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Abstract

Background: The interplay of epigenetic processes and the intestinal microbiota may play an important role in intestinal

development and homeostasis. Previous studies have established that the microbiota regulates a large proportion of the

intestinal epithelial transcriptome in the adult host, but microbial effects on DNA methylation and gene expression during

early postnatal development are still poorly understood. Here, we sought to investigate the microbial effects on DNA

methylation and the transcriptome of intestinal epithelial cells (IECs) during postnatal development.

Methods: We collected IECs from the small intestine of each of five 1-, 4- and 12 to 16-week-old mice representing the

infant, juvenile, and adult states, raised either in the presence or absence of a microbiota. The DNA methylation profile

was determined using reduced representation bisulfite sequencing (RRBS) and the epithelial transcriptome by RNA

sequencing using paired samples from each individual mouse to analyze the link between microbiota, gene expression,

and DNA methylation.

Results: We found that microbiota-dependent and -independent processes act together to shape the postnatal

development of the transcriptome and DNA methylation signatures of IECs. The bacterial effect on the transcriptome

increased over time, whereas most microbiota-dependent DNA methylation differences were detected already early after

birth. Microbiota-responsive transcripts could be attributed to stage-specific cellular programs during postnatal

development and regulated gene sets involved primarily immune pathways and metabolic processes. Integrated analysis

of the methylome and transcriptome data identified 126 genomic loci at which coupled differential DNA methylation and

RNA transcription were associated with the presence of intestinal microbiota. We validated a subset of differentially

expressed and methylated genes in an independent mouse cohort, indicating the existence of microbiota-dependent

“functional” methylation sites which may impact on long-term gene expression signatures in IECs.

Conclusions: Our study represents the first genome-wide analysis of microbiota-mediated effects on maturation of DNA

methylation signatures and the transcriptional program of IECs after birth. It indicates that the gut microbiota dynamically

modulates large portions of the epithelial transcriptome during postnatal development, but targets only a subset of

microbially responsive genes through their DNA methylation status.
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Background
A tremendously complex and dynamic union of microor-

ganisms inhabits the mammalian gastrointestinal tract and

contributes to several aspects of host physiology, including

metabolism, maturation of the immune system, cellular

homeostasis, and behavior [1–3]. However, the commensal

microbial communities within the host also represent a

danger due to their potential for infection and overgrowth.

Thus, mechanisms are in place to assure a healthy beneficial

coexistence. Intestinal epithelial cells (IECs) take a central

role as they line the gastrointestinal mucosa and build a

physicochemical and immunological barrier to restrain the

microbiota and prevent invasion [4, 5]. Interactions between

the microbiota and the host, especially IECs, have therefore

been studied intensively in the past decade [6–11]. Previous

studies have shown that under normal homeostatic condi-

tions the gut microbiota regulates the expression of about

10% of host genes [6]. Several mechanisms have been

implicated in how the gut microbiota can drive these global

changes in the host transcriptome. Transcriptional

regulators such as NFκB (nuclear factor kappa-light-chain-

enhancer of activated B cells) or CEBPB (CCAAT/enhan-

cer-binding protein beta) may be engaged by the microbiota

to modulate the expression of specific target genes [6, 12].

Additionally, the microbiota have the potential to modulate

host epigenetic mechanisms and thereby regulate transcrip-

tion more globally [13–18]. The microbially produced

short-chain fatty acids (SCFAs) butyrate and propionate are

potent inhibitors of histone deacetylase (HDAC) enzymes

[14] and therefore may promote heterochromatin formation

and increase transcriptional activity. However, global

changes in the accessible chromatin landscape by the gut

microbiota were not detected in a previous study [12]. Add-

itionally, the intestinal microbiota may modulate DNA

methylation, since microbially produced folate is an essen-

tial methyl donor during DNA methylation [16].

DNA methyltransferases (DNMT) catalyze the transfer of

the methylation group from methionine to cytosine if it is

followed by a guanine (CpG). DNMT1 maintains the

methylation pattern during DNA replication [19] whereas

DNMT3a and DNMT3b perform de novo methylation

[20]. DNA methylation occurs predominantly at a series of

two or more CpGs [21–23]. DNA methylation is thought

to inhibit gene transcription, but recent data indicate that

the functional consequences may be more complex [24]

and depend at least partially on the location of the methyl-

ated site. If 5-methylcytosine is situated in close vicinity to

a transcription start site, transcription of the downstream

gene is mainly blocked [25]. In contrast, methylation of

CpGs in the gene body may rather influence transcript

elongation or splicing [26]. DNA methylation plays a key

role during development and cellular differentiation func-

tion [25, 27]. DNA methylation is mostly erased during zyg-

ote formation and reprogrammed during development [28].

Yu and colleagues have shown that during postnatal devel-

opment both the epithelial transcriptome and the DNA

methylation landscape undergo fundamental reshaping

[29]. The early neonatal period is a critical phase not only

for the development of the intestinal tract but also for the

establishment of the microbiota and proper maturation of

the immune system [30, 31]. A series of reports established

the presence of a window of opportunity based on observa-

tions that lack of exposure to environmental microbes dur-

ing early development may lead to immunological defects

and autoimmune diseases later in life [32–37]. Notably,

colonization at a later stage fails to normalize these

immunological defects. This persistence of microbiota-

dependent regulatory signatures points to microbial im-

printing through epigenetic mechanisms (possibly DNA

methylation) that are long lasting once they are established

[2, 17]. However, whether microbial colonization early in

life alters the DNA methylation pattern and alongside the

epithelial transcriptome during postnatal development and

maturation of the gut epithelium remains largely unknown.

