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partition luminal-A breast tumors into
distinct prognostic subgroups
Dvir Netanely1, Ayelet Avraham2, Adit Ben-Baruch3, Ella Evron2 and Ron Shamir1*

Abstract

Background: Breast cancer is a heterogeneous disease comprising several biologically different types, exhibiting

diverse responses to treatment. In the past years, gene expression profiling has led to definition of several “intrinsic

subtypes” of breast cancer (basal-like, HER2-enriched, luminal-A, luminal-B and normal-like), and microarray based

predictors such as PAM50 have been developed. Despite their advantage over traditional histopathological

classification, precise identification of breast cancer subtypes, especially within the largest and highly variable

luminal-A class, remains a challenge. In this study, we revisited the molecular classification of breast tumors using

both expression and methylation data obtained from The Cancer Genome Atlas (TCGA).

Methods: Unsupervised clustering was applied on 1148 and 679 breast cancer samples using RNA-Seq and DNA

methylation data, respectively. Clusters were evaluated using clinical information and by comparison to PAM50

subtypes. Differentially expressed genes and differentially methylated CpGs were tested for enrichment using

various annotation sets. Survival analysis was conducted on the identified clusters using the log-rank test and Cox

proportional hazards model.

Results: The clusters in both expression and methylation datasets had only moderate agreement with PAM50 calls,

while our partitioning of the luminal samples had better five-year prognostic value than the luminal-A/luminal-B

assignment as called by PAM50. Our analysis partitioned the expression profiles of the luminal-A samples into two

biologically distinct subgroups exhibiting differential expression of immune-related genes, with one subgroup

carrying significantly higher risk for five-year recurrence. Analysis of the luminal-A samples using methylation data

identified a cluster of patients with poorer survival, characterized by distinct hyper-methylation of developmental

genes. Cox multivariate survival analysis confirmed the prognostic significance of the two partitions after

adjustment for commonly used factors such as age and pathological stage.

Conclusions: Modern genomic datasets reveal large heterogeneity among luminal breast tumors. Our analysis of

these data provides two prognostic gene sets that dissect and explain tumor variability within the luminal-A

subgroup, thus, contributing to the advancement of subtype-specific diagnosis and treatment.
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Background
Breast cancer is a heterogeneous disease exhibiting high

tumor variability in terms of the underlying biological

mechanisms, response to treatment, and overall survival

rate [1]. Accurate identification of the unique biological

features characterizing each subtype is pivotal for im-

proving our understanding of the disease, identifying

subtype-specific biomarkers, targeted drug development,

and better prediction of response to treatment.

Originally, therapeutic decisions in breast cancer

were guided by clinicopathologic parameters like

tumor size, presence of lymph-node/remote metasta-

ses, and histological grade. In addition, the status of three

immunohistochemistry biomarkers - estrogen receptor

(ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2/ERBB2) allowed the de-

velopment of targeted therapies and proved predictive of

treatment response [2].

With the emergence of global molecular profiling tech-

niques, large genomic datasets became available for subtype

discovery using unsupervised algorithms. By this method-

ology, breast samples are partitioned into subgroups using

clustering algorithms, such as hierarchical clustering [3] or

K-Means, and then subgroup significance is evaluated using

the clinical data associated with the samples.

Initially, microarray data were used to define four mo-

lecular breast cancer subtypes (basal-like, HER2-enriched,

luminal and normal-like) based on characteristic gene ex-

pression signatures in correlation with clinical data [4].

These molecular subtypes correlated reasonably well with

the immunohistochemical biomarker-based classification.

Thus, basal-like samples are mostly triple-negative (ER-/

PR-/Her2-), luminal samples are mostly ER+, and HER2-

enriched tumors are characterized by amplification and

high expression of the HER2/ERBB2 gene [5, 6].

Subsequent analysis conducted on a larger dataset sepa-

rated the luminal subtype into two distinct subgroups

named luminal-A and luminal-B. Luminal-B tumors have

higher expression of proliferation genes including Ki-67,

and confer worse prognosis [7–9]. Moreover, luminal-B

tumors respond better to chemotherapy, while patients

with luminal-A cancer gain most benefit from antiestro-

gen treatment [10].

As the partitioning of breast tumors into five molecu-

lar subtypes has gained acceptance and popularity, sev-

eral expression-based predictors have been developed. A

central predictor is PAM50, which maps a tumor sample

to one of the five subtypes based on the gene expression

pattern of 50 genes [11]. Though expected to be more

robust than traditional classification systems that rely

only on a few biomarkers, the separation between

luminal-A and luminal-B by the various predictors is not

consistent, suggesting that these molecular subtypes may

not represent distinct coherent sample groups [12].

Other attempts to classify breast tumors were based

on other profiling technologies such as miRNA arrays

[13, 14], copy number variations [15] or a combination

of several different technologies [16, 17]. The various

studies have different levels of agreement with the

expression-based molecular subtypes, but taken together

they strongly indicate the existence of additional, subtler

subtypes than the PAM50 subtypes [18].

Epigenetic modifications such as DNA methylation ar-

rays, which measure the methylation status of thousands

of CpG sites across the genome [19], were also used for

breast cancer classification. DNA methylation changes

were shown to play a pivotal role in cancer initiation

and progression [20, 21]. Particularly, promoter hyper-

methylation was associated with silencing of tumor sup-

pressor genes [22]. Several studies associated breast can-

cer molecular subtypes with specific methylation

patterns [23], while others showed that methylation data

may reveal additional complexity not captured at the ex-

pression level, possibly identifying finer patient groups

of clinical importance [24].

The large breast cancer dataset developed and pro-

vided by The Cancer Genome Atlas project [25] includes

more than a thousand breast tumor samples character-

ized by various modern high-throughput genomic tech-

nologies. This dataset constitutes a significant leap

forward compared to the older microarray-based data.

mRNA abundance levels are measured in TCGA dataset

using the RNA-Seq technology. This technology has in-

creased sensitivity and a higher dynamic range compared

to microarrays [20, 21]. DNA-methylation arrays applied

on the same samples can help decipher biological tumor

variability by epigenetic modifications not manifested at

the gene expression level.

