
 Open access  Proceedings Article  DOI:10.1109/ICDCSW.2015.21

Expressing Different Traffic Models Using the LegoTG Framework — Source link 

Genevieve Bartlett, Jelena Mirkovic

Institutions: University of Southern California

Published on: 29 Jun 2015 - International Conference on Distributed Computing Systems Workshops

Topics: Traffic generation model, Traffic shaping, Network traffic simulation, Network traffic control and Traffic classification

Related papers:

 Traffic engineering for wireless mobile networks supporting heterogeneous traffic

 Advanced generation tool of application's network traffic

 Transactional traffic generator implementation in ns-3

 How to validate traffic generators

 ATMTraP: an asynchronous transfer mode traffic and performance measurement tool

Share this paper:    

View more about this paper here: https://typeset.io/papers/expressing-different-traffic-models-using-the-legotg-
2aaln18t57

https://typeset.io/
https://www.doi.org/10.1109/ICDCSW.2015.21
https://typeset.io/papers/expressing-different-traffic-models-using-the-legotg-2aaln18t57
https://typeset.io/authors/genevieve-bartlett-55zf3zkun0
https://typeset.io/authors/jelena-mirkovic-5gguzcc8gk
https://typeset.io/institutions/university-of-southern-california-255p3f56
https://typeset.io/conferences/international-conference-on-distributed-computing-systems-1iwskmqi
https://typeset.io/topics/traffic-generation-model-2p7lv2l9
https://typeset.io/topics/traffic-shaping-kcs020am
https://typeset.io/topics/network-traffic-simulation-37vsb9me
https://typeset.io/topics/network-traffic-control-1q3dlj46
https://typeset.io/topics/traffic-classification-27vdex9e
https://typeset.io/papers/traffic-engineering-for-wireless-mobile-networks-supporting-1j3t3aqjz1
https://typeset.io/papers/advanced-generation-tool-of-application-s-network-traffic-45i0f81pzd
https://typeset.io/papers/transactional-traffic-generator-implementation-in-ns-3-3upenjpkkh
https://typeset.io/papers/how-to-validate-traffic-generators-47xpcli6d1
https://typeset.io/papers/atmtrap-an-asynchronous-transfer-mode-traffic-and-27anm5fxxd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/expressing-different-traffic-models-using-the-legotg-2aaln18t57
https://twitter.com/intent/tweet?text=Expressing%20Different%20Traffic%20Models%20Using%20the%20LegoTG%20Framework&url=https://typeset.io/papers/expressing-different-traffic-models-using-the-legotg-2aaln18t57
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/expressing-different-traffic-models-using-the-legotg-2aaln18t57
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/expressing-different-traffic-models-using-the-legotg-2aaln18t57
https://typeset.io/papers/expressing-different-traffic-models-using-the-legotg-2aaln18t57


Expressing Different Traffic Models Using The
LegoTG Framework

Genevieve Bartlett
University of Southern California/ISI

Email: bartlett@isi.edu

Jelena Mirkovic
University of Southern California/ISI

Email: mirkovic@isi.edu

Abstract—In this paper we demonstrate the ease of generat-
ing and modifying background traffic in testbed experiments
through the traffic generation framework we developed, called
LegoTG. LegoTG is a modular framework for composing custom
traffic generation. It makes it easy to combine different traffic
generators and traffic modulators (e.g., delay models), and to
port the same background traffic to different topologies. In
addition to the framework, we have developed several traffic
generation/modulation tools that can be used in LegoTG to
generate realistic and highly controllable network and transport-
level traffic. We build our demonstration around a series of
simple experiments which reinforce how much background traffic
matters in experiments and how different traffic models can
drastically affect experiment results and research conclusions.

I. INTRODUCTION

In real networks, traffic is generated through interactions of

multiple entities: humans that use applications to produce re-

quests to servers, server applications that generate replies based

on their configuration and content they are serving, network

links that have limited bandwidth and a fixed propagation delay,

routers that queue packets in limited-size queues, middle boxes

that manipulate traffic according to their policies, etc. In testbed

experiments, researchers aim to reproduce this complex process

with traffic generators. Traffic generation needs can vary greatly

from experiment to experiment, and are heavily dependent on

the experiment details and goals. These diverse needs have

led to the development of a large number of different traffic

generators (e.g., Harpoon [1], Swing [2], D-ITG [3]).

Experiment design is an iterative process, and a researcher

may not initially understand which background traffic features

matter in her testbed experiment. This means designing and

determining how to generate background traffic may become

an experiment in itself, with the researcher trying out different

traffic generators and traffic models, tuning them and customiz-

ing to her needs. Today’s traffic generators do not support

this process well. Existing generators adopt a single model

for each of the traffic generation functionalities, e.g., packet

generation, packet consumption, connection delay, and realize

it through their code. For example, Harpoon models traffic

as series of file transfers, Swing models link delay between

two end-points as a single value and realizes it separately

in each direction, D-ITG models two-way flows as two one-

way flows and lets users control many transport and network

parameters of the traffic. Fixed models make it more likely

that a researcher will need to customize traffic generator’s code

to meet her needs. But, existing traffic generators subsume a

great amount of complexity into a single code base that realizes

multiple functionalities. A large code base makes customization

very difficult. Further, a researcher may require functionalities

from different traffic generators (e.g., packet generation from

Harpoon and delay modeling from Swing). Combining pieces

of different traffic generators in a single experiment today is a

very complex and manual process.

