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M A J O R A R T I C L E

Exposure to Holoendemic Malaria Results
in Elevated Epstein-Barr Virus Loads in Children

Ann M. Moormann,1 Kiprotich Chelimo,6 Odada P. Sumba,6 Mary L. Lutzke,2,a Robert Ploutz-Snyder,4 Duane Newton,3

James Kazura,1 and Rosemary Rochford5

1Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Departments of 2Epidemiology and 3Pathology,
University of Michigan, Ann Arbor; 4Center for Outcomes Research and Evaluation and 5Department of Microbiology and Immunology,
SUNY Upstate Medical University, Syracuse, New York; 6Kenyan Medical Research Institute, Center for Vector Biology and Control Research,
Kisumu, Kenya

Perennial and intense malaria transmission (holoendemic malaria) and Epstein-Barr virus (EBV) infection are
2 cofactors in the pathogenesis of endemic Burkitt lymphoma (eBL). In the present study, we compared EBV
loads in children living in 2 regions of Kenya with differing malaria transmission intensities: Kisumu District,
where malaria transmission is holoendemic, and Nandi District, where malaria transmission is sporadic. For
comparison, blood samples were also obtained from US adults, Kenyan adults, and patients with eBL. Extraction
of DNA from blood and quantification by polymerase chain reaction give an EBV load estimate that reflects
the number of EBV-infected B cells. We observed a significant linear trend in mean EBV load, with the lowest
EBV load detected in US adults and increasing EBV loads detected in Kenyan adults, Nandi children, Kisumu
children, and patients with eBL, respectively. In addition, EBV loads were significantly higher in Kisumu
children 1–4 years of age than in Nandi children of the same age. Our results support the hypothesis that
repeated malaria infections in very young children modulate the persistence of EBV and increase the risk for
the development of eBL.

Both Epstein-Barr virus (EBV) infection and perennial

and intense exposure to Plasmodium falciparum malaria

(holoendemic malaria) have been proposed to be req-

uisite cofactors in the pathogenesis of endemic Burkitt

lymphoma (eBL); how these 2 pathogens interact to

drive the emergence of the malignant B cell clone re-

mains unknown. Seminal studies by de-The et al. dem-

onstrated that elevated titers of antibody against EBV

viral capsid antigen (VCA) preceded the development

of eBL [1]. On the basis of both this observation and
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others’ data supporting a role for EBV as a cofactor in

the etiology of eBL [2, 3], de-The proposed that peri-

natal infection with EBV results in a massive infection

that increases the risk for eBL [4]. Morrow and Klein

extended this hypothesis to propose that early infection

with a high dose of EBV increases the number of EBV-

infected B cells [5, 6]. That P. falciparum malaria in-

fection increases the risk for eBL was suggested by Lam

et al. [7], who demonstrated that the number of EBV-

infected B cells was higher during an episode of malaria

than after recovery. Thus, the consequence of repeated

malaria infections and early EBV infection would be an

increase in the number of EBV-infected B cells. However,

little is known about the maintenance of persistence of

EBV in children living in regions where malaria trans-

mission is holoendemic.

EBV establishes a lifelong, latent infection in memory

B cells [8]. The measurement of EBV DNA in peripheral

blood by polymerase chain reaction (PCR)–based meth-

ods is a reliable indicator of the number of latently in-

fected B cells [9]. In healthy, immunocompetent adults,

the EBV load is stable from year to year and is typically



1234 • JID 2005:191 (15 April) • Moormann et al.

!1 copy/105 peripheral blood lymphocytes (PBLs) (equivalent

to !10 copies/mg of DNA from whole blood) [9, 10, 11]. EBV

loads are more variable and can be 14000 copies/mg of DNA

in immunosuppressed individuals and are frequently associated

with clinical illnesses [9, 12, 13].

The majority of malaria morbidity and mortality occurs in

children !5 years of age in areas where malaria transmission is

holoendemic [14]. Acquisition of immunity to malaria is age

dependent and occurs only after repeated infections [14]. In

addition, children living in areas where malaria transmission is

holoendemic often have chronic, asymptomatic infections char-

acterized by malaria parasites in the blood [15]. In countries such

as Kenya, a wide range of malaria transmission intensities exist,

ranging from areas with low malaria risk and low prevalence of

parasites in children !14 years of age (e.g., sporadic malaria) to

areas where continual, repeated exposure to malaria occurs

throughout the year and the prevalence of parasites in children

is 150% (e.g., holoendemic malaria) [14, 16, 17]. The differences

in malaria transmission intensity in geographically proximate

areas allowed us to test the hypothesis that continual exposure

to malaria infections, as occurs in areas malaria where trans-

mission is holoendemic, shifts the balance of persistence of EBV

toward higher numbers of infected B cells in children. Our data

provide new insights into how differences in exposure to malaria

alter the virus-host equilibrium and could potentially lead to

emergence of a malignant B cell clone.

