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Exposing Digital Forgeries by
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Alin C Popescu and Hany Farid†
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Hanover NH 03755

Abstract

We describe an efficient technique that automatically detects duplicated regions in a digital
image. This technique works by first applying a principal component analysis to small fixed-
size image blocks to yield a reduced dimension representation. This representation is robust to
minor variations in the image due to additive noise or lossy compression. Duplicated regions
are then detected by lexicographically sorting all of the image blocks. We show the efficacy
of this technique on credible forgeries, and quantify its robustness and sensitivity to additive
noise and lossy JPEG compression.

† Corresponding author: H. Farid, 6211 Sudikoff Lab, Computer Science Department, Dartmouth College, Hanover, NH 03755
USA (email: farid@cs.dartmouth.edu; tel/fax: 603.646.2761/603.646.1672). This work was supported by an Alfred P. Sloan
Fellowship, a National Science Foundation CAREER Award (IIS-99-83806), a departmental National Science Foundation In-
frastructure Grant (EIA-98-02068), and under Award No. 2000-DT-CS-K001 from the Office for Domestic Preparedness, U.S.
Department of Homeland Security (points of view in this document are those of the authors and do not necessarily represent the
official position of the U.S. Department of Homeland Security).
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1 Introduction

Sophisticated digital cameras and photo-editing software packages are becoming ubiquitous. As a result,
it has become relatively easy to manipulate digital images and create forgeries that are difficult to distin-
guish from authentic photographs. A common manipulation in tampering with an image is to copy and
paste portions of the image to conceal a person or object in the scene. If the splicing is imperceptible, little
concern is typically given to the fact that identical (or virtually identical) regions are present in the image.

In this paper, we present a technique that can efficiently detect and localize duplicated regions in an
image. This technique works by first applying a principal component analysis (PCA) on small fixed-
size image blocks to yield a reduced dimension representation. This representation is robust to minor
variations in the image due to additive noise or lossy compression. Duplicated regions are then detected
by lexicographically sorting all of the image blocks. A similar method for detecting duplicated regions
based on lexicographic sorting of DCT block coefficients was proposed in [3]. While both methods employ
a similar approach, the data-driven PCA basis may better capture discriminating features. We show the
efficacy of this technique on credible forgeries, and quantify its robustness and sensitivity to additive
noise and lossy JPEG compression.

2 Detecting Duplicated Regions

Given an image with N pixels our task is to determine if it contains duplicated regions of unknown loca-
tion and shape. An exhaustive approach that would examine every possible pair of regions would have
an exponential complexity in the number of image pixels. Such an approach is obviously computationally
prohibitive.

A more efficient algorithm might look for duplication of small fixed-sized blocks 1. By stringing each
such block into a vector and lexicographically sorting all image blocks, identical blocks correspond to
adjacent pairs in the sorted list. The primary cost of this algorithm would be the lexicographic sorting,
yielding a complexity of O(N log N ), since the number of image blocks is proportional to the number of
image pixels, N . Note that this is a significant improvement over the brute-force exponential algorithm.
The drawback of this approach, however, is that it is sensitive to small variations between duplicated
regions due to, for example, additive noise or lossy compression. We describe next an algorithm that
overcomes this limitation while retaining its efficiency.

Consider a grayscale image with N pixels (we discuss below how this algorithm extends to color im-
ages). An image is tiled with overlapping blocks of b pixels (

√
b ×

√
b pixels in dimension), each of which

are assumed to be considerably smaller than the size of the duplicated regions to be detected. Let ~xi

i = 1, . . . , Nb denote these blocks in vectorized form, where Nb = (
√

N −
√

b + 1)2. We now consider
an alternate representation of these image blocks based on a principal component analysis (PCA) [1].
Assume that the blocks ~xi are zero-mean 2, and compute the covariance matrix as:

C =

Nb
∑

i=1

~xi~x
T
i . (1)

The eigenvectors, ~ej , of the matrix C, with corresponding eigenvalues, λj , satisfying:

C~ej = λj~ej , (2)

1We assume that the size of the blocks is considerably smaller than the duplicated region to be detected.
2If the blocks, ~xi, are not zero-mean, then the mean, ~µ = 1/Nb

�
Nb

i=1
~xi, should be subtracted from each block, ~xi − ~µ.

2



define the principal components, where j = 1, . . . , b and λ1 ≥ λ2 ≥ · · · ≥ λb. The eigenvectors, ~ej , form a
new linear basis for each image block, ~xi:

~xi =

b
∑

j=1

aj~ej , (3)

where aj = ~xT
i ~ej , and ~ai = (a1 . . . ab) is the new representation for each image block.