In this paper, we demonstrate how the LegoTG traffic

generation framework helps streamline generating background

traffic with vastly different models and feature sets. It does so

thanks to its modularity—each traffic generation functionality

is a separate, independent module that can be customized,

replaced or combined with other modules – and thanks to its

extensive support for deployment, configuration and control of

traffic generation code on distributed experiments. The ease

of deploying and controlling traffic generation with LegoTG

leads to rapid prototyping of testbed experiments which rely on

background traffic. For our demonstration, we choose a simple

experiment—a comparison of two bandwidth estimation tools,

which was used in [4] to show the influence of background

traffic on research conclusions.

II. LEGOTG

In the LegoTG framework, each traffic generation func-

tionality is realized through a separate piece of code, called a

TGblock. The framework works like a child’s building block set:

TGblocks combine in different ways to achieve customizable

and composable traffic generation. This combination and

customization is achieved through LegoTG’s Orchestrator,

which sets up, configures, deploys, runs, synchronizes and stops

TGblocks in distributed experiments. The entire specification

of the traffic generation process for an experiment is in an

experiment configuration file—called an ExFile, which is an

input for the Orchestrator. The ExFile offers a convenient

capture of all the details of an experiment’s background

traffic set up, which promotes sharing and reproducibility of

experiments. LegoTG provides the following:

Self-contained traffic generation. The Orchestrator performs

all the actions required to install, set up, run, stop and test

each TGblock. It also keeps track of dependencies between

blocks and propagates outputs of some blocks into inputs of

other blocks (even across different physical nodes). Thus the



Orchestrator has full control over the entire traffic generation

process, allowing for self-contained generation.

Easy adoption of new tools. Assimilating a tool (e.g., a

new packet generator or a new delay module) into LegoTG

is a simple process. One defines a wrapper—called a block

interface file or BIF—that contains the details on how to install,

set up, run, stop and test this tool. A BIF need only be written

once for each tool integrated into LegoTG. Together, a BIF

and the tools that it wraps comprise a TGblock. BIF functions

use the Orchestrator’s API to specify interactions with remote

machines. This allows for easy portability of new tools between

experiments, and between users. BIFs are small and easy to

write, as we discuss in Section II-B. Excerpts from a 90-line

BIF which wraps tcpreplay [5] are shown in Figure 2.

Portability to different platforms. LegoTG and TGblocks

are written in Python, which is supported on a wide range

platforms. For orchestration of machines, LegoTG uses SSH—a

commonly available tool on many testbeds, and live networks.

A. The Orchestrator

Fig. 1: An example set up: TcpReplay experiment.

Figure 1 depicts the Orchestrator running a simple replay

experiment, called TcpReplay, in a typical set up—a testbed,

with a researcher controlling the experiment from her laptop

using the Orchestrator. The experiment uses three nodes: a

node running tcpreplay [6] (n1) to replay traffic from a file,

a sink node (n2) to consume this traffic, and a node running

tcpdump [5] (r) to capture replayed traffic for analysis. If a user

wants to keep the original IP addresses in the replayed traffic,

we also need virtualized IPs (IP aliasing) on traffic sources

and destinations and routes must be set up on all intermediate

nodes for these IP addresses.

The Orchestrator runs locally on the experimenter’s laptop,

and reads the local ExFile. The ExFile includes information

on which blocks are needed, where to find the BIFs for these

blocks, (e.g. in Figure 1 from a remote machine), and where

to find the software for these blocks (e.g. in Figure 1 from

two different software repositories). The Orchestrator pulls

the BIFs, and determines how to install the needed software

(e.g. tcpreplay). Once installation is done, the Orchestrator

calls setup, test and run for each of the required blocks,

configuring software according to the options set in the ExFile.

The Orchestrator works to run as many tasks as possible in

parallel across the machines in an experiment, while ensuring

that dependent blocks and their actions are run after all

BIF Example: tcpreplay
class blockInterface():
# Attributes filled in by Orchestrator at runtime:
HOST_NAME = ’’
HOST_OS = ’’
...
# Attributes which can be configured from an ExFile
replay_file = ’’
option_string = ’’
...
def install(self):
o = OrchestratorFunctions.OrchestratorFunctions()
if ’ubuntu’ in self.HOST_OS:
result = o.run("sudo apt-get install tcpreplay")

...
def start(self):
...
print("Starting replay on %s:%s"%(o.hostname(),iface))
command ="sudo tcpreplay %s -i %s %s"

%(self.option_string,iface,self.replay_file))
result = o.run_long(command)

...
def stop(self):
...
result = o.run("sudo kill -INT %s" % pid)

Fig. 2: Excerpts from a BIF

dependencies have completed. While the Orchestrator performs

coordination between blocks, tight synchronization between

TGblocks is achieved through a separate synchronization block.

B. BIF: Block Interface File

Each BIF contains a simple Python class. The functions of

this class are run by the Orchestrator at the appropriate times

and on the appropriate remote machines during an experiment.

The standard set of functions in the BIF are install, setup, test,

start and stop. Depending on the tool being wrapped, some,

none or all of these functions may be defined. Users can also

add new functions to a BIF, and execute custom functions

by calling them from an ExFile, or from the Orchestrator’s

command-line interface. Attributes listed in a BIF are set at

runtime, and can be configured from the ExFile to customize

how a block is set up and run on each machine.

Figure 2 shows excerpts of a BIF which wraps tcpreplay [6]

to replay raw packets. The BIF exposes several configurable

attributes, which can be set in an experimenter’s ExFile (eg.

the replay file name “replay file”). BIFs make use of a set of

Orchestrator Functions which implement common tasks such

as run_long(), a non-blocking call which runs a command

in a detached remote shell, or run(), a blocking call to run

the command remotely, and return results. These functions

streamline creating new BIFs for tool integration.

