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Abstract

Purpose To characterize exposure–response relationships

of AMG 386 in a phase 2 study in advanced ovarian cancer

for the facilitation of dose selection in future studies.

Methods A population pharmacokinetic model of

AMG 386 (N = 141) was developed and applied in an

exposure–response analysis using data from patients

(N = 160) with recurrent ovarian cancer who received

paclitaxel plus AMG 386 (3 or 10 mg/kg once weekly) or

placebo. Reduction in the risk of progression or death with

increasing exposure (steady-state area under the con-

centration-versus-time curve [AUCss]) was assessed using

Cox regression analyses. Confounding factors were tested

in multivariate analysis. Alternative AMG 386 doses were

explored with Monte Carlo simulations using population

pharmacokinetic and parametric survival models.

Results There was a trend toward increased PFS with

increased AUCss (hazard ratio [HR] for each one-unit

increment in AUCss, 0.97; P = 0.097), suggesting that the

maximum effect on prolonging PFS was not achieved

at the highest dose tested (10 mg/kg). Among patients

with AUCss C 9.6 mg h/mL, PFS was 8.1 months versus

5.7 months for AUCss \ 9.6 mg h/mL and 4.6 months for

placebo. No relationship between AUCss and grade C3

adverse events was observed. Simulations predicted that

AMG 386 15 mg/kg once weekly would result in an

AUCss C 9.6 mg h/mL in [90% of patients with median

PFS of 8.2 months versus 5.0 months for placebo (HR

[15 mg/kg vs. placebo], 0.56).

Conclusions Increased exposure to AMG 386 was asso-

ciated with improved clinical outcomes in recurrent ovar-

ian cancer, supporting the evaluation of a higher dose in

future studies.

Keywords AMG 386 � Ovarian cancer � Paclitaxel �
Pharmacokinetics � Population pharmacokinetic/

pharmacodynamic modeling � Exposure–response analysis

Introduction

Quantitative drug and disease modeling techniques are

increasingly applied to today’s drug development process

to inform critical decisions. By integrating complex data,

the resulting deeper understanding of a drug’s action can
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guide go/no-go decision making, inform dose and study

design selection, facilitate the development of combination

therapies, and provide a better understanding of risk–benefit

ratios [1, 2]. Use of such pharmacometric techniques may

be particularly valuable in oncology, where phase 2 studies

have historically been poor positive predictors of phase 3

outcomes [3, 4]. A key goal during early-phase develop-

ment of novel cancer therapeutics is finding a dose that

maximizes clinical benefit while maintaining an acceptable

safety profile [5–7]. Because dose-ranging phase 2 studies

are not frequently conducted in oncology [8], selecting an

appropriate dose for a registrational study can present a

considerable challenge. However, poor dose selection is one

likely contributor to the historically limited ability of

phase 2 studies to predict success of subsequent phase 3

trials [3, 4]. Population pharmacokinetic/pharmacodynamic

modeling is an innovative tool that has shown promise when

applied to the prediction of clinical endpoints [9, 10],

identification of factors influencing clinical endpoints [11],

and dose selection [12, 13]. Importantly, the US Food and

Drug Administration (FDA) has suggested that exposure–

response models may provide useful information for end-

of-phase-2 dose-selection decisions [14]. Specifically, the

FDA’s Critical Path Initiative [15] has identified quantita-

tive modeling as a technique that may reduce uncertainty

regarding dose selection.

AMG 386 (previously referred to as 2xCon4) is an

investigational peptide-Fc fusion protein that mediates

antiangiogenic effects by potently and selectively inhibit-

ing the interaction of angiopoietin-1 and angiopoietin-2

with Tie2 [16]. Primary endpoint results from a phase 2

study of AMG 386 in combination with weekly paclitaxel

for the treatment of recurrent ovarian cancer showed longer

median progression-free survival (PFS) for patients

receiving AMG 386 at 10 and 3 mg/kg once weekly (QW),

compared with placebo (the data are described in the pri-

mary analysis [17]). Additional dose-exposure analyses

suggested a dose–response effect across treatment arms.

