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ABSTRACT This paper presents a deep end-to-end network for high dynamic range (HDR) imaging of

dynamic scenes with background and foreground motions. Generating an HDR image from a sequence

of multi-exposure images is a challenging process when the images have misalignments by being taken

in a dynamic situation. Hence, recent methods first align the multi-exposure images to the reference by

using patch matching, optical flow, homography transformation, or attention module before the merging.

In this paper, we propose a deep network that synthesizes the aligned images as a result of blending the

information from multi-exposure images, because explicitly aligning photos with different exposures is

inherently a difficult problem. Specifically, the proposed network generates under/over-exposure images that

are structurally aligned to the reference, by blending all the information from the dynamic multi-exposure

images. Our primary idea is that blending two images in the deep-feature-domain is effective for synthesizing

multi-exposure images that are structurally aligned to the reference, resulting in better-aligned images

than the pixel-domain blending or geometric transformation methods. Specifically, our alignment network

consists of a two-way encoder for extracting features from two images separately, several convolution layers

for blending deep features, and a decoder for constructing the aligned images. The proposed network is shown

to generate the aligned images with a wide range of exposure differences very well and thus can be effectively

used for the HDR imaging of dynamic scenes. Moreover, by adding a simple merging network after the

alignment network and training the overall system end-to-end, we obtain a performance gain compared to

the recent state-of-the-art methods.

INDEX TERMS Computational photography, convolutional neural network, high dynamic range imaging.

I. INTRODUCTION

Dynamic ranges of standard cameras are too narrow when

compared with those of most scenes around us. Also, they

cannot capture too bright or dark regions that have illumina-

tion values out of the ranges of normal camera-settings. Thus,

high dynamic range (HDR) imaging, which is a technique

to capture and express HDR scenes in a single image, has

been studied to overcome the limitation. The most common

approach is to take a sequence of low dynamic range (LDR)

images with different exposures and fuse them to an HDR

image [7], [13]. Then, the HDR image is appropriately

tonemapped to the display dynamic range [8], [35], [43].

Another approach is directly synthesizing a tonemapped-like
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image as a weighted sum of LDR images, which is called

exposure fusion [31], [34], [39].

However, the classical HDR imaging methods produce

plausible results only when the camera is fixed on a tripod,

and when all the objects in the scene do not move, which are

too impractical or limited conditions. In a practical situation,

there are misalignments in the multi-exposure photos, due to

background and foregroundmotions. If themisaligned photos

are merged into an HDR image, most regions in the result are

blurred due to the background motion, and there can be ghost

artifacts around the moving objects. To alleviate these prob-

lems, advanced HDR imaging methods include the algorithm

to align the input images to the reference that is usually the

image with medium exposure. For some examples, the align-

ment is implicitly or explicitly conducted using patch match-

ing [18], optical flow [23], homography transformation [52],

or attention module [53]. However, the alignment methods
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do not produce satisfying results when there are complicated

background differences, nonrigid motion, or illumination dif-

ference, which results in low-quality results, sometimes with

fatal artifacts. Thus, we still need efforts to improve the align-

ment step before merging the multi-exposure images because

the alignment quality is critical for reducing the blurring and

ghost artifacts.

In this respect, we propose an end-to-end convolutional

neural network (CNN) that first generates well-aligned multi-

exposure images and then merges the aligned images. It has

been noted that explicitly aligning differently exposed images

is not an easy task, as evidenced in the previous works.

Thus we focus on the alignment part while we use a simple

network for the merging part. For synthesizing well-aligned

differently exposed images, our main idea is to blend the

images at the deep-feature-domain, rather than to blend or

transform the images at the pixel- or shallow-feature-domain.

Then the blended features are used to construct an aligned

image. Precisely, we design a building block called Exposure-

Structure Blending Network (ESBN), which generates an

under- or over-exposure image that is structurally aligned to

the reference image. The ESBN consists of two encoders that

extract deep features from two differently exposed images

separately, several residual blocks that blend the deep fea-

tures, and a decoder that constructs the aligned image. If we

have N LDR exposure images, then we use N − 1 ESBNs to

generate all the aligned exposure images. Then, the aligned

images are fed to a simple merging network, which consists

of a densely connected residual block.

