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Abstract

Background: We have recently discovered that human type 12 17β-HSD (h17β-HSD12), a

homolog of type 3 17β-HSD, is a new estrogen-specific 17β-hydroxysteroid dehydrogenase

involved in the production of estradiol (E2). To further characterize this estradiol-producing

enzyme, we have isolated the corresponding cDNA in the cynomolgus monkey (Macaca

fascicularis), characterized its enzymatic activities and performed cellular localization using in situ

hybridization.

Results: Using HEK-293 cells stably expressing Macaca fascicularis type 12 17β-HSD (mf17β-

HSD12), we have found that the mf17β-HSD12 catalyzes efficiently and selectively the

transformation of El into E2, in analogy with the h17β-HSD12. We have also quantified the mf17β-

HSD12 mRNA expression levels in a series of Macaca fascicularis tissues using Quantitative

RealTime PCR. The Macaca fascicularis 17β-HSD12 mRNA is widely expressed with the highest

levels tissues found in the cerebellum, spleen and adrenal with moderate level observed in all the

other examined, namely the testis, ovary, cerebral cortex, liver, heart, prostate, mammary gland,

myometrium, endometrium, skin, muscle and pancreas. To gain knowledge about the cellular

localization of the mf17β-HSD12 mRNA expression, we performed in situ hybridization using a 35S-

labeled cRNA probe. Strong labeling was observed in epithelial cells and stromal cells of the

mammary gland. In the uterus, the labeling is detected in epithelial cells and stromal cells of the

endometrium.

Conclusion: These results strongly suggest that the Macaca fascicularis 17β-HSD12 is an essential

partner of aromatase in the biosynthesis of estradiol (E2). It strongly suggests that in the estradiol

biosynthesis pathway, the step of 17-ketoreduction comes after the step of the aromatization (the

aromatization of 4-androstendione to estrone followed by the conversion of estrone into estradiol

by estrogen specific l7β-HSDs) which is in contrast with the hypothesis suggesting that 4-

androstenedione is converted to testosterone followed by the aromatization of testosterone.
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Background
Seventeen β-hydroxysteroid dehydrogenases (17β-HSDs)
are crucial enzymes involved in the formation of active sex
steroids by the transformation of a keto into a hydroxyl-
group at position 17. The best known 17β-HSD is type 3
17β-HSD (17β-HSD3) that is expressed in the testis where
it transforms androstenedione (4-dione) into testosterone
(T). Its deficiency is the cause of the well known male
pseudohermaphroditism [4,5]. This enzyme is inactive for
C18-steroids. An additional enzyme able to catalyze the
transformation of 4-dione into T is type 5 17β-HSD [6,7].
Since 17β-HSD3 is not expressed in the ovary while 17β-
HSD5 is present [8,9], and women deficient in 17β-HSD3
are asymptomatic [10], it is likely that 17β-HSD5 is the
enzyme responsible for the formation of active androgens
in the human ovary [11].

On the other hand, the most studied 17β-HSD is type 1
17β-HSD, probably because it is expressed abundantly in
the placenta. In fact, 17β-HSD1 was the first 17β-HSD to
be purified [12], cloned [13,14] and crystallized [15]. In
intact cell in culture, the enzyme catalyzes almost exclu-
sively the transformation of estrone (El) into estradiol
(E2) [11,16]. The abundant co-expression of this estro-
genic 17β-HSD as well as aromatase in the placenta sug-
gests that the aromatization step precedes the 17β-HSDs
step. This proposed mechanism is also in agreement with
a higher affinity of aromatase for 4-dione than for testo-
sterone. Other 17β-HSDs are known to be able to metab-
olize estrogens. Thus types 7 and 12 17β-HSDs catalyze
the formation of E2, types 2, 4, and 8 17β-HSDs that pre-
ferred NAD+ as cofactor are E2 inactivating enzymes [11].