Although the study strongly suggests that AMG 386 has

antitumor activity in recurrent ovarian cancer, the dose–

response effect raises the question of whether the tested

doses maximized the risk–benefit ratio. The objective of

the present analysis was to use population pharmacoki-

netic/pharmacodynamic models to explore whether doses

of AMG 386 higher than those assessed in the phase 2

clinical study might result in further improvements in PFS

while maintaining acceptable toxicity. Specifically, the

models comprised a characterization of the pharmacoki-

netics of AMG 386 in recurrent ovarian cancer patients, an

exposure–response analysis to assess the relationship

between AMG 386 exposure and efficacy/toxicity end-

points, and exploration of potential clinical outcomes at

doses higher than those evaluated in the phase 2 study.

Methods

Data sources

AMG 386 serum concentration-versus-time data for the

population pharmacokinetic analysis were obtained from

two clinical studies: a phase 1 first-in-human monotherapy

study [18] in advanced solid tumors (n = 32) and a phase 2

study [17] in advanced ovarian cancer (n = 109). The

phase 1 study was a sequential dose-escalation study of

AMG 386 administered intravenously QW at 5 doses (0.3,

1, 3, 10, and 30 mg/kg) with 4–16 patients per dose group

[18]. Intensive serum samples were collected at the end of

infusion and at 2, 6, 24, 48, and 96 h after the infusion at

weeks 1 and 4. Sparse pharmacokinetic (peak or trough)

samples were collected before each weekly AMG 386

administration. The phase 2 study evaluated weekly pac-

litaxel plus AMG 386 at 10 mg/kg QW and 3 mg/kg QW,

or placebo [17]. Pharmacokinetic samples were collected

predose at weeks 1, 3, 5, and 9; every 8 weeks thereafter;

and at the end of infusion at weeks 1 and 5. All patients

provided written informed consent, and the study protocols

were approved by an ethics committee at each participating

center.

Efficacy and toxicity data for the exposure–response

analysis were obtained from the phase 2 study [17]. The

primary endpoint was PFS, defined as the time from ran-

domization to the date of disease progression per Response

Evaluation Criteria in Solid Tumors version 1.0 [19],

clinical progression (per investigator), CA-125 progression

(Gynecologic Cancer Intergroup criteria [20]), or death.

Further study details are reported in the primary analysis

[17].

Population pharmacokinetic analysis

A linear 2-compartment model was used to describe

AMG 386 concentration data with population pharmaco-

kinetic modeling using the nonlinear mixed-effect modeling

software program NONMEM (version V, level 1.1; ICON

Development Solutions, Ellicott City, MD) [21]. An expo-

nential interindividual variability error term that assumed a

log-normal distribution was included with all pharmacoki-

netic parameters (clearance [CL], distribution clearance [Q],

and volumes of distribution for the central compartments

[Vc] and peripheral compartments) in the model. Combined

additive and proportional components were used to model

residual intraindividual random error.

Five baseline variables (weight, sex, age, serum creati-

nine, and creatinine clearance [CrCL]) were tested with

forward selection (P \ 0.01) and backward elimination

(P \ 0.005) approaches for their effects on CL and Vc [22].

CrCL was calculated based on the Cockcroft-Gault formula

1136 Cancer Chemother Pharmacol (2012) 69:1135–1144

123



[23]. Additional baseline clinical laboratory values of

interest (total bilirubin, alkaline phosphatase, albumin,

S-aspartate aminotransferase, and S-alanine aminotrans-

ferase) were explored graphically using the base population

pharmacokinetic model (without covariates) to examine

potential associations with pharmacokinetic parameters

(CL and Vc; Supplemental Table 1). Further, the effect of

coadministration of AMG 386 with paclitaxel compared

with AMG 386 monotherapy was assessed after the

selection of physiologic covariates.

Continuous covariates such as body weight were inclu-

ded in the structural model using the following equation:

hi ¼ hTypical �
Covi

Covreference value

� �heff

where hi is the value of a pharmacokinetic parameter for

the ith individual; hTypical is the typical value of the phar-

macokinetic parameter for an individual having the refer-

ence value of the covariate in the population (e.g., 70 kg

for body weight); Covi is the value of the covariate for

the ith individual; Covreference value is the median of the

covariate among patients, and heff is the value of the

covariate effect on the pharmacokinetic parameter.