The dimensionality of this representation can be reduced by simply truncating the sum in Equation (3)
to the first Nt terms. Note that the projection onto the first Nt eigenvectors of the PCA basis gives the
best Nt-dimensional approximation in the least squares sense (if the distribution of the ~xis is a multi-
dimensional Gaussian [1]). This reduced dimension representation, therefore, provides a convenient
space in which to identify similar blocks in the presence of corrupting noise, as truncation of the basis
will remove minor intensity variations.

The detection algorithm proceeds as follows. First, to further reduce minor variations due to corrupt-
ing noise, the reduced dimension representation of each image block, ~ai, is component-wise quantized,
⌊~ai/Q⌋, where the positive integer Q denotes the number of quantization bins 3. A Nb × b matrix is con-
structed whose rows contain these quantized coefficients. Let the matrix S be the result of lexicographi-
cally sorting the rows of this matrix in column order. Let ~si denote the ith row of this sorted matrix, and
let the tuple (xi, yi) denote the block’s image coordinates (top-left corner) that corresponds to ~si. Consider
next all pairs of rows ~si and ~sj , whose row distance, |i − j|, in the sorted matrix S is less than a specified
threshold. The offset, in the image, of all such pairs is given by:

(xi − xj, yi − yj) if xi − xj > 0

(xj − xi, yi − yj) if xi − xj < 0

(0, |yi − yj|) if xi = xj

From a list of all such offsets, duplicated regions in the image are detected by noting the offsets with
high occurrence. For example a large duplicated region will consist of many smaller blocks, each of these
blocks will appear in close proximity to each other in the lexicographically sorted matrix, and will have
the same offset. In order to avoid false hits due to uniform intensity areas, offset magnitudes below a
specified threshold are ignored. See Appendix A for a detailed step-by-step algorithm.

The results of this detection can be visualized by constructing a duplication map — a zero image of
the same size as the original is created, and all pixels in a region believed to be duplicated are assigned
a unique grayscale value. The complexity of this algorithm, dominated by the lexicographic sorting, is
O(NtN logN ), where Nt is the dimension of the PCA reduced representations and N is the total number
of image pixels.

There are at least two ways in which this algorithm can be extended to color images. The simplest
approach is to independently process each color channel (e.g., RGB) to yield three duplication maps. The
second approach is to apply PCA to color blocks of size 3b, and proceed in the same way as described
above.

3For simplicity we a use constant number of quantization bins, although it might be more appropriate to use more bins for
the coordinates with higher variance, and fewer bins for the lower variance coordinates.
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3 Results

Shown in Figures 1-3 are an original and tampered image. The tampering consisted of copying and
pasting a region in the image to conceal a person or object. Shown in the lower portion of these figures are
the outputs of our detection algorithm as applied to the tampered image saved with JPEG quality factors
between 50 and 100. In each map, the two duplicated regions are shown with different grayscale values.
In all of these examples, all parameters were set to: b = 64, ǫ = 0.01, Q = 256, Nn = 100, Nf = 128,
Nd = 16 (see Appendix A for details). Truncation of the PCA basis typically reduces the dimension from
64 to 32. The average runtime for one color channel of a 512×512 image running on a 3 GHz processor, is
approximately 10 seconds. For visualization purposes, the duplication map was (1) dilated then eroded
to eliminate holes in the duplicated regions, and (2) eroded then dilated to eliminate spurious pairs of
duplicated blocks. A disk-shaped structuring element with a radius of 20 pixels was employed for these
morphologic operations [4].

To quantify the robustness and sensitivity of our algorithm we constructed a database of 100 color im-
ages of size 512 × 512 pixels. These images were cropped from larger 2000 × 3008 images taken with a
Nikon D100 digital camera. In each image, a random square region was copied and pasted onto a random
non-overlapping position in the image. Each image was then either JPEG compressed with varying qual-
ity factors, or corrupted with additive noise with varying signal to noise ratios (SNR). Shown on the top
row of Figure 4, for example, are four images with duplicated regions of size 32 × 32, 64× 64, 96× 96, and
128× 128 — the first two images were compressed with JPEG quality 85 and 65, and the other two images
were corrupted with additive noise with a SNR of 36db and 29db. Shown on the bottom row of Figure 4
are the duplication maps returned when running our algorithm on each image’s green channel. In these
examples, and those described below, all parameters were set to: b = 64, ǫ = 0.01, Q = 256, Nn = 100,
Nf = 128, Nd = 16. Shown in Figure 5 is the detection accuracy and false positive rate as a function of
JPEG compression quality. Note that the accuracy is, in general, very good, except for small block sizes
and low JPEG qualities. Note also that the average number of false positives (regions incorrectly labeled
as duplicated) is relatively low. Shown in Figure 6 is the detection accuracy and false positive rate as a
function of signal to noise ratio (SNR) of additive white Gaussian noise. As in the previous example, the
detection rates are nearly perfect, except for small block sizes and low SNR.