C. ExFiles: Experiment Configuration

The ExFile captures all the details of an experiment: where

software repositories are for TGblocks, where to install and

how to configure these TGblocks, how they are synchronized,

and all the inputs and outputs. This single point of configuration

enables easy prototyping and sharing of traffic generation

processes. Figure 3 shows an example ExFile for the TcpRe-

play experiment (Figure 1) which uses three testbed nodes,

located behind a gateway, and fetches BIFs from a remote

server. Sections in an ExFile are denoted with single brackets

([section]), and nested subsections use an increasing number

of brackets (eg. [[subsection]]).



ExFile Example: TcpReplay Experiment
1 part_allocation=/home/msmith/allocation.txt
2 biflib=bifserver:/user/share/bif/
3 tracedir=/home/msmith/traces/
4 remote_repo = someserver:/user/share/software
5 [logging]
6 log_file = /home/msmith/logs/replay.log
7 log_level = 5
8 [hosts]
9 user = msmith

10 [[testbed.net]]
11 gateway = gate.testbed.net
12 nodes = n1, r, n2
13 [[somewhere.net]]
14 nodes = someserver.subdomain, bifserver
15 key_filename=˜msmith/.ssh/bifkey
16 [groups]
17 replay_grp = n1
18 trace_grp = r
19 sink_grp = n2
20 all_testbed = replay_grp, trace_grp, sink_grp
21 [extraction]
22 ...
23 [allocation]
24 ...
25 [[divide]]
26 target = local
27 def = $biflib/alias/BIF.py
28 [[[input]]]
29 trace_file = original_trace.dump
30 [[[output]]]
31 part_allocation = $part_allocation
32 ...
33 [experiment]
34 order = alias, route, sink, trace, replay
35 actions = install, setup, run
36 [[alias]]
37 target = all
38 def = $biflib/alias/BIF.py
39 [[[input]]]
40 config = $part_allocation
41 [[[args]]]
42 script = $remote_repo/alias/alias.sh
43 [[route]]
44 target = all
45 ...
46 [[sink]]
47 target = sink_grp
48 ...
49 [[replay]]
50 target = replay_grp
51 def = $biflib/tcpreplay/BIF.py
52 [[[args]]]
53 replay_file = $tracedir/replay.pcap
54 ...
55 [[trace]]
56 target = trace_grp
57 force_quit_during = start
58 def = $biflib/tcpdump/
59 [[[output]]]
60 dumpfile = %host%-%iface%.dump
61 [[[args]]]
62 auto_determine_iface = True

Fig. 3: An example ExFile

1) Parts: The ExFile consists of five main parts: (1) globals

(lines 1–4): definition of static variables. (2) logging (lines 5–

7): optional log targets and settings. (3) hosts (starting line 8):

list of hosts in the experiment that may run a TGblock, or serve

content needed by a TGblock. This section contains any non-

standard details about how a host should be accessed via SSH

(such as via a gateway), and any environment details for a host,

e.g., which perl installation to use. (4) groups (lines 16–20):

list of hosts in various functionality groups, e.g., traffic sources,

traffic sinks, etc. (5) sections: list of phases that comprise the

experiment. Each section consists of subsections.

Our example file contains three sections: “extraction” (line

21), “resource allocation” (line 23) and “experiment” (line 33).

A section contains information on what blocks to run, and in

which order. For example, line 34 instructs the Orchestrator to

execute the blocks defined in “alias”, “route”, “sink”, “trace”

and “replay” subsections, in that order, during the “experiment”

section. Each block is described in a subsection, which specifies

how to run the block: its target (eg. line 37), the definition

for the block (path to its BIF file e.g. line 38), and its inputs,

outputs and arguments (details in Sec. II-C3). The subsection’s

name need not reflect the name of its associated TGblock.

2) Targets and Groups: A target of a TGblock is one or

more groups—a collection of hosts the TGblock will run on.

Groups are specified in the [groups] section, and provide an

easy way for users to port ExFiles and change the roles of

experiment nodes. Group definitions can be nested and a host

can belong to multiple groups or to none.

3) TGBlock Attributes: A TGblock’s attributes are specified

in three optional subsections [[[input]]] , [[[output]]] and

[[[args]]]. The Orchestrator will use attributes in the [[[input]]]

and [[[output]]] sections to determine dependency between

blocks, and attempt to move files between machines as needed.

For example, if the section for a trace block lists “output1.pcap”

under [[[output]]], the Orchestrator would look in sections

for other blocks to see if any listed “output1.pcap” in their

[[[input]]] section. If so, the Orchestrator would check that

this file existed and was moved to the machine(s) that should

run the dependent block, before it executes the block’s run

function. All other configurable options of a tool wrapped by a

BIF, which do not represent inputs and outputs for a TGblock

go into the [[[args]]] section.

4) Variable Expansion: The Orchestrator supports two types

of variable expansion: static expansion of variables local

to the ExFile and runtime expansion of variables that are

calculated by the Orchestrator each time a TGblock is run

on a host. Static expansion (variables starting with $) is

useful in porting ExFiles between environments and making

ExFiles more readable. For example, a user could specify

biflib=bifserver:/user/share/bif/ at the start of the

ExFile, and use $biflib throughout the rest of the file.