The evaluation of a categorical covariate effect (e.g.,

sex) on typical values of pharmacokinetic parameters was

described as follows:

If Covi ¼ value 1; then heff ¼ 1

Else; if Covi ¼ value 2; then heff ¼ heff2

hi ¼ hTypical � heff

The exposure measure in the exposure–response analysis

was the steady-state area under the concentration-versus-

time curve (AUCss), which was assessed based on

individual CL values obtained with an empirical Bayesian

post hoc estimate from the final population pharmacokinetic

model (Supplemental Table 1) [21].

Exposure–response analysis

Kaplan–Meier curves for PFS were calculated for patients

with AMG 386 AUCss C 75th percentile (high exposure)

and AUCss \ 75th percentile (low exposure) and for pla-

cebo-treated patients. Univariate Cox regression models of

AUCss by PFS were used to characterize the exposure-PFS

curve. These models assumed a linear relationship between

exposure and the logarithm of the relative risk. AUCss for

patients who received placebo plus weekly paclitaxel was

set to zero. Because the relationship between exposure and

PFS may not have been linear over the entire range of study

exposures, the following subsets were analyzed: placebo

and AMG 386 3 mg/kg QW combined; AMG 386 3 mg/kg

and 10 mg/kg QW combined; and AMG 386 10 mg/kg QW.

Multivariate Cox regression models were used to eval-

uate the effect of potential confounding factors on the

exposure-PFS curve for the AMG 386 10 mg/kg dose. They

included those affecting AMG 386 exposure (CrCL, age,

and body weight), prognostic factors (Gynecological

Oncology Group performance status, tumor type, histology,

platinum sensitivity, progression on or within 6 months of

previous chemotherapy regimen, and liver metastases), and

baseline laboratory values (serum CA-125, albumin, alka-

line phosphatase, S-aspartate aminotransferase, S-alanine

aminotransferase, creatinine, lactate dehydrogenase, and

potassium). A forward selection algorithm was used to

identify a multivariate model with up to three variables

using only data from the placebo group, a model that was

associated with PFS in the absence of AMG 386 exposure;

AUCss was added to this model and estimated for patients

in the 10 mg/kg QW treatment arm to evaluate the effect of

AMG 386 exposure on PFS when adjusting for factors with

an AMG 386-absent association with PFS.

A descriptive analysis was conducted to evaluate trends

in the incidence of severe (grade C3) AEs among patients

with AMG 386 AUCss C 75th percentile and \ 75th

percentile.

Simulation and dose assessment

To predict PFS at different doses, a parametric survival

model that related estimated AUCss to PFS was developed

using data from all three treatment arms in the phase 2

study. The survival function that best described the

observed PFS distribution was selected from normal, log-

normal, Weibull, logistic, log-logistic, and exponential

functions using the Akaikie Information Criterion and

diagnostic plots [9, 10, 24]. Estimation of model parame-

ters was performed using the CensorReg function in

S-PLUS (version 7.0; Insightful Corporation, Seattle, WA).

Evaluation of the selected model was conducted by

simulating PFS values from 1,000 trials (replicates) and

comparing the actual and simulated PFS curves (median

and 95% CI) across all three treatment arms. To evaluate

the AUCss distribution at different doses, random selections

of 1,000 hypothetical patients were resampled (boot-

strapped with replacements) from a total of 160 patients in

the phase 2 study. Individual plasma concentration-versus-

time profiles were simulated using the final population

pharmacokinetic model including fixed- and random-effect

parameters.

The population pharmacokinetic and survival models

were used to simulate AUCss at AMG 386 doses of 0, 3, 10,

and 15 mg/kg QW and to predict PFS across 1,000 repli-

cates of a simulated 1,000-patient study, respectively. The

objective of this analysis was to predict PFS following the
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treatment with various doses of AMG 386. Uncertainty in

the AUCss-PFS model estimation was accounted for by

sampling parameter estimates as part of the simulation

process using a previously described method [9, 10]. In

addition to the graphic comparison of the actual and pre-

dicted PFS curves, statistical estimates, including median

PFS for each treatment arm and hazard ratio (HR) relative

to placebo, were estimated and compared with the actual

values.

Results

Patients

The final database for pharmacokinetic analysis consisted

of 1,275 evaluable serum AMG 386 concentration assess-

ments, of which 690 were from the first-in-human phase 1

study (from 32 patients with solid tumors), and 585 were

from the phase 2 study (from 109 patients with recurrent

ovarian cancer; Supplemental Table 2). Selected baseline

characteristics of the two patient populations are summa-

rized in Supplemental Table 3. Results from the primary

analysis of the phase 2 study have been reported previously

[17].

