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Abstract This paper provides a framework for recording,

analyzing and modeling of 3 dimensional emotional

movements for embodied game applications. To foster

embodied interaction, we need interfaces that can develop

a complex, meaningful understanding of intention—both

kinesthetic and emotional—as it emerges through natural

human movement. The movements are emulated on robots

or other devices with sensory-motor features as a part of

games that aim improving the social interaction skills of

children. The design of an example game platform that is

used for training of children with autism is described since

the type of the emotional behaviors depends on the

embodiment of the robot and the context of the game. The

results show that quantitative movement parameters can be

matched to emotional state of the embodied agent (human

or robot) using the Laban movement analysis. Emotional

movements that were emulated on robots using this prin-

ciple were tested with children in the age group 7–9. The

tests show reliable recognition on most of the behaviors.

Keywords Measuring emotions �
Emotion recognition in robots � Movement analysis �
Social training with games � Autism

1 Introduction

Teaching of socially relevant behavior to children through

games and robotic toys is an area of emerging interest [1–6].

Autonomous robots are of special interest in this area since

they provide an opportunity to use the robot as a replace-

ment of a caregiver, as a partner, or a mediator of play [1–

9]. A number of purely autonomous robots, both with and

without anthropomorphic or zoomorphic shape have been

used in games with children [5–13]. Robots in these studies,

however, perform simple behavior (as for instance lifting of

a hand) that aims to provoke reciprocal human reaction

[4, 5, 12] or predict the position or the direction of the

movement which is referred to as predicting motor inten-

tions [4, 5, 10, 44], instead of being a tool for more general

social learning. Robotic studies on social learning that have

the potential to be extended to human–robot interaction

scenarios are reported in [10, 14–16, 44].

In this work we aim to go beyond sensory–motor inter-

action in robotic models of embodied cognition by also taking

into account the interplay between constitutive and interac-

tive aspects of autonomy. This implies that sensory–motor

interaction has to be enriched with intentional, emotional and

reward aspects of interaction. Specifically, we focus on the

emotions that are conveyed by movement behavior.

Keltner and Kring [17] point out a highly dependent link

between emotion and social meaning. They argue that

emotions serve a set of functions that are critical for

coordinating social interactions. These functions are:

• to provide information to the conspecifics about the

surrounding environment (e.g., fear may indicate the

presence of a predator);

• to elicit both complementary and similar emotions in

others, depending on the context;

• to be an incentive that promotes social relationships.

This motivates us to pursue a more general social

learning framework with robots that include emotional

facial expressions, bodily posture and actions of others, and

triggers appropriate emotional responses.
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Although it is not shown that emotional resonance

(response to perceived emotion) and emotion understand-

ing and recognition are related components of the emo-

tional system [7], teaching to just recognize emotions will

be beneficial for instance to persons (especially children)

with autism which have atypical social and emotional

development [18]. Benefits in using robots for behavioral

training of autistic children have been investigated in [6, 8,

19, 42].

Teaching emotional and social movement patterns can

take many forms. Since we target children, we choose to

design game scenarios that will include recognition of

emotional movements. Most obvious value of games is

enjoyment and sharing of social experiences with others

[20]. In addition, play, is widely used as a preferred edu-

cational activity for young children [21, 22]. Salen and

Zimmerman [23] point out the difference between games

and play. They pose that a game is a subset of play, a

formalized and focused interaction that occurs when

players follow the rules of a game in order to play it. Since

the ultimate goal of this research is enhancing the social

skills of children with autism who feel comfortable with

structure and clearly defined rules, using games to stimu-

late social interaction between them is a good way to

approach this user group.

Physical play [11] is based on motor activities of the

players. Using robots for social training raises the interest

for nonverbal social communication, expressed via move-

ment and postures. Present day robots express movement

as a response to their sensing and decision making, while

natural language understanding and synthesis is far beyond

the reach of the contemporary science. That is the reason

why speaking robots can be used for social tasks only in a

tele-operated mode, see for instance [24].