In the experiment, we first train the ESBN and merging

network separately to show the effectiveness of ESBN over

the conventional alignment methods. We show that the ESBN

works well for quite large exposure differences, and thus

any existing (even non-dynamic) HDR imaging methods can

also use the outputs of our ESBN for generating a plausible

HDR image. Also, we train the overall network end-to-end to

validate a performance gain of joint alignment and merging

networks. From the extensive qualitative and quantitative

comparisons, it is shown that separate training of ESBN and

merging network produces better results than existing state-

of-the-art methods, and the end-to-end training yields even

better performance.

The main contribution of our work is the ESBN, which

blends the exposure and structure information from differ-

ently exposed and dynamically changing images, and as a

result, generates multi-exposure images that are structurally

aligned to the reference. The aligned images can also be used

as the inputs to existing (non-)dynamic HDR imaging meth-

ods. The other contribution is an end-to-end HDR imaging

network that combines the alignment and a simple merging

network, which provides state-of-the-art performance.

II. RELATED WORK

The conventional HDR imaging methods generate a final

HDR imageH as a weighted sum of input LDR images in the

HDR domain (generally in the 32-bit RGBE format), which

can be expressed as

H =

N∑

n=1

WnHn, (1)

where N is the number of LDR images, Hn is the n-th input

image in the HDR domain, and Wn denotes the weight cor-

responding to Hn. In dynamic scenes, however, the methods

face limitations such as blurring or ghost artifacts due to

background and/or foreground motions. To overcome the

limitations, some methods detect regions with motions in Hn
and then reject them by reducing Wn. Also, other methods

first align Hn and then compute Wn. In recent years, patch-

based optimization and CNN-based learning methods have

also been proposed for the better HDR generation.

A. REJECTING REGIONS WITH MOTIONS

The first approach is to detect regions with foreground

motions in input images and reject them in the merging

process. The methods with this approach assume that multi-

exposure images have no background motions or they are

already aligned globally, where each of the methods has

a different way of measuring the motion. For some exam-

ples, Jacobs et al. [20] computed the local entropy of input

images to detect regions with motions. Heo et al. [16]

and An et al. [1], [3] computed the correlation between the

images to reject the moving regions. Zhang and Cham [55]

analyzed the magnitude and orientation of gradients to clas-

sify regions with and without motions. An et al. [2] also

attempted to find the moving regions by measuring the

zero-mean normalized cross-correlation. Lee et al. [29] and

Oh et al. [40] used rank minimization to find outlier regions,

and Yan et al. [54] synthesized ghost-free HDR images based

on the sparse representation. However, these methods are not

appropriate for the scenes with large background motions

because they ignored some of the misaligned regions that

might contain valuable information for improving the results.

We believe that it is essential to have aligned images to use

the information from different exposures as much as possible,

in contrast to the methods that discard the moving regions.

B. ALIGNMENT BEFORE MERGING

The second approach is to align input images to the ref-

erence that is usually the image with medium exposure or

the best-exposed image chosen by quality measures. The

images having the background and/or foreground motions

compared to the reference are aligned using geometric trans-

formation and/or optical flow. For some specific examples,

Ward et al. [51] aligned backgrounds using translation trans-

formation, and Tomaszewska and Mantiuk [49] used homog-

raphy transformation. However, since these methods cannot

deal with foreground motions, Bogoni [5] additionally used

optical flow to align moving objects. Also, Kang et al. [24]

computed the optical flow using a method in [33] to esti-

mate local motions. Zimmer et al. [57] estimated the optical

flow by minimizing an energy function that includes gradient
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and smoothness terms. Hu et al. [17] found regions with

dense correspondences between the images to align them.

These methods work well in general but not in challenging

cases such as nonrigid motion. Hence the final HDR images

sometimes show the artifacts. We believe that having well-

aligned multi-exposure images is the most important for the

successful HDR imaging of dynamic scenes, and thus focus

on the generation of aligned multi-exposure images in the

deep learning framework.

