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ABSTRACT

In this paper, a novel forensic method of exposing cut-and-paste im-

age forgery through detecting contrast enhancement is proposed. We

reveal the inter-channel correlation introduced by color image inter-

polation, and show how a linear or nonlinear contrast enhancemen-

t can disturb this natural inter-channel dependency. We then con-

struct a metric to measure these correlations, which are useful in

distinguishing the original and contrast enhanced images. The ef-

fectiveness of the proposed algorithm is experimentally validated on

natural color images captured by commercial cameras. Finally, its

robustness against some anti-forensic algorithms is also discussed.

Index Terms— Digital forensics, contrast enhancement, demo-

saicking, inter-channel correlation

1. INTRODUCTION

In an image subjected to the typical cut-and-paste forgery, the con-

trast between the background and the pasted region is not usually

consistent with that of the original image due to different lighting

conditions. Consequently, contrast enhancement is widely used by

the attacker to avoid leaving obvious visual clues after forging an

image. However, a number of contrast enhancement operations are

equivalent to pixel value mappings, which introduce some statisti-

cal traces. Therefore, we can expose cut-and-paste image forgery

by detecting contrast enhancement. A blind method is proposed in

[1] to detect globally and locally applied contrast enhancement op-

erations, which introduce sudden peaks and zeros in the histogram

and therefore increase high-frequency components in the histogram

spectrum. It achieves good results by comparing the high-frequency

measurement of histogram spectrum with a threshold. But it is not

convenient to use in practice as there are some parameters to be de-

termined. What is more is that some corresponding anti-forensic

algorithms have been put forward. In this work, we propose a novel

contrast enhancement detection approach using inter-channel simi-

larities of high-frequency components. In comparison with the algo-

rithm described in [1], the performance of our method is presented

based on experimental results under both forensic and anti-forensic

scenarios.

The remainder of this paper is organized as follows. Section 2

briefly reviews the method in [1]. Section 3 describes the proposed

detection scheme in details. Experimental results and conclusions

are provided in Section 4 and Section 5, respectively.

2. HISTOGRAM-BASED DETECTION OF CONTRAST

ENHANCEMENT

Due to observational noise [2], sampling effects, complex lighting

environments and CFA interpolation, image histograms do not con-

tain sudden zeros or impulsive peaks. So the variation of the his-

togram of an unaltered image is low, while contrast enhancement

manipulation will expand or squeeze the original histogram and lead

to sudden peaks and gaps in the histogram, which causes the increase

of high-frequency energy in the histogram spectrum. Based on this

observation, Stamm and Liu proposed a general contrast enhance-

ment detection algorithm [1] as follows.

(1) Obtain the image’s histogram h(x) and calculate the modi-

fied histogram g(x) as follows,

g(x) = h(x)p(x) (1)

where p(x) is a pinch off function, whose role is to eliminate the low

end or high end saturated effect in images.

(2) Transform g(x) into the discrete Fourier frequency domain,

G(k), and calculate the high-frequency measurement F according

to

F =
1

N

∑

k

|β(k)G(k)| , k = 0, 1, ..., 255 (2)

where N is the total number of pixels, and β(k) is the cutoff function

deemphasizing the low frequency components of G(k):

β(k) =

{
1, T ≤ k ≤ 255− T

0, else
(3)

where T corresponds to a desired cutoff frequency.

(3) Finally, F is compared with a threshold τ to determine

whether contrast enhancement has been applied.

Local contrast enhancement can be detected through applying

the above procedures block by block. But there are some parameters

need to be determined by users, such as the pinch off function and

the cutoff frequency T . It is not convenient in practice as the optimal

parameters may vary with different forms of contrast enhancements.

Most importantly, as the histogram of image can be easily tampered,

this kind of histogram-based forensic methods will fail if the traces

left on the image histogram have been concealed by attackers. For

example, Cao et al. remove the peak and gap artifacts of histogram

introduced by contrast enhancement using local random dithering

[3], which essentially adds Gaussian noise with appropriate variance

onto the contrast enhanced image. In [4], Barni et al. also propose

a universal anti-forensic technique against histogram-based contrast

enhancement detector. The histogram hy of an enhanced image is

modified according to the most similar histogram hx from a refer-

ence histogram database while keeping the image distortion as low

as possible.



3. PROPOSED ALGORITHM

3.1. Motivation

In the imaging process of most commercial digital cameras, a col-

or filter array (CFA) is placed before the sensor to capture one of

the primary colors for each pixel while the other color components

are interpolated with a specific demosaicking algorithm. Consider a

color image composed of R, G and B channels. As human eyes are

more sensitive to the green components of visible light, most CFAs

tend to sample the G channel at a higher rate than R and B chan-

nels. Given any natural image sampled on the Bayer CFA, one of

the constraints imposed by most demosaicking methods is that high

frequencies between G and R, B channels are largely identical [5, 6].