The nonverbal ways for conveying socially relevant

information include facial expressions and body move-

ments [25, 26]. Neurological studies suggest that under-

standing nonverbal communication of facial expressions

and body movements involves the mirror neuron system

[26, 27]. However, Montgomery and Haxby [27] showed

that these two forms of nonverbal social communication

have distinct representations within that system, so it is

plausible to study them separately. We investigate a spe-

cific aspect of social interaction behaviors, namely the

perception and expression of emotions and emotional body

language, as conveyed by body movements, which is

based on our understanding of the common coding prin-

ciple in the mirror neuron system [14]. However, the

construction of a bottom up model of the mirror neuron

system on neuronal or functional level is not plausible for

this study. Instead, we use Laban movement analysis [28]

to embody the common coding principle on behavioral

level. Laban movement analysis (LMA) it is a systematic

framework for describing all forms of human movement

and emphasizes how internal feelings and intentions

govern the patterning of movement throughout the whole

body. It provides a complex understanding of intention.

Similar to common coding/mirroring paradigm LMA is

useful to describe the interaction in the physical world,

which is caused by physical robots that move or perceive

movements of humans and other agents (robots). There-

fore using Laban movement analysis for social interaction

through physical objects gives many possibilities : to

design a robot (intelligent object) that understands the

emotional state of a human player and responds in an

adequate manner; to design robot behaviors that imitate,

enhance or counteract an emotional state of a person; to

design socially believable robotic (embodied) characters

that provoke social interaction; to create constantly

adapting interaction based on movement/emotional

understanding of a robot.

In this particular study we develop a framework for

expressing and interpreting emotional movements. Based

on this framework we recorded and analyzed human

movement patterns and designed and implemented emo-

tional movements on robots. User testing of these move-

ments was performed with typical children to validate the

plausibility of this design. Also we developed games that

include the emotional robot behaviors for training autistic

children.

This paper is organized as follows. In Sect. 2 will be

discussed how the stages of social development can be

advanced by games with robotic toys. Section 3 features

the framework for recording and interpreting emotional

movements. The common elements of the framework that

make it able to analyze and model human movements are

outlined. Several applications for modeling and analyzing

emotional movements on and by robots or intelligent

objects using this framework are described in Sect. 4. Also

a platform and a game scenario that involves recognition

and control over emotional behaviors is shown in this

Section. Section 5 provides a discussion.

2 Stages of social development matched by games with

robotic toys

Play behaviour is an expression of physical, social and

emotional development of children. There are several

stages of play corresponding to the level of social

development.

Early researchers categorized the play they observed in

young children into age related stages [29]. Later theorists

described the stages of play development in specific

domains, such as social, motor, and socio-cultural devel-

opment [30–32].
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These stages correspond to the stages of motor, social

and the emotional development of the children. Explor-

atory and sensorimotor types of play are primary during

the early infancy period. Symbolic play starts in the first

years of child development and it is characterized with

reciprocal interaction between the children and the

emergence of social games. Wachs [33] distinguishes

between object play (exploratory, manipulative, or func-

tional play) as well as social play, related to peer and

adult–child interactions. We have argued [34] that inter-

action with objects is a developmental stage of social

behavior, and that shortcomings in the motor level of

interaction can result in impaired social behavior

[34].This argument is based on our understanding on the

role mirror neuron system in social learning and interac-

tion, that has emerged as an additional functionality of the

neural structures that have primarily developed for gross

and fine motor skills, such as grasping and precision grip.

Therefore, difficulties in planning and executing simple

discrete movements, for instance, can lead to problems in

learning to coordinate diverse muscle groups into a uni-

tary movement pattern. Moreover, when a person is

unable to respond to another’s action in a timely fashion

they will miss the positive reinforcement associated with

interpersonal interaction.

Lack of motor imitation, as for instance observed by

children with autism, results in difficulties to understand

each other’s behavior. The complementary reciprocal play

in early toddlerhood, such as run and chaise [35] may be

prerequisite for cooperative social pretend play later on.

