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Exposing the quantum geometry of spin-orbit-coupled Fermi superfluids
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The coupling between a quantum particle’s intrinsic angular momentum and its center-of-mass motion gives rise
to the so-called helicity states that are characterized by the projection of the spin onto the direction of momentum. In
this paper, by unfolding the superfluid-density tensor into its intrahelicity and interhelicity components, we reveal
that the latter contribution is directly linked with the total quantum metric of the helicity bands. We consider both
Rashba and Weyl spin-orbit couplings across the BCS-BEC crossover and show that the geometrical interhelicity
contribution is responsible for up to a quarter of the total superfluid density. We believe this is one of those elusive
effects that may be measured within the highly tunable realm of cold Fermi gases.
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I. INTRODUCTION

The earliest association between the physical property of a
quantum system and the topological structure of its underlying
Bloch bands was made [1] soon after the realization that the
observed quantization of Hall conductivity was nothing but
conclusive evidence for its quantum geometric origins. In
particular, it turns out that the integral of the Berry curvature
(defined just below) in two-dimensional electron systems is a
topological invariant of the system and that its quantized value
is proportional to the Hall conductivity of a band insulator.
Bearing this hindsight in mind, not only the topological but
also the geometrical structure of the Bloch bands has been
playing an ever-increasing role in modern quantum physics
[2–9], where more and more physical phenomena are pro-
posed to find their roots in the so-called geometric quantum
mechanics [10].

In order to specify these topological and geometrical ideas
one needs to introduce the quantum geometric tensor of a
given Bloch band [1,11], which is also referred to as the
Fubini-Study metric tensor in the broader context of differ-
ential geometry. For this purpose, let us consider a Bloch
Hamiltonian density H0k and label its single-particle energy
eigenvalues εik and energy eigenstates |ik〉 by the band
index i and momentum k = ∑

ν kν ν̂ in the D-dimensional
Brillouin zone with coordinates ν = {x,y,z}. Since the gauge-
invariant quantum geometric tensor of the ith band Q

μν

ik =
〈∂kμ

ik|∂kν
ik〉 − 〈∂kμ

ik|ik〉〈ik|∂kν
ik〉 is a complex one, it is

customary to divide it into two gauge-invariant tensors as
Q

μν

ik = g
μν

ik − (i/2)Fμν

ik [1,11], where g
μν

ik is the so-called
quantum metric and F

μν

ik the Berry curvature. Even though
the Berry curvature is omnipresent in nature and most of
the measurable quantum geometric effects have so far been
related to it [1–9], the importance of the quantum metric is
yet to be recognized in the light of recent theoretical proposals
on a diverse range of problems in condensed-matter physics
[12–24]. Among them, the most recent connection between
the quantum metric of the noninteracting Bloch bands and
the superfluid (SF) weight tensor, i.e., in the context of multi-
band attractive Hubbard models, stands out as an important

milestone for our fundamental understanding of superfluidity
and superconductivity [21–25]. For instance, in marked con-
trast with the single-flat-band systems where superfluidity is
strictly forbidden, it may succeed in a flat band in the presence
of other bands (e.g., the Lieb lattice) as a direct result of
the geometric effects through interband tunnelings [21,22]. In
addition, the geometrical contribution to the supercurrent [23]
also gives further insight into the baffling controversy around
the superconductivity of graphene without supercurrent in the
vicinity of its Dirac points [26,27].

Motivated by these theoretical proposals [21–25], here
we explore the experimental feasibility of its counterpart
effect in the SF density of spin-orbit-coupled Fermi gases
[28–31], for which the coupling between the intrinsic spin
and orbital motion gives rise to the so-called helicity states
that are characterized by the projection of the spin onto the
direction of momentum. For this purpose, we first split the
SF-density tensor into two contributions depending on their
physical origin, i.e., while the intrahelicity contribution has the
conventional form [32] determined solely by the corresponding
helicity spectrum and takes the real intraband processes into
account, the interhelicity one accounts for the virtual interband
processes and is directly linked with the total quantum metric
of the helicity bands. We then consider both Rashba and Weyl
spin-orbit couplings (SOCs) across the BCS-BEC crossover
and show that the geometrical interhelicity contribution is
responsible for up to a quarter of the total SF density. Given the
recent realizations of two-dimensional (2D) SOCs in atomic
Bose and Fermi gases [33–36], measuring the quantum geom-
etry of their helicity bands would endorse the elusive quantum
metric to the level of, and with arguably as far-reaching impact
on modern physics as, the Berry curvature.

