
alog programs [Levy et al. 1996; Vassalos and Papakonstantinou 1997]. RSDL
services are based on parameterized views; a common technique that has been
used to describe content and access methods in the widely used Global-as-View
(GaV) integration architectures [Halevy 2001], and also recently to describe
privacy constraints in Rizvi et al. [2004].

Query Formulation Interfaces relate to the CLIDE Interface front-end. To
the best of our knowledge, there is no other query formulation interface for the
relational model that is used as widely as the Microsoft Query Builder (go online
to http://www.microsoft.com/sql/) and QBE [Zloof 1975]. Query formulation
interfaces for other models include XQBE [Braga et al. 2005] and the XQuery
Editor of the BEA AquaLogic Data Services Platform [Carey 2006], for the XML

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:13

data model, and PESTO [Carey et al. 1996], for the object-oriented data model.
In the area of data exchange, several interfaces have been proposed to assist a
developer formulate a query that translates data from one schema to another.
Representative examples are the IBM Clio [Popa et al. 2002] and the Microsoft
BizTalk Mapper [Microsoft, Inc. 2004].

Answering Queries using Views Algorithms [Halevy 2001] relate to the algo-
rithmic problem that the CLIDE Interface back-end is facing. Deciding whether
a given query is feasible or not is a query rewriting problem. These algorithms
take as input a query q over the source databases D, and a set of parameterized
views V1, . . . , Vn, and consider the postprocessing capabilities of a middleware
component to filter and combine results obtained from the views. The output is
a composition, if any, that accesses the views and computes q(D). The compo-
sition is typically in the form of a query q′(V1(D), . . . , Vn(D)) that runs on the
views and often incorporates primitives that indicate the passing of information
across views.

Several rewriting algorithms have been published [Halevy 2001]. The al-
gorithms differ in their assumptions on the data model (relational or XML),
expressive power of the input queries (e.g., conjunctive, union of conjunctive,
etc), expressive power of views, and power of the composition that uses the
views. However, these algorithms are not sufficient for the CLIDE Interface
back-end. To the best of our knowledge, in all rewriting algorithms, if there
is no composition for the input query, the developer simply receives a rejec-
tion without any explanation of what actions will lead to one. This is a key
obstacle to the practical utilization of current query rewriting algorithms for
interactive query formulation, forcing the developer into a trial-and-error query
formulation loop. Instead, the algorithms implemented by the CLIDE Interface
back-end enable the front-end to guide the developer toward queries for which
a feasible composition exists.

Other rewriting algorithms [Nash and Ludaescher 2004] automatically for-
mulate an overestimate or underestimate of the input query, thus addressing
a different goal than the one in our setting. We believe that in many appli-
cations the developer needs full control and understanding of what she can
ask and which precise query is being answered. Nevertheless, there are im-
portant technical connections between those algorithms and our work that are
discussed in Section 6.

3. DEFINITIONS AND NOTATIONS

The CLIDE Interface front-end formulates queries from the set of conjunc-
tive SQL queries with equality predicates CQ= under set semantics. The FROM

clause consists of table atoms R r, where R is some table name and r an alias.
The SELECT clause consists of the SQL keyword DISTINCT and projection atoms

r.x, where x is a column of r. The WHERE clause is a conjunction of selection

atoms and join atoms. Constant selection atoms are of the form r.x=constant,
where r is some alias and x some column, while parameterized selection atoms
are of the form r.x=parameter. Obviously, at most one selection atom for each
alias-column pair can appear in the WHERE clause. Join atoms are of the form

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:14 • M. Petropoulos et al.

Fig. 3. Column associations.

r.x=s.y. We define the empty query to have no table, join, selection or projection
atom.

Column associations identify pairs of columns, within a source or across
sources, whose join is meaningful. For the schemas in Figure 2, Figure 3 illus-
trates the column association of the cid columns of Computers and NetCards and
the rate and standard columns of NetCards and Routers. Column associations
can be explicitly declared by the middleware owner. They can also be derived
from the pairs of type-compatible columns, from foreign-key constraints, the
join atoms in the views, or any of the recently proposed schema matching tech-
niques [Rahm and Bernstein 2001]. The user can configure the CLIDE Interface
to suggest either arbitrary joins or only joins between columns that are associ-
ated, in order to reduce the number of suggestions displayed to the user. In the
latter case, the user still has the option to formulate joins between nonassoci-
ated columns, but the CLIDE Interface front-end will not suggest them. For the
rest of the presentation, we assume the user has configured the front-end to
suggest joins between associated columns only. We denote this class of queries
with CQ=CA.

The views that the CLIDE Interface takes as input are from the set of param-
eterized conjunctive SQL queries CQ=P , where parameterized selection atoms
of the form r.x=parameter appear in the WHERE clause. We assume that all joins
are between associated columns. CQ=CA is a subset of CQ=P .

Two queries q1 and q2 are syntactically isomorphic, denoted by q1
∼= q2, if they

are identical modulo table alias renaming. Syntactic isomorphism is important
since the users of query writing tools typically do not have control over (or do
not care to control) the exact table alias names.

We denote the set of feasible queries by FQ ⊆ CQ=CA. As in Rajaraman
et al. [1995], we define the feasible queries given a set of views V = V1, . . . , Vk ∈

CQ=P over a fixed schema D, to be the set of queries qF1, . . . , qFm ∈ CQ=CA over
D that have an equivalent CQ= rewriting using V. In the absence of parameters,
a rewriting of a query Q against D is simply a query R that refers exclusively
to the views, such that, for any database db of schema D and database m of
schema V computed by materializing the view results over db, the result of Q

on db coincides with the result of R on m. In the presence of parameters we
need to also ensure that there is a viable order of passing parameter bindings
across the views of the rewriting [Rajaraman et al. 1995; Roth and Schwarz
1997]. We capture this requirement as follows: first associate to each view a
schema that includes both the columns that the view returns and the columns
that participate in parameterized selections (even if they are not returned).
Then we associate with each view schema a binding pattern that annotates
every column that participates in a parameterized selections as bound, which
is denoted by a “b” superscript, and every other column as free, denoted by an
“f ” superscript. For example, we associate the following schema and binding

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:15

pattern to V1 in Figure 2:

V1(cid f , cpub, ram f , price f).

A rewriting R is valid only if there is an order V1, . . . , Vn of the view aliases
used in R ’s FROM clause such that if a column x is bound in Vi then R ’s WHERE

clause includes either a selection atom Vi.x=constant or a join atom Vi.x=V j.y

where j < i. Note that valid rewritings have at least one viable evaluation
plan, in which the values of the bound parameters for an alias Vi are provided
by computing the plan induced by the aliases V1, . . . , Vi−1 (with respect to the
above order).

In regard to extending the queries and views with more expressive predicates,
the CLIDE Interface can be seamlessly extended to support queries and views
with inequalities and arbitrary user-defined predicates for both selections and
joins by treating them as uninterpreted predicate symbols. That means mod-
eling the predicates as additional relations. This will result only in mappings
between query and view (see Sections 6 and 8) which match predicate calls
against calls to the same predicate if the arguments match. The net effect is
that of loosing the guarantee of completeness of the front-end’s suggestions,
because by ignoring the semantics of the predicates existing rewritings may
be missed. This is unavoidable since sufficiently expressive user-defined pred-
icates lead to undecidability of the rewriting problem. On the other hand, for
some built-in predicates, such as arithmetic comparisons (<, ≤, >, ≥), com-
pleteness of rewritings is preserved [Halevy 2001], which is sufficient to ensure
completeness of the CLIDE Interface suggestions (see Section 6).

4. QUERY BUILDING INTERFACES

The CLIDE Interface front-end is a QBE-like [Zloof 1975] graphical interface.
It adopts the Microsoft Query Builder interface (Microsoft SQL Server; go on-
line to http://www.microsoft.com/sql/) as the basis for the interactive query
formulation, since users are very familiar with it. Figure 4(a) shows a snapshot
of the Microsoft Query Builder, where the user formulates a query over the
schemas of Figure 2. The top pane displays the join of the Computers table with
the NetCards table on cid and the projection of the ram and price columns of
Computers and of the interface column of NetCards. The middle pane shows
selections that set cpu equal to “P4” and rate equal to “54 Mb/s,” and the bottom
pane displays the corresponding SQL expression. The user can add to the top
pane tables from the list shown on the left. The user can also formulate joins,
like the one on cid.

Figure 4(b) provides a snapshot of the CLIDE Interface front-end for the
query of Figure 4(a). Apart from the feasibility flag and the coloring, the corre-
spondence with the Microsoft Query Builder is straightforward: the front-end
displays a table box for each table alias in the FROM clause. Selections on columns
are displayed in selection boxes. Columns are projected using check boxes, called
projection boxes. Joins are displayed as solid lines, called join lines, connecting
the respective column names. The list of available tables is shown in a sep-
arate pane. Also shown is the SQL statement that the interface graphically

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:16 • M. Petropoulos et al.

Fig. 4. QBE-like query building interfaces.

represents. The “Last Step” and “Next Step” buttons allow the user to navigate
into the history of queries formulated during the interaction.

The user builds CQ=CA queries with the following visual actions:

(1) Table action. Drag a table name from the table list and drop it in the main
pane. The interface draws a new table box with a fresh table alias and adds
a table atom to the FROM clause of the SQL statement.

(2) Selection action. Typing a constant in a selection box results in adding a
selection atom to the WHERE clause.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:17

(3) Join action. Dragging a column name and dropping it on another one results
in a join line connecting the two column names and a new join atom in the
WHERE clause.

(4) Projection action. Checking a projection box adds a projection atom to the
SELECT clause.

5. INTERACTION IN THE PRESENCE OF LIMITED ACCESS METHODS

When not all CQ=CA queries against a database schema are feasible, the CLIDE
Interface guides the user toward formulating feasible queries by coloring the
possible next actions in a way that indicates what has to be done and what may
and what cannot be done. Table actions are suggested by coloring the back-
ground of table names in the table list. Selections and projections are suggested
by coloring the background of their boxes. Joins are suggested by coloring join
lines.

We illustrate the color scheme using the interaction session shown in
Figures 5 and 6, which refers to the running example of Figure 2. The user
wants to formulate a query that returns computers that meet various selection
conditions, including conditions about network cards and routers—as long as
those conditions are supported. Figures 5 and 6 show snapshots of the interac-
tion session, where the color scheme of the CLIDE Interface front-end suggests,
at each interaction step, which actions lead to a feasible query.

—Required and optional actions. Consider the query that the user has formu-
lated in Snapshot 1 (see Figure 5). The interface indicates that this query is
infeasible (see feasibility flag at the bottom) and that every feasible query
that extends it must have a selection on cpu. The latter indication is given
by coloring yellow (light gray on a black and white printout) the cpu selection
box. The rest of the selection boxes and projection boxes are white, suggest-
ing that these actions are optional, that is, feasible queries can be formulated
with or without these actions being performed.

So the user performs the yellow selection on cpu by typing a constant
in the selection box. This leads to the feasible query of Snapshot 2 (see
Figure 2). This query is feasible since the middleware can run view V1 with
the parameter instantiated to “P4” and then project out the cid and cpu

columns.

—Required choice among multiple actions. The user may terminate the inter-
action session and incorporate the query of Snapshot 2 in her application or
may continue to extend the query. The interface indicates that, in order to
reach a next feasible query, at least one of the NetCards, Routers or an addi-
tional Computers table has to be included in the query, among other options.
The indication is provided by coloring the corresponding names in the table
list blue (medium gray). Each given blue atom, say NetCards, does not appear
in all feasible queries that extend the current query. If it did, then it would
be yellow (i.e., required).