Considering each stage of social development, we

design games that promote a wider spectrum of social and

emotional experiences. We focus on physical play, i.e. play

with physical objects that aims to enhance the interaction

between the children [1–3]. To trigger more advanced

forms of social play, we aim at developing physical objects

that have own means to stimulate social interaction. These

include: sensors so that the objects can record the changes

in the surrounding world, some learning or adaptation

mechanism that will facilitate decision making and insure a

level of autonomy, and actuators so the objects can express

behaviour. A physical object with such features is in a

broad sense a robot independently of its shape or means of

behaviour. As mentioned in the introduction of this paper,

we aim at higher level of autonomy than the largely

available robots have at present. The difference by this new

level of autonomy is in the robot’s ability to interpret

human movement behaviour and to behave in such a way

that humans understand. Specifically, we aim at designing

robotic toys that can themselves express emotional

behaviours, as well as understand emotional expressions in

other agents. We consider 3 different levels of awareness

for robots that can be used in game-planning scenarios:

• Robots that understand the emotional state of a human

player(s) and respond in an adequate manner;

• Robots that imitate, enhance or counteract an emotional

state of a human;

• Socially believable robotic (embodied) characters that

provoke social interaction;

• Emergence of constantly adapting interaction based on

movement/emotional understanding of a robot.

3 Framework for emulating and interpreting emotional

movements

This section proposes a framework that will make it pos-

sible to express and interpret emotional movement patterns.

The framework is based on the understanding that there is a

close relation between expressed and perceived emotion

which will make it possible for the robot to (1) model or

synthesize emotion (e.g. on robot or another object with

sensory-motor features) in a way that it can be understood

by a human observer and (2) to recognize or interpret

human emotional movement.

Evidence from independent studies in neuroscience,

social psychology, and behavioral studies strongly suggest

that our ability to perceive the actions of others results from

the massive experience we have accumulated in planning

and executing self-produced actions. Sensory representa-

tions used during action perception and motor representa-

tions for action planning are coded in the same brain areas.

Different connectivity between these areas and additional

signals determine whether the movement will be perceived

as own or observed. This common coding principle (as

known in psychological studies), or mirror neuron principle

(as known in neuroscience) is a basis for designing the

social interaction systems [14, 15].

A ‘social perception’ system that is directly connected

to, and partially overlapping with the mirror neuron sys-

tem, processes emotionally-rich facial expressions, bodily

posture and actions of others, and triggers an appropriate

emotional responses. It detects other persons’ assumed

social motor intentions, triggers automatic social/emotional

response plans, and so facilitates automatic intentional and

emotional responses.

If these ideas are used in an interactive robot the same

modules will be used for recording and interpreting emo-

tional movements. The common coding principle makes it

possible to create an interchangeable interaction through

whole body movement between two robots, as shown in

[14]. We want to extend this motor interaction to emotional

body language that is expressed by movement. Moreover,

we would like to make it possible to have mutual interac-

tion and understanding between a robot and a human. This

implies that a high level representation of movement
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primitives is characterized by certain emotional patterns.

Such a high level representation which characterizes the

human movement in terms of expressed and perceived

intentions and emotions is searched in the framework of

Laban movement analysis.

In order to identify the contribution of body movements

to the recognition of emotion, it is important to have a clear

and suitable description of these movements. The Laban

Movement Analysis [28] is a well-established, effective

method for observing, describing, annotating, and inter-

preting human movement, however it does not provide a

straightforward way to assign quantitative measures to the

movement qualities. It provides descriptors for the content

of human body movements in terms of the following cat-

egories: Body, Space, Effort and Relationship. The Effort

category relates to the dynamic and expressive character-

istics of the movement. It is comprised of four movement

qualities: weight, space (not to be confused with the Space

category), time, and flow. Each quality represents a con-

tinuum between opposite polarities: weight varies between

strength and lightness, space, between direct and indirect,

time between sudden and sustained and flow between

bound and free. Effort qualities usually appear in combi-

nations called ‘‘states’’ or ‘‘drives’’. When two motion

qualities are combined, it is called inner attitudes or

incomplete effort. When three motion qualities are com-

bined, they form externalized drives. Of special interest is

the Passion drive, which combines time, weight, and flow.

Using these motion determinants that body takes in space

gives a way to noticeably differentiate expressive and

emotional actions.

For instance, the difference between punching someone

in anger and reaching for a glass is slight in terms of body

organization—both rely on extension of the arm. However,

the attention to the strength of the movement, the control of

the movement and the timing of the movement are very

different. This example shows how the three qualities,

namely weight, flow, and time, respectively, help charac-

terize the emotional load of movements.