The aim of this study was to improve the classification

of breast tumors based on the extensive TCGA expres-

sion and methylation data that have recently become

available. We utilized these datasets to revisit the current

classification of breast tumors into biologically distinct

subgroups. Our improved and refined classification may

contribute to the precision of diagnosis and thus, to

more personalized treatment.

Methods

Study objectives

Our initial question was whether unsupervised clustering

of all TCGA breast samples using the RNA-Seq data

would reconstruct the partition defined by PAM50. As the

luminal samples had the highest variability in our global

clustering, we also asked how the luminal samples would

cluster into two groups based on the RNA-Seq data, how

the resulting sample groups would compare to the

PAM50 partition into luminal-A and luminal-B, and

whether that partition would have a clinical advantage
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over the PAM50 partition of the luminal samples. Looking

into the internal structure of the highly variable luminal-A

samples, we asked whether this PAM50 group can be

further partitioned into finer subgroups with biological

distinctness and clinical significance. We then used en-

richment analysis to explore the biological mechanisms

underlying the new luminal-A subgroups.

We asked similar questions about breast tumor variability

at the epigenetic level. We evaluated the methylation-based

partition of all breast tumors, all the luminal samples and

the highly heterogeneous luminal-A, and compared

the resulting partitions to PAM50. To examine the

biological characteristics of differentially methylated

CpGs (DMCs) separating the new methylation-based

luminal-A subgroups, we conducted enrichment ana-

lysis. Finally, we performed multivariate COX survival

analysis to determine whether the new subgroups

have independent prognostic value.

Data acquisition and preprocessing

TCGA data on invasive carcinoma of the breast were down-

loaded from the UCSC Cancer Browser web site [26] together

with accompanying clinical information. The downloaded

RNA-Seq gene expression dataset (Illumina HiSeq platform,

gene level RSEM-normalized [27], log2 transformed) included

1215 samples of which 11 samples from male patients, 8

metastatic samples, and 30 samples of unknown tissue

source were filtered out. PAM50 calls (obtained directly

from UNC, including PAM50 proliferation scores) were

available for 1148 of the filtered samples, and were distrib-

uted as follows: 183 basal-like, 78 HER2-enriched, 534

luminal-A, 203 luminal-B and 150 normal-like.

We also downloaded DNA methylation profiles (Illumina

Infinium Human Methylation 450K platform, beta values)

[19] containing 872 samples of which 8 male samples, 5

metastatic samples and 19 samples of unknown tissue

source were filtered out. We used only 679 tumor samples

for which PAM50 calls were available, including 124 basal-

like, 42 HER2-enriched, 378 luminal-A and 135 luminal-B

samples. Our analysis used only the 107,639 probes of the

Infinium-I design type for which a gene symbol was avail-

able. This allowed us to bypass the bias of the two probe

designs included on the array, to focus on differentially

methylated sites that are associated with known genes, and

also to reduce the number of analyzed features.

Unsupervised analysis of the tumor samples

Unsupervised analysis of the various sample subsets was

executed by clustering the samples based on the 2000

features (genes or CpGs) showing the highest variability

over the samples included in each analysis. We used the

K-Means clustering algorithm in Matlab (release 2015a)

with correlation distance and 100 replicates from which

a solution minimizing the sum of point-to-centroid

distances was chosen. Due to the high variability among

sample subgroups in the breast cancer datasets, reselect-

ing the top variable genes for the analysis of each sample

set (and renormalizing accordingly) is crucial to ensure

use of the features most relevant to that set. Each feature

was independently centered and normalized over the an-

alyzed samples prior to clustering.

Cohort descriptions for the samples used in each ana-

lysis are provided in Additional file 1 (Tables S-1A, S-2A,

S-3A for the RNA-Seq analyses and Tables S-6A, S-7A

and S-8A for the DNA methylation analysis). The

TCGA sample Ids included in each analysis are listed

in Additional file 2.

Sample cluster enrichment and survival analysis

To evaluate the clinical relevance of the sample clusters

obtained in each unsupervised analysis, we used the ex-

tensive clinical information available from TCGA for each

sample. Enrichment significance of sample clusters for

categorical variables (such as the PAM50 subtype or histo-

logical type) was calculated using the false discovery rate

(FDR)-corrected hypergeometric test. For numeric vari-

ables (such as age, percent tumor nuclei, and others) the

difference between sample groups was evaluated using the

Wilcoxon rank–sum test (Mann–Whitney U test).

Survival and recurrence-free survival curves were plot-

ted using the Kaplan-Meier estimator [28] and p values

for the difference in survival for each group versus all

other groups were calculated using the log-rank (Mantel–

Haenszel) test [29, 30]. Cox univariate and multivariate

survival analyses were conducted using Matlab implemen-

tation; p values were corrected using FDR. The analysis

and visualization scripts are publicly available as an inter-

active graphical tool named PROMO [31].

Analysis of differentially expressed genes and gene

enrichment

A list of genes that have the highest differential expres-

sion between the two RNA-Seq-based sample groups

LumA-R1 and LumA-R2 was generated by applying the

Wilcoxon rank–sum test on all dataset genes exhibiting

non-zero variance (n = 19,913) after flooring all dataset

values to 1 and ceiling to 14. We selected the 1000 genes

exhibiting the most significant p values that also have a

median difference of at least 0.5 (log2-transformed

RSEM expression values). All genes on the list had sig-

nificantly higher expression in the LumA-R2 sample

group (the lowest p value was 8.1e-28).

Gene enrichment tests were performed on these 1000

genes against a background of all genes included in the

rank–sum test. The Expander software suite [32, 33]

was used to detect significant enrichments for Gene

Ontology (GO) [34], Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways [35], Wiki-Pathways
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[36] and chromosomal location enrichments. GO tests

were also performed using the GOrilla tool [37]. The

list of 1000 top differentially expressed genes and de-

tailed results of the enrichment analysis are provided

in Additional file 3.

Analysis of differentially methylated CpGs, correlation to

expression and CpG enrichment

To identify CpGs that are differentially methylated be-

tween LumA-M1 and LumA-M3 samples we applied the

rank–sum test on all CpGs that survived our preprocess-

ing and also had non-zero variability in the relevant

samples (n = 93,880). We then selected the 1000 CpGs

that had the highest significance and a minimal median

difference of 0.2 (in Beta values). All selected CpGs had

significantly higher mean methylation in the LumA-M1

compared to the LumA-M3 group.

