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Exposure to toxic metals triggers 
unique responses from the rat gut 
microbiota
Joshua B. Richardson  1,2,3, Blair C. R. Dancy2, Cassandra L. Horton1,2, Young S. Lee1,2, 
Michael S. Madejczyk  2, Zhenjiang Zech Xu4, Gail Ackermann4, Gregory Humphrey4, 
Gustavo Palacios  3, Rob Knight  4,5,6 & John A. Lewis2

Our understanding of the interaction between the gut microbiota and host health has recently 
improved dramatically. However, the effects of toxic metal exposure on the gut microbiota remain 
poorly characterized. As this microbiota creates a critical interface between the external environment 
and the host’s cells, it may play an important role in host outcomes during exposure. We therefore used 
16S ribosomal RNA (rRNA) gene sequencing to track changes in the gut microbiota composition of rats 
exposed to heavy metals. Rats were exposed daily for five days to arsenic, cadmium, cobalt, chromium, 
nickel, or a vehicle control. Significant changes to microbiota composition were observed in response to 
high doses of chromium and cobalt, and significant dose-dependent changes were observed in response 
to arsenic, cadmium and nickel. Many of these perturbations were not uniform across metals. However, 
bacteria with higher numbers of iron-importing gene orthologs were overly represented after exposure 
to arsenic and nickel, suggesting some possibility of a shared response. These findings support the 
utility of the microbiota as a pre-clinical tool for identifying exposures to specific heavy metals. It is also 
clear that characterizing changes to the functional capabilities of microbiota is critical to understanding 

responses to metal exposure.

�e microbiota of the mammalian gut is recognized as an important factor in maintaining host health1. For exam-
ple, the gut microbiota is crucial for the development of the immune system and a healthy gastrointestinal tract2,3. 
Disruption of an established gut microbiome is associated with diseases ranging from obesity4, diabetes5, and 
allergies6 to intestinal bowel disease7. It is therefore critical to understand the factors that can disrupt or alter the 
microbiota. Factors such as stress, diet and genetics are known to a�ect the microbiota, and, increasingly, studies 
indicate a role for environmental toxicants as well8. Toxicants in the environment can directly harm the compo-
nents of the microbiota, but can also be modi�ed by the microbiota to be more or less toxic to the host and/or the 
microbiota itself9. �e microbiota of the gut occupies a niche at the interface of the external environment and host 
epithelium which makes it a prime target for monitoring environmental exposures. If there are taxa especially 
sensitive to environmental pollutants, monitoring changes to the microbiota could yield biomarkers of exposure.

Several studies have begun to explore how di�erent environmental toxicants, such as metals, interact with 
the microbiota speci�cally8–11. Metals can be highly reactive, and both prokaryotes and eukaryotes have evolved 
mechanisms to take advantage of and to protect themselves from exposure. For example, the reactivity of some 
metals, like iron, manganese, and cobalt, make them useful as cofactors in enzymes to help catalyze reactions. In 
addition, there are a number of cellular transport systems, binding proteins, and conjugation pathways to limit 
exposures and unwanted e�ects from both essential and non-essential metals. �e doses necessary to overwhelm 
these homeostatic mechanisms vary by organism and environment, and levels that may be toxic to some may have 
no, or even a bene�cial e�ect, on others. As the microbiota experience the exposure prior to the host, how those 
microbes react to or a�ect the exposure has the potential to in�uence the host response.
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Metal exposures are an environmental and occupational hazard. �e metals selected for this work, chromium 
(Cr), cadmium (Cd), cobalt (Co) and nickel (Ni), are widely distributed and some of the most utilized metals in 
industry, while arsenic (As) is a persistent public health threat found at high concentrations in drinking water 
in many areas12. All �ve of these metals have been listed by IARC as Group I or II carcinogens13,14. In addition, 
exposure can lead to adverse health e�ects in target organs such as the liver, kidney, and lungs, although they are 
thought to act via di�erent mechanisms and biochemical pathways14–16.

Exposures to metal compounds have been shown to alter the diversity and composition of the gut microbiota. 
For example, in one study, either cadmium or lead in drinking water alter mouse gut microbiota by increas-
ing Lachnospiraceae abundance11, while a di�erent study found that cadmium in water increased growth of 
Bacteroidetes relative to Firmicutes in mice17. Another mouse study found that cadmium exposure led to a rela-
tive increase in Verrucomicrobia18. Chickens fed nickel-supplemented feed had increased prevalence of E. coli and 
Enterococcuss species19. Studies examining alterations in the microbial composition a�er arsenic exposure have 
shown results that appear to con�ict. Guo et al. found that providing mice water containing arsenic increased 
the abundance of Firmicutes and decreased the abundance of Bacteroidetes20. However, Dheer et al. found that 
arsenic exposure caused an increase in Bacteroidetes and a decrease in Firmicutes21. In another mouse study, 
drinking arsenic-containing water caused a decrease in the prevalence of the class Clostridia (in the phylum 
Firmicutes)22. Most studies use the animal’s food or water as the source of exposure, which can lead to variable 
dosing of individuals. In addition, these studies tend to look at changes a�er long periods of exposure, potentially 
missing important early changes to the microbiota.

To gain a more comprehensive understanding of the e�ects of metal exposure on the gut microbiota, we 
exposed rats to three di�erent oral doses of sodium arsenite, cadmium chloride, cobalt chloride, sodium dichro-
mate, or nickel chloride for �ve days (Fig. 1). We pro�led the gut microbiota composition using 16S rRNA gene 
sequencing before and a�er exposure to identify the taxa most sensitive or resistant to the metal. We identi�ed 
taxa and inferred gene inventories that are enriched or depleted a�er metal exposure, detailing how each metal 
altered the microbiota. �is information is likely to prove useful from a health monitoring standpoint if some taxa 
can serve as indicators of low/sub-clinical exposures that are not immediately harmful but could become so over 
time. Further, this design allowed us to identify early responses to metal exposures, such as enrichment of certain 
taxa or genes, which could be bene�cial to the host and/or the microbiota in adapting to the higher levels of metal 
and that could be exploited to cra� a therapeutic strategy.

Results
Cohorts of �ve rats were exposed to three di�erent doses of sodium arsenite, cadmium chloride, sodium dichromate, 
cobalt chloride, or nickel chloride by oral gavage for �ve consecutive days. Fecal pellets were collected before the initial 
exposure and 24 hours a�er the �nal exposure. DNA from the fecal pellets was isolated, and the V4 region of the 16S 
rRNA gene was ampli�ed using degenerate primers to the �anking conserved regions and sequenced on an Illumina 
MiSeq. We recovered 14,703,356 reads from one multiplexed run containing the sequencing libraries for all of the 
samples. A�er joining paired-end reads, 11,127,881 sequences remained. Demultiplexing, quality �ltering, and removal 
of chimeric sequences le� 8,357,686 sequences. Samples with less than the minimum reads for inclusion (3,544, see 
methods) were excluded from the analysis. �is le� 279 samples, with an average of 15,317 sequences/sample.

