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Abstract

Background: The effects of prenatal exposure to toxic elements on birth outcomes and child development have

been an area of concern. This study aimed to assess the profile of prenatal exposure to toxic elements, arsenic (As),

bismuth (Bi), cadmium (Cd), mercury (total mercury (THg), methylmercury (MHg), inorganic mercury (IHg)), lead (Pb),

antimony (Sb) and tin (Sn), and essential trace elements, copper (Cu), selenium (Se) and zinc (Zn), using the maternal

blood, cord blood and placenta in the Tohoku Study of Child Development of Japan (N = 594–650).

Methods: Inductively coupled plasma mass spectrometry was used to determine the concentrations of these elements

(except mercury). Levels of THg and MeHg were measured using cold vapour atomic absorption spectrophotometry

and a gas chromatograph-electron capture detector, respectively.

Results: Median concentrations (25th–75th) of As, Cd, Pb, Sb, Sn and THg in the maternal blood were 4.06 (2.68–6.81),

1.18 (0.74–1.79), 10.8 (8.65–13.5), 0.2 (0.06–0.40) and 0.2 (0.1–0.38) ng mL−1 and 5.42 (3.89–7.59) ng g−1, respectively.

Median concentrations (25th–75th) of As, Cd, Pb, Sb, Sn and THg in the cord blood were 3.68 (2.58–5.25), 0.53 (0.10–1.

25), 9.89 (8.02–12.5), 0.39 (0.06–0.92) and 0.2 (0.2–0.38) ng mL−1 and 9.96 (7.05–13.8) ng g−1, respectively.

Conclusions: THg and Sb levels in the cord blood were twofold higher than those in the maternal blood. Cord blood

to maternal blood ratios for As, Cd and Sb widely varied between individuals. To understand the effects of prenatal

exposure, further research regarding the variations of placental transfer of elements is necessary.
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Background
Humans have experienced various adverse effects from

environmental contaminants, especially toxic elements

such as arsenic (As), cadmium (Cd), mercury (Hg) and

lead (Pb), which are detrimental to human health. In

addition, these elements are ranked among the ten most

toxic substances by the Agency for Toxic Substances

and Disease Registry [1]. Although individuals in

developed countries may no longer suffer from severe

poisoning caused by exposure or overexposure to these

elements, chronic and low exposure remains a health

hazard. A developing foetus, in particular, is highly vul-

nerable to the toxic effects of these elements [2, 3].

Maternal exposure to these toxic elements may happen

through diet, air, drinking water, house dust and tobacco

use and/or passive smoking [3]. Mothers may also be ex-

posed to these elements in the workplace. Inorganic Hg

(IHg) is biologically transformed in the aquatic environ-

ment from its inorganic form into methylmercury

(MeHg), a toxic form of the element. Consequently,
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humans who consume fish and other seafood are poten-

tially exposed to MeHg, and this exposure increases the

risk of neurodevelopmental disorders [2, 4, 5]. Exposure

to Pb can cause spontaneous abortions [6] and can lead to

reduced birth weight, gestational hypertension, congenital

malformations [7] and impaired neurodevelopment [8].

Even low levels of in utero exposure to Pb may result in

adverse birth outcomes and neurodevelopmental effects

such as reduced intelligence and symptoms pertaining to

attention-deficit/hyperactivity disorder (ADHD) [9, 10].

Exposure to Cd is also potentially hazardous to foetal

health. However, the placenta acts as a barrier to Cd ex-

posure for the foetus by increasing metallothionein ex-

pression [11]. Nonetheless, Cd is found in the cord blood,

and this exposure has been associated with decreased

birth weight [12]. Prenatal As exposure is associated with

adverse birth outcomes [13], and it can adversely affect

the health of adults [14] and can lead to increased mortal-

ity and an increased risk of lung and liver cancers [15, 16].

Copper (Cu), zinc (Zn) and selenium (Se) are essential

trace elements and involved in numerous biochemical

processes that support life [17]. Bismuth (Bi), a minor

metal, has been used in pharmaceuticals and cosmetics. Bi

is also found in low concentrations in biological and envir-

onmental samples, including blood, urine, food and water

[18, 19]. Antimony (Sb) is another minor metal and used

in pharmaceuticals. Sb is usually present in the environ-

ment in very low concentrations [20]. Volonakis et al. [21]

reported the development of new Pb-free materials (e.g.