To focus on DMCs with genes that had concomitant

changes in expression, we calculated Spearman correlation

between each CpG and the expression profile of its associ-

ated gene based on the Illumina probe-set annotation.

The correlation values enabled the identification of 586

DMCs (rank–sum p value <0.01, median difference >0.2)

negatively correlated to expression (R < -0.2) and a second

smaller group of 212 DMCs positively correlated (R > 0.2)

with expression.

We used the array CpG annotations provided by Illumina

to calculate enrichment of each one of the three CpG lists

(top 1000 DMCs, 586 negatively correlated DMCs and 212

positively correlated DMCs) for features like differentially

methylated regions (DMRs), enhancer regions, UCSC

RefGene groups and regulatory feature groups. Gene en-

richment analysis was performed on the unique genes com-

posing each CpG list, using the Expander and Gorilla tools

as described above. Enrichment for InterPro [38] terms

was calculated using the Database for Annotation,

Visualization and Integrated Discovery (DAVID) [39].

Enrichment for tumor suppressor genes was calculated

by hypergeometric test based on the TSGene [40] cata-

log. The lists of differentially methylated CpGs in

addition to detailed results of the enrichment analysis

are provided in Additional files 4, 5 and 6.

Results

Separation of luminal-A and luminal-B samples is not

reconstructed by RNA-Seq unsupervised analysis

We started by evaluating the global sample structure

within the RNA-Seq gene expression data obtained from

TCGA. We applied unsupervised analysis on both tumor

(n = 1035) and normal (n = 113) breast samples using the

K-Means clustering algorithm over the top 2000 variable

genes. As our initial goal was to compare the resulting

partition into the four intrinsic molecular types, we used

K = 5 (corresponding to the four types represented by

PAM50 label classes in addition to normal). The results

are shown in Fig. 1.

The resulting clusters exhibited moderate correspond-

ence with PAM50 labels: most basal-like, normal and

HER2-enriched samples fell into three different clusters

(numbers 4, 5, and 3, respectively, listed in decreasing

levels of homogeneity), whereas the luminal samples ex-

hibited much greater variability. Importantly, most

luminal-A sample were split between two different clus-

ters - a homogenous luminal-A cluster (cluster 2), and a

cluster composed of a mix of luminal-A and luminal-B

samples (cluster 1).

Furthermore, the samples assigned to cluster 2 exhib-

ited a very distinct expression pattern, overexpressing

1184 genes compared to cluster 1 (out of the 1421

differentially expressed genes, see “Methods”). Cluster 1

samples overexpressed only 229 genes compared to clus-

ter 2 (see Additional file 1: Figure S-1E for per-cluster

distribution and Additional file 1: Figure S-1F for results

of differential gene expression analysis).

According to these results, the variability within the lu-

minal samples is not sufficiently captured by the PAM50

luminal-A and luminal-B subtypes. Specifically, they sug-

gest that luminal-A samples can be further partitioned

into finer subgroups, possibly having clinical meaning.

Unsupervised partition of luminal samples predicts

survival and recurrence better than PAM50

To further investigate the variability among luminal

samples, we clustered the 737 luminal samples (534

luminal-A and 203 luminal-B samples based on PAM50

labels) into two groups. The results are shown in Fig. 2a.

Similar to the global analysis, the luminal-A samples

were divided between a luminal-A mostly homogenous

cluster (cluster 2) and a cluster composed of both

luminal-A and luminal-B samples (cluster 1).

Survival analysis performed on the two luminal parti-

tions (the PAM50 luminal-A/luminal-B partition, and

the two K-Means clusters shown in Fig. 2a) showed that

the RNA-Seq-based clustering partition outperforms the

luminal-A/luminal-B distinction in terms of both survival

and recurrence (5-year survival plots are shown in Fig. 2b;

also see Additional file 1: Figure S-2A for overall survival

plots). Hence, the signal identified by our unsupervised

analysis of the RNA-Seq data translates into a clinically

relevant partition of the luminal samples that has better

predictive power than the PAM50 luminal-A/luminal-B

partition in terms of both survival and recurrence.

Luminal-A samples have two distinct classes exhibiting

clinical significance

As the luminal-A samples displayed the highest level of

variability by consistently falling into two major sub-

groups in previous steps, we focused on this PAM50
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class in an attempt to explore its underlying substruc-

tures. To this end, we re-clustered only the 534 luminal-

A samples into two groups (Fig. 3a). As the resulting

clusters were found to be significantly enriched for vari-

ous clinical variables, we designated them as LumA-R1

(n = 258) and LumA-R2 (n = 276).

The most apparent property of the resulting partition

was the general overexpression pattern in LumA-R2 sam-

ples compared to LumA-R1 samples. Indeed, out of the

2000 genes selected for clustering, 1276 were differentially

expressed and 1068 of them were overexpressed in

LumA-R2 samples (based on the FDR-corrected rank-sum

test). A very similar partition (chi-square, p = 1.1e-40) with

a parallel overexpression pattern was identified on a

microarray gene expression dataset also available from

TCGA for a subset of the luminal-A samples used here

(n = 265). This supports the conclusion that the partition

and distinct overexpression pattern we observed are not

an artifact originating from RNA-Seq measurement

technology or from any normalization protocols applied

on the dataset (see Additional file 1, section 4).

Recurrence analysis performed on these two luminal-

A subgroups identified that LumA-R2 samples were as-

sociated with a significantly reduced 5-year recurrence

rate (p = 0.0076, Fig. 3b). Enrichment analyses on add-

itional clinical information available for the samples

revealed that LumA-R1 and LumA-R2 subgroups are

enriched with ductal (p = 2.1e-05) and lobular (p = 9.7e-

12) histological types, respectively. LumA-R1 samples

were associated with a higher proliferation score (p = 8.9e-

25), older age (p = 2.6e-05), and a slight but significant de-

crease in normal cell percent (p = 2.8e-08) accompanied

by an increase in tumor nuclei percent (p = 2.6e-12) com-

pared with LumA-R2 samples (see Table 1).