Up to now, at least twelve isoforms of 17β-HSDs have
been identified and some members of the 17β-HSDs fam-
ily have been shown multifunctionality associated with
cancer, metabolism diseases and neurodegenerative disor-
ders, in addition to their roles in steroid metabolism [1-
3]. Most of 17β-HSDs belong to the short-chain dehydro-
genase reductase (SDR) superfamily except the type 5 17β-
HSD, which belongs to the aldo-keto reductase (AKR)
superfamily. A particular property of members of 17β-
HSDs family is that they possess very different primary
structures (an average of only approximately 20% amino
acid identity) despite being highly specific for substrates
having closely related structures. Additional regulation of
17β-HSDs activity is achieved by the specificity of tissue
distribution of these 17β-HSDs, thus permitting each tis-
sue to control intracellular steroid levels according to local
needs. Such local intracellular formation of steroids in
peripheral target tissues from the adrenal precursor dehy-
droepiandrosterone (DHEA) has been called intracrinol-
ogy [17,18].

Recently, we have found that the h17β-HSD12, a
homolog of type 3 17β-HSD, selectively catalyzes the for-
mation of E2 [19]. To gain more knowledge about this
potentially very important enzyme, we have isolated a
corresponding enzyme in the cynomolgus monkey
(Macaca fascicularis), and characterized its substrate specif-
icity, mRNA tissue distribution and cellular localization.

Results
Sequence of Maraca fascicularis 17β-HSD12

We have isolated a coding sequence of Macaca fascicularis
17β-HSD12 (GenBank accession number AB169576)
using Macaca fascicularis liver mRNA and PCR amplifica-
tion. As illustrated in Fig. 1, amino acid sequence align-
ment of 17β-HSD12 between Macaca fascicularis and
other species shows that the Macaca fascicularis sequence
possesses 95%, 82%, 81%, 78% and 66% identity with
human, cow, mouse, rat, and duck, respectively. In addi-
tion, this enzyme contains the conserved signatures of
SDR family members, namely the putative YXXXK active
center and the modified GXXXGXL cofactor binding site.

Substrate specificity of Macaca fascicularis 17β-HSD12

We used the HEK-293 cells stably expressing mf17β-
HSD12 to determine the substrate specificity of the
enzyme in intact cells in culture without addition of exog-
enous cofactor. As shown in Fig. 2, in analogy with the
h17β-HSD12, the mf17β-HSD12 catalyzes predominately
the transformation of El into E2 while the transformation
of 4-dione into T, E2 into El and T into 4-dione are not sig-
nificant. Fig. 3 shows that the conversion of El into E2
increases proportionally with the incubation, thus indi-
cating that our incubation conditions are appropriate and
that time is a limiting step even after 50 h of incubation.

Tissue distribution of Macaca fascicularis 17β-HSD12

Using quantitative RealTime PCR, we examined the
expressions levesl and tissue distribution of 17β-HSD12
mRNA in 16 Macaca fascicularis tissues, namely the adre-
nal gland, ovary, mammary gland, endometrium, myo-
metrium, cerebral cortex, cerebellum, liver, pancreas,
heart, testis, prostate, kidney, skin, muscle and spleen. As
illustrated in Fig. 4, the mf17β-HSD12 is ubiquitously
expressed with the highest level in the spleen, adrenal
gland and cerebellum, and moderate levels all the other
tissues examined. Macaca fascicularis 17β-HSD12, which is
highly and widely expressed in gonadal as well as extrago-
nadal tissues is most probably a crucial enzyme involved
in the biosynthesis of estradiol.

Cell-specific distribution of Macaca fascicularis 17β-

HSD12

In order to obtain information about the cellular localiza-
tion of 17β-HSD12 in estrogen-sensitive tissues, we per-
formed in situ hybridization on the adult female Macaca

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB169576
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fascicularis mammary gland and uterus using a 35S-labeled
probe. The labelling was detected on both the epithelial
cells of the alveoli and the stromal cells of the mammary
gland (Fig. 5A). In the uterus, the hybridization signal was
seen in the epithelial cells and in the stromal cells of the
endometrium (Fig. 5C). In the uterine cervix, 17β-HSD12
mRNA was observed in the squamous epithelium and
stromal cells (Fig. 5E). When the radiolabeled sense
probes were used for hybridization in consecutive sec-
tions, only weak and diffuse labelling corresponding to
background could be detected in the mammary gland,
uterus and uterine cervix (Fig. 5B, D and 5F).