Overview of Changes in Microbiome Composition. Reads were clustered into operational taxonomic 
units (OTUs) based on 97% similarity using the QIIME pipeline and assigned a taxonomic designation using the 
Greengenes v13.8 database. Across the entire data set, 99% of the OTUs could be assigned to a phylum, 86% could 
be assigned to a family, and 39% could be assigned to a named genus. �e drop-o� in assignments at the genus 
level is in part due to the large percentage of OTUs belonging to the S24-7 family, which does not have a clearly 
resolved phylogeny below the family level and consequently does not have associated genera in the Greengenes 
v13.8 database23.

0 1 2 3 4 5

=  Fecal sample taken for 16S sequencing

Arsenic Cadmium Cobalt Chromium Nickel

Heavy Metal (3 doses, plus water control):

= Metal 
Exposure via 

oral gavage

Day:

Figure 1. Experimental summary. Diagram of dosing and sample schedule. A cohort of 5 rats were exposed to one of 
the indicated metals at a particular dose for �ve days, with samples taken before and a�er the exposures, as shown.
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Figure 2 summarizes the abundances of taxa at the phylum, order and genus levels. �e pre-exposure sam-
ples (Day 0) and post-exposure control samples (water control) have generally similar proportions of the major 
phyla. �e cohorts all have roughly equal amounts of Bacteroidetes and Firmicutes, which together comprise on 
average 92% of the total bacteria across all samples and are known common components of the mammalian gut 
microbiota24. A small amount of Proteobacteria and Actinobacteria is also present in most controls. Notably, the 
samples from the nickel cohort (including pre-exposure and control samples) are well distinguished from the 
other control samples by the presence of Verrucomicrobia and Tenericutes, which collectively make up around 
10% of the bacteria in the nickel control samples (see discussion for further details).

Phylum level changes in the gut microbiota were induced to varying degrees by each of the metals tested, particu-
larly at the highest dose level. Proteobacteria increased in prevalence in response to each metal except for cadmium. 
Verrucomicrobia increased in cadmium, cobalt and chromium exposed samples despite not being a major presence 
in the control samples for these metals. In contrast, the Verrucomicrobia in the nickel control samples appear to have 
been reduced a�er exposure. �e nickel exposure also seems to have nearly eliminated the Bacteroidetes family S24-
7, which is the most prevalent Bacteroidetes family in the other samples and is prevalent in rat gut microbiota gen-
erally23. Interestingly, the decline of family S24-7 in nickel-exposed samples was accompanied by an increase in the 
presence of other non-S24-7 Bacteroidetes. Proteobacteria, speci�cally bacteria belonging to the Enterobacteriaceae 
family, also greatly increased a�er nickel exposure. Overall, the pattern of changes in microbiome composition 
a�er metal exposure tended to be speci�c to a particular metal, though the majority of the genera a�ected (with the 
exception of those identi�ed in the nickel exposures) had altered abundances in multiple metals (Fig. 3). While there 
were some qualitatively similar changes, such as an increase in Proteobacteria, the scale of the change varied between 
metals, and no consistent patterns at any taxonomic level were observed across all metals.

Alpha Diversity. Plots of the within sample (or “alpha”) diversity across cohorts (Fig. 4, top row) show the 
average number of OTUs observed in samples pre- and post-exposure. Samples taken from animals a�er expo-
sure to arsenic, chromium, and nickel trended towards lower numbers of observed OTUs relative to their respec-
tive post-exposure control. Similar results were observed using Faith’s phylogenetic distance (PD) and Shannon’s 
diversity, an alpha diversity metric that incorporates the evenness and abundance of di�erent OTUs (Fig. 4). 
One-way analysis of variance (ANOVA) indicates dose is a signi�cant factor determining observed OTUs and 
PD among day 5 arsenic, chromium and nickel samples (p < 0.05). Dose was also a signi�cant contributor to 
Shannon’s diversity in arsenic and chromium samples (p < 0.05). Despite reduced alpha diversity metrics in the 
arsenic, chromium and nickel treatments, the large within treatment variability makes �rm conclusions di�cult.

Figure 2. Taxonomic summaries. Stacked bar plots showing the average relative abundance of each taxa at 
various taxonomic levels. Di�erent colored bars represent di�erent phyla (indicated by the key), and, for the 
Order and Genus level plots, di�erent tones represent di�erent order and genera within the speci�ed phylum. 
Only phyla with an abundance of >5% in at least one sample of the exposure are shown. Any other phyla are 
classi�ed as “Other Bacteria.”
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Figure 3. Venn diagram showing genera that are signi�cantly di�erent in abundance before and a�er metal 
exposure. Signi�cance tested by the Wald test (p ≤ 0.05). See Fig. 6 and Supplementary Table S1 for taxa names.

Figure 4. Alpha Diversity. Top row: Number of OTUs observed in each cohort pre- (D0) and post-exposure 
(D5) for the indicated metal. Middle row: Faith’s Phylogenetic Diversity (PD) pre (D0) and post-exposure (D5). 
Bottom row: Shannon’s diversity index for each cohort pre- (D0) and post-exposure (D5) for the indicated 
metal. In each plot, color indicates dose level.
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Beta Diversity. As another means of identifying changes in the microbiota induced by metal exposure, we 
performed a principal coordinate analysis (PCoA) of all samples in our study using the Bray-Curtis distance met-
ric on OTUs identi�ed by QIIME (Fig. 5). Axis 1 captures 23% of the total variance, separating the entire nickel 
cohort from the remaining samples, and separating the post-exposure samples from pre-exposure samples for 
the other metals. Axis 2 separates the pre-exposure samples from each other (apart from nickel) and separates 
the post- from pre-exposure nickel samples. �e nickel cohorts, including the pre-exposure samples are well sep-
arated from the rest of the samples along axis 1. Pre- and post-exposure samples from di�erent metals tended to 
cluster apart, emphasizing the uniqueness of responses to di�erent metal exposures. However, exposure caused a 
shi� along axis 1 in the same direction for each metal except for nickel, suggesting some aspects of the response is 
shared. One potential candidate is the phylum Verrucomicrobia, which increases in abundance a�er exposure to 
cadmium, cobalt and chromium. A qualitatively similar result was obtained using the UniFrac distance method, 
which incorporates phylogenetic information when determining distance between OTUs (see Supplementary 
Fig. S1)25.