Comparing the luminal-A partition shown in Fig. 3a to

the groups formed when clustering all the luminal sam-

ples (Fig. 2a), we note that almost all LumA-R2 samples

are contained within cluster 2 (composed of mainly
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Fig. 1 Global unsupervised clustering of 1148 breast samples using RNA-Seq data. Applying the K-Means algorithm using K = 5 on the RNA-Seq

dataset yielded a partition exhibiting moderate agreement with PAM50 labels and the three immunohistochemical markers. Notably, luminal-A

samples were split between a rather homogenous cluster 2 and cluster 1, which is composed of a mix of luminal-A and luminal-B. a K-Means

clusters. b PAM50 calls. c Estrogen receptor (ER) status. d Progesterone receptor (PR) status. e Human epidermal growth factor receptor 2

(HER2) status
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luminal-A samples), whereas most LumA-R1 are con-

tained within cluster 1 (composed of a mix of luminal-A

and luminal-B samples) (see the second label bar in

Fig. 3a). This suggests that LumA-R1 samples are more

similar in their expression profile to luminal-B samples

compared with LumA-R2 samples.

a

b

Fig. 2 Unsupervised analysis of luminal breast samples using RNA-Seq data. a Applying the K-Means algorithm on the 737 luminal samples using

K = 2 splits the samples into two subgroups exhibiting better five-year prognostic value than the PAM50 luminal-A/luminal-B partition. b Five-year

survival and recurrence for the two luminal breast cancer partitions. The partition into two RNA-Seq-based clusters outperforms PAM50 partition of the

luminal samples in both survival and recurrence. P values were calculated using the log-rank test
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Luminal-A subgroups exhibit distinct immune system

expression profiles

In order to identify genes that distinguish best between

LumA-R1 and LumA-R2 samples, we created a list of the

1000 most differentially expressed genes (see “Methods”).

In agreement with the general expression pattern de-

scribed earlier, all genes in the list were overexpressed in

LumA-R2 compared to LumA-R1 samples. The most sig-

nificant categories in the enrichment analysis performed

in this list were related to the immune system regulation.

The more specific category of T cell receptor signaling

genes appeared consistently in analyses based on various

annotation databases (Gene Ontology: "T Cell activation"

p = 1e-05, KEGG Pathway: "T Cell receptor signaling path-

way" p = 3e-07, Wiki-Pathway: "T Cell receptor (TCR)

Signaling Pathway" p = 1.09e-07). Other enrichments of

interest included the KEGG Pathways "Cytokine-cytokine

receptor interaction" (p = 2.13e-13), "Chemokine signaling

pathway" (p = 1.14e-09) and Wiki-Pathway "B Cell Recep-

tor Signaling Pathway" (p = 1.72e-06). See Table 2 for a list

of the most significant categories, and Additional file 1,

section 5 for the full list.

Careful examination of the gene list revealed that

LumA-R2 samples overexpress genes that are typically

expressed by various immune system cells (e.g., the

leukocyte marker CD45/PTPRC, T cell marker CD3, and

B cell marker CD19) [41–44]. A significant number of

overexpressed genes are related to the T cell receptor

(CD3D, CD3E, CD3G, and CD247) and the upstream

part of its signaling pathway (ZAP70, LCK, FYN, LAT,

a

b

Fig. 3 Unsupervised analysis of luminal-A (LumA) breast samples. a Clustering of 534 RNA-Seq profiles partitions the data into two groups exhibiting

distinct expression profiles. The clusters also show significant enrichment for clinical variables including recurrence, proliferation score, age, and

histology. The bars below the heatmap show, from top to bottom, the partition of the samples, the designation of the samples according to the

clustering of all luminal samples (see Fig. 2), histological type, and proliferation scores. b Five-year survival and recurrence analysis in the two luminal-A

subgroups. LumA-R2 samples exhibit significantly reduced five-year recurrence rate compared with LumA-R1
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PAK, and ITK) [45] (Fig. 4). Interestingly, the overex-

pressed genes were related to T cell or natural killer

(NK)-mediated cytotoxic activities (GZMA, GZMB,

GZMH, GZMM, and PRF1) [46, 47].

We also observed that the overexpression of immune

receptor genes in LumA-R2 samples was accompanied

by overexpression of several chemokine genes (CCL5,

CCL17, CCL19, and CCL21) and their corresponding re-

ceptors (CCR5, CCR4, and CCR7). Topping the list of

overexpressed genes in Lum-A-R2 samples (ranked by p

value) is the Interleukin-33 (IL-33) gene, which drives T

helper 2 (Th2) responses [48]. In summary, LumA-R2

samples exhibit better prognosis based on several clinical

parameters while overexpressing a significant number of

genes related to the immune system.

Analysis of DNA methylation identifies a luminal

subgroup characterized by hyper-methylation and a

significantly poorer outcome

The luminal-A tumors proved to be the most heteroge-

neous in our gene expression analysis. To further iden-

tify and characterize clinically meaningful subgroups

within the luminal-A group, we explored breast tumor

variability on the epigenetic level as well.

Using the Methylation 450K array dataset available from

TCGA, we started our analysis as in the expression data,

by clustering all 679 tumor samples into four groups, cor-

responding to the number of PAM50 classes. The result-

ing clusters (Fig. 5a) had modest agreement with the

expression-based PAM50 classes; all basal-like samples

were assigned to a single cluster exhibiting a distinct

hypo-methylation pattern (cluster 4), whereas HER2-

enriched samples were scattered over three different clus-

ters, indicating that this subtype has reduced manifest-

ation at the methylation level. Notably, most luminal

samples were assigned to three different clusters (1–3)

with methylation-level gradation on the top 2000 variable

CpGs. Cluster 1 exhibited a strong hyper-methylation pat-

tern, contained the highest ratio of luminal-B samples,

and was associated with significantly poorer survival com-

pared to the three other clusters (p = 0.0001). Cluster 3,

on the other hand, exhibited opposite characteristics:

lower methylation levels, the lowest ratio of luminal-B

samples and a better outcome (p = 0.0129).