II. BCS MEAN-FIELD THEORY

Assuming a pseudospin-1/2 Fermi SF with an equal number
of ↑ and ↓ components, we start with the BCS mean-field
description of stationary Cooper pairs with zero center-of-mass
momentum. A compact way to write this model Hamiltonian
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(in units of h̄ = 1) is [28–31,37]

H = 1

2

∑
k

�
†
k

(
ξkσ0 + dk · σ i�σy

−i�σy −ξkσ0 + dk · σ ∗

)
�k

+
∑

k

ξk + �2

U
, (1)

where the spinor operators �
†
k = (ψ†

k ψ−k) with ψ
†
k =

(ψ†
↑k ψ

†
↓k) create σ = {↑ , ↓} fermions with ±k momentum,

the shifted dispersion ξk = εk − μ describes a free Fermi gas
with the single-particle energy εk = k2/2m and the chemical
potential μ, and the BCS mean field � = U 〈ψ↑kψ↓−k〉 is taken
as a real parameter without the loss of generality. Here U � 0
is the strength of the contact interaction and 〈· · · 〉 denotes the
thermal average. Furthermore, σ0 is the 2 × 2 identity matrix
and σ = ∑

ν σν ν̂ is a vector of Pauli spin matrices in such a way
that dk = ∑

ν ανkν ν̂ corresponds to a Weyl SOC when αν = α

for all ν = {x,y,z} and to a Rashba SOC when αz = 0. Here
ν̂ is a unit vector along the ν direction and we choose α � 0
without loss of generality.

Since this Hamiltonian and its numerous variations have
been well studied in the recent cold-atom literature, we simply
quote the self-consistency equations for � and μ [28–31,37],

1

U
= 1

2VD

∑
sk

Xsk

2Esk
, (2)

n = 1

2VD

∑
sk

(
1 − ξsk

Esk
Xsk

)
, (3)

where VD corresponds to the area A in two dimensions and
volume V in three dimensions, s = ± labels the helicity bands,
Xsk = tanh(Esk/2T ) is a thermal factor with the Boltzmann
constant kB set to unity and T the temperature, ξsk = εsk − μ

is the shifted dispersion for the s-helicity band with εsk =
εk + sdk and the strength of the SOC dk = |dk|, and Esk =
(ξ 2

sk + �2)1/2 is the energy spectrum of the quasiparticles for
the corresponding helicity band. Here the number Eq. (3)
for the density n = N/VD of particles follows from N =∑

k〈ψ†
kψk〉. Given that the model Hamiltonian is effectively a

two-band one with a single k-independent order parameter and
the time-reversal symmetry is also manifest, we argue in this
paper that spin-orbit-coupled Fermi SFs may promise one of
the ideal test beds for the exploration of the recently proposed
quantum geometric effects [21–25].

III. SUPERFLUID-DENSITY TENSOR

As a counterpart to the geometric effects in the SF-weight
tensor of multiband attractive Hubbard models [21–24], here
we study the SF-density tensor ρμν of a continuum model
in the context of spin-orbit-coupled Fermi gases. Following
Refs. [23–25], we unravel the intrahelicity and interhelicity
contributions to ρμν = ρ intra

μν + ρ inter
μν as

ρ intra
μν = m�2

2VD

∑
sk

(Xsk

E3
sk

− Ysk

2T E2
sk

)
∂ξsk

∂kμ

∂ξsk

∂kν

, (4)

ρ inter
μν = −m�2

VD

∑
sk

dkXsk

sξkEsk
g

μν

k , (5)

where Ysk = sech2(Esk/2T ) is a thermal factor and g
μν

k =∑
s g

μν

sk is the total quantum metric of the helicity bands. Here,
while ρ intra

μν is finite unless � = 0, ρ inter
μν is finite unless α = 0

together with � = 0.
We recall that the quantum metric of a given Bloch band

is generally defined by the energy spectrum εik of the Hamil-
tonian and its corresponding eigenfunctions |ik〉 in a highly
nontrivial way [1,11]. This can be illustrated by combining
the generic definition of the metric g