We tested for signi�cant di�erences in beta diversity between pre- and post-exposure samples within a cohort, 
and between post-exposure controls and treated samples using the PERMANOVA test on OTU tables. �e 
PERMANOVA results (R2 (e�ect size) and p values) are shown in Table 1. Because the PERMANOVA test is 
sensitive to di�erences in variance, we performed a multivariate test for equality of variances using the “betadis-
per” function from the vegan R package, in addition to the PERMANOVA. Only three comparisons (out of 35) 
showed a signi�cant result (p < 0.05, Table 1, “Betadisper P”), indicating most signi�cant PERMANOVA results 
are due to a change in mean and not variance. For each of the metals, the di�erences in pre- and post-exposure 
water controls were not signi�cant (Table 1, column 3), suggesting no e�ect due to experimental manipulation 
(gavage). Each post-exposure treatment group from the arsenic, cadmium and nickel experiments were signi�-
cantly di�erent from the post-exposure control group (Table 1, column 1). Only the chromium high dose group 
was signi�cantly di�erent from the chromium control, and no signi�cant di�erences were observed due to cobalt 
exposure. �e size of exposure e�ects (R2) varied between treatments, with the largest e�ect seen in the nickel 
high dose treatment group (R2 = 0.55), and the smallest signi�cant e�ect seen in the chromium high dose treat-
ment group (R2 = 0.22). In addition, we tested if metal treatments showed a signi�cant, dose-dependent e�ect 
on microbiota composition, where each dose must induce a signi�cant change from lower doses, and not just 
a change from the control (see methods for details). Arsenic, cadmium, and nickel all show dose dependent 

Figure 5. Principal Coordinate Analysis using the Bray-Curtis distance metric. �e main �gure shows �rst 
two coordinate axes from a Principal Coordinate Analysis based on the bray distance. Shape indicates day of 
sampling. Color indicates type of metal exposure, and shading indicates dose level. �e small shapes indicate 
individual samples, and large shapes indicate centroids. Arrows connect the pre- and post-exposure centroids 
for each cohort.
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e�ects at each dose (Table 1, column 2). In summary, cobalt and chromium treatments showed little e�ect on 
microbiota composition, while arsenic, cadmium and nickel signi�cantly altered microbiota composition in a 
dose-dependent manner.

Differential Abundance of Taxa. We identi�ed taxa with di�erent abundances in post-exposure treated 
samples relative to vehicle controls. Figure 6 shows a heat map of all genera that had signi�cantly di�erent abun-
dances (Wald test, p < 0.05) in at least one comparison. In total, the abundances of 47 genera were a�ected by at 
least one metal exposure. Exposure to nickel showed the most pronounced e�ect with changes in abundance to 37 
genera, of which 25 were uniquely a�ected by this metal. In contrast, only one genus was identi�ed as changing in 
the cobalt cohort. Figure 3 shows the overlap of signi�cantly di�erent genera among the metals.

Differential Abundance of Genes and Gene Pathways. We estimated the relative abundance of genes and 
biological pathways using the PICRUSt tool (phylogenetic investigation of communities by reconstruction of unob-
served states26). �is tool estimates the gene content of a bacterial assemblage based on the bacteria identi�ed by 16S 
rDNA sequencing. Pathways, based on KEGG annotations, are then identi�ed using this inferred gene inventory. 
�e nearest sequenced taxon index (NSTI), a measure of PICRUSt accuracy, was 0.168+/− 0.059 (mean+/− SD). 
�is high value is somewhat worse relative to other mammalian microbiota studies, but this is likely due to the high 
abundance of reads from family S24-7, which, as mentioned, does not have a clearly resolved phylogeny26–28. �e 
nickel cohort, for example, has a much lower NSTI (0.079+/− 0.036), and very low abundance of S24-7. Removing 
the S24-7 reads in all day 5 samples causes the NSTI to drop to 0.104+/− 0.033. To identify genes and gene path-
ways that signi�cantly di�erentiate post-exposure control from post-exposure treated samples, we used Linear 
Discriminant Analysis of E�ect Size (LEfSe)29. �is program �rst identi�es di�erentially abundant pathways and 
then performs a linear discriminant analysis to rank the pathways by their ability to discriminate two or more groups 
(in the case of our analysis, post-exposure samples and controls). Out of 6,909 KEGG orthologs, 926 were found to 
be signi�cantly altered post-exposure, meeting the default criteria of LEfSe (a Kruskal-Wallis p-value < 0.05, and 
linear discriminant analysis score of ≥2). Many of these were metal speci�c, as shown in Supplementary Fig. S2. 
Signi�cantly di�erent KEGG pathways are shown as cladograms in Supplementary Fig. S3.

Figure 6. Heat map showing the average log-fold change relative to sham controls. Red cells indicate increased 
abundance due to treatment. �e phylum is indicated by bars to the le�. Only taxa that were signi�cantly changed 
in at least one test are shown. Only the family and genus are shown, see Supplementary Table S1 for complete 
taxonomy. *Indicates signi�cant association of exposure with change in abundance (Wald test) at p ≤ 0.05.
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Discussion
�e knowledge of the importance of the microbiome to human health has increased in recent years, yet the 
role that the microbiome plays in toxic response has not fully been elucidated. It is well known that microbial 
metabolism of xenobiotics can a�ect the toxicity of di�erent compounds9, but previous e�orts in this area have 
not considered how the dynamic response and changes of the microbiota to the toxicant may alter the metabolic 
potential of the host microbiome. Further, these toxicant-induced changes to the microbiome may themselves 
induce host e�ects independently from the toxicant. In an e�ort to better understand the role of the microbiome 
in response to metal exposures, we have undertaken a study to examine the compositional changes of the fecal 
microbiota of metal-exposed mice using 16S-rRNA gene analysis. We then utilized bioinformatics techniques to 
infer metabolic changes in response to these exposures.

We have shown that exposure to nickel, arsenic, or cadmium by oral gavage signi�cantly alters gut microbiota 
composition, while chromium and cobalt at the tested doses have only modest e�ects. �e nickel, arsenic, and 
cadmium treatments showed a dose dependent e�ect on microbiota diversity. �is suggests that the exposures 
occurred within a range of doses where the microbiota is sensitive and responding to the speci�c metal and that 
the changes we observed were not due to a generalized stress response in the rats. Interestingly, despite the lack of 
strong e�ects on the microbiota composition due to cobalt or chromium exposures, these exposures resulted in 
decreased weight and in accumulation of metals in the liver and kidney (Madejczyk et al., manuscript in prepara-
tion). �ese metals therefore had a physiological e�ect on the animals, but only a modest e�ect on the microbiota.