—Nonobvious feasible queries. Snapshot 3 in Figure 6 presents a complex case,
where the interface’s color scheme informs the user about nonobvious feasible

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:18 • M. Petropoulos et al.

Fig. 5. Snapshots of an interaction session (Snap shots 1 and 2).

queries. After the user introduces a NetCards table, the interface suggests
that one of the following extensions to the query is required: the join line
between the cid’s of Computers and NetCards is suggested since it leads to
the formulation of view V2. It is blue since the user has more options: She
can introduce a second copy of Computers, say Com2, which will lead toward
the feasible query that joins Networks with Com2, selects on rate, and takes a
Cartesian product with Com1. If Cartesian product queries are of no interest
to the user, she can set an option to have the CLIDE Interface ignore them.
In such a case, the cid join would be a required (yellow) extension. For the
remainder of the example, we assume that this option is set.

The user has another pair of options at Snapshot 3. She can perform the
blue rate selection, which leads to the formulation of view V2. Alternatively,
she may introduce a Routers table and join the rate columns of NetCards

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:19

Fig. 6. Snapshots of an interaction session (continued) (Snapshots 3, 4, 5).

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:20 • M. Petropoulos et al.

and Routers, thus instantiating the rate parameter of V2 with constants
provided by another table.

—Selection options. In Snapshot 4 (Figure 6), the user has performed the sug-
gested join and introduced a Routers table. Now the Routers.type column
needs to be bounded and the interface presents to the user a drop-down list
that explains which constants may be chosen. She can either choose “Wired”
or “Wireless.” The symbol * denotes any other constant and is colored red

(dark gray) to indicate that no feasible query can be formulated if she chooses
this option. Note that the options of a drop-down list can have different colors.
If there were only one constant that she could choose, then this option would
be yellow. In the special case where any constant can be chosen, then no
drop-down list is shown, as in the case of the cpu selection box in Snapshot 1.

The front-end can also be configured to hide all red actions, including
columns with red selection and projection boxes. Note that a red selection
box implies a red projection box and vice versa. So the front-end can remove
the column from the corresponding table box altogether.

In the next steps, the user performs the suggested join, chooses the “Wire-
less” constant and checks several projection boxes. Snapshot 5 (Figure 5)
shows the new query, which is feasible. The middleware composition that
implements this query first accesses view V4, then for each rate returned ac-
cesses view V2 with its parameters instantiated to “P4” and the given rate,
and finally performs the necessary projections.

The CLIDE Interface front-end displays only yellow and blue join lines.
Red and white join lines are typically too many and are not displayed. If the
user wants to perform a join other than the ones suggested, she has to follow
a trial-and-error procedure.

Note that unchecked projection boxes can be either blue, white or red.
A projection box cannot be yellow, because if there is a feasible query that
has the corresponding projection atom in the SELECT clause, then the query
formulated by removing this atom is also feasible.

Finally, if the user performs a red action, then all boxes, lines and items
in the table list are colored red, indicating that the user has reached a dead
end, that is, no feasible query can be formulated by performing more actions
and it is necessary to backtrack, that is, to undo actions.

5.1 Specification of the CLIDE Interface Color Scheme

Interaction sessions between the user and the CLIDE Interface front-end are
formalized by an Interaction Graph. The nodes of the interaction graph corre-
spond to CQ=CA queries and the edges to actions.

Definition 5.1 (Interaction Graph). Given a database schema D and a set
of CQ=P views V over D, an interaction graph is a rooted DAG G I = (N , s, E)
with labeled nodes N and labeled edges E such that

—for every query q ∈ CQ=CA over D, there is exactly one node n ∈ N whose
label q(n) is syntactically isomorphic to q. We call n feasible if q(n) is feasible;

—s is the root node and is labeled with the empty query;

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:21

—every edge e(n
a

→ n′) ∈ E is labeled with an action a which yields a query that
is isomorphic to q(n′) when applied to q(n). a is either a table, a projection,
a join, a specific selection of the form r.x=constant, or a generic selection of
the form r.x=*. Here * denotes any constant other than the ones that appear
in specific selections and label edges originating from n.

Figure 7 shows part of an interaction graph for the schemas in Figure 2,
where nodes n1 to n5 correspond to the queries formulated in Snapshots 1 to 5
of Figures 5 and 6. Notice that there are multiple interaction graphs that cor-
respond to a given schema, since each node n can be relabeled with any of the
queries that are syntactically isomorphic to q(n), that is, with any query that
uses other alias names. The CLIDE Interface considers a single interaction
graph by controlling the generation of aliases. By convention, the generated
aliases follow the lexical pattern Ti where T is the first three letters from the
name of the table (for presentation purposes) and i is a number that is sequen-
tially produced.4

Figure 7 indicates feasible queries by green (shaded) nodes. The root s is
indicated by a hollow node. The outgoing edges of a node n capture all possible
actions that the user can perform on q(n). These are the actions that the front-
end colors and they are finitely many. Even though there are infinitely many
constants that can potentially generate infinitely many selections for a given
column, they are aggregated by the * symbol. In Figure 7, for example, the * in
the selection Com1.cpu=* labeling an outgoing edge of n1 aggregates all possible
constants. The * in the selection Rou1.type=* labeling an outgoing edge of n4

denotes all constants except “Wired” and “Wireless,” because corresponding
selections label adjacent edges.

For a query q(n), the coloring rules are formally expressed as a coloring of
the actions labeling outgoing edges of node n.

Definition 5.2 (Colors). Given an interaction graph G I = (N , s, E), a node

n ∈ N , and an outgoing edge e(n
a

→ m), the action a is colored

—yellow (required) if every path pi from n to a feasible node nF contains an
edge labeled with a;

—blue (at least one required) if (i) a is not yellow, (ii) at least one path pi from
n to a feasible node nF contains an edge labeled with a, and (iii) there is no
path from n to nF that contains a feasible node, excluding n and nF ;

—red (forbidden) if there is no path from n to a feasible node that contains an
edge labeled with a;

—white (optional) if not colored otherwise.

We say that actions colored yellow or blue are called suggested. The same action
may have different color at various points in the interaction. For example, table
action NetCards Net1 is white when it labels an outgoing edge of n1 and blue
when it labels an outgoing edge of n2.

4Note that the aliases actually generated by the front-end on Figures 4, 5, and 6 use the whole
table name. We used the three-letter abbreviation in the text for presentation purposes.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:22 • M. Petropoulos et al.

F
ig

.
7

.
P

a
rt

of
a

n
in

te
ra

ct
io

n
g
ra

p
h

.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:23

The CLIDE Interface assigns colors according to Definition 5.2 and features
the following characteristics of desirable behavior:

(1) Completeness of suggestions. Every feasible query can be formulated by
starting from the empty query and at every interaction step picking only
among blue and yellow actions.

(2) Minimality of suggestions. In every step, only a minimal number of actions,
which are needed to preserve completeness, are suggested as required.
Equivalently, for each blue or yellow action a, there is at least one feasi-
ble query toward which no progress can be made without picking a.

(3) Rapid convergence by following suggestions. Assume that the user is at node
n of the interaction graph and consequently follows a path p consisting of
yellow and blue edges until she reaches feasible query q(n′). It is guaran-
teed that there is no path p′ that is shorter than p and also leads from
n to n′.

6. THE CLIDE INTERFACE BACK-END

The CLIDE Interface back-end is invoked every time the interaction arrives at
a node n in the interaction graph. It takes as input the query q(n), the schemas
and the views exported by the sources, and the set of column associations. The
back-end partitions the set of possible actions, which label outgoing edges of n,
into sets of blue, red, white, and yellow suggested actions. It also decides if q(n)
is feasible.

The first challenge in determining the partition is that the color definitions
make statements about all possible extensions of the current query, that is, all
feasible nodes reachable from n. These correspond to an infinite set of infinitely
long paths in the interaction graph. Hence, the color definitions do not trivially
translate into any algorithm.

We first observe that, in coloring, we can limit the inspection of feasible
queries to those closest to n in the sense defined below:

Definition 6.1 (Closest Feasible Queries FQC). Given an interaction graph
G I = (N , s, E) and a node n ∈ N , the set of closest feasible queries FQC(n) are
the ones that label feasible nodes nF reachable from n such that there is no
path p from n to nF that contains a feasible node, excluding the endpoints of p.

THEOREM 6.1. The colors defined by Definition 5.2 with respect to all feasible

nodes FQ(n) coincide with the ones obtained with respect to only FQC(n) (i.e.,

by substituting “feasible node” with “closest feasible node” in the definition).

PROOF. Follows from the fact that all feasible nodes are reachable from some
closest feasible node in FQC(n), and that FQC(n) ⊆ FQ(n).

For instance, if an action a is yellow with respect to FQ(n), then it appears
on all paths from n to feasible nodes, and in particular on all paths from n to
nodes in FQC(n). Therefore it is yellow also with respect to FQC(n). Conversely,
if a is yellow with respect to FQC(n), it appears on all paths from n to closest
feasible nodes, but then it also appears on all paths from n to feasible nodes, as
such paths pass through closest feasible nodes.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:24 • M. Petropoulos et al.

Similarly, if a is blue with respect to FQ(n), then there is some feasible node
nF such that the path p = n → nF contains the label a and no path from n to
nF has any internal feasible node. Call nF a witness for a being blue. But then
nF ∈ FQC(n) and thus witnesses the fact that a should be blue with respect to
FQC(n). Conversely, if a is blue with respect to FQC(n), then the closest feasible
node nF witnessing this is also a feasible node witness. Indeed, if a path from
n to nF has no internal node in FQC(n), then it has none in FQ(n), either.

The case for red actions is very similar. The coincidence of the white actions
follows from the fact that they are simply the complement of the union of yellow,
blue or red actions.

By restricting our focus to closest feasible queries, we avoid the inspection
of infinitely many queries, as there are infinitely many feasible queries which
are not closest. For instance, consider the infinite set of all queries obtained as
a multiway join of k copies of a feasible query, for every integer k > 1.

We do not yet have an algorithm, however, as FQC(n) is known to be itself
infinite when the views allow parameterized selections [Duschka et al. 2000].
Furthermore, the question on the finiteness of FQC(n) in the absence of view
parameters remains open at this time.

We enable an algorithmic coloring by showing that, at each interaction step, it
is sufficient to consider only a representative subgraph of the interaction graph
to color the actions. This subgraph constitutes a neighborhood of bounded, finite
radius centered around n and can be therefore materialized. The representative
subgraph approximates the set of feasible queries which are closest to n in the
following sense:

Definition 6.2 (Cover of a Node Set). Let n be a node in the interaction
graph.

(1) Given node m reachable from n, we say that node c covers m with respect
to n if and only if it lies on a path from n to m and is distinct from n.5

(2) Given set S of nodes reachable from n, we say that set C covers S with
respect to n iff each node in S is covered by some node in C.

(3) We call a cover C of set S with respect to node n minimal if removing any
node from C leaves at least one node in S uncovered.

We omit specifying node n whenever it is clear from the context, thus talking
about a cover C of S. Notice that the set FQC(n) covers the set of feasible queries
reachable from n. Also notice that a set S may have several minimal covers,
depending on where on the path from n to a node m ∈ S we pick the covering
node.

In the remainder of this section, we focus on the case when parameterized
selection atoms do not appear in views, postponing the treatment of parameters
to Section 7.