To address this issue, we collected IECs from the small in-

testine of 1-, 4- and 12 to 16-week-old mice, which were

raised in either the presence or absence of a microbiota to

represent the infant, juvenile, and adult states of the epithe-

lium and the intestinal flora. We then measured the methy-

lation variable positions using reduced representation

bisulfite sequencing (RRBS) and analyzed the epithelial

transcriptome by RNA sequencing (RNA-Seq) to investi-

gate the association between gene expression, alternative

splicing, and differential DNA methylation in IECs during

postnatal ontogeny.

Methods

Mice

C57Bl6/N female littermate mice were maintained under

standard specific pathogen-free or germ-free (GF) condi-

tions in the laboratory for experimental biomedicine at

University of Gothenburg as described previously [38].

Mice were kept under a 12-h light cycle and fed auto-

claved chow diet ad libitum (Labdiet, St Louis, MO,

USA). Mice were sacrificed at three different stages: 1, 4

and between 12 to 16 weeks of age with n = 5 animals for

each of the groups. Mice were killed by cervical disloca-

tion and the small intestine removed for isolation of IECs.

All animal protocols were approved by the Gothenburg

Animal Ethics Committee.

Isolation of IECs

IECs were isolated from small intestinal tissue using the

Lamina Propria Dissociation Kit (Miltenyi BioTech,

Bergisch Gladbach, Germany) according to the manufac-

turer’s protocol. In brief, intestinal epithelial cells were iso-

lated by disruption of the structural integrity of the

epithelium using ethylenediaminetetraacetic acid (EDTA)
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and dithiothreitol (DTT). Purity of individual IEC fractions

was analyzed by flow cytometry on a FACS Calibur flow

cytometer (B&D, Heidelberg, Germany) with Cellquest ana-

lysis software from Becton Dickinson. We used the Anti-

EpCam-PE (clone G8.8, Biolegend, San Diego, USA) anti-

body for analysis of IEC purity.

Transcriptional profiling by RNA sequencing

RNA was isolated from purified small intestinal IECs using

the TRIZOL method. Briefly, 1 ml TRIzol was added to

50–75 mg pestle-homogenized tissue followed by vortexing,

a 5-min incubation at room temperature, and addition of

200 μl chloroform. After mixing, further incubation at

room temperature for 2–3 min and centrifugation (12.

000 g) at 4 °C for 5 min, the clear supernatant was mixed

with 500 μl isopropanol followed by incubation at room

temperature for 10 min. After further centrifugation (12.

000 g) at 4 °C for 10 min, the supernatant was discarded

and the pellet washed with 1 ml cold 75% EtOH followed

by vortexing and centrifugation (7.500 g, 4 °C, 5 min). The

pellet was dried and dissolved in RNase-free water. RNA li-

braries were prepared using TruSeq v4 Kit (Illumina) ac-

cording to the manufacturer’s instructions. All samples

were sequenced using an Illumina HiSeq 2000 sequencer

(Illumina, San Diego,CA) with an average of 23 million

paired-end reads (2 × 125 bp) at IKMB NGS core facilities.

We used TopHat 2 [39] and Bowtie 2 [40] to align reads.

Reads were mapped to the mouse genome (MGI assembly

version 10) using TopHat 2. Average alignment rate for

RNA-seq was 83.3% (73.3–89.9%, median = 85.7%) and the

expression count was normalized by library size. Gene ex-

pression values of the transcripts were computed by HTSeq

[41]. DEseq2 [42] was used to determine differentially

expressed genes. Genes were considered as significant dif-

ferentially expressed if the adjusted p value (Benjamini–

Hochberg (BH) multiple test correction method) was less

than 0.05. Gene expression differences were visualized

using MA plot [43], a modification of a Bland–Altman plot

for visual representation of genome-wide functional gen-

omic data. M represents the log fold change for gene ex-

pression (y-axis) and A represents the mean normalized

counts (x-axis). We’ve set the ceiling/floor to 2 on log fold

change (y-axis) to achieve an optimal visualization. PCA

was performed using plotpca in the R package DEseq2 and

Euclidian distance was measured. Transcription factor

binding site analysis was carried out using the Innate DB

database [44] with implementation of the hypergeometric

algorithm and the BH multiple test correction method

(BH-corrected p value < 0.05). Only expressed transcription

factors were considered for the analysis (raw read count >

3). Gene Ontology (GO) analysis was performed using the

GOrilla (gene ontology enrichment analysis and

visualization) tool [45]. GO terms with false discovery rate

(FDR) < 0.05 were considered significantly altered. All

RNA-Seq data have been uploaded to the Gene Expression

Omnibus (GEO) with accession number GEO:GSE94402.

Co-expression network analysis

For the establishment of a gene co-expression network,

we built the union of differentially expressed genes com-

paring always the conventionally raised specific pathogen-

free (CONV-R) and GF conditions at the same time point.