It should also be noted that rats were housed 2-3 animals per cage, and each cage received the same treatment. 
�is design introduces potential cage e�ects, which can confound microbiota analyses30. However, since two 
cages were used per treatment, similar biases would likely have to be present in both cages to produce the signi�-
cant di�erences we see. �is is unlikely given that cage e�ects are generally thought to be random31.

�e gut microbiota varied even among the inbred and co-housed rats that served as controls in this study (See 
Figs 4 and 5). �is is unsurprising given that inter-individual variation is commonly reported to be high in micro-
biota surveys32–34. While the arsenic, cadmium, and cobalt control samples cluster together, the chromium controls 
form their own cluster adjacent to these three metals, and the nickel controls are well separated from all other 
controls (see Supplementary Fig. S4 showing just the control exposures). Despite this initial variation between 
cohorts, the variation within cohorts a�er �ve days of sham exposure was relatively constant (see Figs 4 and 5 and 
Supplementary Fig. S4), suggesting the microbiota was stable over the course of the experiment. �e cohort of 
rats used for the nickel exposures were purchased from the same vendor as the other studies but originated from 
a di�erent colony at that vendor’s facility, which likely explains the di�erences from the other cohorts. Fortunately, 

Metal Dose

Exposed vs Sham Control Dose E�ect Pre- vs Post-Exposure

Equal Variancea E�ect Sizeb P c E�ect Sizeb P c Equal Variancea E�ect Sizeb P c

Arsenic

Control NA NA 0.414 0.087 0.750

Low 0.957 0.376 0.008 0.133 0.002 0.295 0.458 0.008

Mid 0.001 0.268 0.007 0.066 0.045 0.236 0.257 0.009

High 0.187 0.443 0.006 0.192 0.001 0.262 0.454 0.006

Cadmium

Control NA NA 0.258 0.115 0.417

Low 0.602 0.245 0.016 0.111 0.004 0.989 0.193 0.061

Mid 0.237 0.352 0.007 0.117 0.003 0.478 0.264 0.014

High 0.684 0.373 0.009 0.143 0.003 0.559 0.393 0.007

Cobalt

Control NA NA 0.798 0.083 0.736

Low 0.947 0.070 0.905 0.029 0.957 0.668 0.082 0.796

Mid 0.709 0.157 0.128 0.088 0.062 0.576 0.146 0.166

High 0.281 0.172 0.093 0.084 0.103 0.098 0.212 0.015

Chromium

Control NA NA 0.417 0.182 0.135

Low 0.393 0.155 0.147 0.064 0.188 0.9 0.203 0.050

Mid 0.853 0.158 0.137 0.077 0.068 0.261 0.151 0.145

High 0.937 0.215 0.007 0.100 0.023 0.423 0.204 0.008

Nickel

Control NA NA 0.213 0.146 0.390

Low 0.110 0.533 0.007 0.244 0.001 0.023 0.594 0.007

Mid 0.456 0.457 0.008 0.139 0.004 0.001 0.539 0.009

High 0.446 0.553 0.008 0.138 0.007 0.602 0.629 0.007

Table 1. Treatment e�ects on beta diversity. Results from the PERMANOVA test on each cohort, comparing 
post-exposure control samples to post-exposure treated samples (“Exposed vs Sham Control”). Dose-
dependent e�ects are shown under “Dose E�ects.” PERMANOVA tests comparing pre and post-exposure 
samples are shown under “Pre- vs Post-Exposure.” aResults of a multivariate test of equality of variances using 
the “Betadisper” function from the vegan R package. Statistical signi�cance indicates that the variances are 
not equal. b�e proportion of variance explained by exposure status. c�e probability that both sample groups 
occupy the same location (have similar microbiome compositions) based on the Bray-Curtis distance metric 
using the PERMANOVA test. P values less than 0.05 are in bold.
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cohort-matched controls were included with each metal exposure, so the statistical comparison included animals 
originating from a single colony. �us, colony source is unlikely to a�ect the signi�cant di�erences we observed. Our 
�ndings highlight the breadth of variation in individual microbiota, which can complicate the search for signatures 
of exposure. For example, the phylum Verrucomicrobia increased in response to cadmium exposure (Fig. 2), but 
was already present in the pre-exposure nickel cohort at a comparable amount. Tracking relative changes in taxa 
abundance may be required for any e�ort to identify signatures of metal exposure based purely on compositional 
analyses, as the initial composition of real world samples of interest are bound to be highly variable.

As in previous studies, we found that exposure to metal compounds signi�cantly altered the gut microbiota 
composition (Fig. 5, Table 1). However, the speci�c changes and trends reported are not always similar. Guo et al.  
reported an increase in Firmicutes and Proteobacteria, and a decrease in Bacteroidetes a�er arsenic exposure, 
which is consistent with changes we observed in the two lowest doses (Fig. 2)20. Our highest dose also showed an 
increase in Proteobacteria, but not Firmicutes or Bacteroidetes. Guo et al. also report a decrease in TM7, how-
ever, this phylum was prevalent in their control population but nearly absent in our own controls20. Breton et al. 
found that cadmium increased Lachnospiraceae abundance in mice11, but we saw no di�erence in our own study. 
Liu observed that Bacteroidetes increased in abundance relative to Firmicutes a�er cadmium exposure17, which, 
again, we did not �nd. While it is encouraging that some of the trends we observed were also observed by others, 
it is also clear that there are many discrepancies.

Metal exposure has been shown, by this paper and others, to alter gut microbiota compositions, but the spe-
ci�c taxa a�ected are not consistent. �ere are many potential sources of variability that could explain these dis-
crepancies, including variation in the starting microbiota, exposure regimen (drinking water, oral gavage, etc.), 
time-frame of exposure, dose e�ects, feed composition, and technical di�erences in the processing and analysis of 
samples. We sought to limit these sources of variability as much as possible. For example, the feed used has a simi-
lar macronutrient breakdown to feed used in other studies, and is unlikely to alter the microbiome (see methods). 
A distinctive feature of our work is the use of a range of doses, and measuring their e�ects relatively early in the 
exposure. In addition, we used oral gavage, instead of spiking the food or water, to control the dose each animal 
received. We are therefore more likely to identify the changes most sensitive to metal exposure. Another serious 
consideration is the strength of compositional analysis when looking at higher level taxa to elucidating signatures 
of exposure. �e sensitivity or resistance of an individual microbe to a given toxicant is determined at the gene or 
functional level. Species and even strain level di�erences may be due to genetic changes that alter sensitivity to a 
given toxicant. �erefore, we sought to identify functional changes within the microbiota using bioinformatics 
analysis to infer gene composition.