We first prove in Section 6.1 the existence of a finite cover FQ R(n) of FQC(n)
which leads to coloring that satisfies the desired properties of completeness,

5Notice that m covers itself.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:25

Fig. 8. The CLIDE System architecture for nonparameterized views.

minimality, and rapid convergence of the suggestions. We present optimizations
for the computation of FQ R(n) which proved crucial to the CLIDE Interface’s
usability. We next address in Section 6.2 the challenge of efficiently coloring
the possible actions given this finite cover. Our solution avoids the brute-force
construction of the subgraph induced by node n and FQ R(n).

Figure 8 shows the architecture of the CLIDE System implementation, when
parameterized selection atoms do not appear in the views. The Maximally Con-

tained Rewriter and Aliases Collapse Rule components compute a finite cover
FQ R(n) of the set FQC(n) and implement the algorithm given in Section 6.1.
The Color Algorithm component inputs the set FQ R(n) and implements the al-
gorithm given in Section 6.2. When parameterized selection atoms appear in
the views, the Color Algorithm component inputs another finite cover, called a
set of seed queries SQ(n), computed by the algorithm described in Section 7.

6.1 Finite Cover of the Closest Feasible Queries

6.1.1 Maximally Contained Feasible Queries. Intuitively, as the user syn-
tactically extends the current query with new tables, selections, and joins, she
creates queries which are contained in the initial one, as they have additional
conditions. It is therefore a natural starting point to focus on the maximally-
contained [Halevy 2001] and feasible queries since they are the least constrain-
ing (semantically) and hence they have the least number of additional tables,
selections, and joins, which makes them good candidates to be closest feasible
queries. We adapt from Halevy [2001] the definition of the set of maximally-
contained feasible queries as the set of queries such that

(1) for each maximally-contained query q1, q1 is feasible and contained in q(n)
(q1 ⊑ q(n)),

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:26 • M. Petropoulos et al.

(2) for each maximally-contained query q1 and any feasible query q′
1 ⊑ q(n), if

q′
1 contains q1, then q′

1 is equivalent to q1, and

(3) for each feasible query q1 ⊑ q(n) there exists a maximally-contained query
q2 such that q1 ⊑ q2.

Among the maximally-contained feasible queries, we focus on the ones which
are minimal syntactic extensions of q(n), in the sense that dropping any table,
selection, or join compromises feasibility or containment in q(n) or the prop-
erty of syntactically extending q(n). We denote the set of maximally-contained
feasible queries which are minimal syntactic extensions of q(n) with FQME (n).

FQME (n) is known to be finite if we restrict q(n) and the views to conjunctive
queries with constant selection atoms (no parameters) [Duschka et al. 2000].
Section 8 describes how we extended the MiniCon algorithm [Pottinger and
Halevy 2001] for finding maximally-contained rewritings to obtain FQME (n).

LEMMA 6.1. All minimal feasible extensions of q(n) which are maximally-

contained in q(n) are also closest feasible queries of q(n) (FQME (n) ⊆ FQC(n)).

PROOF. By definition of the notion of syntactic extension, for any q1 which
is a syntactic extension of query q(n), there exists a node n1 reachable from n

in the interaction graph, such that q(n1) = q1. Moreover, for the containment
q1 ⊑ q(n) to be meaningful, the two queries must have the same output schema
and hence the path n → n1 must not contain any projection actions. In this
case, the following claim is easily verified:

Claim 1. Let n1 be a node reachable from node n in the interaction graph
along a path containing no projection actions. Then for any node n2 of the path
n → n1, we have q(n1) ⊑ q(n2) ⊑ q(n).

Proof of Claim 1. The claim is proven by observing that the only allowed
actions on the path n → n1 guarantee the existence of a containment mapping
from every node to its successors.

Claim 1 implies that no internal node n2 of the path n → n1 is feasible.
Indeed, assume toward a contradiction that q(n2) is feasible for some internal
node n2 on the path n → n1. Then if q1 ⊏ q(n2), this contradicts the maxi-
mal containment of q1 in q(n). If q1 is equivalent to q(n2), this contradicts the
extension-minimality of q1 since dropping from q1 all tables, joins, and selec-
tions introduced on the path n2 → n1 results in the feasible, contained extension
q(n2) of q(n).

Since n1 is reachable from n through no feasible query, n1 ∈ FQC(n).

Lemma 6.1 provides a tool for finding some of the closest feasible queries.
However, not all closest feasible queries can be obtained in this fashion as some
of them are not in FQME (n). This point is illustrated by the next example.

Example 6.1. Assume that views V1 and V2 shown in Figure 2 are replaced
by the following views V ′

1 and V ′
2, respectively, which contain constant selections

only.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:27

SELECT DISTINCT Com.* (V ′
1)

FROM Computers Com

WHERE Com.cpu=’P4’

SELECT DISTINCT Com.*, Net.* (V ′
2)

FROM Computers Com, Network Net

WHERE Com.cid=Net.cid AND Com.cpu=’P4’

AND Net.rate=’54Mbps’

If the current query is q(n3) in Figure 7, then the only query in FQME (n3) is
q(n9) given below.

SELECT DISTINCT Com1.ram, Com1.price q(n9)

FROM Computers Com1, Computers Com2, NetCards Net1

WHERE Com2.cid = Net1.cid AND Com1.cpu=’P4’

AND Com2.cpu=’P4’ AND Net1.rate=’54Mbps’

Note that q(n10) is also a closest feasible query to q(n3), but it is not in
FQME (n3) since it is contained in q(n9).

SELECT DISTINCT Com1.ram, Com1.price q(n10)

FROM Computers Com1, NetCards Net1

WHERE Com1.cid = Net1.cid AND Com1.cpu=’P4’

AND Net1.rate=’54Mbps’

Intuitively, one can extend q(n9) with joins until the Com2 alias “collapses”
into Com1, leading to a closer query, reachable from q(n3) and clearly contained
in q(n9) due to the added joins.

Even though FQME (n) does not give us the entire set of closest feasible
queries, it turns out that we can use it as a starting point to search for queries
which cover the ones in FQC(n) \ FQME (n).

6.1.2 Alias Collapse Rule. The search starts from the queries in FQME (n)
and rewrites them using the alias collapse rule. This rule rewrites a query q

into a query q′ as follows: pick a pair of table atoms sharing the same relation
name, say R R1, R R2, substitute R2 for R1 in q, and drop the duplicate R R1

atom.

Example 6.2. One can obtain the query q(n10) from query q(n9) by collaps-
ing the aliases Com1 and Com2. q(n10) covers FQC(n3) \ FQME (n3) = {q(n10} as
q(n10) trivially covers itself.

In the above example, we obtained a covering query q(n10) which happened
to be feasible. There are examples showing that in general, the covering queries
may not be feasible themselves, having extensions to feasible queries instead.

Notice that indiscriminate application of the collapse rule can lead to un-
satisfiable queries. To see this, assume that q contains the selection conditions
R1.x=‘5’ and R2.x=‘3’. After collapsing R1 and R2, q′ contains the inconsistent

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:28 • M. Petropoulos et al.

selection conditions R1.x=‘5’ and R1.x=‘3’. We apply the alias collapse rule
only if they lead to satisfiable queries.

LEMMA 6.2. For any n1 ∈ FQC(n) \ FQME (n), there exists n2 ∈ FQME (n)
and n3 such that q(n3) is obtained from q(n2) by repeatedly applying the alias

collapse rule, and n3 covers n1 with respect to n.

PROOF. Since n1 is a closest feasible query, we claim that q(n1) ⊑ q(n). To
prove this, we use the following claim:

Claim 2. If q(n1) ∈ FQC(n), then every path n → n1 contains no projection
actions.

Proof of Claim 2. Assume toward a contradiction that the path n → n1 does
contain projection actions. Then there is a query q(n2) for a node n2 such that

—n2 is reachable from n (along a path obtained by dropping the projection
actions from path p = n → n1);

—n1 is reachable from n2 (along a path consisting solely of the projection actions
dropped from path p); and

—q(n2) is feasible, since dropping projections does not affect feasibility of a
query.

But then q(n2) witnesses that q1 is not in FQC(n), as it is reachable from
feasible query q(n2). �

By Claim 2 and Claim 1 from the proof of Lemma 6.1, it follows that q(n1) ⊑

q(n).
Now, since n1 �∈ FQME (n), q(n1) is not maximally contained in q(n) and there

exists n2 ∈ FQME (n) such that q(n1) ⊏ q(n2). Hence there exists a containment
mapping h from q(n2) into q(n1). We call a pair of table atoms R r1, R r2 in q(n2)
which have the same image under h a collision.

The lemma now follows immediately from the following claim:

Claim 3. We prove that whenever there is a containment mapping h from
q(n2) into q(n1) with k collisions, then a subquery q(n3) of q(n1) can be obtained
from q(n2) by applying k alias collapse steps.

Proof of Claim 3. The proof is by induction on k. The base case k = 0 is trivial,
as the image of q(n2) under h gives the subquery q(n3). For the step, assume
k + 1 collisions under h. Pick a collision pair of table atoms Rr1, Rr2 in q(n2).
These have the same image under h. Substitute r1 for r2 in q(n2) and drop the
duplicate table atom to obtain a query q′. Notice that h remains a containment
mapping from q′ into q(n1), exhibiting only k collisions. By induction hypothesis,
q(n3) is obtained by k alias collapse steps from q′, therefore by k + 1 collapse
steps from q(n2).

Lemmas 6.1 and 6.2 lead to the following algorithm for computing a minimal
cover of FQC(n).

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:29

algorithm CoverFQC

Input: node n

Output: a minimal cover of FQC(n)

begin

compute M := FQME (n) using an algorithm for finding

maximally-contained conjunctive query rewritings,

extended to produce minimal syntactic extensions of q(n)

// compute a cover of FQC(n)\FQME (n) in AC:

let AC := the empty set ∅

for each qM ∈ M do

for each pair of distinct aliases r1,r2 of some relation in qM do

let q′ := collapse r1 and r2 in qM

AC := AliasCollapse(q(n), q′, AC)

return M ∪ AC

end

procedure AliasCollapse

Input: query q0, query q, query set AC

Output: all syntactic extensions of q0 which cover at least one query in FQC(n)

and are obtainable from q by collapsing aliases

begin

if q is unsatisfiable or q is not an extension of q0, return the empty set ∅

if q has some feasible extension (checkable by testing FQME (q) �= ∅)

AC := AC∪ {q}

for each pair of distinct aliases r1,r2 of some relation in q do

let q′ := collapse r1 and r2 in q

AC := AliasCollapse(q′, AC)

return AC

end

We denote with FQ R(n) the result of running algorithm CoverFQC at node
n. The following shows that coloring actions with respect to FQ R(n) instead of
FQ(n) suffices to guarantee the desired properties of the interaction.

THEOREM 6.2. Coloring actions with respect to FQ R(n) results in an interac-

tion which exhibits completeness, minimality of suggestions and rapid conver-

gence.

Theorem 6.2 follows from the following lemmas.

LEMMA 6.3. FQ R(n) is a finite minimal cover of FQC(n).

PROOF. The fact that FQ R(n) is a cover of FQC(n) follows immediately from
Lemmas 6.1 and 6.2. Finiteness follows from the fact that FQME (n) is known
to be finite [Duschka et al. 2000] and the fact that every query admits only a
finite number of alias collapse steps. Minimality follows from the observation

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:30 • M. Petropoulos et al.

that for any nodes n1, n2 such that q(n2) is obtained from q(n1) via alias collapse
steps, n1 is not reachable from n2 in the interaction graph and conversely, n2 is
not reachable from n1.

LEMMA 6.4. Let n be the current query node.

(1) For every action a applicable to q(n), a is colored yellow with respect to FQ(n)
if and only if it is colored yellow with respect to FQ R(n).