Runtime expansion (variables enclosed by %’s) is handy to

specify variables, which change based on the target. For

example, in Figure 3, line 60, the output file for the trace

block (%host%-%iface%.dump) will be replaced by the host

name and network interface name for each host/interface pair

this block is run on. This runtime expansion is handled by the

Orchestrator based on a dictionary matching a variable name

with a function that returns its expansion. The Orchestrator

includes a basic set of runtime expansion functions. Users

can extend this set by providing a custom dictionary mapping

of variable names to expansion functions. Variable expansion

and abstraction of hosts into functional groups facilitate easy

porting of ExFiles.

5) An Orchestrator Run: At the command line, a user can

specify the section (e.g. extraction) the Orchestrator starts in

and optionally, a subset of functions to run (e.g. install) from

that section. The “stop” function of each TGblock is called

when a user cancels execution or if the force_quit_during

variable (eg. line 57) is used. This variable specifies a function

that once completed by all other TGblocks, triggers calling the

stop function for the given TGblock. In Figure 3, after all the

TGblocks finish their “start” function, the Orchestrator will

call the “stop” function for the trace TGblock, stopping the

tcpdump [5] process.



D. Expressing Different Models in LegoTG

Traffic generation tools typically fit within one of two

categories—replay-based or model-based generation. The for-

mer replays traffic deterministically as specified by a traffic

log, the latter generates traffic based on a stochastic model.

Typically, in model-based generation tools, the modeling and

packet generation processes are intertwined and contained in a

single monolithic code base [2], [1]. In LegoTG, any modeling

process is separated from the generation process by having

traffic models produce a script—a text file that can be translated

and then read and realized by any number of generation tools.

In this paper we will explore two models (Swing [2] and a

model previously developed by us called TwoSew [7]). Both

models view traffic as series of application data units (ADUs)

that are sent between two communicating parties on a TCP

connection. The realizers (TGblocks that implement the packet

generator functionality) hand all data for a given ADU to

the transport layer on an experimental machine, and the TCP

stack handles its breaking into packets, and reliable delivery.

This implementation via regular TCP stack makes the packet

generation congestion responsive—if packets are dropped on a

connection, the sending rate is reduced by the TCP’s congestion

response mechanism.

Swing. Swing views all communication on a single applica-

tion port as a collection of sessions, where each session can

have multiple RREs (request-response exchanges) and each

RRE can have multiple TCP connections. TCP connections are

grouped into RREs and sessions based on the pauses between

them—those that are less than 30 seconds apart belong to the

same RRE, and RREs that are less than 300 seconds apart

belong to the same session. Within a single TCP connection,

traffic is viewed as a series of requests and responses, each

represented as a single ADU. To model traffic from a trace,

Swing first groups all TCP traffic per application port. It then

mines the number of sources for each application and for

each source it mines: the number of sessions, the inter-session

time, the number of RREs per session, the inter-RRE time, the

number of connections per RRE, the inter-connection time, the

sizes of requests and responses per connection and the inter-

request time. All Swing’s models are empirical distributions

of the parameter values from a trace.

TwoSew. TwoSew [7] gets its name from being a two-way

SEND/WAIT ADU model, and extends models used in [2], [8],

to support a wider variety of flow dynamics that are present

in realistic traffic traces.

In TwoSew, each event has the following fields: (1) actor:

the IP address of the party performing the event, (2) eventtype:

SEND or WAIT, (3) bytes: the number of bytes to send or to

wait for, (4) twait: the time to wait. For SEND events, twait

is the time measured from the previous SEND by the same

party, and it mimics waiting for application triggers, just like

inter-request time in Swing. For WAIT events, twait is the time

measured from when the party receives total of bytes from

another party, and it mimics the processing time of ADUs and

user think time. Swing does not have a corresponding model.

Another difference between TwoSew and Swing is that

TwoSew supports communication with parallel sends (a client

and server send each other data at the same time), while Swing

only supports request-response exchanges (one party is silent

while the other sends traffic). Parallel sends are present in

realistic traffic traces, especially in media and P2P traffic.

Yet another difference between TwoSew and Swing is that

Swing is a stochastic traffic generator and TwoSew performs

deterministic, congestion-responsive replay. Swing mines value

distributions for its parameters from traffic traces, and then

draws parameter values at random from these distributions

during traffic generation. TwoSew mines SEND/WAIT events

from the traffic traces, exactly as they occurred.

E. TGblocks

We have developed over twenty TGblocks, some wrapping

existing tools, and some wrapping tools we have written. Here

we describe only the blocks and functions we will need for

our experiments in Sec. III:

Aliasing & routing are supported by the ipalias and iproute

blocks, which wrap scripts with standard UNIX commands to

set up IP aliases and static routes for virtualization.

Network emulation is performed through the hostdelay

block, which emulates propagation delay per source IP, and is

implemented using the Click software router [9].

Synchronization of TGblocks is performed through the

multisynchro block. Such synchronization may be necessary,

for example, when starting generators on different nodes at

the same time. A tool may load large input from disk into

memory before beginning generation, and a user will want

to synchronize the generation after input loading on each

node is complete. TGblocks, when configured by the ExFile to

synchronize, make a blocking call to a specified synchronization

tool before starting such a synchronized task. This call

returns when all hosts in a group have been synchronized.

A synchronization block is responsible for installing this tool

and disseminating group information. Our multisynchro block

provides these functionalities.

Resource allocation is supported through the dividebyevents

and dividebypkts blocks. Each block wraps the same-named

tool, which maps IPs in an input file to physical hosts

in the experiment, and balances either send/receive events

(dividebyevents) for ADU flow-based playback or packets

(dividebypkts) for raw packet replay.