�e changes in microbial composition that we observed a�er metal exposure are likely related to the func-
tional capabilities of the microbes that e�ect sensitivity to the toxicant or response to changes in the host. While 
we cannot directly measure these capabilities, we can infer them based on genomic sequence. �e genes and bio-
logical pathways that were di�erentially abundant due to metal exposure potentially represent important mecha-
nisms in microbial responses to the metal. One example that we observed was an increased presence of orthologs 
to the three genes that encode the bacterial, iron ABC-transporter system. Speci�cally, genes encoding the per-
mease, ATP-binding protein, and the siderophore-binding protein (KEGG orthology groups K02013, K02015, 
and K02016) were signi�cantly overrepresented in the arsenic and nickel treated samples. Figure 7 shows the 
relative proportion of each of these KEGG orthology groups across metal treatments.

Bacteria containing the iron complex transport system may have increased in relative abundance due to the 
system’s capacity to interact with metals generally. Bacterial iron importing mechanisms o�en can import nickel 
as well35. Siderophores have been found to also bind nickel, alleviating toxicity due to excess nickel exposure36. 
Further, iron has been observed to mitigate the e�ects of arsenic toxicity, so bacteria with orthologs to these 
iron-harvesting genes may have an advantage when growing in the presence of arsenic20.

Figure 7. Relative abundance (+/− SEM) of KEGG orthologs belonging to the iron complex transport system, 
as estimated by PICRUSt.
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Interestingly, even though the overall composition of the nickel and arsenic control samples were very di�er-
ent, the relative abundance of the genes was similar. �e genes increased in frequency in response to higher doses, 
and this increase was not due to the relative increase of a particular taxa shared by the arsenic and nickel groups. 
Supplementary Fig. S5 shows the contribution of di�erent taxa to the abundance of the siderophore-binding 
protein (KEGG ortholog K02016) in the high dose arsenic and nickel samples. Similar results were seen for the 
other two orthologs in this complex. �e Proteobacteria phylum, and speci�cally the Enterobactericeae family, 
increased in response to both arsenic and nickel treatments. However, while Enterobacteriaceae was a major con-
tributor to the prevalence of the iron complex transport system in nickel treated samples, it was only present in 
three of the arsenic treated samples (see Supplementary Fig. S5). Instead, the family S24-7 and Ruminococcaceae 
were the main contributors but were virtually absent from the nickel treated samples.

�ese �nding shows the importance of characterizing the functional capacity of microbiota in addition to 
identifying changes in taxonomic composition. While di�erent taxa changed in abundance due to arsenic and 
nickel exposure (Fig. 6), the functional analysis indicates a common set of orthologous genes increased in both 
sets of samples. Exposure to these metals likely created a niche where bacteria with increased repertoires of genes 
that mitigate metal toxicity thrived. �e taxa providing these genes di�ered between treatments, presumably 
re�ecting the di�erent taxa present in the cohorts pre-exposure. �is may also explain di�erent responses to met-
als observed by others. �e speci�c taxa we observe changing in response to metals may di�er from other reports, 
but could be �lling similar functional niches. Better characterization of the functional capacity of the microbiotas, 
for example through whole genome sequencing and metabolomics, will be required to test this idea further.

In summary, we have shown that dose dependent alteration in the microbiota can be observed and measured 
a�er exposure to the heavy metals arsenic, cadmium and nickel. �is sets the ground work for the use of changes 
in bacterial composition as a potential biomarker of exposure. However, it must be noted, that compositional 
changes at higher taxonomic levels (e.g. phylum) are unlikely to be speci�c, as indicated by the di�erent responses 
observed for the same metal across di�erent studies11,17,20. By drilling down to the functional level of the gene 
and gene pathway, metal-speci�c adaptions of the microbiota can be observed. In this work, we identi�ed a role 
for siderophore-importing orthologs in response to nickel and arsenic exposure, but the bacterial composition 
producing this response was di�erent for each metal. As these adaptive responses are better characterized, the 
metabolic e�ects of the microbiota on toxicity and the direct e�ects of the microbiome on health can be better 
elucidated. �e microbiota shows promise as a biomarker of exposure, but future work will be required to identify 
the functional and metabolic components most useful as a biomarker.

Methods
Metal Exposures/Fecal collection. Research was conducted in compliance with the Animal Welfare Act, 
and other Federal statutes and regulations relating to animals and experiments involving animals and adheres 
to principles stated in the Guide for the Care and Use of Laboratory Animals (NRC 2011) in facilities that are 
fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International. 
Animal studies were conducted by Integrated Laboratory Service, Inc. (ILS; Research Triangle Park, NC). All ani-
mal procedures used during the study were approved by the ILS animal care and use committee and reviewed by a 
Department of Defense veterinarian (ILS IACUC protocol numbers AUP 2013–14, AUP 2013–16, AUP 2013–17, 
AUP 2013–18, and AUP 2013–19).

CD® IGS [CRL:CD (SD)] rats were purchased from Charles River Laboratories (Raleigh, NC). �is strain of 
Sprague Dawley rats, a commonly used outbred rat model, was bred using the Charles River International Genetic 
Standardization (IGS) Program to ensure the same relative level of genetic heterogeneity is maintained across all 
breeding colonies. It has been Caesarean rederived twice: once in 1955 from the original Charles River Sprague 
Dawley and once in 1997 to establish the IGS isolator foundation colony. Rats were provided Purina Rodent Diet 
No. 5002 (Ralston Purina Co., St. Louis, MO), a standard rodent diet (13.1% calories from fat, 24.1% calories 
from protein, and 62.7% calories from carbohydrates), ad libitum. Rats had access to reverse-osmosis-treated tap 
water (City of Durham, NC) ad libitum. A total of twenty animals were used for each metal exposure. Five animals 
were assigned to one of three experimental groups, and �ve were assigned to a control group. Rats were housed 
with two or three animals per cage, and all cages were assigned animals from the same experimental group. Rats 
were exposed by oral gavage (5 mL/kg) to sodium arsenite (NaAsO2–15, 22, or 31 mg/kg/day), cadmium chloride 
(CdCl2 – 35, 54, or 85 mg/kg/day), sodium dichromate (Na2Cr2O7 – 44, 62, or 88 mg/kg/day), cobalt chloride 
(CoCl2 – 27, 47, or 82 mg/kg/day), or nickel chloride (NiCl2 – 177, 232, or 300 mg/kg/day) or vehicle control 
(water only) daily for �ve consecutive days. Fresh fecal samples were collected prior to the initial dosing and 
24 hours a�er the �nal dosing, �ash frozen, and stored at −80 °C until processing.