C. PATCH-BASED RECONSTRUCTION

The third approach is to reconstruct an HDR image patch

by patch, unlike previous pixel-wise methods. It first finds

patches with dense correspondences between the input and

reference, and then reconstructs patches of final HDR

image by solving an optimization problem. Specifically,

Sen et al. [46] reconstructed an HDR image by restoring

missing information in saturated regions of the reference

image using other input images. Hu et al. [18] proposed a

patch-based reconstruction of multi-exposure images, which

are then used as the input to the existing merging methods.

These methods generally yield high-quality HDR images

with less artifact, but they require high computational com-

plexity due to the repetition of the optimization for all

patches.

D. DEEP-LEARNING-BASED METHODS

Based on many successful CNN-based image restoration

methods, there have also been several HDR imaging methods

using deep networks. They take a stack of LDR images as

input and produce an HDR image using a CNN, sometimes

with a pre-processing step such as the optical flow or homog-

raphy transform. Precisely, Kalantari and Ramamoorthi [23]

aligned input images using an optical flow method in [32]

and merged the aligned images into an HDR image using a

CNN. Wu et al. [52] first aligned background motions using

homography transformation and merged the aligned images

using an encoder-decoder architecture. Yan et al. [53] used

attention modules to detect useful regions and misaligned

regions, and adopted dilated residual dense blocks to merge

the images. These CNN-based methods not only merge input

LDR images into an HDR image but also restore the infor-

mation of saturated regions. Unlike the previous methods,

we design a network that generates an aligned image along

with a merging network. Specifically, the alignment network

generates an image with a certain exposure to have the same

structure as the one with different exposure. Compared to the

previous methods that perform image alignment by optical

flow or homography transform, our network can be trained

end-to-end along with the merging network, and hence per-

forms faster at the inference. Also, compared to the atten-

tion module that implicitly aligns the image by focusing

on similar areas across the images, our method generates

accurately aligned images by blending the information from

multi-exposure images. Hence, our alignment network can

also be used as an efficient pre-processing step for other HDR

imaging methods.

E. SINGLE-IMAGE HDRI

Unlike previously mentioned methods that use bracketed

multi-exposure images as the input, there is another approach

that generates an HDR image from a single LDR input.

Specifically, some of the methods belonging to this approach

generate virtual multi-exposure images from the input and

then blend them with the appropriate weight maps [11],

[14], [21], [26], [41], [42], [48], [50]. Also, there are reverse

tone mapping operators (rTMOs) that map the LDR to the

HDR as presented in [4], [19], [27], [37], [38]. Recently,

CNN-based single-image HDR and rTMO have also been

presented in [6], [9], [10], [23], [30]. Specifically, a CNN-

based exposure fusion was introduced in [23]. Also, a CNN-

based rTMO was also proposed in [10], where they generate

virtual multi-exposure images by using a CNN, and then fuse

them for generating the HDR image. In [9], they focused

on the saturated regions and predicted the contents of those

regions to generate an HDR image. Also, a GAN-based

inverse tone mapping was proposed in [30]. There is also a

method that jointly performs HDRI and SR from a single

input [47]. In summary, the purpose of single-image HDR

or rTMO is to generate an HDR image from an LDR input,

whereas ours does from multiple LDR images with different

exposures. These methods have advantages in that there are

no ghost artifacts in the output because they use a single input.

However, when we have well-taken or well-aligned multi-

exposure images, multi-input HDRI methods would perform

better than the single-input HDRI because more information

is available from the multi-exposure inputs, especially in the

dark and washed-out regions [53].

III. PROPOSED METHOD

A. OVERALL PIPELINE

The overall HDR imaging architecture is a cascade of

an alignment network and a merging network, as shown

in Fig. 1. The alignment network consists of two ESBNs,

one for generating the under-exposure image with the struc-

ture of the reference and the other for over-exposure. Then,

the aligned and reference images are stacked and forwarded

to the merging network, which consists of a one-step resid-

ual network. The alignment and merging networks can be

trained separately, or the overall network can be trained

end-to-end, where the latter yields better performance as

expected.

