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Abstract

Background: Human osteosarcoma is the most common pediatric bone tumor. There is limited understanding of the 

molecular mechanisms underlying osteosarcoma oncogenesis, and a lack of good diagnostic as well as prognostic 

clinical markers for this disease. Recent discoveries have highlighted a potential role of a number of genes including: 

RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, P53, IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE, FOS, CCNB1, and CDC5L.

Methods: Our objective was to assess relative expression levels of these 16 genes as potential biomarkers of 

osteosarcoma oncogenesis and chemotherapy response in human tumors. We performed quantitative expression 

analysis in a panel of 22 human osteosarcoma tumors with differential response to chemotherapy, and 5 normal 

human osteoblasts.

Results: RECQL4, SPP1, RUNX2, and IBSP were significantly overexpressed, and DOCK5, CDKN1A, RB1, P53, and LSAMP 

showed significant loss of expression relative to normal osteoblasts. In addition to being overexpressed in 

osteosarcoma tumor samples relative to normal osteoblasts, RUNX2 was the only gene of the 16 to show significant 

overexpression in tumors that had a poor response to chemotherapy relative to good responders.

Conclusion: These data underscore the loss of tumor suppressive pathways and activation of specific oncogenic 

mechanisms associated with osteosarcoma oncogenesis, while drawing attention to the role of RUNX2 expression as a 

potential biomarker of chemotherapy failure in osteosarcoma.

Background
Osteosarcoma is the most common pediatric tumor of

the bone. Clinically, osteosarcoma has a bimodal distri-

bution, with the majority of patients developing the dis-

ease during the period of active bone growth in early

adolescence. The treatment generally involves surgery,

often involving a loss of limb, and adjuvant chemother-

apy. The best prognostic marker for osteosarcoma is the

response to chemotherapy, where good response to che-

motherapy is associated with an overall more favorable

patient outcome and survival [1,2].

At the molecular level osteosarcoma is characterized by

a high level of genomic instability, highly heterogenous

karyotypes both intra- and inter-tumor, and gross

changes in gene expression [3-9]. Human osteosarcoma

tumors often have osteoblast-like features but may vary

within a broad range of epithelial mesenchymal lineages

reflective of their poorly differentiated phenotype [10-

12]. Therefore, assessment of the molecular changes in

osteosarcoma tumors relative to normal osteoblasts can

provide important insights concerning gene expression

changes associated with both osteosarcoma oncogenesis

and with molecular alterations governing differential

clinical response to treatment.

The genetic change most commonly associated with

osteosarcoma is the loss of the TP53 tumor suppressor
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gene through either genetic mutation or loss of gene

expression [13-15]. Patients with Li-Fraumeni syndrome,

which results from loss of TP53, have a strong predisposi-

tion to developing osteosarcoma [16]. Another tumor

suppressor gene whose loss of expression is linked to

osteosarcoma is RB1 [17]. In our recent studies, we have

also shown that these genes play a central role in osteo-

sarcoma-related gene expression networks both in

human osteosarcoma cell lines [18] and tumor tissues

[19]. We used a unique bioinformatic integrative whole-

genome approach to map the genetic and epigenetic

changes in osteosarcoma tumors and to identify gene net-

works related to osteosarcoma oncogenesis. Changes that

showed the most significant associations with osteosar-

coma gene networks included: overexpression and the

most significant copy number gain of the chromosome

6p21.1 RUNX2 locus, loss of expression and genomic loss

of the DOCK5 and TNFRSF10A loci at chromosome

8p21.1-21.3, and hypomethylation, copy number gain,

and overexpression of the HISTH2BE gene at chromo-

some 1q21. Other genes that showed deregulated expres-

sion and significant contribution to osteosarcoma gene

networks included overexpressed SPP1, IBSP, BMP2, and

c-MYC, and uderexpressed CDKN1A, LSAMP, and

CCNB1. Another gene that is thought to play a role in

osteosarcoma and has been shown to be overexpressed is

the FOS proto-oncogene [20,21]. Similarly, CDC5L has

been recently proposed as the putative oncogene at the

6p21 locus in osteosarcoma [22]. Finally, a DNA repair

gene, RECQL4, has been shown to be overexpressed, and

its level of overexpression correlates with overall genomic

instability in osteosarcoma [23].