Table 2 The most enriched functional categories among the

1000 genes most differentially expressed between LumA-R1 and

LumA-R2 samples

Enrichment type Term Number
of genes

P value

Gene Ontology Regulation of immune
system process

152 3.74e-50

Immune system process 201 3.65e-47

Regulation of leukocyte
activation

71 2.37e-28

Regulation of multicellular
organismal process

183 2.89e-28

Cell activation 91 4.59e-28

Regulation of response to
external

73 8.18e-27

Regulation of biological
quality

218 1.82e-26

Leukocyte activation 67 1.95e-26

Positive regulation of cell
activation

56 5.13e-24

T cell activation 45 4.93e-22

Regulation of cell proliferation 128 1.83e-21

KEGG Pathways Cytokine-cytokine receptor
interaction

56 4.76e-22

Hematopoietic cell lineage 29 1.50e-17

Cell adhesion molecules
(CAMs)

30 4.08e-13

Primary immunodeficiency 16 8.70e-13

Chemokine signaling pathway 31 1.14e-09

Complement and coagulation
cascades

17 1.36e-08

T cell receptor signaling
pathway

20 1.30e-07

Allograft rejection 11 6.44e-07

Natural killer cell mediated
cytotoxicity

20 5.66e-06

Pathways in cancer 34 1.49e-05

Wiki-Pathways TCR signaling pathway 10 1.55e-09

B cell receptor signaling
pathway

10 1.72e-06

Focal adhesion 11 5.88e-05

Complement activation,
classical pathway

6 8.38e-05

Chromosomal
location

11q23 18 1.84e-05

Xq23 8 4.99e-05

All the genes on the list showed significantly higher expression on the LumA-

R2 samples compared to LumA-R1 samples

Table 1 The main characteristics distinguishing between the

luminal-A subgroups, LumA-R1 and LumA-R2

Group characteristic LumA-R1 LumA-R2 P value

Recurrence-free survival Increased
recurrence

Reduced
recurrence

7.6e-3

Histological type Ductal
(p = 2.1e-05)

Lobular
(p = 9.7e-12)

Age, years, average 61.5 57.4 2.6e-05

Proliferation score -0.4 -0.6 8.9e-25

Tumor nuclei percent 80 % 73 % 2.6e-12

Normal cell percent 2.9 % 6.1 % 2.8e-08

Gene overexpression 194 1068

Average values are shown for each group where relevant. Gene overexpression is

computed with respect to the 2000 genes used for clustering.

Netanely et al. Breast Cancer Research  (2016) 18:74 Page 8 of 16



Similar results were obtained when we clustered only

the 513 luminal A and B samples (Fig. 5b). Here we used

the top 2000 variable genes within these samples, to re-

move the effect of the other two subtypes on the cluster-

ing. Importantly, out of the 127 samples comprising the

hyper-methylated cluster 1, which was associated with

reduced survival (p = 2.6e-05), 76 samples were labeled

as luminal-A, a subtype usually associated with good

survival. In other words, approximately 20 % of the 378

luminal-A samples (as called by the expression-based

PAM50) included in the analysis, could actually be

assigned to a higher risk group based on methylation

data (see Additional file 1, section 7 for more details).

The three-way partition by methylation levels and its

association to differential survival risk also appeared

when we repeated the analysis in the group of 378

luminal-A samples, using the top 2000 variable CpGs on

these samples (Fig. 5c). The three methylation-based

luminal-A clusters were designated LumA-M1, LumA-

M2 and LumA-M3. The 84-sample LumA-M1 cluster

(comprising approximately 22 % of the luminal-A sam-

ples) was associated with significantly reduced 5-year

survival (p = 0.0031).

Furthermore, the methylation-based partitioning of

the luminal-A samples (LumA-M1/2/3) correlated sig-

nificantly with the expression-based partitioning (LumA-

R1/2, chi-square p = 4.4e-08). The LumA-M2 cluster was

enriched for LumA-R1 samples (p = 1.4e-06) and the

LumA-M3 cluster was enriched for LumA-R2 samples

(p = 1.6e-08), showing that the expression and the

methylation-based patterns are related (see lower bar on

Fig. 5c). Overall, we identified a poorer outcome

Fig. 4 LumA-R2 samples overexpress genes in the T cell receptor signaling pathway. The list of top 1000 genes differentially expressed in LumA-

R1 and LumA-R2 samples was found to be significantly enriched for the pathway genes (p= 1.3e-07). Genes marked in red are overexpressed in LumA-R2

samples. Pathway and graphics were taken from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
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subgroup within the luminal-A subtype, which is distin-

guished by a robust hyper-methylation pattern.

Analysis of differentially methylated CpGs between the

LumA-M1 and LumA-M3 subgroups and their correlation

to gene expression

To uncover the biological features characterizing the dis-

tinct methylation patterns observed in the luminal-A

subgroups, we examined the 1000 top DMCs (see

“Methods”) between the hyper-methylated LumA-M1 (n

= 84) and the hypo-methylated LumA-M3 (n = 171).

These two sample subgroups represent the two extremes

of the methylation gradient observed in the luminal-A

samples. Of note, all 1000 top DMCs (representing 483

genes) were hyper-methylated in the LumA-M1 samples

compared to LumA-M3 samples.

Gene enrichment analysis associated these 483 genes

hyper-methylated on LumA-M1 samples with GO terms

related to development, signaling, cell differentiation and

transcription regulation (p < 1e-15). The genes were also

enriched for the homeobox InterPro term (p = 3.6e-35),

in line with previous reports describing the methylation of

homeobox genes during breast tumorigenesis [49–51].

Further, the 483 genes were enriched for tumor suppres-

sor genes according to the TSGene catalog [40] (p = 1.5e-

03), including 48 such genes (see column 1 in Table 3).

Analysis for CpG features of the top 1000 DMCs re-

vealed significant enrichment for enhancer elements,

tissue-specific promoters and cancer-specific DMRs

(see column 1 in Table 4).