Expression values of these genes over all 30 samples were

used for the co-expression analysis using BioLayout Ex-

press 3D [46]. Applying a correlation cutoff of 0.8 resulted

in a co-expression network with 970 nodes (genes) and

34,437 edges. The calculated gene–gene pairs and their

Spearman correlation coefficients were imported into

Cytoscape using organic layout for visualization. Subse-

quently, we mapped condition fold changes (based on the

comparison of each condition with the mean of all condi-

tions) individually for each condition onto the network, to

identify condition-specific topological differences between

the conditions in the co-expression network. Gene groups

were assigned based on the temporal and microbiota-

dependent expression changes with the following specific

criteria: group 1, expressed high (Z-score > + 1 in condi-

tion gene expression value normalized by the mean condi-

tion value) in W1, low (condition Z-score < − 1) in W4 +

W12/16, independent of GF/CONV-R; group 2, expressed

high in W12 CONV-R but low in W12 GF, normal (condi-

tion Z-score − 1 to + 1) in W1 and W4 CONV-R, low in

W4 GF; group 3, expressed high in W12 CONV-R but

low in W12 GF, low in W1+W4; group 4, expressed high

in W12 CONV-R but low in W12 GF, low in W1 +W4;

group 5, expressed high in W12 GF but low in W12

CONV-R, high in W4 GF, low in W1 GF, W1 CONV-R,

and W4 CONV-R; group 6, expressed high in W12 GF

but low in W12 CONV-R, high in W4 GF, low in W4

CONV-R, normal in W1 GF + CONV-R.

Transcript splicing analysis

Based on the updated genome annotation and our RNA-

Seq data, we compared the alternative splicing events of

each gene between CONV-R and GF in three stages. We

used rMATS [47], which detects alternative splicing

events such as skipped exons, alternative 5′ splice sites,

alternative 3′ splice sites, mutually exclusive exons, and

retained intron events. The events were identified as sig-

nificantly different by choosing inclusion levels of

|ΔPSI| ≥ 5% between CONV-R and GF at FDR q < 0.05.

Reduced representation bisulfite sequencing

DNA was isolated from purified IECs using a DNeasy Blood

& Tissue Kit (Qiagen) according to the manufacturer’s in-

structions. DNA libraries were sequenced at IKMB NGS

core facilities using Illumina HiSeq 2500 sequencer (Illu-

mina, San Diego, CA, USA) with an average of 127,000,000
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single-end 50-bp reads. After removing adaptor sequences

and low-quality tails, reads were mapped to the mouse gen-

ome (MGI version 10) using Bismark [48]. All CpG sites

covered by less than five reads were removed along with

SNPs specific to the C57BL/6 N strain (http://www.sanger.

ac.uk/science/data/mouse-genomes-project). We used

MethylKit [49] for gene category and CGI annotation and

downloaded the gene information from Refseq. The average

mapping efficiency of reduced representation bisulfite se-

quencing (RRBS) was 71.37% (63–78.28%, median = 70.

73%). We used Dispersion shrinkage for sequencing data

[50, 51] to identify differentially methylated loci based on a

beta-binomial regression model with “arcsine” link function.

Parameter estimation was based on transformed data with a

generalized least square approach without relying on an it-

erative algorithm. One CONV-R W1 sample was excluded

from the DNA methylation analysis due to failure of the bi-

sulfite conversion. All RRBS data have been uploaded to

GEO with accession number GEO:GSE94402.

Integrated analysis screening for differentially methylated

and expressed genes

For integrated analysis of gene expression and DNA methy-

lation, we applied a hierarchical testing approach [52] to de-

tect DNA methylation sites around the differentially

expressed gene. To that end, we identified all CpG sites

5 kb up- and downstream of the transcription start site of

the microbially regulated genes. Second, we combined the

neighborhood methylation positions to methylation regions

(maximum distance 200 bp). Those regions, which con-

tained less than 20% CpGs (BH-corrected p value < 0.05),

were excluded and all retained regions were considered as

differentially methylated regions. FDR correction was per-

formed on all CpGs of the retained regions (BH-corrected p

value < 0.05). The R code used for the integrated analysis is

included in Additional file 1. The circular visualization plot

was constructed using the R package circlize [53].

Functional network analysis for differentially methylated

and expressed genes

To screen for functional networks among the differen-

tially methylated and expressed genes (CONV-R versus

GF) we employed the Functional Networks of Tissues in

Mouse [54] prediction tool for mouse tissue-specific

protein interactions, which integrates genomic data and

prior knowledge of gene function. We used the small in-

testine tissue database and only kept edges with relation-

ship confidence greater than 0.6.

Validation of identified microbiota-dependent genes and

differentially methylated positions

To validate our findings in an independent set of animals,

we isolated DNA and RNA from small intestinal epithelial

scrapings of 4- and 12-week-old GF and CONV-R C57Bl6

mice (n = 10 per group) from the gnotobiotic animal facil-

ity of the Max Planck Institute for Evolutionary Biology in

Plön, Germany. Among all of the genes with differential

expression and methylation, we selected 3 out of 34 for

W4 (Bcl3, Nfix, Cacnali) and 5 out of 79 for W12/16

(Rcbtb2, Mmp14, Itga5, Cd74, Pik3cd) based on the fol-

lowing criteria for the validation experiment: BH-

corrected p value among the most significant; fold change

among the most differential; validated qPCR primers avail-

able in either published studies or public databases.

For qPCR analysis, 1 μg of total RNA was reverse-

transcribed to cDNA according to the manufacturer’s in-

structions (MultiScribe Reverse Transcriptase; Applied

Biosystems). qPCR was carried out using SYBR Select

Master Mix (Applied Biosystems) according to the man-

ufacturer’s instructions. Primer sequences are given in

Additional file 2. Reactions were carried out on the

7900HT Fast Real Time PCR System (Applied Biosys-

tems). Expression levels were normalized to β-actin.