Microarray analysis and reverse-transcriptase poly-

merase chain reaction (RT-PCR) are useful for the molec-

ular classification of tumors and for deriving biological

mechanisms that underpin differential prognosis for

patients with various types of cancer, including osteosar-

coma [24-27]. The use of gene-expression profiling in

clinical practice is however limited by the large number

of genes that need to be analyzed and by the lack of

reproducibility of various array platforms and interpreta-

tive methods [28]. Quantitative RT-PCR methods can be

readily applied to RNA derived from formalin-fixed, par-

affin-embedded (FFPE) pathological specimens, are

reproducible and may be highly applicable in clinical

practice [29], particularly for a rare tumor such as osteo-

sarcoma in which access to frozen tissue is often limited.

RT-PCR can only typically be used to analyze a small

number of genes. Therefore it is important to select gene

subsets for detailed analyses in which multiple lines of

evidence implicate clinical utility. In previous studies, we

[18,19], and others [22,30,31] have performed microarray

analyses of osteosarcoma cell lines and tissue samples and

identified a series of genes with strong potential as bio-

markers with clinical utility. Thus, the objective of the

current study was to examine expression profiles of

RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, TP53,

IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE,

FOS, CCNB1, and CDC5L genes in a cohort of osteosar-

coma tumors and normal human osteoblasts. As a result,

we show that RECQL4, SPP1, RUNX2, and IBSP are sig-

nificantly overexpressed, and DOCK5, CDKN1A, RB1,

P53, and LSAMP show significant loss of expression rela-

tive to normal osteoblasts. We also show that RUNX2 was

the only gene with significant overexpression in tumors

with an unfavorable response to chemotherapy relative to

favorable responders.

Methods
Tissue samples

The collection of frozen tissue specimens (n = 15), archi-

val formalin-fixed, paraffin-embedded osteosarcoma sec-

tions (n = 7), and clinicopathological data was obtained

and handled in accordance with the Hospital for Sick

Children Research Ethics guidelines (Toronto, Canada).

This was a retrospective study of chemotherapy-naive

biopsy samples collected sequentially between 1996 and

2005, and all specimens presented a tumor content

higher than 90%. All patients were subjected during treat-

ment to standard regimens for osteosarcoma, comprising

cisplatin, doxorubicin, and methotrexate. The patient

tumor specimens were revised at the time of study by the

pathologist (P.T.). The details of the cases are presented in

Table 1. The Huvos grading system was used to rate the

level of tumor necrosis following preoperative chemo-

therapy: Grade I, little or no effect of chemotherapy

noted; Grade II, partial response to chemotherapy, with

between 50% and 90% necrosis; Grade III, greater than

90% necrosis; and Grade IV, no viable tumor cells are

apparent [32]. The good responders are patients with

necrosis ≥ 90% [33]. Normal human osteoblasts that were

isolated from surgical bone specimens from five healthy

individuals were obtained from Promocell (Heidelberg,

Germany).

RNA isolation

Total RNA from snap-frozen tissue (5 normal human

osteoblasts and 15 tumors) was extracted and purified

using the TRIzol Reagent method according to the manu-

factures protocol (Invitrogen, Carlsbad, CA, USA). FFPE

tissues (7 tumors) were deparaffinized with xylene,

washed with ETOH, and digested with a proteinase K

buffer [34]. Total RNA was extracted and purified as

above with TRIzol reagent. The RNA quality was good

for all samples as assessed by BioAnalyzer RNA 600 Nano

Kit (Agilent Technologies, Palo Alto, CA). Additionally,

the overall trends for expression in tumors relative to

normal osteoblasts were similar in frozen and FFPE sam-
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ples corroborating the quality of the extracted RNA

(Additional file 1).