Tcpreplay. The libpcap tool tcpreplay [5] reads packets from

a trace, and sends these packets out to the network. These are

not congestive responsive flows, rather simply raw packets. The

replay block wraps tcpreplay and takes an input file describing

which hosts in the topology are assigned to replay each part

of an original trace. This part assignment comes from the

dividebypackets block, which specifies how many IPs are in

each group, and information about which nodes in a topology

are assigned by the researcher to be generators. During the

“setup” function (run on each generating node by the Orchestra),

the replay block extracts only the packets its host is assigned



to replay. The block then determines the appropriate mac

addresses in the experiment topology to use when rewriting

original trace packets to send out. This way, these packets can

be routed on the experiment network.

Mimic. The mimic block wraps our same-named tool for

deterministic ADU replay. Mimic reads TCP connection

information (start time and IPs) and SEND/WAIT events from

a text file. Mimic generates flows by creating TCP connections

and sending data to the operating system on testbed nodes at

the specified times. In our experiments we multiplex many

IP addresses on a single experimental node. Only one Mimic

process is run per machine, and it supports traffic generation

on all these virtualized IPs. The dividebyevents block helps

divvy up these virtualized IPs to balance the traffic generation

load.

Twosewextract. This tool implements extraction of TCP

connection information and SEND/WAIT events from traffic

traces, that are needed by the Twosew traffic model, and creates

scripts for Mimic to replay.

Twosew2Swing. Working with the data produced by twosewex-

tract, this tool generates the information needed to encode the

traffic model used by the Swing [2] traffic generator. The output

from this block causes mimic to generate the same traffic that

the full Swing implementation would generate.

Text2pcap. Text2pcap translates a textual representation of

packets to libpcap format. This allows users to very easily

build custom packets with desired features since this text input

is human-readable and modifying text files is supported by a

large number of tools (e.g. awk and sed).

III. EXPRESSING MODELS AND RAPID PROTOTYPING

To demonstrate how LegoTG can be used to express different

models we repeat and extend experiments previously done

by Vishwanath et al. [4]. In this prior work, the authors

demonstrate that background traffic characteristics can strongly

impact results when evaluating distributed systems. In one

of these demonstrations Vishwanath et al. compared the

accuracy of two bandwidth measurement tools—pathchirp [10]

and pathload [11]—which estimate the available end-to-end

bandwidth between two hosts. In this demonstration, the authors

examined three types of background traffic—constant bit rate

UDP traffic, UDP Poisson traffic and congestion responsive

TCP traffic replayed by the Swing traffic generator [2]. Among

other results, Vishwanath et al. find that the accuracy of both

tools degrades for more realistic and burstier traffic. Here

we will reproduce some of Vishwanath et al.’s results when

comparing constant bit rate traffic to traffic replayed according

to Swing’s model, though we use LegoTG, not the Swing

generator, to produce all our background traffic. We also extend

these prior experiments using a new traffic model (TwoSew,

Section III-D) and a combination of generators (Section III-E).

Through these small experiments we demonstrate: (1) the ease

of setting up and customizing different background traffic

using LegoTG, (2) how different background traffic influences

research conclusions from an experiment.

A. Datasets and Experiment Setup

p1

n1

n5

..
.

p2

n6

n10

..
.c1 c2r

Background Traffic
 Probe Traffic

Fig. 4: Experiment topology for demonstrations. Bandwidth
estimation tools are run on p1 and p2, while ten nodes (n1-10)
generate background traffic. The two links between c1 and r and
r and c2 are constrained to be a bottleneck, while other links
are over-provisioned. Network emulation (using Click) is set up
on c1 and c2.

For our illustration of using LegoTG, we use the DeterLab

testbed [12], and a simple dumbbell topology (Figure 4), with

10 nodes to generate traffic (n1–n10). We have two nodes (c1,

c2) to do network emulation via Click [9] but given LegoTG’s

modular nature, this emulation could easily be swapped for

other implementations (eg. ModelNet [13]). In each run of

our experiments we run one of the two bandwidth estimation

tools on nodes p1 and p2, so that the probes from these

tools go across the central link in the topology. As done

by Vishwanath et al. in [4], we constrain the central links,

and over-provision all other links, so that we are evaluating

pathchirp and pathload based on the available bandwidth of the

constrained link, congested by cross-traffic from nodes n1–10.

To examine each bandwidth estimator’s accuracy in different

congestion conditions, we modify the capacity of our central

links via DeterLab. For each type of background traffic, we

look at low (30% of bottleneck capacity), medium (50%) and

high (70%) volumes of background traffic. While we could

simply modify the amount of traffic generated to achieve this

congestion effect, this modification to the number and volume

of individual connections could impact the realism of the model

in undetermined ways.

We test each tool separately, and run different combinations

of the bottleneck link capacity, the tool being evaluated and

the type of background traffic. We run each combination of

these three factors multiple times, and evaluate each tool in

each setting across five trials. Each trial, we gather the mean

bandwidth reported by the tool over the entire trial and calculate

the percent error for each measurement the tool reported.

Pathload reports a low and high estimate of the available

bandwidth (every 5–20 seconds depending on the interaction

with background traffic). Pathchirp reports a single estimate

measurement more frequently (0.5–2 seconds). To calculate

the percent error we collect a trace of all background traffic at

node r each run and use this to calculate the actual available

bandwidth at the time interval of each reported bandwidth

estimate. In the following graphs, we show the mean bandwidth

as a percentage of link capacity as reported by each tool, and

percentage error bars, including an error bar to denote variation

in our background traffic between runs.