(2) If action a is colored blue with respect to FQ R(n), it is also colored blue with

respect to FQ(n).

(3) For every node nF ∈ FQ(n), coloring the actions applicable at node n with

respect to FQ R(n) results in at least one yellow or blue action at n that enables

progress toward nF .

PROOF. (1). If action a is colored yellow with respect to FQ(n), then it ap-
pears on the paths to all feasible nodes and thus to all nodes in FQME (n) since
FQME (n) ⊆ FQC(N) ⊆ FQ(n). But, as shown in the proof of Lemma 6.2, for
all nodes n1 ∈ FQ R(n) \ FQME (n) there is some node n2 ∈ FQME (n) and a
containment mapping from q(n2) into q(n1). Hence the table, selection or join
introduced by action a into q(n1) also appears in q(n2) as the image of the
containment mapping. This shows that a appears on the paths to all nodes in
FQ R(n) and is hence colored yellow with respect to FQ R(n).

(2). If a is colored blue with respect to FQ R(n), there is some witness nc ∈

FQ R(n) such that the paths from n to nc contain a and there is no other node
from FQ R(n) on these paths. Since by Lemma 6.3 FQ R(n) is a minimal cover
of FQC(n), there exists some node nF ∈ FQC(n) reachable from nc, which is a
witness of a being colored blue with respect to FQC(n). By Theorem 6.1, a is
also colored blue with respect to FQ(n).

(3). Follows from the fact that FQ R(n) is a cover of FQC(n): any action en-
abling progress toward a feasible node nF ∈ FQ(n) must enable progress toward
the node nc ∈ FQ R(n) covering nF .

PROOF OF THEOREM 6.2. Completeness follows from Lemma 6.4(3). Minimal-
ity follows from the fact that FQ R(n) is a minimal cover of FQ(n) (implied by
Lemma 6.3). Rapid convergence follows from the fact that all paths from a node
n to a node n′ have the same length, as they must eventually perform the same
set of syntactic extensions.

6.2 Color Algorithm

After computing a minimal cover FQ R(n) of the set of closest feasible queries
FQC(n), the CLIDE Interface decides if the current query is feasible or not,
and then colors all possible actions that the user can perform next. The current
query is feasible if and only if q(n) ∈ FQME (n), and infeasible otherwise.

Theorem 6.2 shows that, instead of working with the infinite interaction
graph, we can restrict our attention to the finite close subgraph consist-
ing of n, all nodes in FQ R(n) and the paths between them. In this section
we show how to color the actions without actually materializing the close
subgraph.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:31

We first present the algorithm for finding the yellow and blue actions when
the current query is infeasible. We deal with the white and red actions, as well
as the feasible case, next.

6.2.1 Blue and Yellow. We color a join a yellow if it appears in all nodes of
FQ R(n), and blue if it appears in some. In the case of a table action T, we color
it yellow (respectively blue) if in all (respectively some) query in FQ R(n) there
exists a table atom T Tj, such that T Ti and T Tj do not necessarily refer to
the same alias, and T Tj does not appear in the current query.

Specific selections, that is, selections of the form r.x=constant, are colored
either yellow or blue the same way joins are colored. The front-end displays
these actions in the corresponding selection box as options of a drop-down list.
Generic selections of the form r.x=* and projections cannot be colored blue or
yellow when the current query is infeasible, because for each feasible query they
participate in, there is another feasible query that can be formulated without
performing them. Conversely, when the current query is infeasible, performing
a projection or a generic selection that does not appear in the views will not
yield a feasible query.6

6.2.2 White and Red. Any remaining actions are either white or red. For
each such action a, a brute force approach would add a to the current query, thus
yielding query q(n′), and then test if FQME (n′) is empty (i.e., if it has no feasible
extensions). If so, a is colored red, otherwise white. This approach, although
simple, requires the nonemptiness test of FQME (n′), which is an expensive op-
eration, as the experiments of Section 9 demonstrate. Hence, we need to devise
more efficient techniques for coloring red and white actions.

Table actions are colored red if not used in any view, and white otherwise,
since a feasible query qF can lead to another feasible query that takes the
Cartesian product of qF and the view that contains the table in question.

For the case of projections and selections, we attach a maximum projection

list to every query qF labeling a node in FQ R(n). A maximum projection list
consists of all projections that can be added to qF , in addition to the ones already
in the current query, without compromising feasibility. For example, if we add
all possible projections to q(n9) of Example 6.1, while preserving feasibility,
then we formulate the following query q′(n9):

SELECT DISTINCT q′(n9)

Com1.cid, Com1.cpu, Com1.ram, Com1.price

Com2.cid, Com2.cpu, Com2.ram, Com2.price

Net1.cid, Net1.rate, Net1.standard, Net1.interface

FROM Computers Com1, Computers Com2, NetCards Net1

WHERE Com2.cid = Net1.cid AND Com1.cpu=’P4’

AND Com2.cpu=’P4’ AND Net1.rate=’54Mbps’

Hence, the maximum projection list of q(n9) consists of all projections in
q′(n9) except Com1.ram and Com1.price which appear in q(n9). In Section 8 we

6Note that generic selections can be colored yellow or blue when parameterized selections appear
in the views. Please see Section 7 for details.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:32 • M. Petropoulos et al.

show how we extended a maximally-contained rewriting algorithm to generate
these lists in linear time.

Once we compute the maximum projection lists, we color a projection red if it
does not appear in any list. Generic selections are colored red if the projection
r.x is red. These selections are also shown as options of the corresponding
drop-down lists. In the special case where no specific selections exist, then no
drop-down list is displayed and the selection box is colored according to the
color of the generic selection.

Any remaining actions are colored white. Note that specific selections can
never be colored white or red. The CLIDE Interface front-end does not display
white and red joins, so they are not a consideration.

6.2.3 Feasible Current Query. If the current query is feasible, we use the
same algorithm, but we color all nonred actions blue, as each one leads to a new
feasible query, not obtainable via other actions.

7. PARAMETERS

When parameterized selection atoms appear in the views, the algorithms in
Sections 6.1 and 6.2 need to be extended to deal with a new challenge: the
set FQME (n) of maximally contained queries becomes infinite [Duschka et al.
2000] and therefore searching for a (cover of) the set of closest feasible queries
starting from FQME (n) becomes problematic. The following example illustrates
this point.

Example 7.1. Assume the following employees and managers source
schema. The exported parameterized view V5 returns the mid of an employee’s
manager, given the employee’s eid. V6 returns the salary of a manager, given
the manager’s mid. Note that the source schema is recursive, that is, an em-
ployee has a manager, but a manager is also an employee, who has a manager.
One of the column associations we consider witnesses this recursion.

Empls(eid, mid) (Schema)

Mngrs(mid, salary)

EmplsMngrs(eid) → (Employee)*

SELECT DISTINCT E1.* (V5)

FROM Empls E1

WHERE E1.eid=eid

MngrsSalary(mid) → (Manager)*

SELECT DISTINCT M1.* (V6)

FROM Mngrs M1

WHERE M1.Mid=mid

(S1.Empls.eid, S1.Empls.mid) (Column Associations)

(S1.Empls.mid, S1.Mngrs.mid)

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:33

The user wants to find out the salaries of an employee’s managers and has
currently formulated query q1:

SELECT DISTINCT M1.salary q1

FROM Mngrs M1, Empls E1

WHERE M1.mid=E1.mid

At this point, E1.eid has to be provided to reach a feasible query. There-
fore, the front-end makes two suggestions: (i) perform a selection on E1.eid, or
(ii) introduce a second Empls E2 table, so that parameters can be passed from
E2.mid to E1.eid (based on the first column association). The suggested actions
are both blue.

Option (i) will formulate the feasible query q2F which returns the salaries of
E1.eid employee’s immediate managers.

SELECT DISTINCT M1.salary q2F

FROM Mngrs M1, Empls E1

WHERE M1.mid=E1.mid

AND E1.eid=‘‘A123’’

Option (ii) leads toward a query that returns the salaries of managers that
are two levels above an employee. More specifically, if the user introduces a
second table atom Empls E2, then the front-end colors the join E1.eid=E2.mid

yellow, which formulates q3:

SELECT DISTINCT M1.salary q3

FROM Mngrs M1, Empls E1, Empls E2

WHERE M1.mid=E1.mid AND E1.eid=E2.mid

For q3, the front-end makes the same kind of suggestions to the user as for
q1, since E2.eid has to be provided now. A selection on E2.eid formulates the
feasible query q4F which returns the salaries of managers that are two levels
above that employee.

SELECT DISTINCT M1.salary q4F

FROM Mngrs M1, Empls E1, Empls E2

WHERE M1.mid=E1.mid AND E1.eid=E2.mid

AND E2.eid=‘‘A123’’

It becomes evident that the user can build chains of Empls aliases of an
unbounded length, where each alias joins its eid with the next one’s mid, before
performing a constant selection on the eid of the last Empls alias. These queries
are infinitely many and are all closest feasible, indeed they are maximally
contained in q1. For example, q2F and q4F are two such queries, there is no
containment between them, nor any sequence of actions that applied on q2F

formulate q4F .

Recall from Section 6 that the algorithms for finding the cover of FQC(n) as
well as the coloring algorithms relied on enumerating the set FQME (n), which
according to Example 7.1 becomes impossible.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:34 • M. Petropoulos et al.

Instead, the CLIDE Interface back-end identifies a finite set of seed queries

SQ(n), possibly parameterized, where q(n) is the current query. These are not
necessarily feasible, but have the property that SQ(n) is a cover of FQ(n). In
Example 7.1, q2F is a feasible seed query of q1, while q3 is an infeasible one,
which however covers q4F . The algorithm suggests to the user a finite set of
actions leading from q(n) toward the seed queries SQ(n). This can be done by
simply calling the color algorithm of Section 6.2 on SQ(n) instead of FQ R(n).
This approach does not compromise the guarantees of completeness, minimality
of suggestions and rapid convergence.

It is a priori nonobvious that the finite set SQ(n) even exists. However, it
turns out that this is indeed the case, and moreover that SQ(n) can be computed
as follows. Start by ignoring the binding patterns of the views and computing
the maximally contained rewritings of q(n) in terms of the views. Under the
original binding patterns, not all obtained rewritings are valid, and the values
of their parameters must be provided. In each such rewriting, parameter values
may be provided by

(i) selections with a constant, or

(ii) via a parameter-passing join with a view alias from within the rewriting, or

(iii) via a parameter-passing join with a new view alias.

The considered parameter-passing joins must be compatible with the column
associations. Notice that there are only finitely many considered selections
and parameter-passing joins. We obtain SQ(n) by systematically extending the
rewritings according to possibilities (i), (ii), and (iii), and unfolding the view
definitions in all extended rewritings.

The detailed algorithm computing SQ(n) is given below and proceeds in
seven steps. The first six compute a set of feasible syntactic extensions of q(n),
while Step 7 performs the alias collapsing as in Algorithm CoverFQC.

Step 1. Parameterized selections are removed from the input views and
columns in the projection lists are annotated with either a ‘b’ (bound) or ‘ f ’
(free) binding pattern (see Section 3). This step adapts the input to the one
expected by standard algorithms for computing the maximally-contained
rewritings in the absence of parameters.

Step 2. Maximally-contained rewritings are computed in terms of the views
obtained in Step 1, without taking into account the binding patterns. The
resulting rewritings are expressed in terms of the views, each of which has
retained the binding patterns computed in Step 1.

Step 3. ‘b’ binding patterns of columns in the rewritings are eliminated
if during the computation of the rewritings the algorithm added constant
selections.