Quantification of mRNA Expression

Quantitative real-time PCR (qRT-PCR) was used to

quantify mRNA expression levels of 16 genes (RUNX2,

DOCK5, TNFRS1B, HISTH2BE, P21, SSP1, P53, IBSP,

CCNB1, BMP2, LSAMP, RB1, FOS, MYC, RECQL4, and

CDC5L). Briefly, 1-2 ug of total RNA was converted to

cDNA using GeneAmp Gold RNA PCR Core Kit

(Applied Biosystems, Foster City, CA, USA), as per man-

ufacturers recommendations. Primers were designed to

specifically amplify templates of approximately 90-130

nucleotides overlapping exon boundaries of 3' terminal

exons using the Primer-Blast software http://

www.ncbi.nlm.nih.gov/tools/primer-blast/. The primers

were subsequently tested by both PCR and qRT-PCR for

specificity and single band amplification. The sequences

of the PCR primer pairs used for each gene are shown in

Additional file 2. The qRT-PCR assays for a particular

gene were undertaken at the same time for all samples

under identical conditions, in duplicate. The cycling con-

Table 1: Descriptive and histopathological features of the tumor cohort and normal osteoblasts.

Sample Huvos grade Group Age Sex Site Histology

HOB A NA Normal NA M femur osteoblasts 

normal

HOB B NA Normal NA M femur osteoblasts 

normal

HOB C NA Normal NA F femur osteoblasts 

normal

HOB D NA Normal NA M femur osteoblasts 

normal

HOB E NA Normal NA M femur osteoblasts 

normal

176 III Good 7 M humerus chondroblastic

177 III Good 10 M femur chondroblastic

186 III Good 7 F humerus osteoblastic

255 III Good 9 M tibia osteoblastic

259 III Good 7 M femur osteoblastic

260 III Good 14 F femur osteoblastic

214 IV Good 4 F femur osteoblastic

217 III Good 10 F tibia osteoblastic

220 IV Good 12 M tibia fibroblastic

223 III Good 12 F humerus osteoblastic

230 III Good 12 F fibula osteoblastic

174 II Poor 14 M femur osteoblastic

178 I Poor 5 F humerus osteoblastic

179 I Poor 11 F tibia osteoblastic

182 I Poor 13 M femur osteoblastic

183 II Poor 12 F femur poorly differ.

187 I Poor 6 F femur osteoblastic

234 II Poor 13 M femur osteoblastic

254 I Poor 7 M humerus osteoblastic

256 I Poor 15 M femur poorly differ.

261 I Poor 13 M femur osteoblastic

211 I Poor 12 F femur osteoblastic

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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ditions were as follows: 95°C for 2 min, 40 cycles of 95°C

for 15 sec and 60°C for 45 sec, with a final extension 72°C

for 5 min.

The mRNA expression levels were determined using

Platinum SYBR Green qPCR Supermix-UDG with Rox

(Invitrogen, Carlsbad, CA, USA), and the Applied Biosys-

tems Prism 7900 Sequence Detection System (PE Applied

Biosystems, Inc., Foster City, CA). The relative expression

level of the genes of interest was computed relative to the

endogenous control, phosphoglycerate kinase (PGK), to

normalize for variances in the quality of RNA and the

amount of input cDNA. Additionally, we validated our

experimental conditions by analyzing the expression of

two genes identified in our previous microarray study

[19]; A2M, the highest overexpressing gene of the set and

our positive control for the current study; and SLC14A,

the gene with the lowest expression of the set and our

negative control for the current study (Additional file 3).

The mRNA expression levels for each sample were deter-

mined as fold-change values relative to the mean baseline

expression levels for five human osteoblasts (HOBs),

using the delta delta Ct method of analysis [35].

Statistical analysis

Results of the delta-delta Ct analysis were log10 trans-

formed and imported to Partek Genomic Suite software

(Additional file 1). The tumor samples were grouped by

Huvos grade into those with favorable response to che-

motherapy (Grades I and II) and unfavorable response

(Grades III and IV); and were compared either as a group

to normal human osteoblasts (i.e. tumor vs. normal), or

to each other (i.e. unfavorable vs. favorable). Differences

in p-values between groups were obtained using the non-

parametric rank-sum Mann-Whitney test, and fold

change differences between groups were obtained using

the 1-way ANOVA tool (Additional file 4) using the

Partek Genomic Suite software. This study was designed

as a confirmatory analysis based on specific genes that

were previously shown to have significant expression

changes in steosarcoma, and thus multiple test correction

was not applicable [36]. This analysis is designed to assess

the correlation of specific gene expression as an individ-

ual parameter against the ostosarcoma phenotype, and is

not meant to assess these genes as a group, gene network,

or a multiple gene signature.