Formally describing the process in Fig. 1, our network

takes as input a set of three LDR images I = {I1, I2, I3}, and

outputs an HDR imageH . The input images I1, I2, and I3 have

low, medium, and high exposures, respectively, and they are

presumed to have both background and foreground motions.

We set the image with medium exposure I2 as the reference,

and the ESBNs generate the aligned multi-exposure images

{Ia1 or Ia3 } from {I1 or I3} and I2. As a result, the alignment
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FIGURE 1. The overall pipeline of our HDR imaging method. First, structurally aligned multi-exposure images are generated in the Alignment Network,
which consists of exposure-structure blending networks (ESBNs). Then, the aligned images are forwarded to the merging network, which generates the
final HDR image.

network gives a set of aligned LDR images Ia = {Ia1 , Ia2 , Ia3 },

where Ia2 = I2, and the merging network generates H

from Ia.

B. ALIGNMENT NETWORK

Some recent HDR imaging methods explicitly align input

LDR images using optical flow [23] or homography trans-

formation [52]. Both methods align the background motions

well, but the former produces some artifacts in the nonrigid

foreground objects. The latter has the limitation that it can

align only one homography transformation, i.e., the homogra-

phy either for background or a large planar foreground object.

In addition to these shortcomings, they are difficult to be

parallelized and take long computation times. For example,

the alignment process using the optical flow in [23] takes a

half minute approximately.

To alleviate this problem, we propose a CNN that generates

the aligned image from the ones with foreground/background

motions and also with a large difference in illumination.

When we wish to synthesize an image with the illumination

of Is (namely the source image), s = 1 or 3, that have the

same structure as Ir (reference), r = 2, we may consider the

architectures shown in Fig. 2: (1) Use only Is as the input, and

the CNN geometrically transforms the structure of Is to the

ground truth (that has the illumination of Is and the structure

of Ir ). That is, this CNN is the geometric transformer. (2)

Conversely, only Ir is input to the CNN, which changes its

illumination to that of Is so that it becomes close to the ground

truth. The role of this CNN is just to change the illumination

of Ir . (3) For increasing the information to be used in the

CNN, we use both Ir and Is as the input to the CNN. This

network blends the images starting from the spatial domain

and finally construct the image similar to the ground truth. (4)

FIGURE 2. Four different architectures of CNN to generate the different
exposure image aligned to the reference.

Ir and Is go through different encoders so that their features

are separately extracted, and they are blended in the feature

domain and reconstructed to be close to the ground truth.

Fig. 2 also shows the result of each method, showing the

closeness of the output to the ground truth in terms of PSNR.
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FIGURE 3. (a) The details of ESBN. It consists of two encoders which
extract the features from their input images, and residual blocks that
blend the features, and a decoder that reconstructs the aligned image
from the features. It also has skip-connections between the layers.
(b) The details of the residual block in ESBN. It consists of two 3 × 3
convolution layers followed by batch normalizations and a ReLU.

As expected, using both Ir and Is, and blending them in the

feature domain synthesizes the best aligned image, which is

our ESBN. The details of ESBN is shown in Fig. 3, which is

inspired from the performances ofUnet [44] and its advanced

version, Image Transformation Network [22].While they take

a single image as the input of their encoder-decoder architec-

ture and extract features using an encoder, the ESBN takes

two images, Is and Ir , and has two corresponding encoders

to extract features from the images. Then, they are blended

through several convolution layers and reconstructed by a

decoder. Formally, the ESBN is described as a function

Îas = fEs (Is, Ir ), (2)

which means that the source Is and the reference Ir are

blended through the network fEs to generate the output Î
a
s .

To be more precise with the structure, each encoder has

three encoding layers that are 5 × 5 convolution layers with

the stride of 2, followed by batch normalizations and leaky

ReLUs. The first layer of the encoder produces the feature

map with 64 channels, and the second and third 128 and 256,

respectively. The two encoders have their own parameters

instead of sharing the same parameters. The feature maps

from the upper and lower encoders are concatenated and then

fed to the residual blocks [15]. There are nine residual blocks

in total, each of which consists of 3 × 3 convolution layers,

batch normalization, and a ReLU. Finally, the features are fed

to the decoder to generate the aligned image. The decoder

consists of three deconvolution layers with the stride of 1/2,

which are followed by batch normalizations and ReLUs.