Discussion
In this report, we have shown that Macaca fascicularis 17β-
HSD12 catalyzes selectively the transformation of El into
E2, similar to that has been found for the corresponding

human enzyme. The present data strongly suggest that
17β-HSD12 is most likely the key enzyme controlling the
local conversion of El (low estrogenic activity) into E2
(the most potent natural estrogen). It is noteworthy that
El could come from both sources, the local transforma-
tion of the precursor 4-dione by aromatase or from the cir-
culation under the form of El and El-S [20]. It is well
recognized that most of peripheral cells possess all the
necessary enzymatic machinery to transform the adrenal
androgen precursors into E2 [17,18]. Cells that possess
steroid sulfatase could use the sulfated precursor DHEA-S
and El-S to produce E2.

The mRNA tissue distribution analysis performed with
quantitative RealTime PCR shows that the enzyme is dis-
tributed ubiquitously, thus suggesting its important role
in the production of estradiol in a large number and pos-

Alignment of the amino acid sequence of 17β-HSD12 of Macaca fascicularis and other speciesFigure 1
Alignment of the amino acid sequence of 17β-HSD12 of Macaca fascicularis and other species. The deduced 
amino acid sequence of Macaca fascicularis 17β-HSD12 was aligned with the human, cow, mouse, rat and duck counterparts. 
The amino acid sequences are presented in the convention single letter code and numbered on the right. Dashes (-) and aster-
isks (*) represent identical and missing amino acid residues. The conserved sequences for co-factor binding and active sites are 
underlined.
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sibly all peripheral target tissues. In contrast 17β-HSD1 is
more selectively expressed in the placenta [21] and in
granulosa cells of the ovary [22,23]. The highest mRNA
expression levels have been found in the cerebellum and
spleen suggesting that this enzyme could play an impor-
tant role in these tissues. However, in the tissues where a
lower mRNA expression levels is observed, it could not
mean that the role exerted by the enzyme is not impor-
tant, but it reflects essentially the relatively fewer amount
of cells expressing this enzyme compare to the total cells
in the tissue.

Cloning of the cDNA of mf17β-HSD12 has allowed us to
study the cellular localization of the enzyme in the mam-
mary gland and uterus. In the mammary gland, 17β-
HSD12 mRNA expression was detected in both epithelial
and stromal cells. This is in agreement with the action of
estrogens in the development and proliferation of alveoli
and lactogenesis in the mammary gland. In the uterus, the
enzyme was found in the both epithelial cells and stromal
cells of the endometrium. These results strongly suggest
that 17β-HSD12 is directly involved in the local synthesis
of E2 in the estrogen target tissues.

Although twelve types of 17β-HSDs have been identified
based on their specificity to catalyze the interconversion
of the 17β-ketosteroids and 17β-hydroxysteroids, and
named according to the chronological order of their char-
acterization, the true physiological role of many of these
enzymes remains to be determined. For example, the phe-
notype of Hsdl7b2 knockout mice is not well explained
by the known activities of 17β-HSD2 on sex steroids [24].
On the other hand, 17β-HSD4, which was originally iden-
tified as the estradiol-inactiving dehydrogenasse from
porcine endometrium [25,26], mainly participates in the
β-oxidation of fatty acids [27]. Accordingly, mutations of
the 17β-HSD4 gene lead to severe developmental defects
resembling Zellweger syndrome [28], a rare hereditary
disorder affecting infants, and usually results in death
associated with unusual problems in prenatal develop-
ment, an enlarged liver, high levels of iron and copper in
the blood, and vision disturbances. Type 6 17β-HSD, an
enzyme observed in the rat, most probably corresponds to
type 9 17β-HSD in the mouse that catalyses the transfor-
mation of 5α-androstane-3α, 17β-diol (3α-diol) into
androsterone (ADT). The corresponding human ortholog
is not yet identified. On the other hand, type 7 17β-HSD