Pb-free inorganic halide double perovskites) based on Bi

or Sb. New materials made with Bi and Sb have been used

as a substitute for lead. According to a review of the litera-

ture, the available data regarding the effects of exposure to

Sb and Bi on general and vulnerable populations is

insufficient.

The effects of prenatal exposure to toxic elements have

been reported extensively. Consequently, more attention

has been paid to the effects of toxic elements on preg-

nancy outcomes and/or adverse developmental effects at

levels lower than current international guidelines [22–24].

The extent of prenatal exposure to environmental con-

taminants has been assessed primarily using cord and/or

maternal blood samples [25–27]. However, few reports

have assessed the relationship between ten elements by

using the complete data of the maternal blood, cord blood

and placenta in general populations of Japan.

In this study, we presented a novel examination of mater-

nal exposure to multiple elements [i.e. Cd, Hg (total Hg

[THg], MeHg and IHg), Pb, As (total As), Sb, Bi, Sn, Cu, Zn

and Se] and transplacental transfer of these elements from

the mother to the foetus in Japan. We investigated these ele-

ments by considering the environmental health effects, the

possibility of minor metal exposures and the confounding

aspect of trace elements. The aim of this study was to (1)

evaluate the prenatal exposure to toxic and essential trace

elements using the maternal blood and cord blood by focus-

ing on As, Bi, Cu, Cd, Hg (THg, MeHg and IHg), Pb, Sb, Se,

Sn and Zn and (2) assess the placental transfer of the se-

lected elements.

Methods
Study design, subjects and sampling

We performed a birth cohort study called the Tohoku Study

of Child Development (TSCD) in the northeastern area of

Japan. The Japanese refer to this area as the ‘Tohoku region’.

This study was conducted in an urban area (registered be-

tween 2001 and 2003) and a coastal area (registered between

2002 and 2006). The details and protocols of this study have

been described elsewhere [28]. In summary, 687 pregnant

Japanese women were enrolled for participation in this

study, and we obtained written informed consent from all

participants before beginning their part in the study [28].

We followed up on the mothers and their resulting infant

pairs, and the infants’ development was examined regarding

prenatal exposures to environmental contaminants, such as

MeHg, Pb and polychlorinated biphenyls (PCBs) [29–32].

This article analysed the samples from the urban area (Add-

itional file 1: Figure S1).

In the urban area, the maternal blood was collected at 28

weeks of pregnancy using venepuncture into a tube contain-

ing heparin. Similarly, the cord blood was collected from the

umbilical cord vein immediately after delivery; the placentas

were also collected during delivery. A representative sample

was collected from the lower parts of the root of the cord

tissue because the placenta is a large organ and a heteroge-

neous mixture of placental cells and decidual tissues con-

taining the maternal and foetal blood [33]. Acharya et al.

indicated that approximately 40% of the blood is contained

in the placenta. The representative sample was processed by

homogenisation before use. The blood and placenta samples

were stored at − 80 °C until the analyses.

Analytical methods

Determination of mercury

Cold vapour atomic absorption spectrometry (CVAAS;

HG-201, Sanso Seisakusho Co. Ltd., Tokyo, Japan) was used

to measure the THg level in the whole blood and placenta.

The analytical CVAAS method has been completely de-

scribed elsewhere [34, 35]. A gas chromatograph-electron

capture detector was used to measure the MeHg level in the

blood samples (GC-ECD) [34, 36]. The concentrations of

IHg were calculated by subtracting MeHg levels from THg

concentrations.

Determination of other toxic metals and essential trace

elements

We determined the levels of toxic elements As, Bi, Cd,

Pb, Sb and Sn and the levels of essential trace elements
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Cu, Zn and Se using inductively coupled plasma mass

spectrometry (ICP-MS; 7500c, Agilent Technologies,

Inc. CA, USA, Table 1). A sample (approximately 0.5 mL

of the blood and approximately 0.2 g of the placenta)

was weighed and placed at the bottom of a fluororesin

airtight sample container. Appropriately 1 mL of nitric

acid (HNO3) was added to the blood, whereas 2 mL of

HNO3 and 2mL of distilled water were added to the pla-

centa. Pressure decomposition was conducted using a

microwave at 600W for 30 min (MDS-2000, CEM Cor-

poration, NC, USA). These analyses were performed by

IDEA Consultants, Inc. (Tokyo, Japan).