Finally, there is an output layer, which is a 5× 5 convolution

layer with the stride of 1, followed by tanh(·).

The ESBN fEs (Is, Ir ) is trained by minimizing ℓ2 distance

between the aligned source and its ground truth, i.e., by

minimizing the loss function defined as

LEs = ‖Îas − Ias ‖2, (3)

where Ias is the ground truth for Îas . We also tried ℓ1 loss, but

the ℓ2 loss produces quantitatively better aligned images (See

Section. V-B1).

As shown in Fig. 1, two ESBNs, fE1 (I1, I2) for under-

exposure and fE3 (I3, I2) for over-exposure, constitute the

alignment network. The role of the alignment network is to

produce under- and over-exposure images whose structures

are aligned to that of the reference. Formally, the output from

the alignment networks are summarized as

Îa1 = fE1 (I1, I2), (4)

Îa3 = fE3 (I3, I2), (5)

and Îa2 = I2. (6)

C. MERGING NETWORK

Recent HDR imaging methods [23], [52] reconstruct the

final HDR image after aligning the input LDR images. But,

since the aligned images still have artifacts or misalignments,

they used somewhat complex networks to compensate for

the misalignments while merging the images. On the other

hand, since our ESBN works better than the optical flow or

homography transformation, as will be demonstrated in the

experiments, we use a simple network for the merging.

The proposedmerging network extracts features from three

aligned LDR images and reconstructs the final HDR images,

as shown in Fig. 4. We adopt the residual learning with

a residual dense block as in [28], [56], while the original

residual dense network includes three residual dense blocks.

Each aligned image passes through 3 × 3 convolution layers

and leaky ReLU, resulting in 64 feature maps. All the features

are concatenated into 192 (64× 3) channels, which are again

reduced to 64 by using the 1 × 1 convolution layer. Then,

it is fed to the residual dense block, which consists of six

convolution layers followed by leakyReLU. Finally, the HDR

image is produced from the last output layer, which is a 3×3

convolution layer followed by tanh(·).

For the residual learning, the output layer takes as input

the sum of feature maps from the residual dense block and

the reference. Formally, the merging network works as

Ĥ = fM (Ia), (7)

where Ĥ is the estimated HDR image and Ia is the set of

aligned LDR images. The network is trained by minimizing

ℓ1 distance between the tonemapped estimated HDR image

and the tonemapped ground truth HDR image, and the loss

function LM is defined as

LM = ‖T (Ĥ ) − T (H )‖1, (8)

where H is the ground truth HDR image and T denotes

the tonemapping operation. Since HDR images need to be

tonemapped to the range of the targeting display, we compute

the loss function in LDR domain instead of HDR domain
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FIGURE 4. The architecture of the proposed merging network. The
network extracts the features from the aligned LDR images and
reconstructs the final HDR image. We use a residual dense block and
apply a residual learning to produce high-quality HDR images.

as stated in [23]. We use a differentiable tonemapper, µ-law,

which is defined as

T (H ) =
log(1 + µH )

log(1 + µ)
, (9)

where µ is set to 5,000.

D. INTEGRATED HDR IMAGING NETWORK

The alignment network and merging network can be trained

separately. However, it will be shown that end-to-end learning

works better than the separate training, by minimizing the

overall integrated loss

LI = LE1 + LE3 + LM . (10)

IV. DATASETS

A. KALANTARI DATASET AND GROUND TRUTH

ALIGNED IMAGES

For training the HDR imaging networks, we need multi-

exposure images and ground truth HDR images. There is a

dataset with ground truth image for the static scene as in [12],

but it is not easy to construct the dataset for the dynamic

scenes that the camera and objects are moving. Recently,

Kalantari et al. [23] made such a well-prepared dataset, where

each set contains three dynamic exposure photos and a ground

truth HDR image. Camera response functions of all multi-

exposure LDR images in the dataset are calibrated using

a gamma function. Hence, we train and test our network

with the Kalantari dataset. However, in our case, we further

need ground truth aligned images Ia1 and Ia3 for training the

alignment network. Thus, we create them from the ground

truth HDR image. Specifically, we darken or lighten the illu-

mination of the ground truth HDR image for each exposure

by the gamma function used in [23].