Region and base-specific methylation information was

obtained via Bisulfite Amplicon Sequencing. This protocol

involved bisulfite conversion of sample DNA (EpiTect Bi-

sulfite Kit, QIAGEN) followed by PCR-amplification of tar-

get differentially methylated position (DMP)-containing

regions (EpiMark Hot Start Taq, NEB). Primer pairs were

designed using “MethPrimer” [55] and target specificity

was evaluated using “BiSearch” [56]. PCR amplicons were

normalized using SequalPrep plates (ThermoFisher),

pooled sample-wise, and subjected to NGS library prepar-

ation (Nextera XT, Illumina) according to the manufac-

turer’s instructions. Finally, the library pool was sequenced

on a MiSeq platform (Illumina) with 150-bp, paired-end

reads. Raw reads were trimmed for adapter and transposon

sequences and only bases with a quality value below 30

were kept using Cutadapt 1.10. Reads were then mapped

by Bismark 0.15.0 [48] with Bowtie 2.2.5 [40] to the mouse

reference genome (mm10). Methylation ratios were

extracted using Bismark and analyzed using R with the

package bsseq [57].

Results

The gut microbiota and chronological age determine the

epithelial transcriptome during postnatal development

To investigate potential effects of the gut microbiota and

postnatal development on dynamic host epigenetic

signatures and changes in the transcriptional profiles of the

epithelial cells, we isolated DNA and RNA from IECs of

conventionally raised and germ-free C57BL6 female mice

(n = 5 per group) at three different stages during postnatal

development—week 1, week 4, and week 12/16 (W1, W4,

W12/16)—representative of the infant, juvenile, and adult

states (Fig. 1a), respectively. RNA and DNA were isolated

and subjected to RNA-Seq and RRBS to assess global

mRNA expression and DNA methylation profiles,
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respectively (Fig. 1b). After quality control and data pre-

processing, 21,619 gene transcripts and approximately 1.3

million methylation sites remained, which were employed

in further downstream analyses.

First, we performed principal component analysis to

visualize the global distribution of samples based on the

expression data of the 21,619 transcripts. Samples were

clustered according to both the developmental stage and

microbial status (Fig. 2a). The first principal component

explained 63% variation and separated samples from W1

and the other two stages, W4 and W12/16, indicating that

gene expression changed dramatically during maturation

of IECs, especially in the early postnatal period. The sec-

ond principal component explained 8% of variation and

separated W4 and W12/16 but also CONV-R and GF

within a single developmental stage (Fig. 2a). Notably, the

distance between CONV-R and GF samples increased

along with time from W1 to W12/16. We detected 56 (0.

3%) microbially regulated genes in W1 (differentially

expressed in CONV-R vs GF comparison with BH-

corrected p value < 0.05 and absolute fold change > 2),

614 (2.8%) in W4 and 1084 (5.0%) in W12/16 (Add-

itional files 3 and 4). Moreover, the expression differences

between CONV-R and GF (fold change) of the microbially

regulated genes also increased with time (Additional files

3 and 5). Thus, ontogeny (developmental stage) and to a

lesser extent bacterial status determine the epithelial tran-

scriptional profile during postnatal development.

To gain insights into the biological functions of the

microbially regulated genes during postnatal develop-

ment, we employed Gene Ontology (GO) enrichment

analysis on the differentially expressed genes in the three

developmental stages. Supporting previous publications,

enriched GO terms included mainly immune response-

related or metabolic functions (Additional file 6).

We also tested whether postnatal and microbial status af-

fected alternative splicing events. Overall, distribution of

the splicing events did not differ significantly between

CONV-R and GF mice or among the three developmental

stages (Chi-squared test, p value = 0.99; Additional file 7).

However, few distinct signatures were detectable that differ-

entiated CONV-R from GF mice; for example, a higher

number of microbiota-dependent intron retention events

(2.3-fold higher, BH-corrected p value = 0.006, Chi-squared

test with Yates continuity correction) in W1 compared to

W4 or W12/16 (Additional files 7 and 8).

Next, we employed transcription factor binding site

enrichment analysis among the promoters of micro-

bially regulated genes to investigate the regulatory

networks that underlie the microbiota-induced tran-

scriptome alterations [58]. Interestingly, the transcrip-

tional regulators most enriched among promoters of

microbially regulated genes were unique to W1

whereas W4 and W12/16 shared several transcription

factors (Fig. 2b). For example, in W1 the motif of the

transcription factor XBP1, which functions in endo-

plasmic reticulum stress, cellular proliferation, and

differentiation and protects from intestinal inflamma-

tion [59–61], was enriched in the promoters of genes

upregulated by the microbiota. In W4 and W12/16

sites predicted to bind the transcription factor HIF1,

which functions in mediating hypoxia effects and

Fig. 1 Experimental study design. a Mice that were raised conventionally (CONV-R) or germ-free (GF) were sacrificed at three developmental

stages: 1 week, 4 weeks, and between 12 and 16 weeks of age. b Intestinal epithelial cells (IECs) from the distal small intestine were collected.

DNA and RNA were isolated and gene expression and DNA methylation analyzed by RNA-seq and RRBS, respectively
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regulates metabolism and immune responses [62–64],

were overrepresented among downregulated genes.