PARTICIPANTS, MATERIALS, AND METHODS

To compare EBV loads in a group of children with different

exposures to malaria, recruitment of participants and collection

of samples were conducted in 2 epidemiologically distinct areas

of western Kenya. The first site was located in a region where

malaria transmission intensity is holoendemic. This site was in

Nyanza Province, Kisumu District, in the sublocation of Kan-

yawegi (here referred to as “Kisumu”), which is situated on the

shore of Lake Victoria. The second study site was located 150

km northeast of Kisumu in the highlands in Rift Valley Prov-

ince, Nandi District, in the sublocation of Kipsamoite (here

referred to as “Nandi”). Malaria transmission in this area is

unstable and associated with periodic outbreaks of malaria

morbidity. We collected blood samples in August 2002 from

children 1–14 years of age, with a roughly equal representation

of children 1–4, 5–9, and 10–14 years of age from each study

site. Blood samples from Kenyan adults were obtained from

Kisumu; those from patients with eBL were obtained from

Nyanza Provincial General Hospital, Kisumu; and those from

US adults were obtained from Case Western Reserve University

(CWRU), Cleveland, Ohio.

Approval for the present study was obtained from the Kenya

Medical Research Institute National Ethical Review Committee

and the Institutional Review Board for Human Studies at Uni-

versity Hospitals of Cleveland, CWRU, University of Michigan,

and SUNY Upstate Medical University. Written, informed con-

sent was obtained from participants; in the case of minors,

consent was obtained from guardians of study participants.

Blood samples were collected in sodium heparinzed tubes

and transported to the CWRU/Kenyan Medical Research In-

stitute laboratory, which is located at the Center for Vector

Biology and Control Research in Kisumu, for processing the

same day. Plasma was used for measurement of EBV-specific

antibodies by use of an ELISA (Daimedix). Two hundred mi-

croliters of blood was collected in EDTA for DNA extraction.

DNA was extracted from 200 mL of whole blood by use of a

Qiagen DNAeasy kit (Qiagen), in accordance with the manu-

facturer’s protocol. Primers and probes were designed by use

of Primer Express software (version 2.0; PE Applied Biosys-

tems), to detect a 70-bp region of the EBV BALF5 gene [18].

The real-time quantitative (RTQ) PCR cycle used was as fol-

lows: 2 min at 50�C, 10 min at 95�C, and 40 cycles of 15 s at

95�C and 1 min at 60�C. The TaqMan Master mix (PE Applied

Biosystems) was used for all reactions. To generate a standard

curve, we extracted DNA from the Namalwa BL cell line (ATCC

CRl-1432), which contains 2 integrated copies of the EBV ge-

nome per cell. The correlation coefficient obtained by linear

regression analysis was . We also analyzed samples2R p 0.98

for b-actin as a positive PCR control, using commercially avail-

able probes and primers (PE Applied Biosystems). EBV load

was normalized to the number of b-actin copies and then cal-

culated on the basis of copies of EBV genome per microgram

of DNA. Only samples with a positive b-actin signal were used

for further analysis.

RESULTS

The demographic characteristics of the study populations are

shown in table 1. With the exception of the percentage of children

who were found to be positive for parasitemia, no significant

differences were observed between study sites. Seventy-seven per-

cent of Kisumu children had P. falciparum parasites in their

blood, which is consistent with holoendemic malaria transmis-

sion (e.g., prevalence of parasites in children is 150%). In con-

trast, 16% of Nandi children had P. falciparum parasites in their

blood, which is consistent with the low prevalence of parasites

in children !14 years of age and is typical of sporadic malaria

transmission. For all parasite-positive children, there was no ev-

idence of anemia or fever, indicating that these were asymptom-

atic infections. The differences in prevalence of parasites con-

firmed that children living in these regions experienced different

intensities of malaria transmission.

Because our objective was to determine the effect of continual

malaria exposure on EBV load, we first needed to determine the

frequency of EBV infection for each study site. In addition, we

wanted to determine whether any children were experiencing a
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Table 1. Demographics of study population for measurement of Epstein-Barr virus
(EBV) load in children in Nandi and Kisumu districts, Kenya.