This is effective and important because after sampling on the CFA,

the G channel has twice the number of samples compared to R or B

and is hence relatively free of aliasing. The consequence produced

by the constraint can be represented as

Rh ≈ Gh ≈ Bh (4)

where Rh, Gh and Bh denote the high-frequency bands of inter-

polated color plane R, G and B. Equation (4) can be interpreted

as that R and B “copies” the high-frequency components of G [7].

However, this inter-channel similarity may be altered by some image

manipulations, one of which is contrast enhancement. The reasons

will be investigated in the following sub-section.

3.2. Proposed algorithm

In this sub-section, we will first show how the contrast enhancement

can disturb the inter-channel similarities of high-frequency compo-

nents, and then propose our detection scheme.

To explore what will happen to the high-frequency components

of an image if it is enhanced, we draw the 3D scatter plots of the

average high-frequency wavelet coefficients of 100 original images

and the corresponding enhanced images in Fig. 1(a) and 1(b). The

coordinates of each point denote the values of R, G, and B wavelet

coefficients in the diagonal subband, taken at the same pixel loca-

tion. In general, the points of the original images are compactly

clustered along the vector (1, 1, 1), which implies the strong corre-

lation and approximate equality of the wavelet coefficients [8]. For

the enhanced images, however, the points deviate from the line sug-

gesting the inter-channel correlation has been reduced. Next, the

reasons for why a linear or nonlinear contrast enhancement can dis-

turb the inter-channel similarity are explained as follows.

(1) Linear contrast enhancement

Consider an 8-bit image as a signal x(n), and 0 ≤ x(n) ≤
255. After applying Discrete Wavelet Transform (DWT) to x(n),
the wavelet coefficients at level j + 1 can be written as [9]:

d
j+1(k) =

p−1∑

m=0

h(m)xj(2k −m) (5)

where h(m) is the coefficients of a filter, depending on the chosen

wavelet function, and p is the length of h(m). xj(n) is the approx-

imation coefficients at level j, and x0(n) = x(n). If xj(n) is mul-

tiplied by a linear scaling factor w, xj(n) can be divided into two

sets:

{
X1 = {xj(n)|w ∗ xj(n) ≤ 255}

X2 = {xj(n)|w ∗ xj(n) > 255}
(6)

Then the wavelet coefficients become:

d̃
j+1(k) = w

∑

xj∈X1

h(m)xj(2k −m)

+w
∑

xj∈X2

h(m)xj(2k −m) (7)

If w ≤ 1, then X2 = ∅, and d̃j+1(k) = w ∗ dj+1(k), which

means all coefficients are multiplied by the same factor. Therefore,

the inter-channel similarity still holds if we separately enhance R,

G and B channel. However, it rarely happens in the cut-and-paste

forgery scenario as it will result in chromatic aberration. The most

common situation is that the RGB image is converted into YUV col-

or space, and contrast enhancement will be only applied in Y chan-

nel. In this case, the inter-channel similarity will be disturbed by the

mapping from YUV back to RGB. If w > 1, then X2 ̸= ∅, and all

data in X2 will be truncated to 255, so the approximate equality of

high-frequency components will be disturbed in this case.

(2) Nonlinear contrast enhancement

As any signal can be decomposed into cosine waves, for the sake

of simplicity, we take two simple 1D signals composed of a sum of

two zero-phase cosinusoids for example:

{
x(n) = a cos(ω1n) + c cos(ω2n)

y(n) = b cos(ω1n) + c cos(ω2n)
(8)

where ω1 and ω2 represent the low-frequency and high-frequency,

respectively. Therefore, x(n) and y(n) have the same high-

frequency component but different low-frequency components. If

they both undergo the same nonlinear transformation function T (x),
then we can rewrite T (x) in terms of its Taylor series expansion:

T (x) = T (x0) + T
′(x0)(x− x0) +

T ′′(x0)(x− x0)
2

2

+

∞∑

i=3

T (i)(x0)(x− x0)
i

i!
(9)

By only considering the first three terms of the right-hand side

of Equation (9), we have a x2(n) and a y2(n) term for the nonlinear

transformations of x(n) and y(n), respectively:

x
2(n) =

a2

2
cos(2ω1n) +

c2

2
cos(2ω2n)

+ ac cos((ω1 − ω2)n) +
a2 + c2

2
(10)