According to [36], the Laban Effort parameters can be

translated into low-level movement parameters such as

curvature, velocity, and acceleration.

After consulting a certified Laban movement analyst,

and reviewed the related literature [36–39] we concluded

that this relation is bidirectional, i.e. based on the physical

characteristics of the movement we can determine the

Laban characteristics of the movement, and vice versa. If

the factors that are the components of the Passion drive (i.e.

time, weight, and flow) are combined, a judgment about the

emotional load of the movement is possible to be made. For

this purpose, based on the expert’s opinion, our knowledge

of modeling movement, and making a number of simple

experiments we concluded that the acceleration, the

velocity, and the profile (curvature, amplitude, and vari-

ability) of the movement can be used in the following way:

• Time can be characterized by looking at the move-

ment’s acceleration.

• Weight is characterized by a combination of acceler-

ation and velocity.

• Flow needs the values of all three components in order

to be assessed.

This relation is visualized in the Figs. 1, 2 and 3:

Connecting the Laban factors to emotional states is a

two stage process. First, the right correspondence between

the Laban factors and emotions has to be established.

Camurri et al. [37] and Fagerberg et al. [38], have inde-

pendently used LMA to classify dance gestures in terms of

basic emotions; anger, fear, grief and joy. Their analysis

overlaps for 3 of these emotions, namely anger, fear, and

joy (happiness). We use the coding that corresponds to the

relation between Laban movement qualities and emotions

as introduced by Camurri et al.

Second, since we work with partially subjective

parameters a classification method that can deal with suf-

ficient degree of uncertainty has to be deployed. For this

purpose we used variations of neural classifiers for both

analysis and synthesis of emotional movement.

Curvature/ Velocity Acceleration

Variability

Weight Time Flow

Fig. 1 The relation between the dynamic characteristics of the

movement and the Laban movement qualities. Needles to say that the

transformation from the upper layer also can be used as an input and

the lower layers as an output if we could get measurable weight, time

and flow factors

Weight Time Flow

FearJoy AngerSadness

Fig. 2 Transformation of effort factors into 4 basic emotions. A

neural classifier is a good choice to realize this transformation
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In summary, the framework for analyzing and simulat-

ing emotional movements takes the following steps.

1. Description of movement that allows for an easy

bidirectional transformation between the dynamic

characteristics of a signal (velocity, acceleration and

variability) to Laban Effort factors.

2. Learning the dependence between Laban Effort factors

and the basic emotions.

3. Prediction of movement as an element of the

interaction.

4 Examples: using the framework for expressing and

interpreting emotional movements by robots

The framework was tested in several prototypes of

behaving objects for social play that correspond to one of

the levels of awareness of the robots as listed in Sect. 2.

Once more we would like to state that our definition of a

robot is a device or everyday object with sensory, motor,

and processing capabilities. Movement is the most recog-

nizable expression of behavior, but other controlled

behavioral expression, such as speech, light changes are

also possible and considered as valid motor expression.

4.1 Simple behavioral response based on interpreting

the emotional state of human players

Analyzing the emotional state of the human player is a very

complex task. The complexity also depends on the sensors,

which can provide simple data in the range of binary values

(i.e. on and off) to camera images that require complex

signal processing. We restrict the complexity of the anal-

ysis by assuming that either the robot or the player will be

static at every moment, so when the robot observes moving

body parts it does not need to recalculate them with respect

to its own movement.

In order to abstract information about the movement

qualities by a static object with sensory-motor features, we

constructed a behaving walk-in closet equipped with 3

types of sensors and a learning algorithm that decides the

closet behavior. We placed sensors in the surrounding floor

area, in the shelves and in the vertical space in the walk-in

closet. Human players were asked to act out several sce-

narios. From the analysis of the sensor data it became

apparent that the walking movement and the hand move-

ment are most informative about the emotional state of the

human subjects. These two movements relate to two kind

of movement analysis: micro analysis of the movements in

the kinesphere of the user (that relates to a body part in our

case arms) and macro analysis to describe the larger (whole

body) movements in the space. To capture macro move-

ment we placed 12 sensor mats (595 mm 9 170 mm) in

the floor which are able to capture the walking movement

in one dimension. In the shelves we placed 8 passive

infrared sensors to measure micro movement activity. The

sensors were connected through three Arduino microcon-

trollers to a PC. A Neural gas learning algorithm was

implemented on Max/MSP and connected to the actuators

that controlled the intensity, the speed, and the order of

lighting of the lamps.