District, characteristic

Age group, years

1–4 5–9 10–14 All ages

Kisumu
EBV seropositive 32 (94) 37 (100) 35 (100) 104 (98)
Mean hemoglobin level, g/dL 9.72 12.25 12.51 11.53
Malaria-positive smeara 26 (77) 27 (73) 29 (83) 82 (77)
Mean body temperature, �C 36.8 36.8 36.9 36.8

Total 34 (32) 37 (35) 35 (33) 106 (100)
Nandi

EBV seropositive 36 (92) 50 (100) 41 (100) 127 (98)
Mean hemoglobin level, g/dL 12.18 12.82 13.29 12.77
Malaria-positive smear 3 (8) 7 (14) 11 (26) 21 (16)
Mean body temperature, �C 37.21 37.2 37.1 37.2

Total 39 (30) 50 (38) 41 (32) 130 (100)

NOTE. Data are no. (%) of children, unless otherwise noted.
a Plasmodium falciparum parasitemia was determined by thick blood smear analysis by use of Geimsa

staining and microscopic examination [37].

primary infection that could account for unusually elevated EBV

loads. Plasma was analyzed for the presence of EBV antibodies

by use of an EBV-specific ELISA, to detect IgG to EBV nuclear

antigen, IgM and IgG to EBV VCA, and IgG to EBV early antigen

D complex. We observed that the seroprevalence of EBV was the

same between Nandi and Kisumu children: 98% of the samples

tested were positive for EBV infection (table 1). The 5 EBV-

seronegative children were excluded from further analysis.

None of the study participants had evidence of primary EBV

infection (positive for VCA IgM) (data not shown).

EBV load was measured by RTQ-PCR in EBV-seropositive

children and calculated as copies of EBV per microgram of

DNA. At both study sites, regardless of malaria transmission

intensity, we observed a high frequency of children in whom

EBV load was readily detectable (68.3% in Nandi and 75.0%

in Kisumu). The EBV load data were highly skewed to the

right, and, thus, log transformation was performed after adding

a value of 0.5 to samples that had !1 copy/mg of DNA, to make

all values positive before performing the log transformation.

We omitted the EBV load data on 1 Kisumu child whose stan-

dardized load was 13 SD above the mean. The EBV loads for

individual participants are shown in figure 1. We observed a

higher mean � SE EBV load (log EBV copies per microgram

of DNA) in Kisumu children ( ), compared with that2.10 � 0.38

in Nandi children ( ). We also determined the EBV1.00 � 0.29

loads in EBV-seropositive US adults ( ), Kenyan�1.98 � 0.46

adults ( ), and children with eBL ( ), who0.34 � 0.56 5.69 � 1.31

served as reference populations. We submitted the log-trans-

formed EBV load data to a 1-way analysis of variance (ANOVA)

with a priori contrasts. There was a significant overall difference

in EBV load across groups ( ), with a significant linearP ! .001

trend contrast of increasing EBV load in groups, in the follow-

ing order: US adults, Kenyan adults, Nandi children, Kisumu

children, and children with eBL ( ).P ! .001

Because malaria morbidity is age dependent and malaria

immunity is gradually acquired [19], we wanted to determine

whether there was an age-related difference in EBV load be-

tween Kisumu children and Nandi children. We categorized the

children according to age (1–4, 5–9, and 10–14 years) and sub-

mitted their EBV load data to a 2-factor ANOVA, crossing age

group and region (Nandi vs. Kisumu). The analysis revealed a

significant age-by-region interaction ( ), indicating thatP ! .05

the association between age and EBV load differed for children

from the 2 regions. Figure 2 illustrates this effect: EBV loads

in Kisumu children 1–4 years of age were significantly higher

than those in Nandi children 1–4 years of age. However, by 5–

9 years of age, the mean EBV load decreased and remained at

the same level as in the children 10–14 years of age. In contrast

to the high EBV loads in Kisumu children 1–4 years of age,

the EBV load remained the same across all age groups in Nandi

children. In addition, ANOVA of the mean EBV load in each

age group yielded a significant difference in the means of Kis-

umu versus Nandi children 1–4 years of age ( ). No sig-P ! .01

nificant differences in EBV load were observed between other

age groups.