Sequencing. DNA extraction, PCR ampli�cation and amplicon preparation were performed as described 
in Caporaso et al.37. In summary, total DNA was extracted, and the V4 region of the 16S rRNA genes was ampli-
�ed using the universal bacterial/archael primers 515 f and 806r. �ree replicate PCRs were performed for each 
sample and then pooled. All barcoded amplicons were then pooled in equal concentrations for sequencing on the 
Illumina Miseq platform (Miseq So�ware v2.5).

16S rRNA amplicon Data Processing. �e quality of 16S rRNA amplicon sequences was �rst checked 
using FASTQC38. Sequences were quality �ltered and clustered into operational taxonomic units (OTUs) follow-
ing the standard QIIME analysis framework39. First, paired-end reads were joined together with the join_paired_
ends.py script from QIIME, using the fastq-join tool and the default settings40. Chimeric read identi�cation and 
removal was done using usearch6.141. Reads were clustered into OTUs using the pick_open_reference.py script 
from QIIME, which implements both reference based (using the Greengenes v13.8 97% reference OTU data-
base42), as well as de novo OTU clustering. �e default options were used. OTUs were clustered at 97% sequence 



www.nature.com/scientificreports/

10SCIENTIFIC REPORTS |  (2018) 8:6578  | DOI:10.1038/s41598-018-24931-w

similarity. �e Uclust algorithm was used for both OTU clustering and taxonomic assignment to the Greengenes 
database41. OTUs with less than 2 sequences were eliminated. PyNAST was used to align representative OTU 
sequences for tree construction, and any OTU sequences with a sequence identity match of less than 75% were 
eliminated39,43. Samples were excluded if they had fewer than 3,544 reads (which is equal to the experiment-wide 
mean minus 2 times the experiment-wide standard deviation) or were blanks or technical controls. �e mean 
reads per sample was 15,317.

Visualization of Taxonomic Distribution. Stacked bar plots showing taxonomic summaries were based on 
percent abundance and averaged across all samples in that group (Fig. 2). Archaea, though present at very low levels, 
were excluded from summaries. Only phyla with an abundance of at least 5% in one of the samples within the cohort 
are indicated by their own bar. Phyla not meeting these criteria are collapsed into the “Other” category. Reads that 
could not be assigned to any taxa were placed in the “Unassigned” category. At levels below phylum, (Fig. 2, middle 
and bottom rows) taxa that made up more than 5% of the total reads within a sample are indicated by their own bar 
shaded with a tone matching the color of its phylum. All bar plots were generated in R, version 3.3.044.

Statistical analysis. Statistical analysis of beta and alpha diversity were performed in R (version 3.3.0), using 
the “phyloseq” package45. Alpha diversity measures were calculated using the “estimate_richness” function for 
OTU richness and Shannon’s Diversity, and Faith’s phylogenetic distance was calculated using the “pd” function of 
the “picante” R package46. One-way ANOVA was used to calculate if dose signi�cantly altered alpha diversity. �e 
Kruskal-Wallis test was used to test for signi�cant changes to alpha diversity, and the Holm method was used to 
correct for multiple comparisons. Principal Coordinate Analyses were performed using the “ordinate” function. 
�e PERMANOVA and homogeneity of variance tests were run with the “adonis” and “betadisper” functions, 
respectively, from the “vegan” package47. Pairwise PERMANOVA tests were conducted between post-exposure 
treated samples and either pre-exposure samples, or post-exposure control samples to test signi�cance of treat-
ment e�ect. Signi�cant dose e�ects were calculated using the adonis function, specifying the treatment levels 
(control, low, mid, and high) as Helmert contrasts. �e PERMANOVA test is a non-parametric, multivariate 
analysis of variance method that can be applied to a distance matrix. �is test assumes equality of variance 
between the groups being tested, so a multivariate homogeneity of variance test, using the “betadisper” function 
in the vegan R package was performed for each PERMANOVA test, using the same data and comparisons. For 
each PERMANOVA test, the PERMANOVA p-value and the e�ect size (proportion of variance explained by 
the grouping variable), and the betadisper variance test p-value are reported in Table 1. Di�erential abundance 
analysis was conducted using the DESeq. 2 package in R, in conjunction with the phyloseq package48,49. �e Wald 
test was used to test for a signi�cant association between taxa abundance and exposure status within each cohort.

Biological Inferences. Estimations of gene and biological pathway e�ects were performed using PICRUSt26. 
Only OTUs matching the Greengenes database (not those identi�ed by de novo clustering) were used as input 
for PICRUSt, following the guidance of the authors. �e nearest sequenced taxon index (NSTI) was calculated 
for each day 5 (post-treatment) sample, as a measure of how well microbes in the sample are represented by the 
sequenced genomes used to make gene content inferences. OTU abundances were normalized based on 16S copy 
number, and samples were rare�ed to the depth of the sample with the fewest reads (2987) using single_rarefac-
tion.py in QIIME. Gene abundances were calculated using predict_metagenomes.py, the main PICRUSt script. 
KEGG pathway abundances were calculated based on gene abundances using the categorize_by_function.py 
script, a PICRUSt utility script. Genes and gene pathways contributing to the di�erence between groups were 
identi�ed using the Linear Discriminant Analysis of E�ect Size (LEfSe) program and default settings29.

Availability of data and materials. �e dataset generated and analyzed during this study is submitted to 
the European Nucleotide Archive, and will be made available on publication.

Disclaimer. Opinions, interpretations, conclusions, and recommendations are those of the author and are not 
necessarily endorsed by the U.S. Army. Citations of commercial organizations or trade names in this report do 
not constitute an o�cial Department of the Army endorsement or approval of the products or services of these 
organizations.

References
 1. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. �e impact of the gut microbiota on human health: an integrative view. Cell 

148, 1258–1270, https://doi.org/10.1016/j.cell.2012.01.035 (2012).
 2. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 

158, 705–721, https://doi.org/10.1016/j.cell.2014.05.052 (2014).
 3. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science (New York, N.Y.) 

 336, 1268–1273, https://doi.org/10.1126/science.1223490 (2012).
 4. Ley, R. E. et al. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America 

102, 11070–11075, https://doi.org/10.1073/pnas.0504978102 (2005).
 5. Hartstra, A. V., Bouter, K. E., Backhed, F. & Nieuwdorp, M. Insights into the role of the microbiome in obesity and type 2 diabetes. 