The analysis of the data showed that the movement

qualities space and time were sufficient for the learning

algorithm embedded in the closet to distinguish 4 different

states of the players. For every combination one scenario

was created which would be tested in an experiment. All

the scenarios had as main context a selection of clothes for

different occasions. The goal of the scenario was to evoke a

certain state on the user, such as the feeling of hurry,

relaxation, or enjoyment.

The closet is currently not prepared to distinguish

between the different players but its behavior can be

changed by increasing the activity in the object handling or

in whole body movements of the game participants. So far

the collective play behavior is not tested systematically.

Our focus has been on the mood analysis and on the sim-

ulation of submissive and dominant behaviors of the closet.

4.2 Social mediation of play based on recognition

and expression of emotions by movement

For the purpose of mediation of play between children, a

robot that can engage in reciprocal social interaction

through movement was used. In particular, we design

Fig. 3 NAO robot
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behaviors to support collective games for the humanoid

robot NAO [40]. The underlying idea is that the robot can

recognize and imitate human movements and give feedback

on the behavior of the human. The game scenarios that can

be constructed on the basis of this interactive behaviors aim

to help children with autism learn to recognize emotional

movements from a robot partner and to produce similar

movements.

For this type of interaction behavior a more precise

method for analyzing the human movement is needed. The

NAO robot has 25 degrees of freedom, 5 in each leg and

arm, and 1 in each hand. Further it has 2 degrees of free-

dom in its head and one in the pelvis. The platform con-

tains 2 color cameras with a maximum resolution of

640 9 480 pixels at a speed of 30 frames per second. The

platform contains an embedded AMD Geode 500 MHz

processor and is shipped with an embedded Linux distri-

bution. A software library called NaoQi is used to control

the robot. This API provides an easy to use C?? interface

to the robot’s sensors and actuators. Due to this library it is

relatively easy to control the robots actuators and make use

of advanced routines that let the robot move and talk using

text to speech conversion.

Challenging, however, remains the recognition of the

emotional behaviors, which we resolved within the

framework outlined in Sect. 3. A performer and certified

Laban movement analyst was asked to enact waving

behaviors with different emotional coloring, namely angry,

happy, sad and polite. The waving was chosen for several

reasons. First it is a behavior that is used exclusively in a

social context. Second, it can relatively easily be tracked

by a single camera, and third, several emotional states can

naturally be expressed through waving. In fact our goal is

not to confine to the type of the movement, but the

extraction of a dynamic primitives that are typical for a

certain emotion.

Figure 5 depicts pairs of 4 emotional waving patterns

recorded in an experimental scenario as shown in Fig. 4,

using color images of 640 9 480 pixels at a speed of 29

frames per second. The image processing consists of a

combination of skin color and motion detection with the

aim of tracking a single body part per person that can be

associated with the emotional waving movement. The

black rectangular regions capture the center and the

boundaries of the skin color areas, green areas capture

moving objects and the blue areas give a combination of a

moving skin colored area. Due to parallel processing on

GPU’s, multiple moving hands can be followed, which

makes this method suitable for collective games.

Fifteen recordings of 20 seconds have been made with

waving patterns that enact happiness, anger, sadness, or

politeness (Fig. 5). At each row two examples of the same

enacted emotion are plotted. Note that the trajectories of

the movements have been different by enacting the same

emotional state. For instance for angry emotional state the

performer acted movement resembling pushing away a fly

and a movement resembling an angry mother calling for

her child to come. The first movement starts close to the

body and moves laterally away. The second starts frontally,

away from the body and finishes frontally, close to the

body. The plots, however, show the acceleration profile of

the movement which is similar for each emotion, inde-

pendently of the trajectory of the enacted movement. From

Fig. 6 the following can be observed:

1. Happy waving provides a regular waving pattern with

a relatively high frequency.