μν

ik = Re[〈∂kμ
ik|(I −

|ik〉〈ik|)|∂kν
ik〉] for the ith band together with the complete-

ness relation I = ∑
i |ik〉〈ik| for a given k state, leading to

an equivalent but numerically much more practical expres-
sion g

μν

ik = Re
∑

j{�=i}〈ik|∂kμ
H0k|jk〉〈jk|∂kν

H0k|ik〉/(εik −
εjk)2. In the particular application to our model, the
single-particle problem is determined by the wave equation
H0k|sk〉 = εsk|sk〉, where H0k = εkσ0 + dk · σ is the Hamil-
tonian density, giving rise to two helicity bands indexed by
s = ± as long as α �= 0. Thus, we find g

μν

+,k = g
μν

−,k, so g
μν

k =
αμαν(d2

kδμν − αμανkμkν)/2d4
k with δij the Kronecker delta,

and also the total quantum metric can also be represented
as g

μν

k = ∂kμ
d̂k · ∂kν

d̂k/2, where d̂k = dk/dk is a unit vector
along the SOC field. In comparison, we find F

μν

sk = sF
μν

k with
F

μν

k = (∂kμ
d̂k × ∂kν

d̂k) · d̂k/2 for the corresponding Berry
curvatures, where each one of its components is determined
by the quantum metric |Fμν

k | = (gμμ

k gνν
k − g

μν

k g
νμ

k )1/2 up to a
k-dependent sign.

Prior to studying the interplay between the intrahelicity
and interhelicity contributions, let us briefly sketch how their
tangled sum reproduces the familiar expressions reported in
the recent cold-atom literature [28–31]. For this purpose, we
first recast the conventional number Eq. (3) via an integration
by parts, i.e., N = −(1/2)

∑
sk kν∂kν

(1 − ξskXsk/Esk),
into an equivalent but somewhat unfamiliar form
N = (1/2)

∑
sk kν(∂ξsk/∂kν)(�2Xsk/E

3
sk + ξ 2

skYsk/2T E2
sk).

This alternative expression holds for any ν as long as
� �= 0, and we attested its accuracy in our numerics as well.
Plugging it into Eq. (4) and taking the α → 0 limit, we
find that ρ intra

μν = nδμν − ∑
k kμkνYk/2mAT reduces to the

conventional expression for a continuum Fermi SF [32] and
that Eq. (5) vanishes as the helicity bands unite in this limit.
This leads to ρμν = nδμν at T = 0, i.e., the entire Fermi gas is a
SF in the ground state as soon as � �= 0. When α �= 0, in order
to attain the precise form of the SF density of, e.g., a 2D Fermi
gas with Rashba SOC [29], ρ0 = n − (m/A)

∑
sk[α(�2 +

ξkξsk)Xsk/4skξkEsk + (k/m + sα)2Ysk/8T ], where k =
(k2

x + k2
y)1/2, we perform yet another integration by parts

on the term �2 ∑
k(α2 + sαk/m)Xsk/E

3
sk = sαAkc −

sα
∑

k ξskXsk/kEsk − ∑
k(α2 + skα/m)ξ 2

skYsk/2T E2
sk in

the alternative number equation. Here the ultraviolet k-space
cutoff kc cancels out once summed over s. Finally, observing
that g

μν

k = (k2δμν − kμkν)/2k4 may effectively be replaced
with g

μν

k = δμν/4k2, due to the even sums over kx and ky , we
eventually arrive at an isotropic tensor ρμν = ρ0δμν with the
quoted SF density as the prefactor. Similar procedures apply
to 3D Fermi SFs with Weyl [30] and Rashba [28] SOCs. In ad-
dition, we also verified that all of our numerical results for ρμν

benchmark perfectly well with the existing literature [28–31].
The significance of the interhelicity contribution (5) to the

SF-density tensor seems to have gone entirely unnoticed in
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FIG. 1. A 2D Fermi gas with Rashba SOC is mapped at T = 0
in the plane of two-body binding energy εb and SOC strength α. The
total SF fraction ρ0/n is shown on the top along with the overall
interhelicity fraction ρ inter

0 /ρ0 at the bottom.

the physics literature. Having firmly established its geometric
origin,1 next we explore its relative weight in the whole
parameter space starting with a 2D Fermi SF with Rashba SOC.