The databases Gene Ontology, InterPro and Tumor

Suppressor Genes 2.0 were used to test the hyper-

methylated genes for enrichment. Group 1 is composed

of the 1000 top differentially methylated CpGs with a

mean difference of at least 0.2. All the CpGs on this list

had significant hyper-methylation in the LumA-M1

LumA-R1

LumA-R2

LumA-M1

LumA-M2

LumA-M3

Luminal-A Breast Cancer Meth450 Dataset [2000 CpGs x 378 samples]

Luminal Breast Cancer Meth450 Dataset [2000 CpGs x 513 samples]
Basal
Her2
LumA
LumB

1
2
3
4

Breast Cancer Meth450 Dataset [2000 CpGs x 679 samples]

-1

-0.5

0

0.5

1

1.5a

b

c

Fig. 5 Unsupervised analysis of breast cancer tumors using DNA methylation data. Samples were clustered by K-Means based on correlation using

the top 2000 variable CpGs over each sample subset. a All 679 tumors. b The 579 samples identified as luminal-A and luminal-B by PAM50 classification.

c The 378 luminal A samples only. First bar below each expression matrix shows the assignment of the samples to methylation-based clusters. Second

bar (a and b) shows PAM50 calls for the samples. Second bar (c) presents the RNA-Seq based LumA-R1/2 subgroups defined in Figure 3. Right panels

show five-year Kaplan-Meier survival plots for the resulting groups
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samples compared to LumA-M3 samples. Group 2 is

composed of the 586 CpGs with a differential methyla-

tion p value <0.01, a methylation mean difference >0.2

and Spearman-based correlation with expression <0.2.

Group 3 is composed of 212 CpGs with a differential

methylation p value <0.01, a methylation mean difference

>0.2 and Spearman-based correlation with expression >0.2.

As DNA-methylation is known to regulate gene ex-

pression and as hyper-methylation of promoters is asso-

ciated with gene silencing in cancer [52], we focused on

LumA-M1 hyper-methylated CpGs that affect the ex-

pression of their corresponding genes. To this end, we

used the RNA-Seq-based expression data available from

TCGA for the same 378 analyzed samples to generate a

second list of CpGs that are both hyper-methylated in

LumA-M1 samples (differential methylation p < 0.01,

median difference of 0.2) and that have methylation

levels inversely correlated to the expression level of their

corresponding gene (Spearman correlation R < -0.2). As

can be seen in Table 4, the 586 CpGs that passed this filter

(corresponding to 340 genes) had significant over-

representation of upstream parts of their corresponding

genes (UCSC RefGene Group: TSS and 1st exon p < =4.4e-

05) and under-representation of gene body (p = 1.43e-16)

and 3'UTR (p = 5.83e-04). In terms of the regulatory feature

group, these 586 CpGs had over-representation of "Pro-

moter Associated Cell type specific" elements (p = 1.40e-04)

accompanied by highly significant under-representation of

"Promoter Associated" elements (p = 2.94e-31), suggesting

that the observed hyper-methylation pattern involves

tissue-specific promoters. Among the 340 under-expressed

genes containing the 586 hyper-methylated CpGs, there

Table 3 Gene enrichment in the three subsets of CpGs exhibiting differential methylation between the LumA-M1 and LumA-M3

subgroups

(1) (2) (3)

Hyper-methylated CpGs Negative: R < -0.2 Positive: R > 0.2

1000 CpGs, 483 genes 586 CpGs, 340 genes 212 CpGs, 125 genes

Term P value Term P value Term P value

Gene Ontology Anatomical structure
development

6.1e-28 Developmental process 7.8e-06 Pattern specification
process

1.1e-13

Developmental process 2.0e-25 Single organism signaling 2.4e-05 Regionalization 1.1e-12

Multicellular organismal
process

9.6e-24 Signaling 1.8e-05 Anatomical structure
development

2.2e-11

Single multicellular
organism process

1.6e-22 Cellular developmental
process

1.4e-05 Single organism
developmental process

1.9e-11

Single organism signaling 1.7e-21 Single organism
developmental process

2.3e-05 Anatomical structure
morphogenesis

1.8e-11

Signaling 1.9e-21 Anatomical structure
development

8.0e-05 Developmental process 1.7e-11

Cell-cell signaling 1.7e-21 Cell-cell signaling 1.8e-04 Embryonic
morphogenesis

1.1e-10

Neuron differentiation 1.2e-20 Cell differentiation 2.2e-04 Cellular developmental
process

1.8e-10

Single organism
developmental process

1.4e-19 Synaptic transmission 4.4e-04 Organ development 5.3e-10

Regulation of transcription
from RNA polymerase II
promoter

1.2e-16 Anatomical structure
morphogenesis

6.1e-04 Single multicellular
organism process

5.6e-10

InterPro Homeobox 3.6e-35 Homeobox 1.1e-04 Homeobox 2.1e-31

Tumor suppressor
genes (TSGene 2.0)

AHRR, AKR1B1, BMP2, C2orf40,
CDH4, CDO1, CDX2, CNTNAP2,
CSMD1, DLK1, DSC3, EBF3,
EDNRB, FAT4, FOXA2, FOXC1,
GALR1, GREM1, GRIN2A, ID4,
IRF4, IRX1, LHX4, MAL, MIR124-2,
MIR124-3, MIR125B1, MIR129-2,
MIR137, MIR9-3, ONECUT1,
OPCML, PAX5, PAX6, PCDH8,
PHOX2A, PRKCB, PROX1,
PTGDR, RASL10B, SFRP1,
SFRP2, SHISA3, SLIT2, SOX7,
TBX5, UNC5D, ZIC1

1.5e-03 AKR1B1, ASCL1, BIN1, BMP4,
CCDC67, CDK6, CDO1, EBF3,
GSTP1, ID4, IRX1, L3MBTL4,
LRRC4, MAP4K1, MME, NTRK3,
PCDH10, PDLIM4, PROX1,
PTGDR, RUNX3, SCGB3A1,
SFRP1, SLC5A8, SLIT2,
UBE2QL1, UNC5B, VIM, WT1

9.7e-02 AMH, GATA4, HOPX,
HOXB13, LHX4, LHX6,
MAP4K1, ONECUT1,
PAX5, RASAL1, TBX5,
TP73, WT1, ZIC1

5.5e-02

(48 genes) (29 genes) (14 genes)
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were several tumor suppressor genes with under-expression

that has previously been observed in breast cancer, such as

L3MBTL4 [53], ID4 [54], RUNX3 [55, 56], PROX1 [57],

SFRP1 [58] and others. Gene-level and CpG-level enrich-

ment for the negative correlations are shown in column 2

of Tables 3 and 4, respectively.