Analytical quality control

We used a reference material (Seronorm Trace Elements

Whole Blood Level 2 and 3 prepared by the SERO AS,

Norway) for quality control (Additional file 1: Tables S1

and S2). Moreover, the data quality for THg, Cd and Pb

concentrations was verified using external quality assur-

ance programmes (Additional file 1: Table S2). The quality

of MeHg analyses was confirmed in two laboratories by

IDEA Consultants, Inc. and International Mercury

Laboratory, Co., Ltd. Both laboratories used the same

whole blood samples (N = 5, Pearson’s r = 0.999, P < 0.001,

Additional file 1: Figure S2). The limits of detection

(LODs) for each analyte were calculated according to Cur-

rie’s method [37].

Data analysis

The concentration levels of the elements in the maternal

blood, cord blood and placenta were assessed for nor-

mality using the Shapiro-Wilk test. Their concentrations

were presented as medians, namely, 25–75 percentiles

and ranges, because the distribution was skewed. We

also performed Spearman’s rank correlation coefficients

(rho) analysis. The concentration levels of the samples

were assessed by performing a nonparametric

Kruskal-Wallis analysis; this was followed by a Dunn

test. P < 0.05 was considered statistically significant. The

software package JMP12.0.2 (SAS Institute Inc., Cary,

NC, USA) was used for statistical analysis.

Results

The toxic and trace element concentrations are sum-

marised in Table 2 (N = 594–650). The mean gestational

age (SD) and maternal age (SD) at birth were 39.5 (1.3)

weeks and 31.4 (4.4) years old, respectively (N = 580,

Additional file 1: Figure S1). The mean placental weight

(SD) at birth was 559 (97) g (N = 565). Sn and Bi levels

were 44% and 7%, respectively, in the maternal blood

sample and 36% and 18%, respectively, in the cord blood

sample. Therefore, Bi and Sn concentration levels were

excluded from the subsequent analysis.

Figure 1 displays simple correlations between each

element in the maternal and cord blood. Values less than

the LODs were also excluded. Strong correlations were

observed between THg (and MeHg) in the maternal and

cord blood (Spearman’s rho = 0.78 [0.77]). Correlations

for Pb, As and Se in the maternal and cord blood were

significant but moderate to weak (Spearman’s rho = 0.41,

0.20 and 0.26, respectively). No significant correlations

were noted for Cu, Zn and Sb in the maternal and cord

blood. Spearman’s correlations for the elements in the

maternal blood, cord blood and placenta are shown as

(Additional file 1: Table S3, N = 580).

Figure 2 compares the concentrations of the toxic ele-

ments with the trace elements in the maternal blood,

cord blood and placenta. Concentrations of As and Pb

in the cord blood were significantly lower than those in

the maternal blood and placenta. Concentrations of

THg, Cd, Zn and Se in the placenta were significantly

higher than those in the maternal and cord blood.

Figure 3 shows cord blood to maternal blood ratios of

the toxic and trace elements. The median ratios of Zn,

Cu and Cd were approximately 0.5, and the median ra-

tios of As, Se and Pb were approximately 1.0. By con-

trast, the median ratios of Sb, THg and MeHg were

approximately 2.0. The variations of the Cu, Zn, Se, Pb,

THg and MeHg ratios were small [relative standard de-

viation (RSD), 25–55%], whereas the variations of the

As, Bi, Cd and Sb ratios were large (RSD, 94–450%).