Diabetes Care 38, 159–165, https://doi.org/10.2337/dc14-0769 (2015).
 6. Fujimura, K. E. & Lynch, S. V. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host 

Microbe 17, 592–602, https://doi.org/10.1016/j.chom.2015.04.007 (2015).
 7. Forbes, J. D., Van Domselaar, G. & Bernstein, C. N. Microbiome Survey of the Inflamed and Noninflamed Gut at Different 

Compartments Within the Gastrointestinal Tract of In�ammatory Bowel Disease Patients. In�amm Bowel Dis 22, 817–825, https://
doi.org/10.1097/MIB.0000000000000684 (2016).

 8. Claus, S. P., Guillou, H. & Ellero-Simatos, S. �e gut microbiota: a major player in the toxicity of environmental pollutants? npj 
Bio�lms and Microbiomes 2, 16003, https://doi.org/10.1038/npjbio�lms.2016.3 (2016).

 9. Snedeker, S. M. & Hay, A. G. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? 
Environ Health Perspect 120, 332–339, https://doi.org/10.1289/ehp.1104204 (2012).

http://dx.doi.org/10.1016/j.cell.2012.01.035
http://dx.doi.org/10.1016/j.cell.2014.05.052
http://dx.doi.org/10.1126/science.1223490
http://dx.doi.org/10.1073/pnas.0504978102
http://dx.doi.org/10.2337/dc14-0769
http://dx.doi.org/10.1016/j.chom.2015.04.007
http://dx.doi.org/10.1097/MIB.0000000000000684
http://dx.doi.org/10.1097/MIB.0000000000000684
http://dx.doi.org/10.1038/npjbiofilms.2016.3
http://dx.doi.org/10.1289/ehp.1104204


www.nature.com/scientificreports/

11SCIENTIFIC REPORTS |  (2018) 8:6578  | DOI:10.1038/s41598-018-24931-w

 10. Jin, Y., Wu, S., Zeng, Z. & Fu, Z. E�ects of environmental pollutants on gut microbiota. Environmental pollution (Barking, Essex: 
1987) 222, 1–9, https://doi.org/10.1016/j.envpol.2016.11.045 (2017).

 11. Breton, J. et al. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC pharmacology & toxicology 14, 
62, https://doi.org/10.1186/2050-6511-14-62 (2013).

 12. Bisanz, J. E. et al. Randomized open-label pilot study of the in�uence of probiotics and the gut microbiome on toxic metal levels in 
Tanzanian pregnant women and school children. mBio 5, e01580–01514, https://doi.org/10.1128/mBio.01580-14 (2014).

 13. Straif, K. et al. A review of human carcinogens–Part C: metals, arsenic, dusts, and �bres. �e Lancet. Oncology 10, 453–454 (2009).
 14. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Cobalt in hard metals and cobalt sulfate, gallium 

arsenide, indium phosphide and vanadium pentoxide. IARC monographs on the evaluation of carcinogenic risks to humans 86, 1–294 
(2006).

 15. Kozlowski, H., Kolkowska, P., Watly, J., Krzywoszynska, K. & Potocki, S. General aspects of metal toxicity. Current medicinal 
chemistry 21, 3721–3740 (2014).

 16. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. Heavy metal toxicity and the environment. Exs 101, 133–164, https://
doi.org/10.1007/978-3-7643-8340-4_6 (2012).

 17. Liu, Y., Li, Y., Liu, K. & Shen, J. Exposing to cadmium stress cause profound toxic e�ect on microbiota of the mice intestinal tract. 
PloS one 9, e85323, https://doi.org/10.1371/journal.pone.0085323 (2014).

 18. Li, Y., Liu, K., Shen, J. & Liu, Y. Wheat bran intake can attenuate chronic cadmium toxicity in mice gut microbiota. Food Funct 7, 
3524–3530, https://doi.org/10.1039/c6fo00233a (2016).

 19. Wu, B. et al. Toxicological e�ects of dietary nickel chloride on intestinal microbiota. Ecotoxicol Environ Saf 109, 70–76, https://doi.
org/10.1016/j.ecoenv.2014.08.002 (2014).

 20. Guo, X. et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. 
Chemosphere 112, 1–8, https://doi.org/10.1016/j.chemosphere.2014.03.068 (2014).

 21. Dheer, R. et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino 
acid metabolism. Toxicology and applied pharmacology 289, 397–408, https://doi.org/10.1016/j.taap.2015.10.020 (2015).

 22. Lu, K. et al. Arsenic exposure perturbs the gut microbiome and its metabolic pro�le in mice: an integrated metagenomics and 
metabolomics analysis. Environ Health Perspect 122, 284–291, https://doi.org/10.1289/ehp.1307429 (2014).

 23. Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic 
animals. Microbiome 4, 36, https://doi.org/10.1186/s40168-016-0181-2 (2016).

 24. Nguyen, T. L., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis Model 
Mech 8, 1–16, https://doi.org/10.1242/dmm.017400 (2015).

 25. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71, 
8228–8235, https://doi.org/10.1128/AEM.71.12.8228-8235.2005 (2005).

 26. Langille, M. G. et al. Predictive functional pro�ling of microbial communities using 16S rRNA marker gene sequences. Nature 
biotechnology 31, 814–821, https://doi.org/10.1038/nbt.2676 (2013).

 27. Amato, K. R. et al. Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome 3, 53, 
https://doi.org/10.1186/s40168-015-0120-7 (2015).

 28. Rooks, M. G. et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced 
remission. ISME J 8, 1403–1417, https://doi.org/10.1038/ismej.2014.3 (2014).

 29. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome biology 12, R60, https://doi.org/10.1186/gb-2011-12-
6-r60 (2011).

 30. Hildebrand, F. et al. In�ammation-associated enterotypes, host genotype, cage and inter-individual e�ects drive gut microbiota 
variation in common laboratory mice. Genome biology 14, R4, https://doi.org/10.1186/gb-2013-14-1-r4 (2013).

 31. McCa�erty, J. et al. Stochastic changes over time and not founder e�ects drive cage e�ects in microbial community assembly in a 
mouse model. ISME J 7, 2116–2125, https://doi.org/10.1038/ismej.2013.106 (2013).

 32. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science (New York, N.Y.) 308, 1635–1638, https://doi.
org/10.1126/science.1110591 (2005).

 33. Costello, E. K. et al. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science (New York, N.Y.) 326, 
1694–1697, https://doi.org/10.1126/science.1177486 (2009).

 34. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214, 
https://doi.org/10.1038/nature11234 (2012).