To identify co-regulated patterns of transcripts modu-

lated by the microbiota we selected the 200 most signifi-

cant genes regulated by microbial state at each of the three

developmental stages, created the union of these genes

(n = 547 genes), and performed hierarchical clustering ana-

lysis (depicted in the heatmap graph in Fig. 2c). A similar

analysis was performed based on the selection of develop-

mentally regulated genes for the two bacterial conditions

CONV-R and GF (n = 553 genes; Additional file 9). The

analyses revealed both a microbial imprint (e.g., clusters 2,

3, 4, 8, 11 in Fig. 2c) as well as a developmental effect (e.g.,

clusters 8, 10 in Fig. 2c) irrespective of the presence of bac-

teria. However, while the impact of postnatal development

stage is clearly detectable in the visualization of microbially

Fig. 2 Microbial effects on the host epithelial transcriptome during postnatal development. a Principal component analysis displaying overall

gene expression profiles across all samples. The first dimension explained 63% variation and separated W1 and the other two stages. The second

dimension explained 8% variation and separated both W4 versus W12/16 and samples of a stage for their microbiota status. b Transcription

factor binding sites enriched among microbially regulated genes (differentially expressed in CONV-R vs GF) for each of the three developmental

stages. The bar plot depicts the 15 most significantly enriched transcription factors of either up- or downregulated genes. All p values were

corrected for multiple testing using the Benjamini–Hochberg method. c Hierarchical clustering of microbially regulated genes identified 12 groups

with specific expression profiles, e.g., group 3 genes that were repressed by the presence of the microbiota at W4 and W12/16 or conversely

group 8 genes induced by the microbiota
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regulated genes (Fig. 2c), the influence of the presence of

microbiota is less pronounced in the signature of the devel-

opmentally regulated genes. These data therefore support

the previous finding that endogenous ontogenetic pro-

grams have a larger impact on the epithelial transcriptome

compared with environmental cues from the commensal

microbiota. Cluster 8 contains microbially responsive genes

that mainly have functions in immune responses and are

induced by the microbiota and the effect increases during

development (Fig. 2c). Notably, genes of this cluster in-

clude Duox2 (dual oxidase 2), Reg3g (regenerating islet-

derived protein 3 gamma), Nos2 (inducible nitric oxide

synthase), Saa1 (serum amyloid A-1), and Saa2, which

have been reported previously as microbially induced in

IECs [6]. The clusters 3 and 4 contain genes such as

Sdr16c6 (short chain dehydrogenase/reductase family 16C,

member 6) or Fn3k (fructosamine 3 kinase), which are as-

sociated with metabolic functions, and expression of these

genes increased specifically during W1 in colonized mice

and then returned to basal level (Fig. 2c).

Next, we investigated the influence of the intestinal

microbiota during postnatal development by co-expression

network analysis [46, 65]. Co-expression network analysis

builds on the hypothesis that genes with similar expression

patterns are likely to have a functional relationship [66].

Following the procedure from Xue and colleagues [46], 970

co-expressed genes were selected based on a correlation

cutoff of 0.8, normalized by their transcription level and

tested for up- or downregulation compared to the average

expression in the dataset (Additional file 4). Gene set

enrichment analysis was used to identify the biological

processes of individual time- and state-dependent co-

expression subnetworks (Fig. 3, Additional file 10). At the

W1 stage, we did not detect a prominent microbiota-

dependent gene cluster (CONV-R and GF), but differential

gene expression was exclusively time-dependent (W1 vs

Fig. 3 The microbiota modulates distinct functional expression nodes during postnatal development. Co-expression network analysis (CENA) was

performed based on 970 co-expressed genes (correlation factor greater than 0.8 across all conditions). Each dot represents a gene and the color

indicates its expression compared to the average gene expression level (red = up, blue = down). Note that ellipsoids represent only estimated

visualization of transcript groups (for details see the “Methods” section). Exemplary GO terms enriched among the groups of co-regulated genes

are listed, representing the main biological function of that gene group (for full list of GO terms see Additional file 10)
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W4 vs W12/16, group 1). Genes of this group 1 were in-

volved in basic epithelial maintenance. At the later postnatal

stages W4 and W12/16 two compensatory microbiota-

dependent transcriptional responses were evident. Several

genes involved in immune function (groups 2, 3, and 4)—

for example, Duox2 (dual oxidase 2), Nod2 (nucleotide-

binding oligomerization domain containing 2), Fut2 (fuco-

syltransferase 2), Pigr (polymeric immunoglobulin receptor),

Nos2 (nitric oxide synthase 2), or Reg3g (Regenerating islet-

derived protein 3-gamma), which are expressed by IECs—

were upregulated in CONV-R compared to GF mice,

whereas genes encoding metabolic functions (groups 5 and

6)—for example, Ces1d (carboxylesterase 1D), Pnliprp2

(pancreatic lipase-related protein 2), and Slc5a4b (solute

carrier family 5, neutral amino acid transporters system A,

member 4b)—were downregulated in CONV-R mice.