DISCUSSION

The interaction between EBV and holoendemic malaria has

long been postulated as a requirement for the development of

eBL, but the effect of holoendemic malaria on persistence of

EBV in healthy children living in regions where malaria trans-

mission is holoendemic has not been investigated. In the pres-

ent study, we compared EBV loads in a cohort of children
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Figure 1. Epstein-Barr virus (EBV) loads in different populations. EBV
load was determined by real-time quantitative polymerase chain reaction
for US adults ( ), Kenyan adults ( ), Nandi children (n p 17 n p 31 n p

), Kisumu children ( ), and patients with endemic Burkitt lym-127 n p 96
phoma (eBL) ( ). Values obtained were log transformed, and then p 15
mean � SE EBV load for each group was calculated. Each object rep-
resents the EBV load obtained from an individual.

Figure 2. Comparison of Epstein-Barr virus (EBV) loads in children of
different age groups from Nandi and Kisumu districts. Children were
categorized into 3 age groups (1–4, 5–9, and 10–14 years), and the mean
EBV load for each age group was determined. Error bars indicate SE.
* .P ! .01

living in 2 regions of Kenya with differing malaria transmission

intensities. We found significantly higher EBV loads in children

1–4 years of age living in a region where malaria transmission

is holoendemic, compared with those in children of the same

age living in a region where malaria transmission is sporadic.

This is the same age group of children in whom malaria mor-

bidity and mortality is the most severe [14] and precedes the

age at which the majority of eBL cases, which are found pri-

marily in children 5–7 years of age, emerge [20, 21].

The elevated EBV loads observed in Kisumu children 1–4

years of age are striking, since they are similar to those reported

for some organ-transplant patients and are more typical of a

chronic high-viral-load infection than of a persistent low-viral-

load infection [9, 13, 22] and suggest that recurrent malaria

infections affect either the establishment and/or the mainte-

nance of EBV latency. Three possible but not exclusive mech-

anisms could exist. Malaria causes polyclonal B cell activation

[23]; therefore, the higher EBV load in the children 1–4 years

of age in the region where malaria transmission is holoendemic

could reflect an indirect expansion of EBV-infected B cells. In

support of this, Lam et al. [7] demonstrated that children with

acute malaria had a higher frequency of EBV-infected B cells

than did children who had recovered from malaria. In that

study, analysis of healthy children was not performed, so it is

not known whether the data were comparable to the population

in general. An alternative explanation is that EBV-specific im-

munity is suppressed. Whittle et al. demonstrated that, during

an episode of acute malaria, spontaneous outgrowth of EBV-

transformed B cells occurred at a greater frequency in children

suffering from acute malaria [24], which suggests impaired

EBV-specific immunity. Reduced T cell responses could lead to

higher EBV loads, as is seen in both patients after transplant

and patients with AIDS [13, 22]. Studies in Kenya to test these

possibilities are ongoing. The final possibility was originally

raised by de-The [4], who suggested that perinatal infection

with EBV, as occurs in African countries, could result in a

massive primary infection. Given that there is a difference in

EBV load between the cohorts of children with divergent levels

of exposure to malaria, our data do not support the hypothesis

per se that perinatal infection results in higher EBV loads.

However, it is possible that concurrent malaria infection or

malaria infection preceding EBV infection could result in el-

evated EBV loads, possibly because of expansion of the target

B cell population.

The question remains whether the EBV loads we observed

in Kisumu children 1–4 years of age are indicative of an emer-

gent pathological state. In one study, it was argued that healthy

US children had 1 EBV genome/mg of peripheral blood mono-

nuclear cell (PBMC) DNA (range, 0–35 EBV genomes/mg of

PBMC DNA) [25]; thus, anything above that threshold would

be considered pathological. Values from these and other studies

[18, 26, 27] are difficult to compare with our data, since sev-

eral methods have been used to define EBV load, including

competitive PCR (cPCR), in situ hybridization, and RTQ-PCR.

More recently, Wadowsky et al. [9] directly compared several

methods for quantifying EBV load and also the source of EBV

DNA (whole blood, plasma, or PBLs). They found that com-
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parable results were obtained whether EBV DNA was quantified

by TaqMan PCR, as we have done, or by cPCR. Moreover, they

provided a comparison of EBV load values obtained by use of

different methodologies, allowing a more direct comparison of

EBV load data. They proposed grouping EBV loads into 4

groups that correlate with EBV loads found in different pop-

ulations. EBV loads in group III and IV are considered to be

elevated above those found in healthy, immunocompetent in-

dividuals (14000 copies EBV DNA/mg), on the basis of data

obtained from monitoring EBV load in transplant patients.