 35. de Reuse, H., Vinella, D. & Cavazza, C. Common themes and unique proteins for the uptake and tra�cking of nickel, a metal essential 
for the virulence of Helicobacter pylori. Frontiers in cellular and infection microbiology 3, 94, https://doi.org/10.3389/fcimb.2013.00094 
(2013).

 36. Dimkpa, C., Svatos, A., Merten, D., Buchel, G. & Kothe, E. Hydroxamate siderophores produced by Streptomyces acidiscabies E13 
bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54, 163–172, https://doi.
org/10.1139/w07-130 (2008).

 37. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 
1621–1624, https://doi.org/10.1038/ismej.2012.8 (2012).

 38. Babraham Bioinformatics. FastQC: A quality control tool for high throughput sequence data. Available from http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/.

 39. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods 7, 335–336, https://
doi.org/10.1038/nmeth.f.303 (2010).

 40. Aronesty, E. ea-utils: “Command-line tools for processing biological sequencing data”; (2011).
 41. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461, https://doi.org/10.1093/

bioinformatics/btq461 (2010).
 42. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and 

archaea. ISME J 6, 610–618, https://doi.org/10.1038/ismej.2011.139 (2012).
 43. Caporaso, J. G. et al. PyNAST: a �exible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267, https://doi.

org/10.1093/bioinformatics/btp636 (2010).
 44. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).
 45. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. 

PloS one 8, e61217, https://doi.org/10.1371/journal.pone.0061217 (2013).
 46. Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464, https://doi.org/10.1093/

bioinformatics/btq166 (2010).
 47. Jari Oksanen, F. G. B. et al. vegan: Community Ecology Package. R package version 2.4-0., https://CRAN.R-project.org/package=vegan 

(2016).
 48. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome 

biology 15, 550, https://doi.org/10.1186/s13059-014-0550-8 (2014).
 49. McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS computational biology 

10, e1003531, https://doi.org/10.1371/journal.pcbi.1003531 (2014).

http://dx.doi.org/10.1016/j.envpol.2016.11.045
http://dx.doi.org/10.1186/2050-6511-14-62
http://dx.doi.org/10.1128/mBio.01580-14
http://dx.doi.org/10.1007/978-3-7643-8340-4_6
http://dx.doi.org/10.1007/978-3-7643-8340-4_6
http://dx.doi.org/10.1371/journal.pone.0085323
http://dx.doi.org/10.1039/c6fo00233a
http://dx.doi.org/10.1016/j.ecoenv.2014.08.002
http://dx.doi.org/10.1016/j.ecoenv.2014.08.002
http://dx.doi.org/10.1016/j.chemosphere.2014.03.068
http://dx.doi.org/10.1016/j.taap.2015.10.020
http://dx.doi.org/10.1289/ehp.1307429
http://dx.doi.org/10.1186/s40168-016-0181-2
http://dx.doi.org/10.1242/dmm.017400
http://dx.doi.org/10.1128/AEM.71.12.8228-8235.2005
http://dx.doi.org/10.1038/nbt.2676
http://dx.doi.org/10.1186/s40168-015-0120-7
http://dx.doi.org/10.1038/ismej.2014.3
http://dx.doi.org/10.1186/gb-2011-12-6-r60
http://dx.doi.org/10.1186/gb-2011-12-6-r60
http://dx.doi.org/10.1186/gb-2013-14-1-r4
http://dx.doi.org/10.1038/ismej.2013.106
http://dx.doi.org/10.1126/science.1110591
http://dx.doi.org/10.1126/science.1110591
http://dx.doi.org/10.1126/science.1177486
http://dx.doi.org/10.1038/nature11234
http://dx.doi.org/10.3389/fcimb.2013.00094
http://dx.doi.org/10.1139/w07-130
http://dx.doi.org/10.1139/w07-130
http://dx.doi.org/10.1038/ismej.2012.8
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1038/ismej.2011.139
http://dx.doi.org/10.1093/bioinformatics/btp636
http://dx.doi.org/10.1093/bioinformatics/btp636
http://dx.doi.org/10.1371/journal.pone.0061217
http://dx.doi.org/10.1093/bioinformatics/btq166
http://dx.doi.org/10.1093/bioinformatics/btq166
https://CRAN.R-project.org/package=vegan
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1371/journal.pcbi.1003531


www.nature.com/scientificreports/

12SCIENTIFIC REPORTS |  (2018) 8:6578  | DOI:10.1038/s41598-018-24931-w

Acknowledgements
We wish to thank David Fetterer for helpful discussions about statistical analysis. We also wish to thank Jason T. 
Ladner and the rest of the Center for Genome Sciences at the US Army Medical Research Institute of Infectious 
Diseases for useful discussions about this study. �e research described herein was sponsored by the U.S. Army 
Medical Research and Materiel Command, Military Operational Medicine Research Program.

Author Contributions
B.C.R.D., M.S.M. and J.A.L designed the study. C.L.H. and Y.S.L. collected and prepared samples. G.A. and 
G.H. sequenced samples. J.B.R. and Z.Z.X. analyzed the data and performed statistical analyses, with input from 
R.K., J.A.L. and B.C.R.D., J.B.R. and B.C.R.D. wrote the manuscript with input from J.A.L. and G.P. All authors 
participated in discussions of the results, and all authors read and approved of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24931-w.

Competing Interests: �e authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-24931-w
http://creativecommons.org/licenses/by/4.0/

	Exposure to toxic metals triggers unique responses from the rat gut microbiota

	Results

	Overview of Changes in Microbiome Composition. 
	Alpha Diversity. 
	Beta Diversity. 
	Differential Abundance of Taxa. 
	Differential Abundance of Genes and Gene Pathways. 

	Discussion

	Methods

	Metal Exposures/Fecal collection. 
	Sequencing. 
	16S rRNA amplicon Data Processing. 
	Visualization of Taxonomic Distribution. 
	Statistical analysis. 
	Biological Inferences. 
	Availability of data and materials. 
	Disclaimer. 

	Acknowledgements

	Figure 1 Experimental summary.
	Figure 2 Taxonomic summaries.
	Figure 3 Venn diagram showing genera that are significantly different in abundance before and after metal exposure.
	Figure 4 Alpha Diversity.
	Figure 5 Principal Coordinate Analysis using the Bray-Curtis distance metric.
	Figure 6 Heat map showing the average log-fold change relative to sham controls.
	Figure 7 Relative abundance (+/− SEM) of KEGG orthologs belonging to the iron complex transport system, as estimated by PICRUSt.
	Table 1 Treatment effects on beta diversity.