+ ac cos((ω1 + ω2)n)

y
2(n) =

b2

2
cos(2ω1n) +

c2

2
cos(2ω2n)

+ bc cos((ω1 − ω2)n) +
b2 + c2

2
(11)

+ bc cos((ω1 + ω2)n)

Notice the amplitudes of new frequencies 2ω1, 2ω2, ω1 − ω2

and ω1+ω2 are correlated to the amplitudes of the original frequen-

cies, which means the equalities of high-frequency components may

be disturbed by the inequalities of low-frequency components. For

example, the amplitudes of the potential high-frequency ω1 + ω2

for x2(n) and y2(n) are no longer the same due to the inequality of

the original amplitudes of ω1. For purposes of exposition we only



consider a simplified form of a signal. However, this analysis can

be generalized to more complex signals. Actually, the increasing-

ly complex signals will aggravate the interference between different

frequency components, and finally lead to the destruction of inter-

channel high-frequency components.

Based on the above analysis, we propose a metric S to measure

the similarity between the high-frequency components of different

color channels. If the 2D wavelet coefficients of color channel c in

the diagonal subband at level j is denoted by Dj
c(m,n), the mea-

surement of inter-channel similarity of high-frequency components

can be defined as:

S =
1

MN

M−1∑

m=0

N−1∑

n=0

∣∣D1
c1(m,n)−D

1
c2(m,n)

∣∣ (12)

where c1, c2 ∈ {R,G,B}, c1 ̸= c2. M and N is the width and

height of the diagonal subband. A value of S greater than the de-

cision threshold η signifies the detection of contrast enhancement.

Similar to [1], we applied block-wise detection for local contrast en-

hancement. Conceivably, the S of unaltered image is closer to zero

than that of altered image. S extracted from linear and nonlinear

contrast enhanced images are shown in Fig. 2(a)-(d), which confor-

m to our analysis above. In Fig. 2(b) and 2(c), it is straightforward

to show that aside from exceptional cases, the original and enhanced

images can be distinguished clearly. In Fig. (d), taking histogram

equalization as a nonlinear contrast enhancement example, all the

unaltered and altered images can be classified perfectly using the

proposed detection scheme.

(a) (b)
Fig. 1. Scatter plots of wavelet coefficients in the diagonal subband

for (a) the original images and (b) the enhanced images.

4. EXPERIMENTS

4.1. Experimental setup

To evaluate the performance of the proposed method, 100 uncom-

pressed color images sized 1600 × 1200 captured by commercial

cameras are used in the experiment. As in the previous work in

[1, 3, 4], these images were enhanced by power law transformation

(γ correction):

T (x) = [255(
x

255
)γ ] (13)

where [·] is a rounding operation, and γ is randomly chosen from

the set {0.5;0.8;1.2;1.5;1.8;2.0}. These enhanced images were com-

bined with the unaltered images to create a testing database of 700

color images. To test the performance of the proposed method on

local contrast enhancement, we simply cropped blocks of differen-

t sizes from the upper-left corner of the original and γ correction

enhanced images. Each block was then classified as enhanced or

unaltered by our proposed detection scheme using a variety of dif-

ferent thresholds to get a series of receiver operating characteristic

(ROC) curves. Although we gained good results for different forms
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Fig. 2. Scatter plots of S for original (blue asterisks) and enhanced

(green circles) images. (a) Linear, w = 0.6 (R, G and B channels

separated), (b) linear, w = 0.6, (c) linear, w = 1.2, (d) Histogram

equalization.

of contrast enhancements such as linear enhancement and histogram

equalization, the results will be shown only for γ correction. Notice

that we did not enhance each color channel separately so as to avoid

chromatic aberration. Instead, we converted RGB images into YUV

color space and only applied contrast enhancement in Y channel as

most contrast enhancement schemes do. Finally, the enhanced im-

age will be converted back to RGB space. To provide a practical

validation, we will show the detection results of a real cut-and-paste

forgery.