Endogenous developmental programs as well as bacterial

environmental cues affect the DNA methylation profile

To investigate how postnatal development and the micro-

bial environment act on the DNA methylation pattern of

IECs, we employed RRBS to determine the methylation

level of isolated IECs from CONV-R and GF mice at W1,

W4 and W12/16 (the identical samples used for transcrip-

tome analysis). First, we examined the overall methylome

pattern (1,296,536 CpG sites) by using multidimensional

scaling analysis [67] instead of principal component ana-

lysis (PCA) due to data structure (“zero” inflation problem

in RRBS as not all methylation sites can be detected in

every sample regardless of sequencing depth). As for the

transcriptome analysis, samples separated according to

the developmental stage (Fig. 4a) and the methylation

level increased with time (Additional file 11), indicating a

Fig. 4 Postnatal development and the microbiota affect the DNA methylation profile. a Multidimensional scaling analysis plot displaying the overall

methylation profiles. b Venn plots showing the number of differentially methylated sites between CONV-R and GF at the three developmental stages.

Note the high number of differentially methylated sites at W1. c Number of hypo- and hypomethylated sites among all DMPs (CONV-R vs GF) for each

developmental stage. d Expression of Dnmt3a and Tet3 genes, which function in de novo methylation and demethylation, respectively. e Hierarchical

clustering of differentially methylated sites between CONV-R and GF in the three developmental stages. Each row indicates a CpG site and the color

scale represents the methylation level
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strong effect of postnatal developmental programs on DNA

methylation. In contrast to transcriptional signatures, the

global scaling analysis did not reveal a strong effect of the

microbiota on the overall DNA methylation pattern. By in-

dividual comparison of the DNA methylome of CONV-R

and GF at each time point, however, we were able to iden-

tify 1496, 132, and 217 DMPs (FDR < 0.05) in W1, W4, and

W12/16, respectively (Fig. 4b). Interestingly, the number of

DMPs at the earliest stage was about 10× higher compared

to that of the later stages, indicating that the microbiota

acted stronger on DNA methylation during W1 or that the

microbial state already acts in utero. Detected DMPs were

equally hypo- and hypermethylated (Fig. 4c). We classified

the relative position of the variant sites according to their

genomic location as exonic, intronic, intergenic, or

promoter-associated DMPs. Notably, in W1 DMPs located

in gene promoter regions were enriched (175 DMPs or 11.

7%) compared to W4 (one DMP or 0.8%) and W12/16 (15

DMPs or 6.9%) (Additional file 12). Given the enrichment

of DMPs specifically during early development, we sur-

veyed the expression of genes which are known to alter

DNA methylation for microbial effects (Fig. 4d and

Additional file 13). Expression of Dnmt3a and Tet3 (Tet

methylcytosine dioxygenase 3) were significantly altered by

the microbiota in W1 and W12/16. DNMT3A is important

for de novo methylation [68], whereas TET3 is essential for

demethylation [69]. Similar to the approach of the tran-

scriptome analysis, we ranked all DMPs based on their BH-

corrected p value and chose the top 100 most significantly

regulated DMPs from the microbiota-associated data set

(Fig. 4e and Additional file 14) and from the developmental

program (Additional file 15) for each time point to visualize

differential methylation by hierarchical clustering. We

chose a ranked approach and the top 100 to generate equal

sample sizes for the analysis based on the total number of

differentially methylated sites in the respective comparisons

(minimum 132 for W4). For the microbiota-related DMPs,

samples clustered according to microbial status and devel-

opmental stage (Fig. 4e) except for a few samples with sev-

eral missing values only among these microbiota-related

DMPs, which may be due to insufficient sequencing depth.

However, these samples did contain data for many other of

the almost 1.2 million CpG sites. As the samples overall

met the quality criteria, they were not removed from the

methylome analysis. For the top 100 developmentally re-

lated DMPs at each time point, samples clustered only by

developmental stage but did not reveal a further stratifica-

tion according to microbial status (Additional file 15).

Integrated analysis identifies a specific signature of loci

with coupled DNA methylation and RNA transcription

driven by the presence of microbiota

Next, we sought to identify microbiota-dependent DNA

methylation changes linked to RNA expression differences.

We hypothesized that this mode of regulation may pinpoint

important genes involved in epithelial–microbe interaction

as it represents a potentially longer-term modulation of

cellular programs. We employed a hierarchical testing ap-

proach [52] to identify interactions between the microbiota-

dependent alterations in the transcriptome and DNA

methylation signatures (Fig. 5a). To that end, we screened

all differentially expressed genes (CONV-R vs GF) for

DMPs within a 5-kb window up- and downstream. We

identified 17, 34, and 79 microbially regulated genes both

with altered expression and differentially methylated in W1,

W4, and W12/16, respectively, and most (122 out of 126)

were specific for the developmental stage (Additional files 16

and 17). Tracking both the transcriptome and DNA methy-

lation in paired samples from individual mice throughout

early postnatal development allowed us to identify specific

changes in the DNA methylation signature that may

underlie the microbiota-dependent transcriptome alter-

ations. For example, expression of Camk2b (calcium/cal-

modulin-dependent protein kinase II), which is involved in

calcium-dependent signaling [70], was only altered by the

microbiota at W12/16 but not at the younger stages W1 or

W4 (Fig. 5b). Interestingly, nearby CpG sites were not dif-

ferentially methylated at W1, whereas in week W4 we de-

tected three DMPs and another eight DMPs at W12/16

(Fig. 5b). Therefore, either the complete demethylation of

all 11 DMPs or only the eight downstream DMPs may be

required to mediate the microbial induction of Camk2b ex-

pression at W12/16. Similarly, Mob3b (MOB kinase activa-

tor 3B) and Ube2a (Ubiquitin conjugating enzyme E2 A)