A. Two-dimensional Fermi gas with Rashba SOC

In line with the cold-atom literature, here we substitute U

with the two-body binding energy εb � 0 in vacuum via the
usual relation A/U = ∑

k 1/(2εk + εb). In addition, we set
n = k2

F /2π and define an effective Fermi momentum kF and
Fermi energy εF = k2

F /2m as the relevant length and energy
scales in our numerical calculations. This is in such a way that
increasing U from 0 increases εb continuously from 0 to ∞. For
instance, a colormap of the ground-state (T = 0) SF density
ρ0 = ρ intra

0 + ρ inter
0 is shown in Fig. 1 as functions of εb and α,

along with the overall interhelicity fraction ρ inter
0 /ρ0. See the

Appendix for analogous results near the critical Berezinskii-
Kosterlitz-Thouless (BKT) transition temperature T = TBKT,
showing that the thermal effects are quite negligible for most
of the parameter regimes of interest.

In the absence of a SOC when α = 0, Fig. 1 reveals that
ρ0 = n and ρ inter

0 = 0 for any εb > 0, which is a well-known
result in the condensed-matter literature [32]. On the other
hand, increasing α from 0 gradually depletes the SF fraction
down to a saturation value that is eventually determined by
the effective mass of the Cooper molecules in the strong-
coupling limit, i.e., ρ0/n → 2m/mB for a weakly interacting
molecular Bose SF. For instance, it is already known that
mB/m → {2,4} when mα/kF → {0,∞} [29] and that the SF
fraction exhibits a dip value of 1/2. This is barely seen in

1Note that the local quantum geometry is non-Abelian as the helicity
bands are degenerate for some k states in the parameter space, e.g.,
around the origin in our continuum model. However, due to the k
sums, it turns out that the interhelicity contribution to some of the
global properties such as the SF density can be expressed in terms of
the total quantum metric of the helicity bands as discussed in the text.

FIG. 2. A 3D Fermi gas with Weyl SOC is mapped at T = 0 in
the plane of two-body scattering length as and SOC strength α. The
total SF fraction ρ0/n is shown on the top along with the overall
interhelicity fraction ρ inter

0 /ρ0 on the bottom.

Fig. 1 in a tiny region when εb/εF → 0 for sufficiently large
mα/kF . More interestingly, increasing α from 0 builds up the
overall interhelicity contribution ρ inter

0 /ρ0, growing slowly to a
maximal value of 0.26 for the parameters shown. Furthermore,
even though it is not visible here in a 2D system, as a
direct outcome of the competition between the intrahelicity
and interhelicity contributions, ρ0 evolves nonmonotonically
with α especially when εb/εF 
 1. Such an interplay is best
illustrated in a 3D Fermi gas as we discuss next.

B. Three-dimensional Fermi gas with Weyl or Rashba SOC

In line with the cold-atom literature, here we substitute
U with the two-body scattering length as in vacuum via the
usual relation V/U = −mV/4πas + ∑

k 1/2εk and choose
n = k3

F /3π2 to define the relevant length and energy scales
for the numerical calculations. This is in such a way that
increasing U from 0 changes the dimensionless parameter
1/kF as continuously from −∞ to 0 to +∞, for which |as | →
∞ is commonly referred to as the unitarity. For instance, a
colormap of the ground-state SF density ρ0 = ρ intra

0 + ρ inter
0 is

shown for the Weyl SOC in Fig. 2 as a function of 1/as and α,
along with the overall interhelicity fraction ρ inter

0 /ρ0.
First of all, it is again already known that mB/m →

{2,2.32,6} when 1/mαas → {+∞,0, − ∞} [30,37] and
therefore we expect the depletion of the SF fraction ρ0/n to
saturate around 0.34 when 1/kF as 
 0 and around 0.86 at
unitarity for sufficiently large mα/kF . Our numerical results
shown in Fig. 2 nicely recover these limits. In addition,
similar to a 2D Fermi SF, we find that the overall interhelicity
contribution ρ inter

0 /ρ0 builds again up to a maximal value
of 0.26 for the parameters shown. Furthermore, the rapid
growth of ρ inter

0 on the BCS side of the unitarity leads to a
nonmonotonic evolution of ρ0 with α, which is clearly visible
in a broad region when 1/kF as � 0.