4 Discussion

We have presented an efficient and robust technique that automatically detects duplicated regions in an
image. This technique works by first applying a principal component analysis (PCA) on small fixed-size
image blocks to yield a reduced dimension representation that is robust to minor variations in the image
due to additive noise or lossy compression. Duplicated regions are then detected by lexicographically
sorting all of the image blocks. We have shown the effectiveness of this technique on plausible forgeries,
and have quantified its sensitivity to JPEG lossy compression and additive noise — we find that detection
is possible even in the presence of significant amounts of corrupting noise.

We have also been developing other techniques for detecting traces of digital tampering in images [2,
6, 7, 8]. Each technique in this suite works in the complete absence of digital watermarks or signatures
offering a complementary approach for image authentication. There is little doubt that counter-measures
will be created to foil each of these techniques. Our hope, however, is that our tools, as well as those of
others [3, 5], will make it increasingly harder to create credible digital forgeries that will simultaneously
foil each of the detection schemes.
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original tampered

50 60 70

80 90 100

Figure 1: Shown are an original and tampered image. Shown below are the output duplication maps from

the green channel of the tampered image saved with JPEG qualities ranging between 50 and 100.
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original tampered
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50 60 70
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Figure 2: Shown are an original and tampered image. Shown below are the output duplication maps (cor-
responding to different regions used to conceal each person) from the green channel of the tampered image
saved with JPEG qualities ranging between 50 and 100.
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original tampered
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80 90 100

Figure 3: Shown are an original and tampered image. Shown below are the output duplication maps from
the green channel of the tampered image saved with JPEG qualities ranging between 50 and 100.
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JPEG (85) JPEG (65) SNR (36 db) SNR (29 db)

Figure 4: Shown on the top row are four images with duplicated regions of size 32× 32, 64× 64, 96× 96,
and 128× 128, after having been compressed (first and second images) or corrupted with additive noise

(third and fourth images). Shown below are the duplication maps returned when running our algorithm on
each image’s green channel.
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Figure 5: Shown in the left column are the average detection accuracies as a function of the JPEG compres-

sion quality. Shown in the right column are the average number of false positives as a function of the JPEG
compression quality. Each row corresponds to duplicated blocks of size ranging from 32 × 32 to 160× 160

pixels. Each data point corresponds to an average over 100 images.
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Figure 6: Shown in the left column are the average detection accuracies as a function of the SNR of added

white Gaussian noise. Shown in the right column are the average number of false positives as a function of
the SNR. Each row corresponds to duplicated blocks of sizes ranging from 32× 32 to 160× 160 pixels. Each
data point corresponds to an average over 100 images.
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A Duplication Detection Algorithm

1. Let N be the total number of pixels in a grayscale or color image

2. Initialize the parameters:

• b: number of pixels per block (
√

b×
√

b pixels in dimension) – there are Nb = (
√

N−
√

b+1)2

such blocks

• ǫ: fraction of the ignored variance along the principal axes

• Q: number of quantization bins

• Nn: number of neighboring rows to search in the lexicographically sorted matrix

• Nf : minimum frequency threshold

• Nd: minimum offset threshold

3. Using PCA, compute the new Nt-dimensional representation, ~ai, i = 1, . . . , Nb, of each b pixel
image block (for color images: (1) analyze each color channel separately; or (2) build a single

color block of size 3b pixels). The value of Nt is chosen to satisfy: 1 − ǫ =
� Nt

i=1
λi

�
b

i=1
λi

, where λi are

the eigenvalues as computed by the PCA.

4. Build a Nb × b matrix whose rows are given by the component-wise quantized coordinates:
⌊~ai/Q⌋.

5. Sort the rows of the above matrix in lexicographic order to yield a matrix S. Let ~si denote the
rows of S, and let (xi, yi) denote the position of the block’s image coordinates (top-left corner)
that corresponds to ~si.

6. For every pair of rows ~si and ~sj from S such that |i − j| < Nn, place the pair of coordinates
(xi, yi) and (xj, yj) onto a list.

7. For all elements in this list, compute their offsets, defined as:

(xi − xj, yi − yj) if xi − xj > 0

(xj − xi, yi − yj) if xi − xj < 0

(0, |yi − yj|) if xi = xj

8. Discard all pairs of coordinates with an offset frequency less than Nf .

9. Discard all pairs whose offset magnitude,
√

(xi − xj)2 + (yi − yj)2, is less than Nd.

10. From the remaining pairs of blocks build a duplication map by constructing a zero image of the
same size as the original, and coloring all pixels in a duplicated region with a unique grayscale
intensity value.
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