2. Angry waving demonstrates bursts with tremendous

acceleration

3. Sad waving demonstrates a profile of low acceleration;

its frequency is relatively low and appears to have a

lower frequency compared to the other three emotions.

4. Polite waving is a regular pattern with a relatively high

frequency that is obtained by using minimal energy.

To analyze whether the emotional patterns can be

properly classified by a robot, an average acceleration-

frequency matrix was plotted. Figure 6 shows that four

distinctive clusters are formed.

Fig. 4 Marked regions of

interest. Black and white
rectangular regions denote skin

and motion area, respectively.

A black rectangular region in

the right snapshot denotes the

average position of the fastest

moving skin color objects.

Tracking of multiple objects is

possible because of the parallel

processing framework

462 Pers Ubiquit Comput (2010) 14:457–467

123



Fig. 5 Waving patterns. First to fourth row show acceleration profiles for happiness, anger, sadness, and politeness for two differently enacted

emotional waving patterns
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4.3 Expressing emotional behaviors in social game

with robots

The Laban movement guidelines as suggested by Camurri

et al. [37] were used to design emotional behaviors on a

mobile robot. Note that for this experiment we did not use

directly the human movement primitives extracted from the

signals that were analyzed in Sect. 4.2. This choice was

made since the recordings that are illustrated in Sect. 4.2

are not made with a representative group of participants.

To test solely the perceived emotion from the movement,

the experiments with the e-puck [41] robot that does nei-

ther have anthropomorphic nor zoomorphic shape were

performed. A control user group of 42 typically developing

children were tested to observe the emotional behaviors

enacted by the robots. The outcome of the tests showed a

good recognition of several basic emotions (Table 1).

The chart shows the recognition rate in percents of the

designed emotional behaviors for each emotion. It is

important to mention that the children were not provided

with a list of possible emotions. They were asked how they

think that the robot is feeling at the moment.

The low recognition rate on anger and happiness

emotions was the reason to construct the confusion matrix

out from the user test outcomes. From this matrix become

apparent that the two emotional movement behaviors,

anger and happiness were mistaken for each other. These

two emotions are characterized with high intensity but have

different valence (i.e. happiness is a strong positive emo-

tion, while anger is a strong negative emotion). Moreover,

the Laban descriptions of these emotions, as suggested by

[37] have many common elements, as evident from

Table 2.

In contrast, the acceleration plots as made in our

experiments with robot vision and described in Sect. 4.2

show very different acceleration profiles. The recorded

waving pattern that represents Happiness provides a regular

waving pattern with a relatively high frequency (Fig. 5a,

b), while the Anger waving demonstrates bursts with tre-

mendous acceleration, and pauses in between (Fig. 5c, d).

To analyze the robot behaviors we attached the Wiimote

to the robot when it performed the emotional movements.

The plots did not show the typical acceleration profile as by

the emotional movements enacted by a human demon-

strator. The recording of the acceleration profiles from

human motion patterns are a substantial step for rede-

signing the robot emotional behavior.

The so designed emotional behaviors were included in a

game for promoting associative play [1] by children with

autism. To design the game the following shortcomings of

the children were targeted: inability to share and socially

interact, inability to understand expression of emotions and

link them to context, preference to learn by examples and

logic rather than by trial and error.

To account for these problems, a combined approach of

a game that will require negotiations and working towards

a common goal, together with recognition of emotional

states was made. The game uses a storyline that describes

various situations involving different emotions. When the

children recognize the emotion described in the story they

have to command a robot to either perform or contradict

this emotion. The robot is commanded by the collective

physical behavior of the children. At least two children

have to step on one site of a large disk to make the disk tilt

(Fig. 7). The disk can be tilted in several directions denoted

with colored LED-lighted arrows. Every tilt direction will

provoke movement behavior of the robot that expresses

particular emotion. The tilted disk will trigger a movement

of a robot that corresponds to the corresponding emotion.