were differentially methylated and expressed only at W1

and W4, respectively, but not at any other developmental

stage (Additional file 18). Of all 126 genes with differential

expression and methylation 72 (57%) showed increased ex-

pression with reduced methylation or decreased expression

with increased methylation, whereas 54 genes (43%) did not

show a canonical association of expression and methylation

shift, which is similar to previous studies [24]. Genome-

wide mapping of the host–microbiota interactions for gene

expression and DNA methylation during the three develop-

ment stages revealed equal distribution among chromo-

somes (Fig. 5c). Among all genes that were differentially

methylated and expressed depending on the microbiota,

network analysis revealed an enrichment of genes involved

in regulation of cellular proliferation and regeneration, such

as Pik3cd, Rb1, Grb10, Plagl1, Nfix, and Tab3, or of genes

functioning in immune responses, such as Atp7a, Atf4, and

Bcl3 (Fig. 6). For example, Rb1 (retinoblastoma-associated

protein) is a tumor suppressor inhibiting cell cycle progres-

sion, which may also recruit methylases [71]. Rb1 expres-

sion was reduced in CONV-R mice, which is in line with an

increased IEC proliferation in the presence of a microbiota

[6, 9]. Similarly, Bcl3 is a proto-oncogene promoting prolif-

eration and also mediates immune tolerance by suppressing
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responses against microbial antigens [72]. In our analysis

Bcl3 was hypomethylated and expression increased in

CONV-R mice, which is supported by a higher proliferative

capacity in the presence of a microbiota. Finally, as another

example, Plagl1 (pleiomorphic adenoma gene-like 1), which

is another tumor suppressor inhibiting proliferation, was

Fig. 5 The microbiota may modulate host gene expression through DNA methylation. a Schematic analysis workflow. A 5-kb window up- and

downstream of each microbially regulated gene was screened for CpG positions. Next, CpG regions were defined and tested for differential

methylation (CONV-R vs GF) and p values of all differentially methylated CpG sites were corrected for multiple testing. It is noteworthy that any

sequential analysis reflects a certain bias by the individual order of filter steps. b Microbial effects on gene expression and DNA methylation of

Camk2b during postnatal development. c Genomic map of all methylation–transcription interactions dependent on the microbiota and postnatal

development. The boxes in the outer circle depict the mouse chromosomes and their banding indicates the staining properties within the

genomic locations (black = heterochromatin region, white = euchromatin region, gray = intermediate). The boxes in the inner circle represent

genes that were both differentially expressed and methylated. The gene name is colored according to the expression difference in CONV-R vs GF

comparison (red = upregulated, blue = downregulated). Box coloring corresponds to the developmental stage, in which a significant difference

was detected (red =W1, green =W4, blue =W12/16). Width of the boxes indicates gene length, while methylation differences in CONV-R vs GF

comparison are scaled along the height of the boxes. Red and blue dots within the gene boxes represent hyper- and hypomethylated CpG

sites, respectively
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hypomethylated and had higher transcript levels in CONV-

R mice, again supporting increased IEC proliferation in the

presence of a microbiota.

To validate our findings, we selected a subset of the dif-

ferentially expressed and methylated genes from our data

and determined their expression and DNA methylation in

an independent cohort of GF and CONV-R mice from an-

other gnotobiotic animal facility. We harvested small in-

testinal epithelial tissue by scraping, isolated RNA and

DNA as before, and performed qPCR analysis along with

amplicon sequencing. For the eight tested genes (Bcl3,

Nfix, Cacna1i, Rcbtb2, Mmp14, Itga5, Cd74, and Pik3cd)

differential expression and methylation was reproduced

for six genes in both cases (Additional file 19).

Discussion

We systematically investigated the regulatory effects of

the microbiota on the transcriptome and the genome-

wide DNA methylation status of IECs from the small in-

testine of infant, juvenile, and adult mice which were

raised in either the presence or absence of a microbiota.

This analysis revealed that both the IEC ontogeny and

the microbiota affect the epithelial transcriptome signa-

ture along with the DNA methylation status and that the

microbial effect increases during postnatal development.

Furthermore, the microbial impact on the interplay of

DNA methylation and the epithelial transcriptome were

stage-specific as we detected almost no overlap between

the genes that were regulated by the microbiota and also

displayed an altered DNA methylation status for the

three developmental stages. Our data provide ground-

work to further dissect the endogenous developmental

and microbial effects on the host’s transcriptional and

epigenetic program on a mechanistic level.

To fully understand the impact and role of the micro-

biota during adult development of IECs, it is required to

assess the transcriptional and epigenetic changes over

time in both GF and CONV-R animals with a large

enough size of biological replicates. While several stud-

ies have addressed selected aspects of the interplay of

transcription, epigenetics, development, and microbiota

[6–10, 12, 18, 29, 73, 74], an integrated genome-wide

analysis of DNA methylation and transcriptional signa-

tures in a single study using biological replicates and an-

imals from different GF colonies has so far been lacking.