Determination of the enzymatic activities of Macaca fascicularis 17β-HSD12 in intact transfected 293 cells in cultureFigure 2
Determination of the enzymatic activities of Macaca fascicularis 17β-HSD12 in intact transfected 293 cells in 
culture. Cells stably transfected with mf17β-HSD12 were seeded into 6-well plates at a density of 5 × 105 cells/well. 0.1 µM of 
[14C]-labeled El, E2, 4-dione, and T were added to freshly changed culture medium. Non transfected HEK-293 cells were used 
as controls. After 20 h of incubation, the media were collected and extracted. The data are expressed as a mean ± SEM of trip-
licate measurements. ** indicates significantly different from non transfected HEK-293 cells at p < 0.01.
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is presently best characterized as a 3β-reductase involved
in cholesterol metabolism [29], and the role of type 8
17β-HSD as an estradiol inactivating enzyme [11,30,31] is
still not well defined. Types 10 and 11 l7β-HSDs metabo-
lize 5α-reduced steroids but their involvement in the
metabolism of active steroids is unclear. Type 12 17β-
HSD was identified as 3-ketoacyl-CoA reductase, involved
in long chain fatty acid elongation with a very weak activ-
ity [32]. Recently, we have found that the H17β-HSD12
catalyzes selectively the formation of E2 [19].

Overall, among the twelve enzymes identified as l7β-
HSDs, only four are most likely working as l7β-HSDs syn-
thesizing active steroids: the types 3 and 5 l7β-HSDs are
involved in the transformation of C19-steroids (4-dione
into T) while types 1 and 12 are involved in the conver-
sion of El into E2. The selective activity of type 12 17β-
HSD for the transformation of El into E2 in the Macaca
fascicularis (this report) as well as the high mRNA expres-
sion levels of this enzyme in estrogen-sensitive tissues,
including the mammary gland and uterus, strongly sug-
gest that this enzyme is a crucial partner of aromatase in
the biosynthesis of estradiol. Indeed, the presence of
estrogen specific 17β-HSDs (types 1, 7 and 12 l7β-HSDs)
catalyzing the transformation of El to E2 and the higher
affinity of aromatase for 4-dione than for T are strongly in

favor of the pathway in which 4-dione is converted into El
by aromatase followed by the transformation of El into E2
by estrogen specific l7β-HSDs. This pathway is in contrast
with a generally believed pathway in which 4-dione is
transformed to T by l7β-HSDs followed by the aromatiza-
tion of T into E2. It strongly suggests that in the estradiol
biosynthesis pathway, the step of 17-ketoreduction comes
after the step of the aromatization (the aromatization of
4-androstendione to estrone followed by the conversion
of estrone into estradiol by estrogen specific l7β-HSDs).
The higher affinity of aromatase for 4-androstenedione
than for testosterone seems to agree with the present data.

Conclusion
These results strongly suggest that the Macaca fascicularis
17β-HSD12 is an essential partner of aromatase in the
biosynthesis of estradiol (E2). It strongly suggests that in
the estradiol biosynthesis pathway, the step of 17-ketore-
duction comes after the step of the aromatization (the aro-
matization of 4-androstendione to estrone followed by
the conversion of estrone into estradiol by estrogen spe-
cific l7β-HSDs) which is in contrast with the hypothesis
suggesting that 4-androstenedione is converted to testo-
sterone followed by the aromatization of testosterone.

Methods
Experimental animals

The maintenance and handling of experimental animals
followed the National Institute of Health Guidelines for
the use and care of animals and was done under approval
and supervision of the Comité de Protection des Animaux
du CHUQ (CPAC). The tissues used were harvested from
euthanized normal female and male cynomolgus mon-
keys, frozen in liquid nitrogen and stored at -70°C until
analysis.

RNA isolation and cDNA synthesis

Total RNA was extracted from the Macaca fascicularis adre-
nal gland, ovary, mammary gland, endometrium, myo-
metrium, cerebral cortex, cerebellum, liver, pancreas,
heart, testis, prostate, kidney, skin, muscle and spleen by
using Tri-Reagent RNA/DNA/Protein Isolation Reagent
(Molecular Research Center Inc., Cincinnati, OH, USA).
The extraction was performed according to the manufac-
turer's directions. Quantification was made by optical
density at 260 nm. 5.0 µg of total RNA was converted to
cDNA by incubation at 42°C for 1 h with 200 U of Super-
script II RNase H-RT (Invitrogen, Burlington, Ont. Can-
ada), 300 ng of oligo-dT18, 500 µM deoxynucleotide
triphosphate, 10 mM dithiothreitol, and 34 U of porcine
RNase inhibitor (Amersham Pharmacia) in a final volume
of 50 µl. The resulting products were then treated with
RNase A for 30 min at 37°C and purified thereafter with
Qiaquick PCR purification kit (QIAGEN, Mississauga,
Ontario).