For background traffic based on features from a real-world

trace (as used by Swing and our TwoSew model), we use a trace

from the MAWI traffic repository [14] collected on March 1st,

2012 at 2pm. This trace contains 15 minutes of traffic collected

on a trans-Pacific link between Japan and US. Though to keep

our repeated trials short, we replay only 1 minute of traffic

from this trace. Other traces and longer durations can be as

easily replayed.

Through these experiments, we will illustrate how easy it

is to change models and modify traffic with LegoTG. We

start by modifying the ExFile example in Figure 3 to fit our

experiment topology. The experiment described in Figure 3

has only three nodes (n1, r and n2). To work with our larger

topology (Figure 4), we simply need to add the extra experiment

nodes in the [hosts] section, and assign these nodes to groups

in the [groups] section. We also write BIFs for pathchirp and

pathload to create TGblocks which will deploy and run the

sender and receiver for each of these tools and record output.
1 In the next sections, we add and remove TGBlocks from

our experiment file to achieve different background generation.

We run the [extraction] and [allocation] phases once for each

set up, and then run the [experiment] phase multiple times to

evaluate each tool in multiple (five) trials for each of three link

capacities.

B. Constant Bit Rate (CBR)

We can use any number of tools to generate constant bitrate

traffic (eg. iPerf [15]), but to illustrate how LegoTG enables

easy customization of traffic, we instead use the text2pcap

block and generate a 60 second pcap file to be replayed by

replay. First, for text2pcap’s input we write a small shell script

to output a repeating list of text lines which describe a series

of UDP packets sent by four separate IPs. All packets are

the same size and timed such that we have a constant bitrate

of 150Mbs. Figure 5 shows how we modify the ExFile in

Figure 3 to set up LegoTG to replay this text specification.

First, we add the text2pcap to our [extraction] phase and

specify the location of our text file in the arguments. The

pcap output of text2pcap will be passed on to the replay block.

In the [allocation] phase, we will use the pcap file produced

by text2pcap as input to dividebypkts, and specify we want

two groups in our allocation.txt file. The dividebypkts block

will divvy up the packets into two groups, which each have

two IPs, and we can assign each group to a testbed node. For

our generated UDP packets to be routed across our dumbbell

topology, during the [experiment] phase, we still need the route

block and we also need the alias block which will virtualize

the four IPs we specified in our packet description text file. To

avoid generating ICMP responses, we keep the sink block. Since

we now have two testbed nodes generating packets, we need

to synchronize the start of these generation processes. For this

synchronization we use multisynchro and specify which set of

hosts (“replay grp”) and which block (replay) to synchronize.

1Pathchirp also includes a master program to coordinate the sender and
receiver.

ExFile Example: TcpReplay Experiment
1 part_allocation=/home/msmith/allocation.txt
2 ...
3 [hosts]
4 ...
5 [[deterlab.isi.edu]]
6 nodes = n1, ... n10, c1, c2, r, p1, p2
7 [groups]
8 replay_grp = n1, n5
9 trace_grp = r

10 sink_grp = n1, n5
11 all_testbed = replay_grp, trace_grp, sink_grp
12 [extraction]
13 ...
14 [[text2pcap]]
15 target = local
16 def = $biflib/text2pcap/BIF.py
17 [[[input]]]
18 pkt_desc = $home/udp_150Mbs_CBR.txt
19 [[[output]]]
20 trace_file = $home/udp_150Mbs_CBR.pcap
21 [allocation]
22 ...
23 [[divide]]
24 target = local
25 def = $biflib/dividebypkts/BIF.py
26 [[[input]]]
27 trace_file = $home/udp_150Mbs_CBR.pcap
28 [[[output]]]
29 part_allocation = $part_allocation
30 ...
31 [experiment]
32 order = alias, route, sink, trace, replay, synchro
33 ...
34 [[synchro]]
35 target = replay_grp
36 def = $topdir/multisynchro/legoTGinterface.py
37 [[[args]]]
38 block_list = replay

Fig. 5: Highlighted changes to Fig. 3 to generate CBR traffic.

From the ExFile in Figure 5, LegoTG’s Orchestrator will

generate 150Mbs, UDP traffic. To test pathchirp and pathload,

we add the block for each in the [experiment] section, one

at a time, by modifying the “order = ” line to include either

our pathchirp or pathload block. We use the Deter [12] web

interface to set the bottleneck link capacity (to 500Mbs or

30% congestion for “low”, 300Mbs or 50% for “medium” and

214Mbs or 70% for “high”). For each of these three settings

we run five trials for each tool and calcuate mean and error

across these iterations.

��

���

���

���

����

������������� ������������� �������������

��
���
��
���
��
��
��
��
��
��
���

��
�

��
���

��
��
��
��
���
���

��
��
��
���

����������������
���������

������������
�������������

Fig. 6: Comparing pathload (high and low) vs. pathchirp band-
width estimate accuracy with constant bit-rate UDP background
traffic.

Figure 6 shows the comparison of pathchirp’s and pathload’s

bandwidth estimation with CBR cross-traffic. From these, we

can confirm earlier results [4], [10] that both tools are quite

close to the actual values for low/medium congestion. Our

results are more inline with [10] for the heavily utilized link,

and we did not see some of the overestimation Vishwanath et

al. observed [4]. These differences may be due to the longer

duration of trials in [4], and differences in packet coalescence

by network interface cards.