B. PREPROCESSING

The ESBN takes six-channel images as the input, while

general networks for image processing take three-channel

images. In [23], they showed that the performance of their

network could be improved by using both LDR images and

linearized HDR ones as the input to the network. The reason

for this result is that LDR images are suitable to extract

features and to detect saturated regions, while HDR images

contribute to improve the robustness of the network for the

wide range of exposures.We follow this method for preparing

the input to the network. Specifically, though Fig. 3 illustrates

that the ESBN takes two images (over-exposed and medium-

exposed), each image is actually the concatenation of LDR

and its corresponding HDR images like [23].

C. PATCH GENERATION

Since a large number of training examples are required

to train our networks, cropped patches instead of original

images are used for the training. Specifically, 256 × 256

overlapping patches are cropped from 1500 × 1000 original

images with a stride of 64, and around 18K patches are gener-

ated. Then, they are increased to 140K by data augmentation

such as rotation and flipping. Furthermore, patches without

background or foreground motions are removed, and the

remaining 133K patches are finally used to train the networks

efficiently.

V. EXPERIMENTAL RESULTS

A. EVALUATION METRICS

For the quantitative evaluation, we use three metrics, PSNR,

SSIM, and HDR-VDP-2 [36]. Specifically, we use PSNR

and SSIM to evaluate the aligned results, and we use HDR-

VDP-2, PSNR, and SSIM to show the quality of the final

HDR image. When computing PSNR and SSIM of HDR

results, we compute them both in HDR domain (PSNR-L

and SSIM-L) and LDR domain (PSNR-T and SSIM-T) after

tonemapping.

B. ABLATION STUDIES

1) COMPARISON OF LOSS FUNCTIONS

We try both ℓ1 and ℓ2 loss for training the networks because

they have pros and cons, which is not totally predictable.

Hence, we need to choose one of them experimentally. In gen-

eral, the ℓ1 is more robust to outliers than the ℓ2, because

the outliners make the squared values of differences (ℓ2) too

large. On the other hand, the ℓ2 is known to work more

stable when pairs of training images do not have significant

differences [45].

We first compare the performances of the proposed align-

ment network and merging network trained with different

loss functions. Our alignment network is trained using ℓ1 and

ℓ2 loss, and the alignment results on Kalantari test sets [23]

are listed in Table. 1. The results indicate that the alignment

network trained using ℓ2 yields better performance for the

alignment. Similarly, the merging network is trained using

ℓ1 and ℓ2, and the reconstructed HDR results are compared

in Table. 2. It can be seen that ℓ1 shows better performance

in the case of the merging network.

2) COMPARISON OF SEPARATE AND JOINT TRAINING

In Section. III-D, we explained that our alignment network

and merging network can be trained separately, or jointly
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TABLE 1. Comparisons of the alignment network trained with different
loss functions. The best results are shown in boldface.

TABLE 2. Comparison of the merging network trained with different loss
functions. The best results are shown in boldface.

TABLE 3. Comparison of the separate and joint training of the proposed
network. The best results are shown in boldface.

trained as a single network. In this subsection, we compare

the results of these training methods in Table. 3, which shows

that the joint training brings performance gains.

C. COMPARISONS WITH STATE-OF-THE-ART METHODS

1) IMAGE ALIGNMENT

We first compare the alignment accuracy by ESBN and

other alignment methods employed in previous HDR imag-

ing methods on the test sets in Kalantari dataset. In Fig. 5,

the source image with high exposure is aligned to the refer-

ence using the proposed and other alignment methods. It can

be seen that the method of Hu et al. [18] using patch matching

reconstructs the aligned image without artifacts, but it has low

contrast and loses details. The method of Kalantari et al. [23]

using optical flow failed to estimate motions and produces

some artifacts in the foreground regions. The method of

Wu et al. [52] using homography transformation does not

align the foreground motions, while it aligns the background.