El to E2 conversion rate of Macaca fascicularis 17β-HSD12Figure 3
El to E2 conversion rate of Macaca fascicularis 17β-
HSD12. HEK-293 cells stably transfected with mf17β-
HSD12 were incubated with 0.1 µM [14C]-labeled El. After 
incubation for 8, 12, 24 and 48 h, the media were collected 
and extracted. Non transfected HEK-293 cells were used as 
control. (---x---) represent values over control. The data are 
expressed as means of duplicate measurements.
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Isolation of Macaca fascicularis 17β-HSD12 cDNA

Since ortholog genes between the human and monkey
possess generally more than 90–95% identity, we
designed oligonucleotide primers based on the human
sequence before the initiation codon (forward primer 5'-
GTA-GTG-AGG-CCT-AGT-GGA-AAG-CCA-TG-3') and
after stop codon (reverse primer 5'-CAA-GTT-ACA-ATG-
CAG-TTA-TCA-TGC-3'). The fragment containing the
entire mf 17β-HSD12 open reading frame was obtained
by reverse transcriptase PCR (RT-PCR) amplification from
Macaca fascucularis liver mRNA. The resulting PCR prod-

uct was directly subcloned into a Zero Blunt TOPO vector
(Invitrogen, Burlington, Ont. Canada). Plasmid DNA was
prepared using the Qiagen Mega kit (Qiagen, Chatsworth,
CA, USA) following the manufacturer's protocol. The
integrity of the construct was verified by automated dide-
oxynucleotide DNA sequencing using the Big Dye Termi-
nator v3.1 Cycle Sequencing (ABI Prism, applied
biosystem, Forster city, CA). The cDNA fragment was fur-
ther transferred into PCMVneo expression vector in order
to prepare stable transfected HEK-293 cells for activity
characterization.

mRNA expression levels of Macaca fascicularis 17β-HSD12 measured by Q_RTPCRFigure 4
mRNA expression levels of Macaca fascicularis 17β-HSD12 measured by Q_RTPCR. mRNA expression levels were 
quantified in the adrenal gland, ovary, mammary gland, endometrium, myometrium, cerebral cortex, cerebellum, liver, pan-
creas, heart, testis, prostate, kidney, skin, muscle and spleen by Quantitative RTPCR (Q_RTPCR). The reaction was performed 
using the amount of cDNA corresponding to 30 ng of initial total RNA following the manufacturer's protocol. All sample were 
run in duplicates and quantification of each target gene expression was done two or three times. Results are expressed as 
mean ± SEM.
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Enzymatic activity was determined in intact HEK-293 cells 

stably expressing Macaca fascicularis 17β-HSD12

Stable expression of mf17β-HSD12 in transformed
human embryonic kidney cells (HEK-293) was performed

as previously described [16]. Enzymatic activities were
determined with intact cells stably expressing mf17β-
HSD12 in culture. Briefly, cells were plated in 6-well
plates to approximately 5 × 105/well in MEM. 0.1 µM of
the [14C]-labeled steroids (Dupont Inc., Mississauga, Ont.
Canada) were added to freshly changed culture medium
and incubated for 20 h. Mock transfection was done with
the plasmid DNA of the pCMVneo vector. After incuba-
tion, the steroids were extracted twice with 2 ml of ether.
The organic phases were then pooled and evaporated to
dryness. The steroids were dissolved in 50 µL of dichlo-
romethane, applied to Silica gel 60 thin layer chromatog-
raphy (TLC) plates (Merck, Darmstadt, Germany), before
separation by migration in the toluene/acetone (4:1) sol-
vent system. Substrates and metabolites were identified by
comparison with reference steroids, revealed by autoradi-
ography and quantified using the Phospholmager System
(Molecular Dynamics, Inc., Sunnyvale, CA).

mRNA expression by Quantitative RealTime PCR 

(Q_RTPCR)