For completeness, we also present a colormap of the
in-plane ground-state SF density ρ⊥ = ρ intra

⊥ + ρ inter
⊥ for the
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FIG. 3. A 3D Fermi gas with Rashba SOC is mapped at T = 0
in the plane of two-body scattering length as and SOC strength α.
The total SF fraction ρ⊥/n is shown on the top along with the overall
interhelicity fraction ρ inter

⊥ /ρ⊥ on the bottom.

Rashba SOC in Fig. 3, along with the overall interhelicity
fraction ρ inter

⊥ /ρ⊥. Note that ρzz = n and ρ inter
zz = 0 for the

entire parameter space at T = 0 and are not shown. Our
numerical results are again in perfect agreement with the
expected results, for which we already know that mB/m →
{2,2.40,4} when 1/mαas → {+∞,0, − ∞} [28,37], leading
ρ0/n to saturate around 0.5 when 1/kF as 
 1 and around 0.84
at unitarity for sufficiently largemα/kF . In addition, the overall
interhelicity contribution ρ inter

0 /ρ0 builds up to a maximal value
of 0.22 for the parameters shown. Thus, in comparison to
the Weyl SOC shown in Fig. 2, ρ inter

0 is slightly weaker here
on the BCS side of the unitarity, even though it is rather
comparable on the BEC side. As the 2D SOCs have recently
been created with atomic Bose and Fermi gases [33–36], our
predictions in this paper may already be verified in similar
setups. Noting that the quantum metric effects have so far
proved to be quite rare and elusive in condensed-matter
physics [12–25], in contrast to the Berry curvature ones that
are ubiquitously found in nature [2–9], there is no doubt
that its cold-atom realization will be one of the landmark
breakthroughs in modern quantum physics.

IV. CONCLUSION

In summary, while having primarily focused on the spin-
orbit-coupled atomic Fermi SF but not necessarily limited to
it, i.e., in the much broader context of superfluidity and super-
conductivity, here we examined the prospects for revealing the
quantum geometry of the noninteracting helicity bands through
measuring the SF density of the system. For this purpose, we
first divided the SF-density tensor into two contributions based
on their physical origin, i.e., while the intrahelicity contribution
has the conventional form determined by the helicity spectrum,
the interhelicity one has a geometric origin related to the total
quantum metric of the helicity bands. We then considered both
Rashba and Weyl SOCs across the BCS-BEC crossover and

showed that the geometrical contribution accounts for up to a
quarter of the total SF density.

Thus, by studying the competition between the intraband
and interband contributions to the SF density, as well as
the hidden role played by the quantum metric, our extensive
numerical calculations on spin-orbit-coupled Fermi gases ex-
posed the missing link between the nonmonotonic evolution
of the SF density and the quantum geometry of the helicity
bands. This is our main finding in this paper. In addition, our
work also shed light on the underlying physical mechanism
behind other nonmonotonic effects as the SF density is directly
related to the mass of the SF carriers. For instance, in the
follow-up studies [38–40], we have recently showed that the
quantum metric governs not only the SF density but also
many other observables, including the sound velocity and spin
susceptibility, through renormalizing the effective mass of the
two-body bound states and Cooper pairs in general.

Incentivized by the recent creations of 2D SOCs along
with the ongoing push toward simulating diverse aspects of
spin-orbit physics in the cold-atom community [33–36], we
believe realization of such a geometric effect will be one of
the long-standing milestones in modern quantum many-body
physics, where not only the topology but also the geometry of
the underlying band structure plays an ever-increasing role. As
a possible probe, we expect nonmonotonic evolutions for those
SF (normal-state) properties that are inversely proportional to
the effective mass of the SF carriers (preformed pairs).
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APPENDIX: THE BKT TRANSITION TEMPERATURE

The BKT transition temperature is determined by
the universal BKT relation TBKT = π

8m

√
ρxxρyy − ρxyρyx =

πρ0/8m, self-consistently with the mean-field order parameter

FIG. 4. A 2D Fermi gas with Rashba SOC is mapped at T = TBKT

in the plane of two-body binding energy εb and SOC strength α. The
total SF fraction ρ0/n is shown at the top along with the overall
interhelicity fraction ρ inter

0 /ρ0 at the bottom.
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� and the corresponding chemical potential μ. As shown in
Fig. 4, the geometric effect remains intact even at T = TBKT

and it is very much similar to that of the ground state that is
shown in Fig. 1.
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