Discussion

MeHg and THg concentration levels in the cord blood

showed strong associations with their concentration

levels in the maternal blood, whereas As, Pb and Se

Table 1 Instrumental setting for ICP-MS

Instrument Agilent 7500c

Mass monitored Cu: 63

Zn: 66

As: 75

Se: 78

Cd: 111

Sn: 118

Sb: 121

Pb: 208

Bi: 209

Internal standards Ge: 72

Y: 89

Rh: 103

In: 115

Tl: 205

Reaction gas He, H2

RF power 1.5–1.6 kW
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concentration levels in the cord blood showed moderate

associations with their concentration levels in the mater-

nal blood. No significant associations were observed be-

tween the concentration levels of Cd, Zn, Cu and Sb in

the maternal and cord blood. These findings indicate

that Hg (i.e. MeHg and THg) concentrations in the ma-

ternal blood represent foetal exposure, whereas the

others do not. Notably, even in the assessment of foetal

exposure to MeHg, the cord blood is a more useful and

valid biomarker [38]. This is so because the increased

THg concentration in the cord blood was associated

with some neurobehavioural and neurophysiological def-

icits in children [2, 38]. To assess the extent and result-

ing health effects of foetal exposure to As, Pb, Cd, Se,

Table 2 Exposure levels of toxic and essential trace elements in the maternal blood, cord blood and placenta

Elements N Median 25th–75th percentile Min Max < LODb (%)

Maternal blood (ng mL−1) As 649 4.06 2.68–6.81 < 0.30b 17.64 2.3

Bi 649 0.02b 0.02b–0.02b < 0.02b 2.51 92.6

Cd 649 1.18 0.74–1.79 < 0.10b 11.23 5.4

Cu 649 1289.2 1155.9–1449.1 501.5 2677.5 0

Pb 649 10.83 8.65–13.50 3.10 70.24 0

Sb 649 0.20 0.06b–0.40 < 0.06b 7.99 31.4

Se 649 176.4 155.1–196.7 93.3 416.3 0

Sn 649 0.20b 0.20b–0.38 < 0.20b 7.95 55.6

THga 650 5.42 3.89–7.59 0.61 25.19 0

MeHga 645 5.15 3.68–7.15 0.60 24.99 0

IHga 645 0.24 0.09–0.43 < 0.01 1.61

Zn 649 4769.0 4146.7–5417.8 2707.2 14,416.6 0

Cord blood (ng mL−1) As 594 3.68 2.58–5.25 < 0.30b 22.41 0.5

Bi 594 0.02b 0.02b–0.02b < 0.02b 1.87 82.0

Cd 594 0.53 0.10b–1.25 < 0.10b 10.52 26.4

Cu 594 510.8 456.2–566.5 243.5 1429.8 0

Pb 594 9.89 8.02–12.48 3.66 61.61 0

Sb 594 0.39 0.06b–0.92 < 0.06b 6.40 28.3

Se 594 191.4 166.5–219.0 73.9 376.2 0

Sn 594 0.20b 0.20b–0.38 < 0.20b 5.23 63.6

THga 601 9.96 7.05–13.80 1.60 43.90 0

MeHga 598 9.47 6.70–13.28 1.52 43.15 0

IHga 598 0.27 0.10–0.63 < 0.01 2.43

Zn 594 2002.9 1757.7–2352.2 1103.9 22,258.6 0

Placenta (ng g-wet-1) As 617 4.36 3.26–5.93 1.18 19.56 0

Bi 617 0.03b 0.03b–0.04 < 0.03b 1.35 72.6

Cd 617 16.95 12.97–22.72 3.52 51.49 0

Cu 617 706.5 627.1–806.5 442.9 1419.3 0

Pb 617 11.21 7.67–15.55 2.14 125.00 0

Sb 617 0.24 0.10b–0.56 < 0.10b 33.43 37.8

Se 617 295.3 265.0–331.9 172.4 503.5 0

Sn 617 11.83 6.55–19.43 < 0.30b 197.56 1.9

THg 617 12.60 9.31–16.47 1.98 52.44 0

Zn 617 9101.4 8353.3–9917.1 6771.8 17,381.8 0

Copper, selenium and zinc concentrations were presented up to one decimal digit because of high concentration compared with other elemental concentrations

As arsenic, Bi bismuth, Cd cadmium, Cu copper, Pb lead, Sb antimony, Se selenium, Sn tin, THg total mercury, MeHg methylmercury, IHg inorganic mercury (IHg

concentrations were calculated by subtracting MeHg from THg), Zn zinc
ang g−1

bLimit of detection (LOD)
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Zn, Cu and Sb, the use of the cord blood may be more

suitable than the maternal blood (in especially, in case of

no correlation between element concentrations in the

maternal blood and cord blood). Maternal blood mea-

surements have also the following some advantages: the

maternal blood is easier to access, to get multiple sam-

pling and more useful for preventive actions, including

the process of setting reference values. To overcome this

dilemma, foetal exposure simulation models must be de-

veloped using physiologically based pharmacokinetic

(PBPK) modelling. The results of this study suggest that

more information is required regarding the transplacen-

tal behaviour of these elements, such as active transpor-

tation and binding protein expressions [39, 40].