4.2. Performance evaluation

The series of ROC curves for c1 = G and c2 = R in (12) are dis-

played in Fig. 3(a)-(d). PD and PFA marked in the figures denote

the true positive rates and false positive rates, respectively. η is in-

creased by 0.001 from 0 to 1.The results shown in Fig. 3 indicate that

local contrast enhancement can be reliably detected even for testing

blocks sized 16×16 pixels. With a PFA of less than 5%, our method

achieves a PD of at least 90% using 16× 16 pixels blocks for power

law transformation and a PD of around 95% using 128× 128 pixels

blocks. One can see that the proposed method achieves better results

than Stamm’s algorithm with different cutoff frequencies T in case

of small blocks sized 16×16 pixels and comparable performance for

large blocks sized 128 × 128 pixels. Because for small blocks, the

statistical significance of the calculated histogram would be reduced,

so it is difficult to perform reliable contrast enhancement detection

for small blocks sized below 50 × 50 pixels using histogram-based

methods like [1]. It makes sense that larger blocks are more likely

to contain sufficient high-frequency evidence, but the performance

of the proposed method decreases very little with the diminishing

block sizes, implying the S extracted from small blocks, like 16×16
pixels, are feasible for the classification task.

An example of a cut-and-paste image forgery is shown in Fig.

4(a)-(c), where a person is cut from Fig. 4(a), then transformed using

the Photoshop Curve Tools and pasted on Fig. 4(b) to produce the

composite image. To detect the forgery, the image was segmented

into 64×64 pixel blocks, and then our detection scheme was applied



on each block for evidence of contrast enhancement, setting η =
0.67. In Fig. 4(c), the blocks detected as contrast enhanced are

highlighted in red square. Although the proposed algorithm fails on

some all-white and all-black blocks as they do not contain enough

high-frequency content to provide trustworthy evidence, most of the

enhanced blocks are reliably detected.

4.3. Performance under anti-forensic scenario

To investigate the performance of the proposed algorithm under anti-

forensic scenario, two anti-forensic schemes proposed in [3] and [4]

are used.

For the method in [3], we added Gaussian noise N(0, σ2) to

each channel of the contrast enhanced image. Detection results for

image blocks sized 128 × 128 pixels are illustrated in Fig. 5(a)-

(b). As expected, the proposed algorithm has good robustness a-

gainst Gaussian noise. Because the additional noise can provide ex-

tra high-frequency evidence and therefore increase our confidence in

the inter-channel similarities of high-frequency components, making

it easier to detect contrast enhancement in case of additive noise.
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(d)
Fig. 3. Detection ROC curves for images altered by γ correction. (a)

γ = 0.8, blocksize=128× 128, (b) γ = 0.8, blocksize=16× 16, (c)

γ = 1.5, blocksize=128× 128, (d) γ = 1.5, blocksize=16× 16.

(a) (b) (c)
Fig. 4. Cut-and-paste forgery detection example using 64×64 pixels

blocks. (a) The original image from which an object is cut, (b) the

original image onto which the cut object is pasted, (c) the detection

result.

Next, for the remapping scheme described in [4], it modifies the

histogram hy of an enhanced image according to the most similar

histogram hx from a reference histogram database by pixel remap-

ping. It is worth mentioning that instead of applying remapping

in the enhanced Y channel, we remapped R, G and B channels of

the enhanced image for the reason that the conversion from YU-

V to RGB color space is essentially a per-pixel mapping, which

will again introduce artifacts into histogram and neutralize the effect

of anti-forensic algorithm. The comparison between the proposed

method and Stamm’s in [1] is given in Fig. 5(c)-(d). As we can see,

remapped images can still be detected by Stamm’s algorithm when

the block size is 128 × 128 pixels, although the histogram of anti-

forensic images is smoother than that of the enhanced images. But

our algorithm still obtains better result. Actually, it achieves almost

perfect result since the pixel remapping scheme is highly nonlinear,

which will certainly disturb the inter-channel similarity as demon-

strated in Section 3.2.
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Fig. 5. Detection ROC curves under anti-forensic scenarios. (a)

γ = 1.2, σ2 = 0.01, (b) γ = 1.2, σ2 = 0.05, (c) γ = 0.5,

blocksize=128× 128, (d) γ = 1.2, blocksize=128× 128.

5. CONCLUSIONS

In this paper, we present a novel forensic method to expose cut-and-

paste image forgery by detecting contrast enhancement in color im-

ages. Compared with the algorithm in [1], our proposed method is

easier to implement and use, good results are still gained for small

blocks sized 16× 16 pixels in terms of ROC curves. Besides, it has

good robustness against some state-of-the-art anti-forensic schemes.

When the detection block size is large enough, the traces left in the

histogram can provide adequately reliable evidence, while the inter-

channel similarity metric S become more convincing when block

size is reduced to a certain degree. Therefore, a further enhancement

would be a potential fusion of the proposed algorithm and the find-

ings of [1]. However, both our proposed algorithm and that described

in [1] suffer from poor robustness against JPEG compression, so dis-

covering specific effects of JPEG compression on the histogram and

choosing those wavelet coefficients less affected by image compres-

sion would be the main focus of our future work.
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