Macaca fascicularis 17β-HSD12 was amplified using the
gene-specific primers: 5'-CAG-GCT-TGG-CTG-GTC-TTG-
AA-3' and 5'-CAC-CAT-GCC-AGG-CAG-TAC-CAA-3'.
cDNA corresponding to 30 ng of the initial total RNA was
used to perform fluorescent-based RealTime PCR quanti-
fication using the LightCycler RealTime PCR apparatus
(Hoffman-La Roche Inc. Nutley, NJ) as described [33].
The conditions for the PCR reactions were: denaturation
at 94°C for 15 sec, annealing at 50°C for 10 sec and elon-
gation at 72°C for 35 sec. The data were normalized using
the mRNA expression levels of the Macaca fascicularis
housekeeping gene glucose-6-phosphate dehydrogenase
(G6PDH) as internal standard. The mRNA expression lev-
els are expressed as number of copies/µg total RNA using
a standard curve of Cp versus logarithm of the quantity.
The standard curve is established using known cDNA
amounts of 0, 102, 103, 104, 105 and 106 copies of cDNA
of glucose-6-phosphate dehydrogenase (forward primer:
5'-GGC-TGG-AAC-CGC-ATC-ATT-GTG-GA-3' and reverse
primer: 5'-GGC-GAT-GTT-GTC-CCG-GTT-CCA-GA-3')
and a LightCycler 3.5 program provided by the manufac-
turer (Roche Inc., Nutley, NJ). All sample were run in
duplicates and quantification of each target gene expres-
sion was done two or three times. Results are expressed as
mean ± SEM.

In situ hybridization

Recombinant plasmid pCRII-TOPO (Invitrogen, Burling-
ton, Ont. Canada), containing a 331 bp Macaca fascicularis
17β-HSD12 fragment located at position 1–330 bp down-
stream from the ATG start codon was obtained by ampli-
fication using polymerase chain reaction. In situ
hybridization with the antisense and sense 35S-labeled
cRNA probes was performed as previously described

Cell-type specific expression of 17β-HSD12 mRNA in the Macaca fascicularis mammary gland (A-B) and uterus (C-F) revealed by in situ hybridizationFigure 5
Cell-type specific expression of 17β-HSD12 mRNA in 
the Macaca fascicularis mammary gland (A-B) and 
uterus (C-F) revealed by in situ hybridization. (A) Sec-
tion through the mammary gland of the female Macaca fascic-
ularis. Labeling can be observed in the epithelial cells of 
alveoli (E) as well as in the stromal cells (S). (B) Control sec-
tion hybridized with the sense probe. Only a diffuse back-
ground is observed. Exposure, 36 days, × 600. (C) Section 
through the uterus Macaca fascicularis. Labeling can be 
detected in both epithelial cells (E) and stromal cells (S) of 
the endometrium. (E) Section through the uterine cervix, 
labeling can be seen in squamous epithelial cells (E) and stro-
mal cells (S). Control section hybridized with the sense 
probe (D, F). Diffuse background can be observed (D). Only 
a few disperse silver grain are present in the uterine cervix 
(F). Exposure, 27 days, × 600.
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[34,35]. After hybridization, the sections were dehydrated
and coated with liquid photographic emulsion (Kodak-
NTB2; diluted 1:1 with water). After 27–36 days of expo-
sure, the sections were processed and counterstained with
haematoxylin.

Statistics

Results are given as mean ± SEM of two or three experi-
ments. Data were analyzed by student's t-test for two col-
umns. The differences was considered significant if p <
0.05.

Abbreviations
17β-HSD 17β-hydroxysteroid dehydrogenase

AKR aldo-keto reductase

SDR short-chain dehydrogenase reductase

G6PDH glucose-6-phosphate dehydrogenase

HEK-293 human embryonic kidney 293 cell

PCR polymerase chain reaction

Q_RTPCR quantitative RealTime PCR

TLC thin layer chromatography

3α-diol 5α-androstane-3α, 17β-diol

4-dione androstenedione

ADT androsterone

DHEA dehydroepiandrosterone

DHEA-S dehydroepiandrosterone sulfate

El estrone

El-S estrone sulfate

E2 estradiol

T testosterone
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