MeHg could be actively transported by the placenta

through cysteine conjugate via the neutral amino acid

carrier system [41]. Many studies have reported that

MeHg was higher in the cord blood than in the maternal

blood [42–45]. The average cord blood to maternal

blood ratio of MeHg ranged from 0.8 to 2.8, with a mean

value of 1.65 [45]. In this study, the median ratio was

1.8. Moreover, according to our review of the literature,

this study may be the first to report the placental

transfer of Sb (the median ratio was 2.0). The median

cord blood to maternal blood ratios of Cd, Cu and Zn

were less than 1 (there was no correlation between their

element concentrations in the maternal and cord blood).

Metallothionein of the metal-binding protein could be

induced by some metals, such as Cd, Cu and Zn [46].

For a Cd and Zn interaction, the accumulation of Cd in

the placenta reportedly induces the expression of metal-

lothionein, which could lead to Zn retention in the pla-

centa with subsequent reduced transfer to the foetus

[47, 48]. This finding indicates that metallothionein ex-

pression in the placenta plays a role in modifying the

transfer of Cd, Cu and Zn to the cord blood.

The median of blood Sb concentrations in a sample of

89 male and female German adults (median 0.6 μg L−1,

range < LOD–7.54 μg L−1, [49]) was similar to the levels

reported in this study, whereas these concentrations in

pregnant women in Western Australia (median

1.54 μg L−1, range 0.16–7.31 μg L−1, [50]) were slightly

higher in the participants of this study. Because max-

imum Sb levels in the participants in this study were

similar to the levels noted in German adults and the

pregnant women in Western Australia, we considered

Fig. 1 The relationships between the same element in the maternal blood and those in cord blood. Spearman’s rank correlation coefficients (rho),

**P < 0.01, *P < 0.05. Values less than the LODs were excluded

Iwai-Shimada et al. Environmental Health and Preventive Medicine           (2019) 24:35 Page 5 of 11



a b c

d e

g h

f

Fig. 2 Box-plot showing the relationship of toxic metals among the maternal blood, cord blood and placenta. a Copper (Cu). b Selenium (Se). c Zinc

(Zn). d Arsenic (As). e Cadmium (Cd). f Lead (Pb). g Total mercury (THg). h Antimony (Sb). The number of samples above LOD in the maternal blood,

cord blood and placenta. Statistical analyses were performed by nonparametric Kruskal-Wallis followed by Dunn test. Significantly different (**P < 0.01),

As and Pb: maternal blood (MB) and placenta (PL) > cord blood (CB), Cd: PL >MB > CB, Cu: MB > PL > CB, Se: PL > CB >MB, Sb: PL and CB >MB, THg:

PL > CB >MB, Zn: PL >MB> CB
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that the participants in this study were under general en-

vironmental Sb exposure. Reports have suggested that

household dust [51], soil and airborne particles [52] are

contaminated with Sb. Yoshinaga et al. [53] reported

that geometric mean Sb levels (SD) in house dust of Jap-

anese residences (N = 100) was 10.1 (2.06) mg kg-dry−1

and that result was two times higher levels than house

dust in Canada. Further studies are necessary to evaluate

the exposure source of Sb and the effects.

Kidney-Cd half-life was estimated between 18 and 44

years, whereas blood-Cd half-life was a few months [54,

55]. Certain studies have reported a higher accumulation

of Cd in the placenta than in the maternal blood or cord

blood because of the limited transplacental passage [56,

57]. This result could explain the comparatively no cor-

relation between Cd levels in the maternal blood and

cord blood (r = 0.042 [58], 0.25 [59], − 0.14 [42]). Com-

pared with the placental Cd levels reported in 46 studies

[60], the participants of this study are observed to have

experienced moderate Cd exposure.