Step 4. More ‘b’ binding patterns of columns in the rewritings are eliminated
if the rewriting algorithm added joins with ‘ f ’ binding patterns. The elimination
at steps 3 and 4 is meant to detect the parameters whose values still need to
be provided by the user.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:35

Step 5. The rewritings computed in the previous step might still have ‘b’
binding patterns, signaling that the corresponding parameter values need to
be provided by the user. This is always doable via selections with constants. In
addition, parameter values can be provided via parameter-passing joins. This
step extends the rewritings to rewritings which eliminate ‘b’ binding patterns
via such parameter-passing joins, either using views already in the rewritings
or with newly added views.

Step 6. Views are expanded so that the rewritings can be used by the
coloring algorithm. The ‘b’ binding patterns are translated into parame-
terized selections. The obtained set of queries are syntactic extensions of
q(n) which can be made feasible by providing values for the parameterized
selections.

Step 7. The queries obtained at Step 6 are now postprocessed through alias
collapse steps, similarly to the last stage of the algorithm in Section 6.1.

algorithm ComputeSQ

Input: node n, view set V

Output: A set of seed queries SQ(n) which covers FQC(n)

begin

// Step 1: remove parameters and attach a binding pattern to the views

let VBP := the empty set ∅

for each view Vi in V

for each column ci in the projection list of Vi

annotate c j with binding pattern ‘ f ’

for each column ci participating in a parameterized selection

add ci to the projection list of Vi , if not already present

annotate ci with binding pattern ‘b’

remove from Vi the parameterized selection which ci participates in

VBP := VBP∪ {Vi}

// Step 2: compute maximally-contained rewritings

Compute A, the set of maximally-contained conjunctive query rewritings

in terms of the views in VBP , ignoring the binding patterns

// Step 3: eliminate ‘b’ binding patterns based on selections

for each qA ∈ A

for each view Vi in the FROM clause of qA

for each column ci in the projection list of Vi with binding pattern ‘b’

if ci participates in a selection with a constant

annotate ci with binding pattern ‘ f ’

// Step 4: eliminate ‘b’ binding patterns based on joins

let M := the empty set ∅

for each qA ∈ A

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:36 • M. Petropoulos et al.

for each possible order of the views in the FROM clause of qA

containing a binding pattern ‘b’

create query qi
A with the given order of the views in the FROM clause

for each view Vi in the FROM clause of qi
A containing a binding pattern ‘b’

for each column ci in the projection list of Vi with binding pattern ‘b’

if ci participates in a join with a column c j with binding pattern ‘ f ’

coming from a view V j , where j < i

Annotate ci with binding pattern ‘ f ’

M := M ∪ qi
A

// Step 5: eliminate ‘b’ binding patterns by adding parameters-passing joins

for each q ∈ M

for each view Vi in the FROM clause of q containing a binding pattern ‘b’

for each column ci in the projection list of Vi with binding pattern ‘b’

if there is a column association between ci and a column c j

with binding pattern ‘ f ’ that appears in the projection list

of a view V j , where j < i

create a copy q′ of q

add a join between ci and c j in q′

annotate ci in q′ with binding pattern ‘ f ’

M := M ∪ q′

if there is a view V j in VBP , such that there is a column association

between ci and a column c j that appears in the projection list

of V j with binding pattern ‘ f ’

create a copy q′ of q

add a new alias of V j in q′

add a join between ci and c j in q′

annotate ci in q′ with binding pattern ‘ f ’

M := M ∪ q′

// Step 6: expand the views

for each q ∈ M

expand the views in q such that parameterized selections are added for columns

in the projection lists of the views with binding pattern ‘b’

and such that the resulting query is a minimal syntactic extensions of q(n)

// Step 7: collapse aliases

run the code of Algorithm CoverFQC from Section 6.1 starting at line 2 (let AC := ∅)

this code operates on the set M of feasible syntactic extensions constructed in steps 1

through 6.

end

In regard to coloring, once the set SQ(n) of seed queries is returned by
Algorithm ComputeSQ , the coloring is performed similarly to Section 6.2,
using SQ(n) instead of FQ R(n).

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:37

Fig. 9. MiniCon optimizations and extensions.

8. IMPLEMENTATION

The current implementation of the CLIDE Interface consists of the compo-
nents shown in Figure 8, where the views may be parameterized.

The CLIDE Interface back-end uses MiniCon [Pottinger and Halevy 2001]
as the core of its maximally-contained rewriting component. Even though an
initial implementation was provided to us, we had to significantly optimize
and extend it in order to enable back-end’s color algorithm and achieve on-
line performance. Figure 9 illustrates the anatomy of the maximally-contained
rewriting component from Figure 8.

8.1 Views Expansion

The first challenge we faced was that MiniCon does not produce maximally-
contained rewritings that are syntactic extensions of the current one. MiniCon
initially produces a set of rewritings expressed using the views. Once these
rewritings are expanded so that they are expressed in terms of the source
schemas, they are not syntactic extensions of the current query, because fresh
aliases are introduced. For example, if the current query is q(n3) (Snapshot 3
in Figure 6), MiniCon produces the following rewriting query qR that combines
V ′

1 and V ′
2:

SELECT DISTINCT V ′
1.ram, V ′

1.price qR

FROM V ′
1, V ′

2

After expanding the views of qR , we obtain the following query qRE , which
is expressed in terms of the source schemas.

SELECT DISTINCT ComA.ram, ComA.price qRE

FROM Computers ComA, Computers ComB, NetCards Net

WHERE ComB.cid = Net.cid AND ComA.cpu=’P4’

AND ComB.cpu=’P4’ AND Net.rate=’54Mbps’

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:38 • M. Petropoulos et al.

Query qRE is syntactically isomorphic to the cover query q(n9), but it is not
a syntactic extension of q(n3), since q(n3) contains a table Computers Com1,
while qRE contains the tables Computers ComA and Computers ComB. It is not
straightforward if Com1 corresponds to ComA or ComB.

We could find the correspondences between the tables of q(n3) and the ta-
bles of qRE by computing the containment mapping [Abiteboul et al. 1995]
from q(n3) into qRE . The containment mapping considers all atoms of the two
queries in order to find the correct correspondences. For example, Com1 of q(n3)
cannot be mapped into ComB of qRE , because the ComB.ram and ComB.price pro-
jections do not appear in the SELECT clause, as is the case in q(n3). Once we
compute the containment mappings, we can turn the MiniCon rewriting queries
into syntactic extensions of the current query by renaming the aliases of the
former.

We managed to avoid computing the containment mappings on top of
MiniCon. We observed that, while MiniCon searches for maximally-contained
rewritings, it builds the containment mappings from the current query to the
maximally-contained ones. So we extended MiniCon to log this information and
output it along with the set of maximally-contained rewriting queries over the
views, as shown at the bottom of Figure 9.

Subsequently, we wrote a Views Expansion component, which uses the logged
containment mappings to expand the views in every MiniCon maximally-
contained rewriting so that the resulting queries are syntactic extensions of
the current one.

The Views Expansion component also generates the maximum projection
lists used in the color algorithm of Section 6.2. In Section 6.2, we defined a
maximum projection list to be the list of all possible projections that can be
added to a query without compromising feasibility. Note that this definition
suggests a direct yet expensive brute-force algorithm which adds each projec-
tion action and checks feasibility by calling MiniCon. A much more efficient,
linear-time procedure is possible due to the fact that for each expanded query,
the maximum projection list corresponds to all projections in the views that
appear in the initial MiniCon rewriting. For example, the initial rewriting of
q(n9) is qR . We can safely add to qR all projections in views V ′

1 and V ′
2, without

compromising feasibility, and obtain the following query q′
R :

SELECT DISTINCT q′
R

V ′
1.cid, V ′

1.cpu, V ′
1.ram, V ′

1.price

V ′
2.cid, V ′

2.cpu, V ′
2.ram, V ′

2.price

V ′
2.cid, V ′

2.rate, V ′
2.standard, V ′

2.interface

FROM V ′
1, V ′

2

Hence, the maximum projection list of q(n9) consists of all projections in q′
R

except V ′
1.ram and V ′

1.price which are mapped into from q(n9). The contain-
ment mappings are used here as well, so that the aliases in the maximum
projection lists refer to aliases that appear in the current query. These lists are
constructed in linear time.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:39

8.2 Redundant Queries Removal

The Views Expansion component inputs maximally-contained queries, but not
all syntactic extension queries it outputs are necessarily maximally contained.
It turns out that views expansion introduces redundancy across queries, that
is, expanded queries might contain one another. For example, if the current
query is q(n1) in Figure 7 (Snapshot 1 in Figure 5), then MiniCon outputs two
maximally-contained rewritings qR1 and qR2 over the views V ′

1 and V ′
2 which

do not contain one another:

SELECT DISTINCT V ′
1.ram, V ′

1.price qR1

FROM V ′
1

SELECT DISTINCT V ′
2.ram, V ′

2.price qR2

FROM V ′
2

The expansion of qR1 though contains the expansion of qR2, according to the
definition of the views V ′

1 and V ′
2 in Example 6.1.

In order to preserve the rapid convergence and minimality guarantees of
the CLIDE Interface (see Section 5.1), we have to eliminate contained queries.
This additional work is performed by the Redundant Queries Removal compo-
nent, which we built from scratch and tests if one query is contained in an-
other. The query containment test amounts to finding containment mappings
between queries and is in general NP-complete in the query size. In practice,
the constructed queries are small, and this test is very efficiently implemented
[Yannakakis 1981]. We compute the containment mappings from query q1 into
query q2 by constructing a canonical database [Abiteboul et al. 1995] for q2,
canDB(q2) and running q1 over canDB(q2). To efficiently evaluate q1, we em-
ploy standard algebraic optimization techniques: we construct an algebraic op-
erator tree for q1 (left deep join tree), in which selections and projections are
pushed and joins are implemented as hash joins.

The efficient implementation of the Views Expansion component proved cru-
cial to the on-line response of the CLIDE Interface, since query containment
tests are the bottleneck for the performance of the back-end, as Section 9
demonstrates.

8.3 Redundant Actions Removal

The output of the Redundant Queries Removal component is still not the set of
minimal feasible extension queries FQME that we are looking for, because they
are not necessarily minimal extensions of the current query. For example, if q

is the current query shown below, then qE is the only feasible expansion query
we get from MiniCon. qE is not a minimal expansion query, though. Query qM E

requires one action less than qE to reach an equivalent query that minimally
extends the current one.

SELECT DISTINCT Com1.ram, Com1.price q

FROM Computers Com1, Computers Com2

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:40 • M. Petropoulos et al.

SELECT DISTINCT Com1.ram, Com1.price qE

FROM Computers Com1, Computers Com2

WHERE Com1.cpu=’P4’ AND Com2.cpu=’P4’

SELECT DISTINCT Com1.ram, Com1.price qM E

FROM Computers Com1, Computers Com2

WHERE Com1.cpu=’P4’

The Redundant Actions Removal component finds FQME by systematically
detecting two identical constants that refer to identical columns of two tables
with identical names but distinct aliases, dropping one of them at a time,
and testing for equivalence with the initial query. The same rule is applied
on self-joins.

8.4 Skipping MiniCon Calls

We conclude this section mentioning an optimization which we are currently
implementing into the CLIDE Interface back-end. It concerns the case when pa-
rameterized selections do not appear in the views and is based on the intuition

that each interaction step along an edge n
a

→ n′ changes q(n) only incrementally.
Therefore it is natural to investigate whether it is possible to compute FQ R(n′)
incrementally from FQ R(n) instead of doing so from scratch by an expensive
call to MiniCon.