Progression-free survival (the primary endpoint) in the

phase 2 study was 7.2 months (95% CI, 5.3–8.1) in the

AMG 386 10 mg/kg QW dose group (HR, 0.76; 95% CI,

0.49–1.18; P = 0.225) and 5.7 months (95% CI, 4.6–8.0)

in the 3 mg/kg group (HR, 0.75; 95% CI, 0.48–1.17;

P = 0.207), compared with 4.6 months (95% CI, 1.9–6.7)

for placebo [17]. Results from Tarone’s test and dose-

exposure analyses suggested a dose–response effect for

PFS across the three arms (P = 0.037).

Population pharmacokinetic analysis

AMG 386 exhibited dose-linear pharmacokinetic properties

between 0.3 and 30 mg/kg QW. Among the covariates

assessed, CrCL (calculated based on the Cockcroft-Gault

formula) had the most pronounced effect on CL. Across the

range of CrCL values collected in these 2 studies, the rela-

tionship between CL and CrCL was approximately linear

(R2, 0.33; CL, 43 mL/h ? 0.356 9 CrCL) (Fig. 1). For Vc,

body weight and sex were significant covariates (Supple-

mental Table 1). No significant trends were seen when

laboratory values for albumin, alkaline phosphatase, total

bilirubin, S-aspartate aminotransferase, and S-alanine ami-

notransferase were plotted against the interindividual vari-

ability of CL or Vc from the base model. Mean AMG 386

CL based on the estimated individual CL was similar

across the phase 1 monotherapy study (0.075 ± 0.020 L/h)

and the phase 2 combination study (0.084 ± 0.026 L/h),

suggesting that concomitant administration of paclitaxel did

not affect the pharmacokinetics of AMG 386. The typical

CL (0.072 L/h) for AMG 386 was faster than for monoclonal

antibodies [25, 26].

Exposure–response analysis

Univariate analysis demonstrated an exposure–response

relationship between AUCss and PFS within each 1-unit

increment in predicted AUCss (e.g., AUCss of 9 vs.

8 mg h/mL) for all patients who received AMG 386 (HR,

0.97; P = 0.097). Similar relationships were seen in subset

analyses of the placebo and AMG 386 3 mg/kg arms

combined (HR, 0.90; P = 0.121) and the AMG 386 3 mg/kg

and 10 mg/kg arms combined (HR, 0.97; P = 0.23) as well

as the 10 mg/kg arm alone (HR, 0.89; P = 0.069). The

relationship between AUCss and PFS remained (adjusted

HR, 0.87, P = 0.045) in the 10 mg/kg arm after adjusting

for potential confounding factors (platinum sensitivity,

baseline CA-125, and progression on or within 6 months of

previous chemotherapy; Table 1), indicating that the trend

was likely due to a true exposure–response relationship

rather than a correlation between a potential confounder

and AUCss. These results also suggested that the maximum

effect on PFS was not achieved with a dose of 10 mg/kg

QW.

An AMG 386 AUCss of 9.6 mg h/mL (the 75th percen-

tile of median AUCss among patients administered

AMG 386) was selected as a cut point for further analysis.

Although the effect of higher AMG 386 AUCss on clinical

benefit was also analyzed, 9.6 mg h/mL was selected to

ensure that a sufficient number of patients were included in

safety and efficacy evaluations. Figure 2 shows Kaplan–

Meier curves for estimated PFS when patients were grouped

CrCl
(mL/min)

(140–age) × actual body weight (kg)

72 × serum creatinine (mg/dL)
( × 0.85 for women)=

Observed CrCL, mL/min
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Fig. 1 Population pharmacokinetic analysis shows a linear correla-

tion between AMG 386 clearance (CL) and creatinine clearance

(CrCL)
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by the dose of AMG 386 administered or by AUCss. Patients

with high exposure to AMG 386 (AUCss C 9.6 mg h/mL)

showed a more marked separation in PFS curves versus

placebo, compared with patients in the low-exposure group

(AUCss \ 9.6 mg h/mL). Median PFS was 4.6 months

(95% CI, 1.9–6.7) among placebo patients (n = 55),

8.1 months (95% CI, 6.4–10.8) among patients with

AUCss C 9.6 mg h/mL (n = 26; HR vs. placebo, 0.67

[95% CI, 0.40–1.14]), and 5.7 months (95% CI, 4.6–7.5)

among patients with AUCss \ 9.6 mg h/mL (n = 79; HR

vs. placebo, 0.81 [95% CI, 0.55–1.21]).