Using this EBV load grouping for comparison, we observed an

age- and malaria exposure–dependent trend, with patients with

eBL having the highest proportion of EBV loads indicative of

disease (group III or IV) and no group III or IV EBV loads in

either US or Kenyan adults. What is notable is the number of

children in the present study with no evidence of clinical disease

who had EBV loads considered to be pathological (4% of Kis-

umu children). No correlation with the levels of malaria par-

asitemia was found (data not shown), suggesting that, in our

study participants, point-prevalence asymptomatic parasitemia

did not directly affect EBV load.

We analyzed EBV load in DNA extracted from whole blood.

This method is advantageous since it requires smaller sample

size and less handling, compared with isolation of lymphocytes

from blood, both of which are critical considerations when doing

field-based studies. Others have validated this method and have

found that measurement of EBV load from whole blood was

comparable to isolation of PBLs [9] and preferable for routine

clinical monitoring [28]. A disadvantage of this assay is its in-

ability to distinguish whether the elevated EBV load is due to an

increase in the number of EBV-infected B cells within the pe-

ripheral blood, a higher number of EBV copies per infected B

cell, or both. Of note, however, is the study by Rose et al. [22],

who found that the elevated EBV loads in pediatric organ trans-

plant patients were due to an increase in the number of EBV-

infected cells and not to an increase in the number of EBV copies

per infected B cell.

In our cohort, there were only 5 children—all !4 years of

age—who were EBV seronegative, confirming results of pre-

vious studies that demonstrated a high rate of EBV infection

among young children in Africa [29, 30]. Of the children who

were EBV seropositive, EBV load was readily detectable, re-

gardless of malaria exposure, in 166% of study participants.

This contrasts with reports of EBV loads in the peripheral blood

of healthy US or European children—!15% of EBV-seropos-

itive children had detectable levels of EBV DNA [31], and 90%

of healthy EBV-seropositive blood donors were found to be

negative for EBV by PCR [32]. One possibility is that perinatal

infection with EBV, as occurs in Africa, might result in a higher

EBV load set point. Thus, the pattern of persistence of EBV is

clearly different in this setting, regardless of the effect of malaria,

and it suggests that establishment of EBV latency might be

differentially regulated in regions where primary infection fre-

quently occurs in young children, such as Africa.

The differences in EBV load between Nandi children and

Kisumu children also mirror the differences in incidence of eBL

between these 2 regions. Kisumu is in Nyanza Province, whereas

Nandi is in Rift Valley Province. On the basis of a 10-year

retrospective analysis of eBL cases in Kenya [33], we have found

that there is a 6-fold higher annual incidence of eBL in Nyanza

Province than in Rift Valley Province. What is unknown is

whether there are differences in EBV strains between these

regions that might constitute an alternative explanation for the

differences in increased risk for eBL and higher EBV load in

young Kisumu children. There are 2 EBV strains, types A and

B. Within these 2 types, other polymorphisms exist. Exami-

nation of the EBV strain in Burkitt lymphoma (BL) tumors of

Kenyan origin did not reveal any differences between the viral

strain found in the general population in which BL is endemic

and the viral strain isolated from the tumors [34]. In other

studies, no associations between viral subtypes, geographical or-

igins of patients, and clinical presentation have been noted [35].

Moreover, the geographical distribution of eBL in Africa is more

consistent with exposure to holoendemic malaria than with the

spread of a particular viral strain [36]. Nonetheless, studies are

needed to determine whether there are differences in the cir-

culating strains of EBV in these distinct geographic regions, to

exclusively rule out the possible contribution of a viral strain to

the increased incidence of eBL in Nyanza Province.

We observed significantly higher EBV loads in patients with

eBL, compared with those in all other study groups. This is in

agreement with the findings of Stevens et al. [28], who dem-

onstrated that patients with eBL from Malawi had higher EBV

loads, compared with those in control subjects. It should be noted

that, in that study, control subjects were not matched for age

and were close relatives (usually mothers). Elevated EBV loads

are predictors of EBV-associated lymphoproliferative disorders

that occur in immunocompromised patients [27, 28], so, per-

haps, this is true for eBL as well. Since eBL is a systemic disease,

it is also possible that the elevated EBV loads in these children

indicate tumor cells rather than latently infected B cells.

In summary, significantly elevated EBV loads were found in

children 1–4 years of age living in a region in Kenya where

malaria transmission is holoendemic. It remains to be deter-

mined whether recurrent malaria infections affect either the

establishment or maintenance of EBV latency. We propose that

this high viral burden, indicative of the number of infected B

cells in the peripheral blood, increases the risk for development

of eBL.
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