Indeed, if a is a yellow or blue action, the cover set FQ R(n′) is contained
in FQ R(n) and we do not need to call MiniCon to compute FQ R(n′). Instead,
we can inspect the containment mappings from q(n) into FQ R(n) and we can
compute FQ R(n′) by pruning those mappings that are inconsistent with action
a and dropping from FQ R(n) all queries left with no more more containment
mapping. This optimization saves calls to MiniCon during those stretches of the
interaction in which the user performs only yellow and blue actions, progressing
toward but not yet reaching any query in FQ R(n).

9. EXPERIMENTAL EVALUATION

Our experimental evaluation shows that the CLIDE Interface is a viable online
tool. The MiniCon algorithm was evaluated via extensive experiments in
Pottinger and Halevy [2001] to measure the time to find the maximally-
contained rewritings of queries using views. The goal of our experiments was
to show that the rest of the CLIDE Interface back-end components do not add
a prohibitive cost, and that the algorithms of Sections 6.1, and 6.2, as well
as our extension to parameters (Section 7) and optimizations (efficient imple-
mentation of containment test, logging MiniCon’s containment mappings, see
Section 8) are crucial in obtaining quick response times.

9.1 The Experimental Configuration

To study how the CLIDE Interface scales with increasing complexity of the
constructed query and with the number of views in the system, we used a
synthetic experimental configuration, whose scaling parameters are K , L, M ,
as described below.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:41

9.1.1 The Schema. In the literature, synthetic queries are usually gen-
erated in one of two extreme shapes: chain queries and star queries. For a
more realistic setting, we chose a schema which allowed us to build queries of
a chain-of-stars shape, and in which joins follow foreign-key constraints (the
most common reason for joins). To this end, we picked a schema comprised of
a relation A(ka, a) playing the role of a star center, which is linked (via foreign
key constraints) to K relations {Bi(kb, f b, b)}0≤i≤K (the star corners). Each Bi

is in turn the center of another star whose L corners are given by the relations
{Ci, j (kc, f c, c, c′)}0≤ j≤L. ka, kb, kc are, respectively, the key columns for A, the
Bi ’s, and the Ci, j ’s. In each Bi, f b is a foreign key referencing ka from A. In
each Ci, j , f c is a foreign key referencing kb from Bi.

9.1.2 The Views. The MiniCon experiments in Pottinger and Halevy [2001]
consider two extremes for view shapes, one very favorable, the other one leading
to long rewriting time. The views in our configuration fall in the middle of this
spectrum, and are more realistic. Each view we picked covers one of the foreign-
key-based joins suggested by the schema. Moreover, we introduced selections
with constants in these views, to force the interface to propose not only tables
and joins, but also selections. For each i, we introduced M views {V n

i }0≤n≤M

joining A with Bi and imposing a selection comparing the b column with some
constant cn. For each i, j , we introduced M views {V n

i, j }0≤n≤M joining Bi with
Ci, j and comparing the c column to the constant cn.

V n
i : SELECT x.a, y.kb, y.b

FROM A x, Bi y

WHERE x.ka=y.fb AND y.b=cn

V n
i, j : SELECT y.kb, y.b, z.c, z.c’

FROM Bi y, Ci, j z

WHERE y.kb=z.fc AND z.c=cn

There are K × M + K × L × M views in the configuration. For an intuitive
interpretation of our abstract configuration, let the Bi tables stand for computer
accessories, such as network cards, storage, keyboard, etc. For instance if B1

plays the role of the NetCards table in Figure 2 and A that of Computers, then
the view V 3

1 provides the computers compatible with a network card satisfying
a selection condition with constant c3.

9.1.3 The Queries. We scripted a family of interactions in which the sim-
ulated user starts by performing an A table action and then follows only blue
and yellow suggestions, continuing even after reaching feasible queries.

After the initial A table action, the CLIDE Interface front-end suggests joins
with the Bi ’s. If any of these suggestions are taken (say by picking Bp), the front-
end suggests the corresponding selections on Bp’s column b, as a list of options
c1, . . . , cM . It also suggests table actions leading to the join of A with some other
B j or of Bp with some Cp,o. When the simulated user picks a selection with cn, it
reaches a feasible query having a rewriting using V n

p . When this feasible query
is extended to join Bp with some Cp,o, the front-end suggests (among others)
selections comparing Cp,o’s column c to some constant. Picking one of these, say
cr , generates another feasible query, which has a rewriting that joins V n

p with
V r

p,o.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:42 • M. Petropoulos et al.

Fig. 10. The CLIDE Interface response time (no parameters).

9.2 The Measurements

The measurements were conducted on a dedicated workstation (Intel Core2
Duo 2.0 GHz, MS Windows XP Pro, 2-GB RAM) using Sun’s JRE-1.6.0. All
measurements are elapsed times.

We generated four configurations by fixing K = 7, L = 3 and varying M =

4, 6, 8, 10, yielding, respectively, 112, 168, 224, and 280 views. Figure 10 reports
the time CLIDE Interface took to come up with the suggestions at each current
query. Query (n, m) is a query reached after performing n table actions and joins,
and m selections. On the horizontal axis, all odd-position queries are infeasible,
while even-position queries are all feasible, being obtained by adding a relevant
selection to their predecessor. For instance, feasible query (2,2) is obtained from
infeasible query (2,1) by adding a selection action.

Notice that, while the CLIDE Interface response is good overall, scaling
to large number of views, it is much better for feasible queries. This is an
expected result, since the back-end needs to consider a single cover query, that
is, the one that the user has reached, as opposed to the number of cover queries
when the current query is infeasible.

9.3 The Effect of Parameterized Views

We studied the impact of parameters on the running time of the algorithm
of Section 7 by extending the experimental configuration described above as
follows.

The schema and the systematic way of generating user interactions are the
same.

The family of available views is extended to include a mix of unparameterized
and parameterized views: for each view V n

i (defined above) we add a view VP i

that performs a selection using a parameter p rather than the constant cn, and
similarly we add view VP i, j which turns the selection with constant cn in view

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:43

Fig. 11. The CLIDE Interface response time (with parameters).

V n
i, j into a selection by a parameter p:

VPi(p) → (a, kb, b)∗

SELECT x.a, y.kb, y.b

FROM A x, Bi y

WHERE x.ka=y.fb AND y.b=p

VPi, j (p) → (kb, b, c)∗

SELECT y.kb, y.b, z.c, z.c’

FROM Bi y, Ci, j z

WHERE y.kb=z.fc AND z.c=p

In the experiments, we simultaneously used the parameterized and unparam-
eterized view families {V n

i , V n
i, j }0≤i≤K ,0≤ j≤L,0≤n≤M ∪ {VP i, VP i, j }0≤i≤K ,0≤ j≤L.

We also declared column associations between the b attribute of each Bi

table and the c′ attribute of each Ci, j table: {(Bi.b, Ci, j .c
′)}0≤i≤K ,0≤ j≤L. These

associations are exploited by CLIDE to propose parameter-passing joins leading
to feasibility due to the parameterized views. In this setting, the joins can
provide the parameter required by a view VP i from the c′ output of a VP i, j or
of a V n

i, j view. The interface lists both options to the user.
The running times are reported in Figure 11, where the configurations are

generated using the same instantiation of K , L, M as in the nonparameter-
ized experiments: K = 7, L = 3, and M = 4, 6, 8, 10, yielding 140, 196,
252, 308 views, respectively. We note that, for up to 252 views, all response
times are in the subsecond range even for large queries (up to 14 joins and
14 selections).

Note that the running times are even better than for the nonparameterized
case. This is because each rewriting using unparameterized views V n

i and V n
i, j is

contained in a rewriting achieved by replacing the views with VP i and VP i, j , re-
spectively, and by instantiating the parameters with the appropriate constants.
The parameterized rewritings obtained after running MiniCon thus lead to the
elimination of some of the unparameterized ones during the redundant query
removal step (described in Section 8). The eliminated rewritings are no longer
compared to other rewritings, thus yielding significant savings in the number
of calls to the containment test.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:44 • M. Petropoulos et al.

9.4 Profiling

In addition to measuring the overall response time of the interface, we also
broke down the time measurements by stages of the algorithm (details are
given in Section 8, Figure 12). It turns out that, both in the absence and pres-
ence of parameters, the bottleneck in the performance of the CLIDE Interface
lies in the containment tests, which are a consequence of the views expan-
sion. In particular, the bottleneck is caused by both the number of containment
tests that need to be performed and by their complexity, which is analyzed
next.

10. COMPLEXITY ANALYSIS OF THE CLIDE INTERFACE BACK-END

Since the algorithms implemented by the CLIDE Interface back-end are run
at every interaction step, their complexity impacts the time delay experienced
by the user. We analyze the complexity of these algorithms, pointing out the
steps where our optimization techniques achieved significant time savings. We
introduce the following notation:

SQ Size of current query Q (number of table aliases in FROM clause)
NV Number of views
SV Maximum view size
NR Number of maximally-contained rewritings returned by MiniCon

for current query Q

SR Maximum size of a rewriting (among the NR)
SE R Maximum size of a rewriting’s expansion

10.1 Redundant Query Removal

At every step, MiniCon returns NR maximally-contained rewritings of current
query Q . To guarantee minimality of suggestions, the CLIDE Interface removes
redundant queries as explained in Section 8. This step involves computing pair-
wise containment mappings between the expansions of all rewritings, and it
turns out to dominate the back-end’s reaction time since

� there are many rewritings to pairwise test for containment (O(N 2
R)); and

� finding a containment mapping is expensive if not implemented carefully,
as the problem is NP-hard in the size of the containing query [Abiteboul
et al. 1995; Chandra and Merlin 1977]; here the queries are expansions of
the rewritings using the views, so a direct implementation would require
O(SSE R

E R) time.

In detail, we recall that each rewriting is known [Pottinger and Halevy 2001]
to have size upper-bounded by that of the query (SR ≤ SQ), which yields a

number of rewritings upper-bounded by NR ≤ N
SQ

V and a maximum size of an
expanded rewriting bounded by SE R ≤ SQ × SV . Assuming a straightforward
implementation of the containment mappings search, the overall effort for re-
dundant query removal is therefore O(N 2

R × S
SE R

E R), which is upper-bounded

by O(N
2SQ

V × (SQ × SV)SQ ×SV). Note that, while the exponent SQ is relatively

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:45

Fig. 12. The CLIDE Interface response time analysis for 280 views.

small in practice (user queries tend to join few tables), it occurs significantly
amplified by the view size.

A major optimization effort we expended went into computing the contain-
ment mappings more efficiently, effectively reducing the exponent SQ × SV . To
this end, we used the well-known observation that computing a containment
mapping from query q1 into query q2 amounts to running q1 over a symbolic
database instance containing one tuple for each alias in q2’s FROM clause,
such that the attributes satisfy q2’s WHERE clause. This database is commonly
known as the canonical database of q2 [Abiteboul et al. 1995]. This prompted us
to compile q1 into a query plan using standard relational algebra operators, and
evaluate the plan over the canonical database, applying the well-known opti-
mization techniques of pushing selections and projections into the joins [Garcia-
Molina et al. 2001]. This yields an improvement in worst-case complexity (and
even more spectacular improvements in practice, as shown by the experiments
below) analyzed next. After every join operator j , we aggressively project away
all columns that are not required for the evaluation of the remaining plan, that
is, we only keep columns in the projection list and columns involved in joins
with columns not constructed by the plan rooted at j . We call the number of
columns we need to keep the width of operator j and call the width of the plan

the maximum width over all join operators in the plan. It immediately follows
that the evaluation of the plan runs in time exponential only in the plan width,
and the running time for the redundant query removal phase becomes

O
(

N
2SQ

V × (SQ × SV)w
)

,

where w denotes the maximum plan width over all rewriting expansions. This
is a significant improvement, as plan width is in practice quite close to the
number of columns in the projection list and significantly smaller than the size
of the rewriting expansion SQ × SV .