The LED arrows have the color that resembles the emotion

in a similar way as the traffic light metaphor that was used

in schools for autistic children to illustrate children’s

emotions. The bottom line of the game is that the children

have to identify the correct emotion based on the story and

movement. The teacher can use different storylines refer-

ring to an emotion, that will consequently be acted by the

movement of the robot. With this multivalent approach we

aimed at an integrated understanding of the acted emotion.
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Fig. 6 Distinct emotion profiles are revealed by average frequency

and acceleration

Table 1 Recognition rate of basic emotions from the designed

movement behaviors

Behavior Sadness Anger Happiness Nervous Fear

Recognition rate (%) 76 43 50 74 76

Laban movement analysis was used to design the emotional behav-

ioral movements. The resulting robot behaviors were recorded for

further analysis

464 Pers Ubiquit Comput (2010) 14:457–467

123



For the purpose of the game a huge round disc that

could accommodate several children was made (Fig. 7).

The disc can control the movement of a robot by being

tilted in a certain direction. The robot in the game situ-

ations is drawn as a small object near the platform. It

resembles the shape and the size of the e-puck robot [41]

that was used for this experiment. The e-puck is a two-

wheel mobile robot that was originally developed at Swiss

Federal Institute of Technology (EPFL). The robot is

equipped with a dsPIC processor and can be controlled by

blue tooth through the computer, or a very simple pro-

gram can be uploaded on the dsPIC processor. We used

computer-mediated control.

The children, standing on top of the platform, had to

negotiate their positions since a single child could not tilt

the disc. Once multiple children moved to the right position

and the disc tilted at that direction, the corresponding

behavior of the robot was triggered. To change the robot

emotional behavior, the children had to agree on their next

position and move together. When conflicting views occur,

it was an opportunity for the children to learn to negotiate

and get aware that they need others’ help.

5 Discussion

We proposed a framework for expressing and interpreting

emotional movements that is based on actual recording,

analyzing and emulating of emotional movements on

robots. It uses the same way for representing the emotional

behavior in the agent which expresses and the agent which

observes (or interacts). In this way the proposed framework

enables with the same modeling, sensing, and analysis

tools to design games and scenarios with robots and other

intelligent objects that have different degrees of awareness.

By using this framework, different levels of skills of the

robots, namely their abilities to analyze the emotional state

of the human player, to express own emotional social

Table 2 The descriptions of emotional movements for Anger and Joy (Happiness) as concluded by Camurri et al. [37]

Anger Happiness (joy)

Duration Short duration of time

Tempo changes Frequent tempo changes, short stops between

changes

Frequent tempo changes, longer stops between changes

Scale of the

movement

Movements reaching out from body centre Movements reaching out from body centre

Tension Dynamic and high tension in the movement;

tension builds up and then ‘explodes’

Dynamic tension in movements; changes between high and low

tension

Our analysis as shown in Fig. 5 shows that there is a continuous acceleration profile of the signal by Happiness and typical bursts followed by no

action by Anger

Fig. 7 Game situations and

flowchart of the game platform.

The robot in the game situations

is drawn as a small object near

the platform
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behavior, or take part in reciprocal social interaction can be

achieved with no need for re-design.

Laban movement analysis was used to provide the pos-

sibility for a unified way of expressing and interpreting

emotional movements. A distinctive feature of scenarios

that use Laban movement analysis is that they allow for

realistic interpretation of the human (emotional) state. Dif-

ferently from the existing studies that employ the Laban

movement analysis we choose for analysis of the qualities of

the actual movements with elaborate image processing

techniques. The analysis of the human movements with a

camera, showed different acceleration profiles of the

movement as the one that were suggested by other studies on

emotional movements that use the Laban framework, for

instance by [37]. This fact suggests that using signal analysis

can improve the designed emotional and social behaviors by

capturing features of the movement that are omitted by

observations. Indeed, when the robot behaviors for the

described game were designed purely on the recommenda-

tions of [37], two emotions were largely confused by the

participants in the user test. After the acceleration patterns of

the so created emotional movements were recorded and

compared with the emotional movement by the human

observer, there was an obvious difference in the acceleration

profiles of the misinterpreted signals. Moreover, our

approach is straightforward for the design of interactive

behaviors, since it gives a clear description of the behavior.

Last, but not least, the parallel processing framework that

we previously suggested in [43] and used in the experiments

shown in Sect. 4.2, allows for parallel tracking and inter-

acting with multiple human or robot agents, which makes

our framework especially suitable for games with multiple

human participants, and therefore for design for social and

physical play. This is a subject for our future research.
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