Results
The pathology of 22 osteogenic sarcomas and follow-up

biopsies were analysed to determine response to chemo-

therapy and percent of necrotic tissue. This allowed

tumors to be grouped as good responders (Huvos grades

III and IV with favorable responses to chemotherapy) and

poor responders (Huvos grades I and II with unfavorable

responses to chemotherapy) (Table 1). Eleven tumors

were identified to have 95% or more necrosis as a result of

chemotherapy and were labelled as favorable responders,

and the remaining 11 tumors were characterized as unfa-

vorable responders. The baseline control consisted of a

panel of five normal human osteoblast samples. The

majority of tumors displayed osteoblastic histology, and

most tumors and all osteoblast controls were of femoral

origin.

In order to quantitatively assess the expression of the

target genes (RECQL4, DOCK5, SPP1, RUNX2, RB1,

CDKN1A, TP53, IBSP, LSAMP, MYC, TNFRSF1B,

BMP2, HISTH2BE, FOS, CCNB1, and CDC5L) we per-

formed qRT-PCR on the tumor cohort and human osteo-

blast samples (Additional file 1). Statistical analysis of

these data revealed significant changes in a number of

genes (Table 2). Tumors displayed significant overexpres-

sion of RECQL4, SPP1, RUNX2, and IBSP genes and loss

of expression of DOCK5, CDKN1A, RB1, TP53, and

LSAMP (p < 0.05) (Figure 1). The highest level of overex-

pression was measured in SPP1 with 113-fold overexpres-

sion, while the largest reduction of expression of 36-fold

was evident in the DOCK5 gene. Comparison of tumors

with unfavorable response to ch emotherapy to favorable

responders revealed RUNX2 as the only significant gene

(p = 0.03). On average unfavorable responders to chemo-

therapy showed 3.3-fold increase in the RUNX2 gene

expression relative to favorable responders. Furthermore,

RUNX2 expression showed a trend towards overexpres-

sion going from normal osteoblasts to favorable respond-

ers to chemotherapy and then to unfavorable responders

to chemotherapy (Figure 1). The tumor sample #256 that

exhibited the worst response to chemotherapy, also

showed highest levels (113-fold) of RUNX2 overexpres-

sion (Additional file 1).

The remaining genes showed no significant changes in

expression in tumors relative to normal osteoblasts.

MYC, BMP2, and FOS show an associative trend when

overexpressed, and TNFRSF10A shows a trend in under-

expression in the tumor cohort. Notably, CDC5L showed

essentially no change in expression levels relative to nor-

mal osteoblasts.

Discussion
Transformation of normal cells and initiation of tumori-

genesis involves a combination of genetic and epigenetic

changes [37]. Progressive acquisition of such changes

ultimately results in destabilization of the genome, dereg-

ulation of gene expression pathways and activation of

oncogenic gene expression networks. Identification of

key genes, or network "nodes", will provide a more com-

prehensive understanding of tumorigenic processes, and

provide more effective diagnostic, prognostic and thera-

peutic markers. In our recent integrative epi/genomic

studies of osteosarcoma cell lines [18] and tumor
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genomes [19] we identified a number of such genes. A

survey of the current literature allowed us to augment

this list to a total of sixteen genes whose expression levels

were assessed in an expanded tumor cohort. By compar-

ing the gene expression levels to a panel of normal human

osteoblasts, it allowed us to identify changes that are

likely to be involved in osteosarcoma tumorigenesis. As a

result, we identified significant disruptions of gene

expression in nine of these genes, including loss of

expression of DOCK5, CDKN1A, RB1, TP53, and LSAMP

genes, and overexpression of RECQL4, SPP1, RUNX2,

and IBSP genes.