C. Using Swing’s Model

We now look at using more realistic background traffic in

evaluating pathchirp and pathload. We turn first to Swing’s

model for congestion-responsive traffic, since this was the

model of choice for Vishwanath et. al when showing how

more realistic traffic affects the performance of these bandwidth

estimation tools. We start by modifying our ExFile for CBR

traffic (Figure 5), and show relevant changes (in blue) in

(Figure 7). As described in Section II-D, LegoTG separates

the model from the realization of packet generation. To create

flows as per Swing’s model in LegoTG we first extract flow

information from our Mawi trace using twosewextract, and

translate this information into flow events that reproduce

Swing’s model using twosew2swing. We include these two

blocks in our [extraction] phase, and remove text2pcap. The

Swing traffic generator performs network emulation. To express

this functionality in LegoTG we use the hostdelay block. In

addition to extracting ADU information, twosewextract uses

RTT samples to identify network delays on a per host basis.

We feed these delays to the hostdelay block (not shown). For

the [allocation] phase instead of using dividebypkts, we turn

to dividebyevents which will group the IPs included in the

output from twosew2swing such that the events per IP group

are as balanced as possible. We then can assign these groups

to generator nodes. Since creating and tracking multiple flows

is more resource intensive than simple raw packet replay (as

done in the previous section), we group IPs into ten groups

(not just two) to enable distributing the generation task across

more testbed nodes. We define a “generators” group of ten

nodes (n1–n10). In the [experiment] phase, we drop replay

for mimic to replay congestion responsive traffic according to

Swing’s model. Mimic is both a source and sink for packets

so we no longer need the sink block. Mimic can synchronize

across multiple nodes, so we drop multisynchro.

Just as we did with CBR background traffic, we use De-

ter [12] to modify the bottleneck link capacity. The bandwidth

of the traffic replayed through Swing’s model based on our

MAWI trace has an average bandwidth of 165Mbs, so we

vary the link congestion/capacities as follows: 30%/550Mbs,

50%/330Mbs, 70%/235Mbs. As before, we run the extraction

and allocation phases once and then repeatedly run the

experiment phase to run multiple trials with the pathchirp

block and then pathload for each capacity. As Vishwanath et

al. note when using Swing cross-traffic, we find that with more

realistic background traffic both tools are less accurate than

with steady CBR traffic. We observe this holds true for all

link capacities. The first cluster of results in Figure 8 show

the results for only the highest congested link setting (70%)—

where both bandwidth estimation tools were the least accurate.

Though pathload tended to over estimate the bandwidth for

the congested link, its high estimates were more accurate than

its lower bound estimates. As with the CBR traffic, we did not

observe pathchirp overestimating, as Vishwanath et al. did, but

again, this could be a difference in hardware.

ExFile Example: TcpReplay Experiment
1 part_allocation=/home/msmith/allocation.txt
2 ...
3 [hosts]
4 ...
5 [[deterlab.isi.edu]]
6 nodes = n1, ... n10, c1, c2, r, p1, p2
7 [groups]
8 generators = n1, n2, n3, n4, n5, n6, n7, n8, n9, n10
9 delay_grp = c1 c2

10 trace_grp = r
11 all_testbed = generators, trace_grp
12 [extraction]
13 ...
14 [[twosewextract]]
15 target = local
16 def = $biflib/twosewextract/BIF.py
17 [[[input]]]
18 trace_file = $home/mawi.pcap
19 [[[output]]]
20 output_dir = $home/mawi2twosew/
21 [[twosew2swing]]
22 target = local
23 def = $biflib/twosew2swing/BIF.py
24 [[[input]]]
25 input_dir = $home/mawi2twosew/
26 [[[output]]]
27 output_dir = $home/mawi2swing/
28 [allocation]
29 ...
30 [[divide]]
31 target = local
32 def = $biflib/dividebyevents/BIF.py
33 [[[input]]]]
34 input_dir = $home/mawi2swing/
35 ...
36 [experiment]
37 order = alias, route, hostdelay, trace, mimic
38 ...
39 [[hostdelay]]
40 target = delay_grp
41 ...

Fig. 7: Highlighted changes to Fig. 5 to generate CBR traffic.

��

���

���

���

����� ������ ����������������

��
���
��
���
��
��
��
��
��
��
���

��
�

��
���

��
��
��
��
���
���

��
��
��
���

����������������
���������

������������
�������������

Fig. 8: Comparing pathload (high and low) vs. pathchirp band-
width estimate accuracy with background traffic per different
models: Swing [2] (congestion responsive), TwoSew (congestion
responsive) and TwoSew + replay of UDP and other non-
congestion responsive packets.

D. Using TwoSew’s Model

LegoTG makes it easy for us to not only repeat past

experiments, but extend these experiments by exploring other

traffic models. In Section II-D, we introduced TwoSew—a

two-way SEND/WAIT event based model for flows. Though

TwoSew shares some similarities with Swing, the traffic

TwoSew extracts and models has fairly different characteristics.

For example, Figure 9 depicts the bandwidth over time for our

original MAWI trace (shaded in gray), and LegoTG Swing-

based and TwoSew-based replayed traffic. While the overall

average bandwidth of the Swing-based (165Mbs) and TwoSew-

based (191Mbs) traffic are similar, Swing’s extraction and

stochastic modeling changes the bursty characteristics of the

original trace and smoothes some of the peaks.

To modify our previous ExFile (which replayed traffic based

on Swing’s model) to generate traffic based on TwoSew’s



model, we only need to change our [extraction] section to

only include extraction for TwoSew. After this modification,

rerunning the [extraction] and [allocation] phases will produce

the appropriate files needed by Mimic to replay traffic based

on the TwoSew model with SEND/WAIT events balanced

across generating hosts. We then repeat experiments, testing

each bandwidth estimation tool at various link congestion

points/capacities (30%/636Mbs, 50%/382Mbs, 70%/272Mbs).