The geometric mean levels of blood THg were 0.678

ng mL−1 in NHANES 2013–2014 (N = 2628, female) in

the United States (USA) [61]. The median levels of mater-

nal blood THg were 0.64 ng mL−1 in MIREC (N = 1835) in

Canada [62] and 2.24 ng mL−1 in Taiwan (N = 145, [63]).

Our median value of 5.42 ng g−1 (5.69 ng mL−1, adjusted

for blood-specific gravity as 1.05) in the maternal blood

was higher than the median values obtained from these

countries. The mercury exposure of the participants in

this study was lower compared with the participants in

the Faroese birth cohort study and the Seychelles Child

Development Study [2].

The geometric mean levels of Pb in the blood were

0.842 μg dL−1 in NHANES 2013–2014 (N = 2628, female)

in the USA [61] and 3.97 μg dL−1 in China (N = 1931,

[64]). The median levels of maternal blood Pb were

0.59 μg dL−1 in MIREC (N = 1835) in Canada [62]. Our

median value of 1.08 μg dL−1 in the maternal blood is

similar to these values, with the exception of China.

The cord blood As level in this study was similar to

that obtained from the USA (child blood, [65]) and

Taiwan (cord blood) and was a little higher than that

from Nepal (cord blood) [66, 67]. Because we measured

only total As levels in the blood, we do not have data re-

garding inorganic As (and the metabolites) and high tox-

icity (our limitation). A significant number of studies

have measured total As and/or inorganic As by speci-

ation using urine [66]. Individuals in Japan are exposed

to organic As, especially arsenobetaine, the nontoxic

form of As, which is typically found in seafood, espe-

cially shellfish and seaweed [68, 69]. Notably, the posi-

tive relationship between THg and As (details are

presented in Additional file 1: Table S3) may be a result

of seafood consumption. Exposure to As is typically

measured by analysing urine and blood samples [70]. To

investigate the effects of inorganic As on child develop-

ment, we must assess the extent of exposure to inor-

ganic As by speciation. By doing so, we can determine

the inorganic As level in the cord blood; hair and nails

are also reliable indicators of long-term exposure to in-

organic As [71].

Elements with a small variation in cord blood to maternal

blood ratios (Cu, Zn, Se, Pb, THg and MeHg)

The variations in cord blood to maternal blood ratios

among individuals were low for Cu, Zn and Se (RSD = 32,

55 and 25%, respectively). Cu, Zn and Se are essential

ba

Fig. 3 Box-plot and table showing cord blood to maternal blood ratios of toxic and trace elements in the study population. a Cord blood to maternal

blood ratios of Cu, Zn, Se, Pb, THg and MeHg were small variation and those of IHg, As, Cd and Sb elements were large variation. b Table shows cord

blood to maternal blood ratios of each element
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trace elements involved in many life-supporting biochem-

ical processes [17]. By contrast, excess intake of these

trace elements leads to disease and toxicity [17]. Notably,

because Cu and Zn are highly toxic for the foetus [72],

cord blood Cu (about 500 ng mL−1 in median) and cord

blood Zn (about 2000 ng mL−1 in median) seemed to be

properly regulated in vivo (details in Fig. 2).

The variations in ratios among individuals were also

low for the following toxic metals: Pb, THg and MeHg

(RSD = 43, 33 and 34%, respectively). It may be regulated

in vivo like essential trace elements. Although Pb is not

essential to support life, it is freely transported from the

mother to the foetus through the placenta [60]. A possi-

bility is that Pb2+ ions mimic Ca2+ ions [73] in several

physiological phenomena. For example, maternal dietary

calcium supplementation during pregnancy and lactation

was associated with reductions in Pb levels in animal

and human studies [74].