Our study demonstrates a significant deregulation of

proteins in osteosarcoma that are important effectors in

the cell cycle and in differentiation. Significantly, we

detected loss of TP53 expression, which may also play a

role in loss of expression of CDKN1A, which encodes the

cyclin-dependent kinase inhibitor 1A (p21) and whose

expression is activated by p53 [38]. Loss of DOCK5 may

play a similar role as it was shown recently that DOCK5

expression is essential for bone differentiation, from pre-

cursor osteoclasts [39]. Interestingly, in our recent study

we showed that DOCK5 is located in the most significant

region of copy number loss in osteosarcoma 8p21.2-p21.3

[19] along with the TNFRSF10A gene, for which we see

an overall trend of loss of expression in our current study.

TNFRSF10A is a receptor activated by tumor necrosis

factor-related apoptosis inducing ligand TNFSF10 (also

known as TRAIL), and is involved in the transduction of

cell death signal and induction of cell apoptosis, which is

mostly independent of p53 signalling [40].

A significant region of copy number loss at 3q13.31 has

been identified in our previous study [19], and has also

been observed by another group in 56% of osteosarco-

mas. This region of copy number loss was shown to cor-

relate with loss of expression and hypermethylation of the

LSAMP gene, and the authors proposed LSAMP as a

novel tumor suppressor in osteosarcoma [31]. Our data

agree with these findings and show significant loss of

expression of LSAMP in the majority of our osteosar-

coma samples. LSAMP codes for a neuronal surface gly-

coprotein found in cortical and subcortical regions of the

limbic system, but it is currently unclear how this gene

may be related to osteosarcoma tumorigenesis.

RUNX2 was one of the genes overexpressed in our set

of tissue samples, and the only gene whose overexpres-

sion was significantly related to poor response to chemo-

therapy in osteosarcomas. RUNX2 is a member of the

Runx transcription factor family consisting of RUNX1,

RUNX2, and RUNX3 which function in the development

of a number of tissues [41]. Of the three proteins, both

RUNX1 and RUNX2 have been associated with oncogen-

esis. RUNX1 and RUNX2 upregulate LGALS3 (galectin-

3) [42], a protein which suppresses anoikis and drug-

Table 2: Statistical evaluation of the tumor-specific and chemotherapy response-related gene expression signatures.

Gene Tumor vs. Normal Poor vs Good References

p-value fold change p-value fold change

RECQL4 0.00087 10.16 0.84739 -1.14 [22]*

DOCK5 0.00094 -36.81 0.86960 -1.58 [18]

SPP1 0.00180 113.97 0.57674 -1.21 [18]

RUNX2 0.00222 7.13 0.02782 3.30 [18]

RB1 0.00252 -14.87 0.14164 5.14 [16]

CDKN1A 0.00409 -8.61 0.71798 1.27 [18]

P53 0.00409 -20.63 0.45016 1.65 [12-15]

IBSP 0.03382 9.61 0.45016 -1.25 [18]

LSAMP 0.04278 -11.56 0.14164 4.42 [18]

MYC 0.05492 3.05 0.56370 1.61 [17]

TNFRSF10A 0.07359 -2.34 1.00000 -1.07 [18]

BMP2 0.10975 3.86 0.36911 2.21 [18]

HISTH2BE 0.26121 1.30 0.97381 1.10 [18]

FOS 0.33725 2.34 0.56763 2.95 [19,20]

CCNB1 0.41368 -1.20 0.46243 -1.03 [18]

CDC5L 0.90645 -1.13 0.63043 -1.98 [21]

*References are to the original papers describing the change in expression in these genes in osteosarcoma
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Figure 1 Expression analysis of osteosarcoma-related genes. qRT-PCR levels of gene expression of 16 osteosarcoma-related genes in 5 normal 

human osteoblasts and 22 human osteosarcoma samples are shown on y-axis. The samples are grouped based on the response to chemotherapy 

status on y-axis. Corresponding box and whiskers plots representing the mean, 25th and 75th percentile (boxes), and 10th and 90th percentile (whiskers) 

are also shown. From left to right, and top to bottom of the panel, the plots are placed in the order of Mann-Whitney p-value significance (tumor vs. 