Our alignment network generates the aligned image very

close to the ground truth image. We also compute PSNR

and SSIM of the aligned results in Table. 4 to compare the

performance quantitatively. It can be seen that our alignment

method shows better performance than the others.

TABLE 4. Comparisons of alignment results by ESBN and other alignment
methods. The best results are shown in boldface.

2) HDR RECONSTRUCTION

We compare the HDR imaging results of our method with

several state-of-the-art methods on test images in Kalantari

dataset. In Fig. 6, we visualize the reconstructed HDR images

of various methods, which are tonemapped with Photomatix

to be visualized on the LDR displays. The patch-based

reconstructionmethods by Sen et al. [46] andHu et al. [18] do

not well reconstruct the saturated regions on the branches and

FIGURE 5. Comparsions of our ESBN and other alignment methods. (a) A
source image and a reference image. (b) The aligned image using our
ESBN. Magnification of red and green boxes by (c) Hu et al. [18],
(d) Kalantari et al. [23], (e) Wu et al. [52], (f) our method, and (g) the
ground truth.

the wall. They fail to find correct corresponding patches in the

saturated regions and reconstruct the regions with the patches

in the sky. The CNN-based methods of Kalantari et al. [23]

and Wu et al. [52] reconstruct the saturated regions in some

degree, but they fail to reconstruct the details of the shadow

of the tree on the wall. On the contrary, our HDR imaging

network can reconstruct both the saturated regions and the

details. The results of Yan et al. [53] are not shown here

because the source code is not yet provided.

In Table. 5, we also compute PSNR, SSIM andHDR-VDP-

2 between the HDR results and the corresponding ground

truth images to evaluate the methods quantitatively. It can

be seen that our network with separate training of alignment

and merging network provides better performance than the

others. Moreover, the joint training of our network brings

a performance gain. We quote the quantitative evaluation

results of Yan et al. [53] from their paper, since their source

code is not available.

We also compare the running times in Table. 6, by exe-

cuting the source codes1 provided by the authors. The codes

were run on a PC with i7-4790 and Titian XP, for the LDR

images of 1500 × 1000. The execution time for image align-

ment is measured separately, except for Sen and Yan that

directly reconstruct the HDR image. It can be seen that our

alignment process has the shortest running time because it

is performed by the GPU, while other alignment methods

are performed by the CPU. Furthermore, our merging net-

1Since the source code of the alignment using homography transformation
in [52] is not provided, we implement the alignment code which can generate
similar results.
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FIGURE 6. Comparsions of proposed and recent HDR imaging methods.
(a) A set of input LDR images. (b) HDR result of our method. Magnification
of red and green boxes by (c) Sen et al. [46], (d) Hu et al. [18], (e) Kalantari
et al. [23], (f) Wu et al. [52], (g) our method, and (h) the ground truth.

TABLE 5. Comparisons of HDR results of the proposed method with
state-of-the-art methods. The best results are shown in boldface.

TABLE 6. Comparisons of average execution times of the proposed
method with state-of-the-arts.

work takes less time than those of Kalantari et al. [23] and

Wu et al. [52] because our network has a simple structure.

D. APPLICATION TO THE CASE OF MORE

NUMBERS OF EXPOSURES

Note that Fig. 1 shows the case of three-exposures (N = 3),

but we believe that we can straightforwardly extend this struc-

ture for N > 3. However, end-to-end learning for N > 3 is

currently not possible, like all the recent deep-learning-based

dynamic scene HDR imaging methods that use Kalantari

dataset for the training [23], [52], [53]. For the extension,

we need to make a well-prepared dataset with more numbers

of exposures, which would be much more complicated than

the three-exposure case. Hence, very high-cost for the dataset

construction is the limitation of our and existing methods.

FIGURE 7. (a) An image set with N = 5 which contains images with
significant exposure differences in Sen dataset. (b) Alignment results
using our ESBNs. The comparison of HDR results by (c) Hu et al. [18],
where they used the merging method of [39] and (d) our alignment
method method, also with merging by [39].