Figure 12 analyzes the response time of the CLIDE Interface when the input
is 280 views and the same set of user queries as in Figure 10. The horizontal
axis shows the number of containment tests that were performed for each user
query. According to the experimental configuration of Section 9, all odd-position

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:46 • M. Petropoulos et al.

queries are infeasible, while all even-position queries are feasible. The vertical
axis shows the portions of the response time attributed to containment tests
and the rest of the back-end algorithmic components including MiniCon, re-
spectively. For all feasible queries shown in Figure 12, the initial number of
rewritings received by MiniCon was 70, while the final number of rewritings
after the containment tests was understandably 1, the one that is equivalent to
the user query. For all infeasible queries shown in Figure 12, the initial num-
ber of rewritings received by MiniCon was 700, a much higher number than
expected. The final number of rewritings after the containment tests, which
serve as input to the Color Algorithm, was just 10.

The MiniCon implementation we received was including a naive implemen-
tation of a containment test component, which was developed for testing and
verification purposes only and not for performance experiments. Using this
version of the containment test, none of our experiments actually terminated.

10.2 Redundant Actions Removal

This phase (detailed in Section 8) consists in searching in the rewriting expan-
sion for pairs of identical constants referring to identical tables with distinct
aliases, attempting to drop one constant, and testing equivalence with the ini-
tial query. Similarly for self-joins. Therefore, it requires quadratically many
equivalence checks in the size of the expansion (O(S2

E R)). Each check is done us-
ing the same optimization as for redundant queries removal, requiring O(Sw

E R)
time, for a total of O(S2

E R × Sw
E R), upper bounded by O(SQ × SV)w+2). This

additionally stresses the importance of implementing the containment check
efficiently.

11. RELATIONAL SERVICE DESCRIPTION LANGUAGE (RSDL)

In service-oriented architectures, such as the one in Figure 1, Web services
are deployed on top of relational databases publishing limited access methods
in the form of parameterized queries. Each published query is represented by
a function signature (also called operation in WSDL terminology [Christensen
et al. 2001]) with typed input and output. Middleware, such as distributed query
processors [Borkar et al. 2006] and workflow engines [Jordan and Evdemon
2006], utilize these services by instantiating their parameters and retrieving
and postprocessing their results, without knowing the query connecting the
input to the output. The semantic connection across Web services is also not
known; two Web services might implement two alternative access methods to
the same underlying data or they might be published on top of two different
databases. The CLIDE Interface is another example of a middleware component
requiring additional capabilities from such Web services, that is, the retrieval
of schema information and the published query expressions that connect the
schema with the output types of the published function signatures.

In light of the shortcomings exhibited by general-purpose Web services, we
propose a specialization of WSDL [Christensen et al. 2001] for Web services
published on top of relational databases, called Relational Service Description

Language (RSDL). We present the design of RSDL, which the CLIDE Interface

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:47

uses to systematically communicate with relational databases exporting limited
access methods. Moreover, we argue that RSDL renders Web services on top of
relational databases more usable for data integration and exchange tasks, such
as schema matching [Rahm and Bernstein 2001] and Web services similarity
search [Dong et al. 2004], while maintaining the ease of use observed in general-
purpose Web services.

In terms of access restrictions, schema information and query expressions
are often sensitive information that cannot be exposed in an often publicly
accessible WSDL file. RSDL should provide means to expose this information
as output of certain operations and apply access control on the caller of the
service.

In regard to interconnection, RSDL should provide a mechanism that con-
nects the exported query operations, described in a WSDL file, with the schema
information, query expressions, and valid instantiations, such that the Web ser-
vice can be parsed and used programmatically by agents, such as the CLIDE
Interface, without the need of human intervention. At the same time, the ex-
ported information should be readable by a human inspecting the Web service’s
description and responses.

11.1 RSDL Design

In this section, we present the design of RSDL Web services given an underlying
database and a set of query expressions to be exported. RSDL interconnects
the exported queries with schema and other metadata information, so that an
agent or a human using RSDL Web services over a relational database has a
coherent picture of the data and the access methods exported. We rely on typing
to accomplish the interconnection of the input and output of Web services with
their respective source schema, which is enabled by WSDL’s ability to define
types once and reference them from multiple points. In detail, RSDL provides
the following functionality.

11.1.1 Query Operations. For each exported query, RSDL publishes one
conventional WSDL operation that is of the general form

typer queryName(type1 param1, . . . ,typen paramn).

Each operation has a distinct name, queryName. The output type of each oper-
ation, typer , is the relational schema of the SELECT clause of the corresponding
query expression translated into XML Schema according to the mapping rules
specified by the SQL:2003 standard [Melton 2003b]. The types type1, . . . ,typen

of the input parameters are XML Schema simple type definitions [Biron and
Malhotra 2004] and correspond to the parameters, if any, in the query expres-
sions. The correspondence is positional; the parameters of each operation are or-
dered according to the positional order within the query expression. The RSDL
specification of the operations for the two query expressions exported by the
Dell source shown in Figure 2 is given in Appendix A.

11.1.2 Query Expressions. RSDL exports the query expressions that
are encapsulated by the above query operations. Since queries might be

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:48 • M. Petropoulos et al.

parameterized, the SQL types of the parameters, as well as the relational
schema of the query results, match the input and output types of the corre-
sponding query operations. An RSDL Web service provides this functionality
by the following required operation:

—getQueries() outputs the list of published query expressions over a relational
schema. For each query, the corresponding SQL expression is provided along
with a unique name among the queries in the list, which matches the name of
the corresponding query operation. The SQL expressions follow the SQL:2003
syntax [Melton 2003a] and are independent of a particular implementation.
An example output of this operation is shown below for the Dell source, where
the list consists of the queries V1 and V2 shown in Figure 2. Parameters are
denoted by the question mark “?” symbol. The name columns match the names
of the query operations in the RSDL specification given in Appendix A.

<?xml version="1.0" encoding="UTF-8"?>

<queries>

<query name="ComByCpu">

SELECT DISTINCT Com.cid, Com.cpu, Com.ram, Com.price

FROM Computers Com

WHERE Com.cpu = ?

</query>

<query name="ComNetByCpuRate">

SELECT DISTINCT Com.cid, Com.cpu, Com.ram, Com.price,

Net.rate, Net.standard, Net.interface

FROM Computers Com, NetCards Net

WHERE Com.cid = Net.cid AND Com.cpu = ? AND Net.rate = ?

</query>

</queries>

11.1.3 Schema Information. RSDL exports part of the schema of the un-
derlying relational database. The exported schema information defines the con-
text for the exported query expressions. More specifically, at least the tables
and the columns used in the query expressions returned by the getQueries

operation, along with the relevant referential and integrity constraints, are
accessible. An RSDL Web service provides this functionality by the following
required operation:

—getSchema() outputs an XML Schema representing the exported part of the
relational schema, along with primary, unique, and foreign key constraints.
The translation is performed according to the SQL:2003 standard mapping
rules [Melton 2003b]. Among other things, the output XML Schema contains
the catalog name and the schema name of the underlying database, as well
as XML Schema datatypes corresponding to the SQL datatypes of each ex-
ported column. An example output XML Schema of this operation is shown
in Appendix B for the Dell source shown in Figure 2, where the tables and
columns, along with their primary and foreign keys constraints, are exported.
We opted not to place the translated schema information and the exported

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:49

query expressions within WSDL. We provide them as output of operations
instead, so that authentication and authorization of a caller is possible.

11.1.4 Syntax and Semantics. Syntactically, RSDL specifications are valid
WSDL documents. The distinction between the two is made by the use of the
appropriate namespace. Existing WSDL clients are able to call query operations
and receive query results in XML format. The difference between RSDL and
WSDL is that the definition of the getSchema and getQueries operations are
required. Moreover, RSDL requires the logical connection between these two
operations and the query operations that execute the exported queries, since
they refer to each another. According to the WSDL specification, such a logical
connection can be established through the use of a port type [Christensen et al.
2001]. Hence, RSDL restricts the WSDL specification in the following aspects:

(1) Each port type should consist of two operations named getSchema and
getQueries with output types as specified above.

(2) Additionally, each port type should consist of one or more query operations
(executing the exported queries) with input and output types as specified
above.

(3) Operations should be of request-response type only.

RSDL does not restrict any of the implementation specific aspects of WSDL, that
is, bindings, ports, and services [Christensen et al. 2001] are left unchanged. The
RSDL specification for the Dell source shown in Figure 2 is given in Appendix A.

11.1.5 Scope. An RSDL specification can define multiple port types. Hence,
it is possible to export different parts of a single database or multiple databases
within a single RSDL specification.

11.1.6 Communication. Relational services are stateless. The communi-
cation with a relational service is synchronous and is carried out in a re-
quest/response fashion.

11.1.7 Access Control. Each one of the operations described above takes
as additional inputs a username and password in order to authenticate and
authorize the caller.

12. CONCLUSIONS

We presented the CLIDE System, a comprehensive proposal for exporting se-
mantically rich Web services on top of relational sources and interactively
querying multiple such sources based on their exported services. The Relational
Services Description Language (RSDL) exports database functionality on top
of relational sources. Each RSDL-based Web service exports and semantically
connects a set of operations with the corresponding parameterized views and
the source schema. The CLIDE Interface takes as input a set of RSDL services
and leads a developer toward feasible queries by employing a color scheme.
We have provided guarantees of completeness, minimality of suggestions and
rapid convergence. We formalized the interaction with the front-end using an

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:50 • M. Petropoulos et al.

interaction graph and reduced coloring properties to interaction graph prop-
erties that the back-end has to decide upon. We developed the front-end and
the back-end for the case where only constant selections appear in the views.
We implemented effective optimizations that enable online use of the CLIDE
Interface for a wide class of queries and views. A demonstration is available
online at http://www.clide.info.

APPENDIX A. RSDL EXAMPLE

The following listing is the WSDL describing the RSDL service for the Dell
source of Figure 2.