In our current study, we therefore determined the epi-

genetic and transcriptional interactions between the gut

microbiota and IECs using an integrated analysis of the

methylome and transcriptome over time in both GF and

CONV-R mice. The value of our experimental approach

is demonstrated by the finding that although several pre-

vious studies established that the microbiota modulates

the expression of more than 2000 genes in the intestinal

epithelium [6, 9, 10], only a subset of these microbiota-

responsive genes appear to be regulated by the epigen-

etic process of DNA methylation. Using our approach,

we found that the microbiota seemed to inversely affect

DNA methylation and gene expression throughout post-

natal development. Whereas the number of differentially

expressed (CONV-R vs GF) genes increased with post-

natal development, the number of DMPs decreased from

W1 to W12/16. The number of genes for which both

transcription and DNA methylation are regulated by the

microbiota (differentially expressed and DMPs within a

5-kb window) increased with time. Together these ob-

servations indicate that the microbial effect on modify-

ing the epithelial DNA methylation and transcriptional

status increased during maturation and postnatal devel-

opment of the intestine. Notably, W1 samples differed

substantially from W4 and W12/16 samples, indicating

that further studies are required to describe the early dy-

namics from W1 to W4 in greater detail. However, the

microbiota did not seem to engage DNA methylation to

regulate transcriptional responses globally, but instead

Fig. 6 Integrated analysis identifies genomic loci with coupled differential DNA methylation and RNA transcription associated with the presence

of intestinal microbiota. Network analysis based on differentially methylated and differentially expressed genes (CONV-R vs GF) across the three

developmental stages with a relationship confidence greater than 0.6. Larger blue circles indicate candidate genes identified from our analysis and

smaller black circles denote imputed interacting genes
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only seemed to target a specific subset of microbially re-

sponsive genes through their DNA methylation status.

This unexpected finding is not caused by inherent differ-

ences in our and published datasets as, for example, our

transcriptome sequencing data and the list of microbially

regulated genes from the adult stage overlapped signifi-

cantly with our previous data obtained from microarray

analysis of laser-dissected ileal IECs [6]. Our observa-

tions are further supported by a study by Camp et al.

which reported that the microbiota did not globally alter

the chromatin architecture to drive gene expression, but

only for specific genes [12]. Thus, host epigenetic mech-

anisms do not seem to be employed by the gut micro-

biota to drive transcriptional responses on a global scale.

Our study further validated that many developmentally

regulated genes such as Pigr, which was reported to have

increasing expression from infant to juvenile, or Tet1, hav-

ing a decreasing expression from infant to juvenile [73], in

addition also were differentially methylated and therefore

appeared to be epigenetically regulated during postnatal de-

velopment. Moreover, we could show that several of the

genes which were previously reported as microbially regu-

lated in the adult [6, 10] were also regulated transcription-

ally during postnatal development. For example, the

glycolysis regulator Pfkfb3 (6-phosphofructo-2-kinase) was

not only induced by the microbiota in the adult as reported

[6, 10], but is already microbially regulated in the infant.

Surprisingly, we detected about ten times more DMPs in

W1 compared to W4 or W12/16. Since methylation levels

did not differ between the developmental stages, the in-

creased number of DMPs in W1 did not seem to be simply

due to higher overall methylation activity. Instead, the

microbiota may differentially modulate de novo methylation

and demethylation in the neonate mice. First, we detected

generally higher levels of Dnmt3a during W1 compared to

W4 or W12/16 and increased expression in CONV-R com-

pared to GF mice. As DNMT3 mediates de novo methyla-

tion and parental imprinting [75], this temporal and

microbiota-dependent expression pattern of Dnmt3a may

therefore relate to the increased number of hypermethy-

lated DMPs in the newborn mice. Conversely, Tet3 expres-

sion was induced by the microbiota in W1 and since TET3

possesses hydroxymethylation activity [76, 77] and therefore

mediates demethylation [69], the time- and microbiota-

dependent expression pattern of Tet3 may thus contribute

to the increasing number of hypomethylated DMPs with in-

creasing age. However, we can also not rule out a maternal

imprinting effect, which may be dependent on the presence

of microbiota in the mother before birth. Since the two

groups of mice (CONV-R and GF) in the discovery cohort

represent two separate colonies originating from different

multiple mothers, we cannot exclude differential transge-

nerational inheritance of selected methylation marks (from

the mother to the pups). In addition, as GF and CONV-R

mice have been maintained separately for several genera-

tions, genetic drift occurring in the two mouse colonies

could theoretically contribute to the observed signatures, as

genetic variants may have affected methylation sites. How-

ever, we validated a selection of identified differentially

methylated and differentially expressed genes in an inde-

pendent cohort of mice from another colony from a differ-

ent gnotobiotic animal facility (Max-Planck Institute, Plön)

using qPCR and targeted amplicon sequencing of the DMP

loci. The validation of several candidate genes in an inde-

pendent cohort—although of a smaller scale—corroborates

the existence of microbiota-induced “functional” methyla-

tion sites, which may impact on long-term gene expression

signatures in IECs.

Future studies are needed to functionally validate the in-

volvement of methylation-modifying enzymes during early

postnatal development and in relation to the microbiota.

For example, tracking the changes in intestinal microbiota

composition along with epithelial DNA methylation and

transcriptome signatures of DNMT- or TET-deficient mice

during postnatal development would be a promising ap-

proach. Together our data suggest that the microbiota

seems to engage components of the DNA methylation ma-

chinery, which may at least partially translate into the ob-

served epigenetic and transcriptional differences through

postnatal development.

Conclusions
Postnatal development affects DNA methylation signatures

and expression in intestinal epithelial cells, indicating that

epigenetic processes contribute to developmental transi-

tions largely driven by endogenous programs independent

of microbial cues. However, our data also clearly show that

the gut microbiota influences specific modules of the epi-

thelial transcriptional network during postnatal develop-

ment and targets only a subset of microbially responsive

genes mainly functioning in IEC proliferation and immune

responses through their DNA methylation status.
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