Exposure-safety analysis

A descriptive exposure-safety analysis did not reveal any

clinically relevant differences in the incidence of AEs among

patients with high (AUCss C 9.6 mg h/mL) and low

(AUCss \ 9.6 mg h/mL) AMG 386 exposure (Table 2).

No relationship between AUCss and grade C 3 adverse

events was observed. Differences were seen between some

AEs (e.g., peripheral neuropathy, arthralgia), but the study

was not powered to detect statistically significant differ-

ences in the incidence of individual AEs. Additionally,

these toxicities are commonly associated with paclitaxel

administration and, therefore, may be attributed to longer

duration of chemotherapy administration in this patient

subset rather than to AMG 386 administration.

Simulation and dose assessment

Figure 3 shows the distributions of the predicted AUCss

with AMG 386 at a dose of 15 mg/kg QW and the actual

AUCss data that were seen with administration of 3 or

10 mg/kg QW (phase 2 combination study), or 30 mg/kg

Table 1 Multivariate model for PFS using a forward selection

algorithm

Factor AMG 386 10 mg/kg QW ?

Paclitaxel

Hazard ratio for PFSa

(95% CI)

AUCss 0.869 (0.758–0.997)

P = 0.045b

Baseline log (CA-125) 1.309 (1.076–1.593)

P = 0.007b

Progressive disease within 6 months

of last chemotherapy

0.114 (0.013–0.961)

P = 0.046b

Platinum sensitivity

PFI [ 12 months Referencec

PFI 6–12 months 0.813 (0.304–2.176)

P = 0.680b

Refractory to first-line treatment 33.986 (2.892–399.450)

P = 0.005b

Refractory to second-line or

subsequent treatment

7.119 (0.615–82.430)

P = 0.116b

PFI \ 6 months 14.441 (1.393–149.741)

P = 0.025b

Baseline log (CA-125), progressive disease within 6 months of last

chemotherapy, and platinum sensitivity were selected using forward

selection (up to a 3-factor model) modeling PFS in the placebo arm

AUCss, steady-state area under the concentration-versus-time curve;

PFI, platinum-free interval; PFS, progression-free survival; RECIST,

Response Evaluation Criteria in Solid Tumors; QW, once weekly
a PFS was a composite endpoint based on time from randomization to

progression per RECIST, clinical progression, CA-125 progression,

or death
b P values were determined using a Wald test in Cox regression
c Hazard ratios were calculated based on comparison with the

PFI [ 12-month group
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Fig. 2 Kaplan–Meier plots of progression-free survival (PFS; per

Response Evaluation Criteria in Solid Tumors, clinical progression or

CA-125 progression, or death) stratified by treatment arm (a) or

exposure to C9.6 or \9.6 mg h/mL (b). AUCss, steady-state area

under the concentration-versus-time curve; QW, once weekly
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QW (phase 1 monotherapy study). At a dose of 15 mg/kg

QW, [90% of patients were predicted to achieve

an AUCss C 9.6 mg h/mL, which is well below the

median AUCss (24.9 mg h/mL) reported for a dose of

30 mg/kg.

Among the various survival functions assessed, the Wei-

bull distribution had the lowest Akaikie Information Criterion

and, therefore, was used to describe the PFS data. The para-

metric model with Weibull distribution was subsequently

used to characterize the simulated PFS data for AMG 386

Table 2 Exposure-safety analysis

Week 1 AUCss \ 9.6 mg h/mL

n = 79

Week 1 AUCss C 9.6 mg h/mL

n = 26

Placebo ? Paclitaxel

n = 55

All grades Grade C 3 All grades Grade C 3 Difference (95% CI)a All grades Grade C 3

Adverse events occurring with a C14% difference in incidence in patients with AUCss C 9.6 mg h/mL versus those

with AUCss \ 9.6 mg h/mL, n (%)