<?xml version="1.0" encoding="UTF-8"?>

<definitions

xmlns="http://clide.info/rsdl/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tns="http://dell.service.ns"

targetNamespace="http://dell.service.ns">

<types>

<xs:schema targetNamespace="http://dell.service.ns">

<xs:complexType name="schemaType">

<xs:all>

<xs:element ref="xs:schema"/>

</xs:all>

</xs:complexType>

<xs:simpleType name="INTEGER">

<xs:restriction base="xs:integer">

<xs:maxInclusive value="2147483647"/>

<xs:minInclusive value="-2147483648"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="VARCHAR_25">

<xs:restriction base="xs:string">

<xs:maxLength value="25"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="RowType_DellDB_dbo_Query1">

<xs:sequence>

<xs:element name="cid" type="tns:INTEGER"/>

<xs:element name="cpu" type="tns:VARCHAR_25"/>

<xs:element name="ram" type="tns:INTEGER"/>

<xs:element name="price" type="tns:INTEGER"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TableType_DellDB_dbo_Query1">

<xs:sequence>

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:51

<xs:element name="row"

type="tns:RowType_DellDB_dbo_Query1"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="RowType_DellDB_dbo_Query2">

<xs:sequence>

<xs:element name="cid" type="tns:INTEGER"/>

<xs:element name="cpu" type="tns:VARCHAR_25"/>

<xs:element name="ram" type="tns:INTEGER"/>

<xs:element name="price" type="tns:INTEGER"/>

<xs:element name="rate" type="tns:INTEGER"/>

<xs:element name="standard" type="tns:VARCHAR_25"/>

<xs:element name="interface" type="tns:VARCHAR_25"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TableType_DellDB_dbo_Query2">

<xs:sequence>

<xs:element name="row"

type="tns:RowType_DellDB_dbo_Query2"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

</types>

<message name="getSchemaIn">

<part name="username" type="xs:string"/>

<part name="password" type="xs:string"/>

</message>

<message name="getSchemaOut">

<part name="out" type="tns:schemaType"/>

</message>

<message name="ComByCpuIn">

<part name="username" type="xs:string"/>

<part name="password" type="xs:string"/>

<part name="cpu" type="tns:VARCHAR_25"/>

</message>

<message name="ComByCpuOut">

<part name="queryResult" type="tns:TableType_DellDB_dbo_Query1"/>

</message>

<message name="ComNetByCpuRateIn">

<part name="username" type="xs:string"/>

<part name="password" type="xs:string"/>

<part name="cpu" type="tns:VARCHAR_25"/>

<part name="rate" type="tns:INTEGER"/>

</message>

<message name="ComNetByCpuRateOut">

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:52 • M. Petropoulos et al.

<part name="queryResult" type="tns:TableType_DellDB_dbo_Query2"/>

</message>

<portType name="RSDLPortType">

<operation name="getSchema">

<input message="tns:getSchemaIn"/>

<output message="tns:getSchemaOut"/>

</operation>

<operation name="ComByCpu">

<input message="tns:ComByCpuIn"/>

<output message="tns:ComByCpuOut"/>

</operation>

<operation name="ComNetByCpuRate">

<input message="tns:ComNetByCpuRateIn"/>

<output message="tns:ComNetByCpuRateOut"/>

</operation>

</portType>

<binding name="HTTPBinding" type="tns:RSDLPortType">

<http:binding verb="POST"/>

<operation name="getSchema">

<http:operation location="getSchema"/>

<input>

<mime:content type="application/x-www-form-urlencoded"/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

</operation>

<operation name="ComByCpu">

<http:operation location="/ComByCpu"/>

<input>

<mime:content type="application/x-www-form-urlencoded"/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

</operation>

<operation name="ComNetByCpuRate">

<http:operation location="/ComNetByCpuRate"/>

<input>

<mime:content type="application/x-www-form-urlencoded"/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

</operation>

</binding>

<service name="DellService">

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:53

<port name="DellPort" binding="tns:HTTPBinding">

<http:address location="https://www.dell.com/service"/>

</port>

</service>

</definitions>

APPENDIX B. GETSCHEMA OPERATION

The following listing is the output of the getSchema operation for the Dell source
of Figure 2 described by the RSDL service of Appendix A.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="INTEGER">

<xs:restriction base="xs:integer">

<xs:maxInclusive value="2147483647"/>

<xs:minInclusive value="-2147483648"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="VARCHAR_25">

<xs:restriction base="xs:string">

<xs:maxLength value="25"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="RowType_DellDB_dbo_Computers">

<xs:sequence>

<xs:element name="cid" type="INTEGER"/>

<xs:element name="cpu" type="VARCHAR_25"/>

<xs:element name="ram" type="INTEGER"/>

<xs:element name="price" type="INTEGER"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="TableType_DellDB_dbo_Computers">

<xs:sequence>

<xs:element name="row"

type="RowType_DellDB_dbo_Computers"

minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="RowType_DellDB_dbo_NetCards">

<xs:sequence>

<xs:element name="cid" type="INTEGER"/>

<xs:element name="rate" type="INTEGER"/>

<xs:element name="standard" type="VARCHAR_25"/>

<xs:element name="interface" type="VARCHAR_25"/>

</xs:sequence>

</xs:complexType>

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:54 • M. Petropoulos et al.

<xs:complexType name="TableType_DellDB_dbo_NetCards">

<xs:sequence>

<xs:element name="row"

type="RowType_DellDB_dbo_NetCards"

minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="SchemaType_DellDB_dbo">

<xs:all>

<xs:element name="Computers"

type="TableType_DellDB_dbo_Computers"/>

<xs:element name="NetCards"

type="TableType_DellDB_dbo_NetCards"/>

</xs:all>

</xs:complexType>

<xs:complexType name="CatalogType_DellDB">

<xs:all>

<xs:element name="dbo" type="SchemaType_DellDB_dbo">

<xs:key name="Computers_PK">

<xs:selector xpath="Computers/row"/>

<xs:field xpath="cid"/>

</xs:key>

<xs:keyref name="Computers_FK"

refer="Computers_PK">

<xs:selector xpath="NetCards/row"/>

<xs:field xpath="cid"/>

</xs:keyref>

</xs:element>

</xs:all>

</xs:complexType>

<xs:element name="DellDB" type="CatalogType_DellDB"/>

</xs:schema>

ACKNOWLEDGMENTS

The authors would like to thank Alan Nash and Michael J. Carey for their
valuable contribution.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley, Reading,
MA.

BIRON, P. V. AND MALHOTRA, A. 2004. XML Schema part 2: Datatypes second edition. W3C Rec-
ommendation 28 October 2004. Go online to http://www.w3.org/TR/xmlschema-2/.

BOAG, S., CHAMBERLIN, D., FERNANDEZ, M. F., FLORESCU, D., ROBIE, J., AND SIMÉON, J. 2007. XQuery
1.0: An XML query language. W3C Recommendation 23 January 2007. Go online to http://www.
w3.org/TR/xquery/.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

The CLIDE System • 22:55

BORKAR, V. R., CAREY, M. J., LYCHAGIN, D., WESTMANN, T., ENGOVATOV, D., AND ONOSE, N. 2006. Query
processing in the aqualogic data services platform. In Proceedings of VLDB. 1037–1048.

BRAGA, D., CAMPI, A., AND CERI, S. 2005. QBE (query y xample): A visual interface to the standard
xml query language. ACM Trans. Database Syst. 30, 2, 398–443.

CAREY, M. J. 2006. Data delivery in a service-oriented world: The Bea aqualogic data services
platform. In Proceedings of the SIGMOD Conference. 695–705.

CAREY, M. J., HAAS, L. M., MAGANTY, V., AND WILLIAMS, J. H. 1996. PESTO: An integrated
query/browser for object databases. In Proceedings of VLDB. 203–214.

CHANDRA, A. K. AND MERLIN, P. M. 1977. Optimal implementation of conjunctive queries in rela-
tional data bases. In Proceedings of STOC. 77–90.

CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEERAWARANA, S. 2001. Web Services Description
Language (WSDL) 1.1. W3C Note 15 March 2001. Go online to http://www.w3.org/TR/wsdl.

DONG, X., HALEVY, A. Y., MADHAVAN, J., NEMES, E., AND ZHANG, J. 2004. Simlarity search for Web
services. In Proceedings of VLDB. 372–383.

DUSCHKA, O. M., GENESERETH, M. R., AND LEVY, A. Y. 2000. Recursive query plans for data inte-
gration. J. Log. Program. 43, 1, 49–73.

FALLSIDE, D. C. AND WALMSLEY, P. 2004. XML schema part 0: Primer second edition. W3C Recom-
mendation 28 October 2004. Go online to http://www.w3.org/TR/xmlschema-0/.

FAN, W., CHAN, C. Y., AND GAROFALAKIS, M. N. 2004. Secure XML querying with security views. In
Proceedings of the SIGMOD Conference. 587–598.

GARCIA-MOLINA, H., ULLMAN, J. D., AND WIDOM, J. D. 2001. Database Systems: The Complete Book.
Prentice Hall, Englewood Cliffs, NJ.

HALEVY, A. 2001. Answering queries using views: A survey. VLDB J. 10, 4, 270–294.
JORDAN, D. AND EVDEMON, J. 2006. Web Services Business Process Execution Language Version

2.0. OASIS Public Review Draft, 23th August, 2006. Go online to http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-specification-draft.html.

LEFEVRE, K., AGRAWAL, R., ERCEGOVAC, V., RAMAKRISHNAN, R., XU, Y., AND DEWITT, D. J. 2004. Lim-
iting disclosure in hippocratic databases. In Proceedings of VLDB. 108–119.

LEVY, A. Y., RAJARAMAN, A., AND ULLMAN, J. D. 1996. Answering queries using limited external
processors. In Proceedings of PODS. 227–237.

LI, C. AND CHANG, E. Y. 2001. Answering queries with useful bindings. ACM Trans. Database

Syst. 26, 3, 313–343.
MELTON, J. 2003a. Database languages—SQL—part 14: XML-related specifications (SQL/XML).

In Proceedings of ISO/IEC 9075-14:2003.
MELTON, J. 2003b. Database languages—SQL—part 2: Foundation (SQL/foundation). In Proceed-

ings of ISO/IEC 9075-2:2003.
MICROSOFT, INC. Native XML Web services for Microsoft SQL server. 2005. Go online to http:

//msdn2.microsoft.com/en-us/library/ms345123.aspx.
MICROSOFT, INC. 2004. Microsoft BizTalk Server. Go online to http://www.microsoft.com/

biztalk/.
NASH, A. AND LUDAESCHER, B. 2004. Processing unions of conjunctive queries with negation under

limited access patterns. In Proceedings of EDBT.
NIELSEN, J. 2000. Designing Web Usability. New Riders Publishing, Berkeley, CA.
POPA, L., VELEGRAKIS, Y., MILLER, R. J., HERNÁNDEZ, M. A., AND FAGIN, R. 2002. Translating Web

data. In Proceedings of VLDB. 598–609.
POTTINGER, R. AND HALEVY, A. Y. 2001. Minicon: A scalable algorithm for answering queries using

views. VLDB J. 10, 2-3, 182–198.
RAHM, E. AND BERNSTEIN, P. A. 2001. A survey of approaches to automatic schema matching. VLDB

J. 10, 4, 334–350.
RAJARAMAN, A., SAGIV, Y., AND ULLMAN, J. D. 1995. Answering queries using templates with binding

patterns. In Proceedings of PODS. 105–112.
RIZVI, S., MENDELZON, A. O., SUDARSHAN, S., AND ROY, P. 2004. Extending query rewriting

techniques for fine-grained access control. In Proceedings of SIGMOD Conference. 551–
562.

ROTH, M. T. AND SCHWARZ, P. M. 1997. Don’t scrap it, wrap it! a wrapper architecture for legacy
data sources. In Proceedings of VLDB. 266–275.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

22:56 • M. Petropoulos et al.

SHIPMAN, D. W. 1981. The functional data model and the data language daplex. ACM Trans.

Database Syst. 6, 1, 140–173.
TUFTE, E. R. 1997. Visual Explanations: Images and Quantities, Evidence and Narrative. Graph-

ics Press, Cheshire, CT.
VASSALOS, V. AND PAPAKONSTANTINOU, Y. 1997. Describing and using query capabilities of heteroge-

neous sources. In Proceedings of VLDB.
YANNAKAKIS, M. 1981. Algorithms for acyclic database schemes. In Proceedings of VLDB. 82–94.
YERNENI, R., LI, C., GARCIA-MOLINA, H., AND ULLMAN, J. D. 1999. Computing capabilities of medi-

ators. In Proceedings of SIGMOD Conference. 443–454.
ZLOOF, M. 1975. Query by example. AFIPS NCC 44, 431–438.

Received October 2006; revised May 2007; accepted August 2007

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 22, Publication date: November 2007.