But, we show that our ESBN, which is separately trained,

can be applied for the merge of a larger number of exposures.

Precisely, our network generates aligned images with signif-

icant exposure differences very well, and hence can be used

as a pre-processing step for any conventional HDR imaging

methods for N > 3. For example, we apply our ESBNs

to an image set with N = 5 in Sen dataset [46], and the

alignment results are shown in Fig. 7. It can be seen that our

ESBNs generate the aligned images very well, even though

the exposure differece is very large. Note that the ESBN is

not retrained for the Sen dataset (the ESBN trained with the

Kalantari dataset is applied in this case), which shows its

generalization performance. In Fig. 7, we also compare the

HDR results using the original version of the HDR imaging

method in [18] and the modified version where the alignment

method is substituted with ours. The latter reconstructs more

natural sky, while some artifacts are shown in the former. In

summary, we believe that our ESBN is also effective for the

case of N > 3, and can be used as a preprocessing step for

other merging methods as well.

E. PRE-PROCESSING FOR OTHER HDR IMAGING

METHODS

To show the effectiveness of our ESBN as a preprocessor for

other HDR imaging methods, we compare the HDR results
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FIGURE 8. (a) An input image set with N = 3 by courtesy of Sing Bing
Kang [24]. (b) (c) (d) (e) Comparisons of the HDR results by the original
and the modified version of the state-of-the-art methods.

by the original version of the state-of-the-art methods and

the modified versions which include our ESBN. Precisely,

the aligned multi-exposure images are first generated by our

ESBN and then the final HDR image is constrcuted by the

original HDR imaging method. In Fig. 8, we compare the

HDR results of an image set with N = 3. The methods

of Sen et al. [46] and Kalantari et al. [23] produce some

artifacts, but those disappear in the modified version of each

method. The method of Hu et al. [18] fails to reconstruct the

dark region, but the modified method succeeds. The modified

method of Wu et al. [52] reconstructs the mane of the horse

with more details. In addition, we compare the HDR results

of an image set with N = 5 in Fig. 9. The modified method

of Sen et al. [46] reconstructs the yellow cap of the pen and

the highlighted side of the clock more naturally than before,

and the modified method of Hu et al. [18] causes less artifact.

FIGURE 9. (a) An input image set with N = 5 by courtesy of
Karaduzovic-Hadziabdic [25]. (b) (c) Comparisons of the HDR results by
the original and the modified version of the state-of-the-art methods.

TABLE 7. Comparisons of the original version of the state-of-the-art HDR
imaging methods and the modified version where our ESBN is used as a
preprocessing. The better results are shown in boldface.

We also compute PSNR and SSIM of the HDR results

of test images in Kalantari dataset [23] for the modified

methods. Table. 7 shows that the state-of-the-art HDR imag-

ing methods are quantitatively improved, and especially the

method of Hu et al. [18] is largely improved by using the

ESBN as a preprocessing step.

VI. CONCLUSIONS

We have proposed an end-to-end network for the HDR

imaging from a set of multi-exposure LDR images with

camera and object motions. The conventional deep-learning

approaches for the HDR imaging adopted optical flow,

homography transform, or attention mechanism to alleviate

the problems caused by motions. Unlike the previous meth-

ods, we use a deep network to generate aligned images and

then merge the aligned LDR images by another network. The

proposed alignment network attempts to synthesize an image

that has the exposure of under- or over-exposed image and

the structure of standard exposure image, and thus we can

have a set of well-aligned LDR images as a result. Then a
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simple merging network can synthesize a quality HDR image

without ghosting or blurring artifacts. The overall network,

i.e., the cascade of the alignment and merging networks,

is trained end-to-end so that joint learning of alignment-

merging is attempted. Extensive experiments show that the

proposed network shows better quantitative and qualitative

results than state-of-the-art methods. In addition, we showed

that the alignment network effectively works for generating

the aligned images with significant illumination differences,

and it can be used as a pre-processing step for other HDR

imaging methods. Our code and dataset will be released at

https://github.com/tkd1088/ESBN.
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