Peripheral edema 44 (56) 5 (6) 20 (77) 0 (0) 21 (-2 to 39) 12 (22) 2 (4)

Diarrhea 27 (34) 2 (3) 14 (54) 1 (4) 20 (-4 to 41) 15 (27) 0 (0)

Peripheral neuropathy 22 (28) 4 (5) 12 (46) 2 (8) 18 (-4 to 40) 17 (31) 2 (4)

Neutropenia 17 (22) 9 (11) 1 (4) 0 (0) -18 (-29 to 2) 7 (13) 2 (4)

Arthralgia 12 (15) 0 (0) 9 (35) 0 (0) 20 (0 to 42) 8 (15) 0 (0)

Urinary tract infection 11 (14) 1 (1) 8 (31) 0 (0) 17 (-2 to 39) 7 (13) 0 (0)

Chest pain 4 (5) 0 (0) 6 (23) 0 (0) 18 (2 to 39) 4 (7) 0 (0)

Rhinorrhea 3 (4) 0 (0) 6 (23) 0 (0) 19 (4 to 40) 3 (5) 0 (0)

Chest discomfort 3 (4) 0 (0) 6 (23) 0 (0) 19 (4 to 40) 1 (2) 0 (0)

Mouth ulceration 4 (5) 0 (0) 5 (19) 0 (0) 14 (0 to 35) 3 (5) 0 (0)

Dry skin 1 (1) 0 (0) 5 (19) 0 (0) 18 (4 to 39) 3 (5) 0 (0)

Hyperhidrosis 1 (1) 0 (0) 4 (15) 0 (0) 14 (2 to 34) 1 (2) 0 (0)

AUCss, steady-state area under the concentration-versus-time curve
a Percentage difference (and 95% CI) between the AUCss C 9.6 mg h/mL group minus the AUCss \ 9.6 mg h/mL group for any grade adverse

event
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30 mg/kg QW in the first-in-

human study (c)
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doses of 0 (placebo), 3, 10, and 15 mg/kg in combination with

paclitaxel. The Kaplan–Meier PFS curves predicted by the

Weibull model for placebo and for 3 and 10 mg/kg QW were

consistent with the actual PFS curves for patients in the cor-

responding treatment arms, as were the HRs for comparison

with placebo (Fig. 4a–c). This finding confirms the adequacy

of the simulated data and fitted parametric survival model, and

the consistency of the simulated data with outcomes among

patients with AUCss C 9.6 mg h/mL. Additionally, the pre-

dicted Kaplan–Meier PFS curve for an AMG 386 dose of

15 mg/kg QW was similar to the actual curve based on data

from patients in the AUCss C 9.6 mg h/mL group (Fig. 4d).

The predicted median PFS at an AMG 386 dose of 15 mg/kg

QW was 8.2 months (95% CI, 5.4–11.9 months; HR, 0.56

[95% CI, 0.31–1.07]).

Discussion

This study describes an important but infrequently used

application of population pharmacokinetic/pharmacody-

namic modeling to guide dose selection for phase 3 studies

of an antiangiogenic agent. Attrition rates for investiga-

tional cancer therapeutics are high [27]. Regulatory guid-

ance and the published literature suggest that the integration

of pharmacokinetic, pharmacodynamic, and clinical end-

point data may better inform future study design and help

maximize the risk–benefit profile for therapeutics [28–30].

In particular, exposure–response modeling may aid in the

rational selection of doses for further investigation [31, 32].

The failure of some cancer therapeutics in development

may be due to the conventional approach to dose selection,

which primarily focuses on the determination of the maxi-

mum tolerated dose [33], whereas identification of an

‘‘optimal biologic dose’’ may be more appropriate for tar-

geted agents [34]. Consistent with this approach, a number

of recent phase 1 studies have used exposure–response

modeling to assess the relationship between exposure and a

marker of biologic activity to facilitate dose selection

[35–39]. However, because these markers have not been

clinically validated, the appropriateness of such analyses

for use in dose selection has been uncertain [40].