normal). HOB: normal human osteoblasts; Good: Favorable response to chemotherapy (Huvos grades III and IV); Poor: Unfavorable response to che-

motherapy (Huvos grades I and II).
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induced apoptosis [43] and whose expression is corre-

lated with metastasis in osteosarcoma [44] and progres-

sion in glioma [45]. Similarly, in lymphoma,

overexpression of RUNX2 and MYC results in the "collab-

oration" of the two corresponding proteins to attenuate

apoptosis and promote proliferation [46]. In developing

osteoblasts, expression of RUNX2 normally decreases

during maturation [47], and overexpression of the gene

leads to a higher rate of bone turnover [48]. In bone met-

astatic breast cancer, RUNX2 promotes cancer cell sur-

vival and growth by activating expression of IHH and

interacts with the TGFβ/BMP signal transduction path-

way to parathyroid hormone-related protein (PTHrP)

[49]. Thus the finding of elevated expression of RUNX2 in

osteosarcomas with an unfavorable chemotherapy

response is consistent with its oncogenic potential noted

in other studies

In addition to RUNX2, three other genes, SPP1,

RECQL4, and IBSP showed significant overexpression.

SPP1 (osteopontin), like RUNX2, is a member of the

BMP-signalling protein family. It shows the highest over-

expression (113-fold) in our analysis, and has previously

been shown to be significantly overexpressed in osteosar-

coma tumors [50] and cell lines [51]. Antisense knock-

down of SPP1 RNA in osteosarcoma cells results in

inhibition of in vivo tumorigenesis in mice. These find-

ings suggest that overexpression of SPP1 plays a role in

osteosarcoma tumorigenesis, in particular, in cells lacking

expression of cell cycle regulators and differentiation-

related genes, as discussed earlier. RECQL4 is a gene

whose protein product is involved in repair of DNA dou-

ble stranded breaks and deregulation of its expression

was recently shown to be strongly correlated with

genomic instability in osteosarcoma [23]. Our data are

consistent with this in further reaffirming the association

of RECQL4 overexpression with osteosarcoma tumori-

genesis. The final gene which showed significant overex-

pression in tumors relative to normal cells, IBSP, also

known as bone sialoprotein, is a marker of terminal dif-

ferentiation of bone. In normal osteoblasts RUNX2 and

HDAC3 have been shown to suppress IBSP, and upon ter-

minal differentiation loss, of RUNX2 expression dere-

presses IBSP and allows for terminal differentiation [52].

In tumors, however, although IBSP shows significant

overexpression relative to osteoblasts, concurrent overex-

pression of RUNX2 indicates possible disruption of the

terminal differentiation process.

By comparing our tumor panel, the majority of which

(17/22) are the osteoblastic histological subtype, we iden-

tified gene expression changes associated with osteosar-

coma oncogenesis. However, a possible limitation of this

study is that some of the genetic associations described

may not be present in osteosarcoma lineages that arise

from more primitive cells of origin, including mesenchy-

mal precursors [53-55]. In addition to the associations of

gene expression with oncogenesis, we showed that the

RUNX2 gene displays significant increase in expression in

tumors with poor response to chemotherapy relative to

the good responders. Our results may be reflective of

either increased levels of gene expression in individual

tumor cells during disease progression, or alternatively an

increased proportion of cell lineages with RUNX2 expres-

sion in these genetically highly heterogenous cells. Both

scenarios would allow selective advantage to the evolving

cell lineages during tumorigenesis. Detailed immunohis-

tochemical and imaging experiments will be required to

further delineate these possibilities. It also remains to be

determined if this correlation is evident at the protein

level, and if so, RUNX2 may be a good histological

marker for chemotherapy response, which is currently

the best predictor of overall outcome in patients with

osteosarcoma.

Conclusion
These data underscore the loss of tumor suppressive

pathways the deregulation of cell cycle control proteins,

and the activation of specific oncogenic mechanisms

associated with osteosarcoma oncogenesis. Our results

also draw attention to the role of RUNX2 expression as a

potential biomarker of chemotherapy failure in osteosar-

coma.
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