Interestingly, the 212 LumA-M1 hyper-methylated CpGs

that were positively correlated with expression (Spearman

R > 0.2) had higher enrichment of development-related

GO terms compared with negatively correlated CpGs

("pattern specification process" p = 1.07e-13, "embryonic

morphogenesis" p = 1.05e-10, "cell fate commitment"

p = 5.49e-10). In contrast to the negatively correlated

CpGs, they had high over-representation of "gene body"

and under-representation of "TSS" regions (UCSC RefGene

Group, p = 9.48e-20 and p = 7.28e-14, respectively). For

gene and CpG level enrichment for the positive correlations

see column 3 in Tables 3 and 4, respectively.

The differential methylation pattern distinguishing

LumA-M1 from LumA-M3 samples could therefore be

characterized by hundreds of CpGs that are hyper-

methylated in the LumA-M1 samples. Distinct subsets

of these CpGs correlate negatively and positively with

the expression of developmental genes.

Cox survival analysis

In previous sections, we presented two different parti-

tions of luminal-A tumors based on genomic profiles,

with prognostic value: The LumA-R2 group (character-

ized by high expression of immune-related genes) was

associated with a reduced chance of 5-year recurrence,

whereas the LumA-M1 group (characterized by hyper-

methylation of CpGs located in developmental genes)

was associated with poorer survival. To determine the

prognostic contribution of the two partitions while

adjusting for other relevant explanatory variables, we

Table 4 Feature enrichment in the three subsets of differentially methylated CpGs in LumA-M1 and LumA-M3 subgroups

UCSC RefGene

group

Regulatory feature

group

DMR (Differentially

methylated region)

Enhancer

DHS (DNAse

hypersensitive site)

CpG enrichment tests show that hyper-methylated CpGs negatively correlated with gene expression are enriched for upstream gene parts, whereas positively
correlated CpGs are enriched for the gene body. All three hyper-methylated CpG groups are enriched for informatically determined enhancer elements and
experimentally determined differentially methylated regions and DNAse hypersensitive sites. The p values represent hyper-geometric-based over-representation
or under-representation and are FDR corrected (significant p values are marked in bold). UTR untranslated region, DMR differentially methylated region
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performed multivariate Cox survival analysis on both

LumA-R and LumA-M partitions (see Table 5). Patients

belonging to the LumA-M1 group had a 6.68-fold higher

estimated 5-year death hazard compared with the other

groups in the Cox multivariate model after adjustment for

age, pathological stage, ER status, PR status and Her2 sta-

tus. Patients belonging to the LumA-R2 group had a de-

creased recurrence hazard of 0.06 (that is, 94 % decrease)

compared with LumA-R1 patients, after similar adjust-

ment. The results reaffirm the independent prognostic

value of the LumA-R2 and the LumA-M1 classes (see

Additional file 1, section 10 for univariate analysis).

Discussion

Gene expression profiling has become a useful tool for

breast cancer classification and for direction of treatment

[59]. Although the HER2-enriched and the basal-like sub-

groups are well-defined and indicative for anti-Her2 and

chemotherapy treatment, respectively, the ER-positive lu-

minal subgroup still presents a clinical challenge. In gen-

eral, all luminal tumors are candidates for anti-hormonal

therapy. However, some tumors within this class, often

with a more proliferative potential and conferring poorer

outcome, are considered for additional therapy. Accord-

ingly, the common classification based on the molecular

intrinsic subtypes divides the luminal tumors into the

luminal-A tumors, which have a better outcome, and the

more proliferative luminal-B tumor subgroups, which

have a worse outcome. However, this classification is sub-

optimal for clinical decisions because the luminal tumors

present a phenotypic and prognostic range rather than an

exact partition to either group.

In this study, we applied unsupervised analysis on breast

tumor samples using both expression and methylation

profiles to reveal new genetic and epigenetic patterns that

correlate with a clinical outcome, and compared them to

the PAM50 subtypes. Overall, our analyses showed that

the separation between luminal-A and luminal-B (as rep-

resented by PAM50 labels) is not clear-cut, but rather rep-

resents a phenotypic continuum (as previously observed

[12, 60, 61]). In fact, each of the gene expression and

methylation datasets used in our analysis separately en-

abled partitioning of the luminal samples into groups with

better prognostic value than that of PAM50.

Furthermore, when we focused on the PAM50-

designated luminal-A samples only, the RNA-Seq expres-

sion profiles split the luminal-A samples into two

subgroups (Fig. 3a). The lobular-enriched LumA-R2

sample group, characterized by a distinct gene over-

expression pattern, was associated with significantly

reduced recurrence risk compared with the more prolifer-

ative LumA-R1 subgroup. Interestingly, genes constituting

that over-expression pattern were significantly enriched

for functions related to the immune system, including the

more specific enrichment of chemokines and genes of up-

stream T cell receptor signaling pathways. We postulate

that the significantly elevated mRNA levels of immune re-

lated genes in LumA-R2 samples are indicative of increased

infiltration levels of immune system cells into these tumors.

Typically, chemokines serve as ligands that by binding

to their corresponding receptors, attract immune system

cells to the site where they are secreted [62, 63]. LumA-R2

samples over-expressed several chemokines and their cor-

responding receptors. The simultaneous over-expression

of both the chemokine CCL5 (previously found to be

highly expressed by breast cancer cells [64]) and one of its

receptors - CCR5 (expressed among others by CD8+ cyto-

toxic T cells), suggests that tumor cell-derived CCL5 at-

tracts CD8+ cytotoxic T lymphocytes (CTLs) to LumA-R2

tumors. Similarly, the over-expressed chemokines CCL19

and CCL21 may be expressed by the tumor cells, whereas

their CCR7 receptor may be expressed by licensed DC or

(less typically) by naive and central memory T cells.