The present study was a prospectively planned phar-

macokinetic/pharmacodynamic analysis that assessed the
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relationship between exposure (AUCss) and a key clinical

outcome (PFS) to guide dose selection for phase 3 studies

of AMG 386 in recurrent ovarian cancer. The population

pharmacokinetic part of the analysis revealed that CrCL, a

measure of renal function, appears to be a significant

covariate for AMG 386 CL. The relationship suggests that

renal disposition may play a role in the elimination of

AMG 386, which, at a size of approximately 65 kDa, is a

fairly large molecule. Renal clearance is uncommon for

biologic therapeutics, such as monoclonal antibodies, and,

to our knowledge, has not been described previously.

Estimated glomerular filtration rate (calculated using the

Modification of Diet in Renal Disease, MDRD, method),

which is another measure of renal function, also showed a

significant effect on AMG 386 CL (data not shown). This

further supports our finding that the kidney may be

implicated in the elimination of AMG 386. However,

the exact mechanism of the effect of CrCL on the CL of

AMG 386 remains uncertain and warrants further

investigation.

Exposure–response analysis revealed a robust relation-

ship between AMG 386 exposure and PFS, suggesting that

maximum clinical benefit was not reached at a dose of

10 mg/kg QW. The exposure-PFS relationship remained

after adjusting for potential confounding factors in the

multivariate analysis. However, given the relatively small

sample size of the phase 2 study, other unknown confound-

ing factors may have introduced an unidentified bias. Using

the results from the simulations based on the parametric

survival model, an AMG 386 dose of 15 mg/kg QW in

combination with cytotoxic chemotherapy has been pro-

posed for phase 3 studies in patients with recurrent ovarian

cancer (TRINOVA-1 [ClinicalTrials.gov, NCT01204749]

and TRINOVA-2 [ClinicalTrials.gov, NCT01281254]).

Although the toxicity of this dose when combined with

paclitaxel has not yet been directly tested, the exposure-

safety analysis presented here suggests that 15 mg/kg of

AMG 386 will have a similar safety profile as the 10 mg/kg

dose. There were no marked differences in the incidence of

grade C 3 AEs between patients with high and low AMG

386 exposure, and the primary analysis did not show any

apparent dose-related trends in toxicity when comparing 3

and 10 mg/kg QW administered in combination with pac-

litaxel [17]. In the phase 1 study, 30 mg/kg QW (the maxi-

mum tested dose) was well tolerated as monotherapy [18].

Exposure–response relationships appear to be influ-

enced by a number of factors, which can complicate

efforts to identify an optimal biological exposure

(OBE) and optimal biological dose (OBD) for a given

anticancer agent. OBDs and OBEs from monotherapy

dose-escalation studies in mixed solid tumors may not

translate into later-stage studies (monotherapy or com-

bination therapy) of single tumor types. For example, not

all clinical studies of the anti-VEGF-A antibody bev-

acizumab have shown a consistent dose–response rela-

tionship, suggesting that different optimum doses may be

needed for different tumor types or disease characteris-

tics [41]. Furthermore, an agent’s OBE may differ

between in vitro models and clinical studies. The AMG

386 OBE for antitumor efficacy in xenograft models [16]

appeared to be lower than that identified in the phase 2

ovarian cancer study. This may reflect differences in

receptor occupancy across species, which has been

observed in other contexts [42].

Our study demonstrates the use of a novel model-based

approach to dose selection for a phase 3 study of an

investigational targeted therapy. Applying this technique to

the decision-making process in the development of anti-

cancer agents, for which dose-ranging studies are rarely

performed [8], provides important opportunities. Integrat-

ing results from preclinical pharmacokinetic, pharmaco-

logic, and toxicity studies into appropriate models can

guide the design of early clinical studies and inform the

interpretation of its results, thus supporting the fast tran-

sition of a promising molecule from discovery into the

clinic. Go/no-go decisions during continued clinical

development and dose selection for late-stage studies can

also be successfully supported by modeling applications.

Thus, quantitative (such as pharmacokinetic/pharmacody-

namic and/or exposure–response) modeling and simula-

tions can guide each step of a clinical development plan

from early discovery through pivotal phase 3 studies [1].

However, this approach is often limited because it requires

early integration of pharmacometric scientists in the clin-

ical decision-making process as well as the timely devel-

opment of relevant models.

In summary, our study demonstrates how exposure–

response analyses of phase 2 study data and the application

of pharmacokinetic/pharmacodynamic models can assist in

the selection of doses for subsequent phase 3 studies of an

antiangiogenic therapeutic.
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