The second cluster of bars in Figure 8 show the results for

only the highest congested link setting (70%). We note a slight

decrease in accuracy for both tools, when compared to the

accuracy with Swing-based background traffic. This result

further supports Vishwanath et al. conclusions that burstier

traffic degrades performance of both tools.

��

����

����

����

����

����

�� ��� ��� ��� ��� ��� ���

��
��

��������

�������������������
�����������������

������������
�����

Fig. 9: Comparison of Swing-based and TwoSew-based (with
and without additional replay of non-TCP traffic) replay of our
MAWI trace.

E. Combining Generators: TwoSew+TcpReplay

In the previous sections, we demonstrated how LegoTG

makes it easy to change how we model and replay traffic.

LegoTG also facilitates combining generators, providing flexi-

bility in how different traffic types are expressed. For example,

TwoSew and Swing focus on TCP flows which exchange data.

Real-world traffic contains much more than these flows, so

a large portion of a real-world trace is not represented in

traffic replayed by these models. If we wish to reproduce our

original MAWI trace with higher fidelity, we need to replay

these packets (largely UDP) in conjunction with the congestion-

responsive flows—a task we can carry out with our replay block.

Figure 9 shows how this synchronized combination of Mimic

replaying a TwoSew extracted model with tcpreplay matches

the original MAWI trace quite closely. To synchronize such

a combination, we disable Mimic’s internal synchronization

and configure both mimic and replay to be synchronized by

multisynchro. Additionally, we need to create a trace of all the

packets not handled by mimic as input for the replay block.

We again run multiple trials for both bandwidth estimation

tools with the combined background traffic from Mimic

replaying TwoSew-based generation, and tcpreplay handling

the remaining packets. The total average bandwidth for this

experiment is 385Mbs, so to compare with our previous

experiments we set the link capacity to 550Mbs to create a

70% congested link. In Figure 8, the third cluster of bars show

the results for pathchirp and pathload at this high congestion

level. We note that pathload appears to significantly reduce its

overestimation seen in our previous experiments. This indicates

that even with traffic models based on the same trace, results

and conclusions can be drastically different. A traffic generator

with a fixed traffic model does not offer enough customizability

to reveal the results we can find through LegoTG.

IV. CONCLUSIONS

In this paper, we demonstrated the use of LegoTG—a

framework for composable and customizable traffic genera-

tion. Through a series of small experiments evaluating two

different bandwidth estimation tools, we demonstrated how the

full generation process, from feature extraction, to resource

allocation, to actual generation can be rapidly designed and

realized through LegoTG. Extending LegoTG is as easy as

writing a few lines of code—as we did for our evaluated

bandwidth estimation tools. Changing which TGblocks we use,

we can easily express different traffic models and combine

different generation tools—all through small modifications to

a single ExFile configuration. ExFiles capture the details of

an experiment—enabling repeatability and easy sharing of

experiment set ups on testbeds.

REFERENCES

[1] J. Sommers, H. Kim, and P. Barford, “Harpoon: A flow-level traffic
generator for router and network tests,” SIGMETRICS Perform. Eval.
Rev., vol. 32, pp. 392–392, June 2004.

[2] K. V. Vishwanath and A. Vahdat, “Swing: realistic and responsive network
traffic generation,” IEEE/ACM Trans. Netw., vol. 17, pp. 712–725, June
2009.

[3] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre,
“D-itg distributed internet traffic generator,” in Proceedings of the
The Quantitative Evaluation of Systems, First International Conference,
QEST ’04, (Washington, DC, USA), pp. 316–317, IEEE Computer
Society, 2004.

[4] K. V. Vishwanath and A. Vahdat, “Evaluating distributed systems:
Does background traffic matter?,” in USENIX 2008 Annual Technical
Conference on Annual Technical Conference, ATC’08, (Berkeley, CA,
USA), pp. 227–240, USENIX Association, 2008.

[5] “Tcpdump and libpcap.” http://www.tcpdump.org/.
[6] A. Turner, “tcpreplay.” http://tcpreplay.synfin.net/.
[7] “TwoSew.” http://trac.deterlab.net/wiki/LegoTG/modules/twosew.
[8] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D.

Smith, “Tmix: a tool for generating realistic tcp application workloads
in ns-2,” SIGCOMM Comput. Commun. Rev., vol. 36, pp. 65–76, July
2006.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, pp. 263–297,
Aug. 2000.

[10] V. Ribeiro and R. Riedi, “Pathchirp: A light-weight available bandwidth
estimation tool for network-aware applications,” in Proceedings of 2003
LACSI Symposium., pp. 1–12, 2003.

[11] M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-
to-end available bandwidth,” in In Proceedings of Passive and Active
Measurements (PAM) Workshop, pp. 14–25, 2002.

[12] The DETER Project, “DETERlab.” http://www.deterlab.net/.
[13] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and

D. Becker, “Scalability and accuracy in a large-scale network emulator,”
SIGOPS Oper. Syst. Rev., vol. 36, pp. 271–284, Dec. 2002.

[14] “MAWI Working Group Traffic Archive.” http://tracer.csl.sony.co.jp/
mawi/.

[15] ESnet / Lawrence Berkleley National Laboratory, “iperf3: A TCP, UDP,
and SCTP network bandwidth measurement tool.” https://github.com/
esnet/iperf.

This material is based upon work supported by the National Science Foundation
under Grant No. 1127388.