In line with this possibility, the over-expressed genes

in LumA-R2 samples included genes typical of CTLs

(and also natural killer (NK) cells), which may lead to

anti-tumor cytotoxic activities exerted by the granzyme

(GZMA and GZMB) and perforin pathways (PRF1). Ac-

cordingly, over-expression of T cell activation genes was

also detected in patients with LumA-R2 tumors. Not-

ably, the over-expressed genes are concentrated at the

upstream part of the T cell receptor-signaling pathway

Table 5 Multivariate Cox analysis of luminal-A subgroups for five-year survival and five-year recurrence

Survival Recurrence

Variable Hazard ratio P value Hazard ratio P value

LumA-R (1 vs 2) 0.56 0.36991 0.06 0.00693

LumA-M (2, 3 vs 1) 6.68 0.00484 3.04 0.07028

Age (<60 vs > =60 years) 11.20 0.0037 1.03 0.96530

Pathologic stage (I, II vs. III, IV) 2.12 0.25519 1.93 0.26992

ER status 7.17 0.18095 0.00 0.99575

PR status 0.47 0.50039 0.29 0.29092

Her2 status 1.48 0.72659 0.64 0.68789

Significant p values are marked in boldface. ER estrogen receptor, PR progesterone receptor, Her2 human epidermal growth factor receptor 2
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(Fig. 4). At this stage, it is not clear why downstream ef-

fectors are not enriched in LumA-R2 samples; however,

it is of interest to see that the alpha chain of IL-15R was

over-expressed in these samples, suggesting that T cell

activation processes may indeed come into effect in this

subgroup of patients.

How could the over-expression of the immune genes

by LumA-R2 samples be related, if at all, to reduced

tumor recurrence? It is possible that only LumA-R2 tu-

mors can release chemoattractants that induce the mi-

gration of antigen-specific, possibly beneficial, leukocyte

subpopulations to the tumor site. Despite recent reports

associating tumor infiltrating lymphocytes with a better

prognosis [65–67], it is yet to be determined how en-

hanced immunogenic activity in the LumA-R2 tumors

may improve their outcome. Possibly in the future, this

LumA-R2 characteristic pattern may direct emerging

immune-checkpoint-related therapies [68].

The role of epigenetic regulation in malignant pro-

cesses is increasingly recognized. Indeed, our analysis of

DNA methylation data partitioned the breast tumor

samples into four clusters showing only moderate agree-

ment with the expression-based PAM50 subtypes. In line

with previous studies [24, 69], one cluster had a hypo-

methylation pattern and corresponded with the PAM50

basal-like subgroup that was associated with poorer out-

come. However, the luminal samples did not cluster

neatly into the PAM50 luminal-A and luminal-B sub-

groups. Instead, three luminal clusters with increasing

methylation levels were obtained (clusters 1–3 in Fig. 5a),

of which the most hyper-methylated cluster was associ-

ated with significantly poorer 5-year prognosis. In fact,

even when we clustered only the luminal-A samples

(Fig. 5c), the hyper-methylated cluster 1 (LumA-M1)

was still associated with significantly poorer survival

compared to the other two clusters (LumA-M2 and

LumA-M3).

Notably, the top 1000 differentially methylated CpG loci,

all hyper-methylated on LumA-M1 samples, had enrich-

ment for genes involved in morphogenesis, differentiation,

and developmental processes. Moreover, the CpG hyper-

methylation correlated with under-expression of develop-

mental genes, including various tumor suppressor genes.

Indeed, hyper-methylation of developmental genes in

luminal breast tumors was previously reported [70, 71],

secondary to repressive histone marks, which direct de

novo methylation. Moreover, hyper-methylation was

implicated in normal processes of cell aging and in

tumorigenesis [61]. Taken together, the methylation-based

analysis suggests a poorer outcome for luminal tumors

with a characteristic hyper-methylation pattern, whether

in the luminal-A or in the luminal-B subgroups. The

hyper-methylation-associated silencing of developmental

and tumor suppressor genes may indeed explain these

findings. More importantly, within the luminal-A sub-

group that is generally associated with a better outcome,

the hyper-methylation pattern of the LumA-M1 subgroup

marks 84 samples (comprising 22 % of the 378 luminal-A

samples) as a high-risk patient group that might benefit

from more aggressive treatment.

Last, we showed that the sample partitions induced by

the gene expression and DNA methylation patterns are

related (p = 4.4e-08; see lower bar in Fig. 5c), mainly be-

cause the LumA-M3 samples that are associated with a

better outcome are enriched for LumA-R2. However,

our attempts to partition the luminal-A samples based

on both patterns together did not yield a partition that is

better than the separate partitions, in terms of survival

prediction or clustering stability. This observation was

confirmed by Cox multivariate analysis showing the in-

dependent prognostic contribution of each pattern to

outcome prediction (Table 5), suggesting that gene

expression and methylation hold complementary infor-

mation, reflecting different aspects of the biological

complexity of breast tumors.

Very recently, several novel partitions of luminal breast

tumors were proposed [19, 65, 72]. The partitions identi-

fied in this study are reinforced by partial though signifi-

cant similarity to some newly defined groups. LumA-R1

and LumA-R2 clusters are enriched for the proliferative

(p = 8.1e-04) and reactive-like (2.4-e04) classes of invasive

lobular carcinoma (ILC), respectively, as defined in [73]

(see Additional file 1, section 12). Furthermore, the

LumA-M1 cluster is enriched (p = 1.6e-07) for the Epi-

LumB group of tumors that are associated with poorer

outcome, described by Stefansson et al. [69] (named

Epi-LumB, as it was largely composed of Luminal-B

samples, see Additional file 1, section 13). Additional

research is needed in order to consolidate the differ-

ent partitions identified using different procedures

into robust and meaningful categories for prognostic

and diagnostic use in clinics.

Conclusions
This study emphasizes the large heterogeneity of luminal

breast tumors in general, and of luminal-A samples in

particular, the inner variability of which was found to be

inadequately captured by PAM50 molecular subtypes.

Analysis of the RNA-Seq data revealed a partition of the

luminal-A samples into groups associated with different

risks of 5-year recurrence. We suggest that the over-

expression of immune genes in the LumA-R2 group can

be ascribed to a higher tendency of its samples to attract

tumor-infiltrating lymphocytes, but this requires further

research into the mechanism by which the higher infil-

trates affect recurrence risk. In the DNA methylation

data, a hyper-methylation pattern enriched for develop-

mental genes defined a luminal-A subgroup that was
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associated with poorer patient survival. In practice, the

two prognostic patterns and the lists of genomic features

characterizing each of them, can uncover the biological

aspects underlying the heterogeneity of luminal-A tumors,

improve our ability to classify these tumors into more

accurate clinical subgroups, and contribute to the devel-

opment of novel directed therapies.
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