Elements with large variations in cord blood to maternal

blood ratios (As, Cd and Sb)

The variations in cord blood to maternal ratios among

individuals were high for As, Sb and Cd (RSD = 94, 130

and 130%, respectively), as exists in different chemical

forms in the blood. The proportion of the different As

chemical species may largely vary among individuals,

which may have resulted in the large variation in As ra-

tios. A speciation analysis of As is essential to assess the

characterisation of its transplacental behaviour and de-

velopmental effects [13]. Sb cord blood to maternal

blood ratios exceeding 1 were observed in 71% of the

participants. Because the Sb concentrations were at low

levels in the cord blood and maternal blood, the large

variation of the Sb ratio might include the uncertainty of

the analytical values (limitation). However, the Sb cord

blood to maternal blood ratio was 2.0, and this level of

exposure to Sb would be problematic for foetuses from a

health perspective.

Moreover, cord blood to maternal blood Cd ratios > 1

were observed in 39% of the participants, with large vari-

ation among individuals. Genetic variation leading to

differences in expression and regulation of metallothio-

nein proteins may have contributed to the differences

observed among participants in terms of Cd uptake and

metabolism [75]. Further research should focus on gen-

etic variation analyses such as single nucleotide poly-

morphisms (SNPs) to identify vulnerable sections of the

population.

There are some limitations of our research. Firstly,

there was time-lag between sampling of the maternal

blood and cord blood in the urban area of our co-

hort. Copper, zinc and selenium are essential trace el-

ements of which blood concentrations are maintained

in certain ranges. Estimated daily dietary intakes of

total zinc were 8.8–14.4 mg/day for adults aged 20–

50 years [76]. The average daily intake of copper was

about 1 mg with the primary source being the diet

[77]. We could assume that blood trace element con-

centrations were in steady states since they were

taken daily via diet. Actually, Willett reported that

observed intra-class correlations (ICC) in 3-month in-

tervals were 0.76 for serum selenium and 0.95 for

whole blood selenium. This suggests that whole blood

selenium concentration is less susceptible to temporal

variation and thus a better index of long-term intake

compared to the serum selenium concentration [78].

Lee at al. reported that whole blood ICC for Pb, Hg

and Cd was 0.81, 0.71 and 0.83, respectively [79]. We

could not find about blood ICC of other elements.

We might be able to confirm the effect of sampling

time-lag on the cord/maternal blood ratio using the

sample of coastal area in our cohort because sampling

of the maternal blood (1 day postpartum) in the

coastal area was almost same with the cord blood (at

birth). Secondly, in case some element concentrations

were extremely of low levels in the cord blood and

maternal blood, the large variation of the ratio might

include the uncertainty of the analytical values.

Thirdly, we had not performed arsenic speciation yet.

We would conduct further research about arsenic

speciation in the future using a sample of our cohort.

Lastly, this study has certain limitations because we

do not have data regarding genetic background, such

as SNPs and DNA methylation. A noticeable limita-

tion is we could not reveal the effects of a genetic

factor on the large variations in the ratio between

individuals.

Conclusions

Sb was detected in 72% of the cord blood samples,

whereas Sn was detected in 44% of the maternal blood

samples. By contrast, Bi was detected in 7% of the ma-

ternal blood samples. Sn was detected in 36% of the

cord blood samples, whereas Bi was detected in 18% of

the cord blood samples. Concentrations of Zn, Cu, Pb,

Cd and As in the maternal blood were significantly

higher than their concentration levels in the cord

blood. In contrast, THg, MeHg and Sb levels in the

cord blood were approximately two times higher than

their levels in the maternal blood. Foetal exposure to

elements with large variations in the cord blood to ma-

ternal blood ratios (IHg, As, Cd and Sb) should be eval-

uated using the cord blood samples, especially because

the placental transfer of these elements varies largely

among individuals. In the future, our results will be

useful to evaluate the exposure levels of these elements

and to investigate the associations between toxic elem-

ent exposure and children’s health [80].
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Figure S2. Correlations of blood mercury concentrations between A

laboratory (International mercury lab) and B laboratory (IDEA consultant).

N = 5, Pearson product-moment correlation coefficient (r). A (total mer-

cury in the whole blood): Y = 0.96x − 0.99, B (methylmercury in the whole

blood): Y = 0.97x − 1.1, C (total mercury in red blood cells): Y = 0.84x +

0.48, D (methylmercury in red blood cells): Y = 0.82x − 0.83, E (total mer-

cury in plasma): Y = 0.77x + 0.21, F (methylmercury in plasma): Y = 0.65x +

0.08. (PDF 275 kb)
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