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Expression-based drug screening of neural
progenitor cells from individuals with schizophrenia
Benjamin Readhead1,2,3,10, Brigham J. Hartley4,5, Brian J. Eastwood6, David A. Collier 6,7, David Evans6,

Richard Farias1,2, Ching He1,2, Gabriel Hoffman 1,2, Pamela Sklar1,2,5,8, Joel T. Dudley1,2,3,

Eric E. Schadt 1,2,9, Radoslav Savić1,2,9 & Kristen J. Brennand 1,4,5,8

A lack of biologically relevant screening models hinders the discovery of better treatments for

schizophrenia (SZ) and other neuropsychiatric disorders. Here we compare the transcrip-

tional responses of 8 commonly used cancer cell lines (CCLs) directly with that of human

induced pluripotent stem cell (hiPSC)-derived neural progenitor cells (NPCs) from 12 indi-

viduals with SZ and 12 controls across 135 drugs, generating 4320 unique drug-response

transcriptional signatures. We identify those drugs that reverse post-mortem SZ-associated

transcriptomic signatures, several of which also differentially regulate neuropsychiatric

disease-associated genes in a cell type (hiPSC NPC vs. CCL) and/or a diagnosis (SZ vs.

control)-dependent manner. Overall, we describe a proof-of-concept application of tran-

scriptomic drug screening to hiPSC-based models, demonstrating that the drug-induced gene

expression differences observed with patient-derived hiPSC NPCs are enriched for SZ biol-

ogy, thereby revealing a major advantage of incorporating cell type and patient-specific

platforms in drug discovery.
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S
chizophrenia (SZ) is a highly heritable neuropsychiatric
disorder (NPD)1, with genetic risk reflecting a combination
of highly penetrant rare mutations2 and common variants

of small effect3. All currently Food and Drug Administration-
approved antipsychotic drugs for the treatment of SZ share
antagonist activity against the dopamine D2 receptor and pre-
dominantly address positive psychotic symptoms (for review, see
ref. 4). Approximately one-third of SZ patients do not respond to
antipsychotic medications and another third have only a partial
response5; antipsychotic responsiveness has been hypothesized to
be a heritable component of disease risk6. Current pharmaceutical
in vitro drug discovery platforms for SZ frequently combine
immortalized cell lines and simple biological readouts (such as
receptor-binding properties) (reviewed7), but the drug discovery
success rate for NPD is particularly low8. Consequently, drug
development tends to focus on refining existing treatments
toward reducing side-effect profiles9 and/or increasing efficacy
through adherence10.

An improved drug-screening strategy would more faithfully
recapitulate SZ biology and also integrate advances in psychiatric
genetics2,3. Human induced pluripotent stem cell (hiPSC)-based
models of SZ have identified a number of neural11,12,
synaptic13,14 and molecular15–18 phenotypes in patient-derived
hiPSC neurons, demonstrating the feasibility of a more perso-
nalized approach to drug discovery. The protracted experimental
timelines to synaptic maturity combined with difficulties asso-
ciated with high-content synaptic screening assays (reviewed19,20)
have limited the adoption of hiPSC neurons to high-throughput
drug screening for psychiatric disease. As an alternative, we tested
whether hiPSC-derived neural progenitor cell (hiPSC NPC)-
focused gene expression-based screening represented a scalable
alternative approach.

Comprehensive data-driven models can inform disease
understanding and identify potential drug targets (reviewed in
ref. 21). We applied an integrative genomics approach to predict
and evaluate drug-induced perturbations in hiPSC NPCs, an easy
to culture22 human neural cell type arguably more relevant to SZ
than the transformed cancer cell lines (CCLs) historically used for
drug screening. Across 135 drugs prioritized in silico, we con-
ducted a transcriptomic screen of hiPSC NPCs from 12 SZ
patients and 12 healthy controls each, as well as 8 CCLs. This
head-to-head comparison of hiPSC NPCs with CCLs queried the
extent to which cell-type-specific and diagnosis-dependent drug
responses impacted SZ-related transcriptomic signatures and
gene sets enriched for SZ biology. Drug-induced gene expression
changes observed in hiPSC NPCs relative to CCLs and, to a lesser
extent, in SZ hiPSC NPCs relative to control hiPSC NPCs were
enriched for genes linked to SZ. Patient hiPSC-based neural
screening captured molecular responses to drug perturbations in
a more disease-relevant in vitro system, obtaining results that
more strongly connected to SZ (Fig. 1).

Results
Transcriptomic-based drug-screening approaches. We applied
an in silico computational drug-screening approach to select the
drugs for our transcriptomic-based drug screening. From a total
of 6269 small molecules (herein referred to as drugs), 135 were
prioritized based on predicted or known interactions with diverse
SZ-relevant biology (Supplementary Table 1). We collated SZ sets
from transcriptomic, genetic, and protein-centric data [including
SZ post-mortem brain gene expression23 (SZ networks), SZ-risk
gene sets based on common3 and rare variants24,25 (SZ-risk
genes), and synaptic protein PPI (protein–protein interaction)
communities generated from subsetting human protein interac-
tion data], as well as synapse-specific gene sets26 that were filtered

on NPD-associated gene sets (Supplementary Table 2) (Synapse
PPI communities). Fifty-seven drugs were prioritized through a
connectivity mapping approach27, according to their predicted
ability to differentially regulate the transcription of SZ sets. Six-
teen additional drugs were chosen based on overlap of referenced
(DrugBank 4.128) and predicted (SEA29) drug-target associations
with the SZ sets. A further 58 drugs were selected because they
were known to target SZ-relevant genes.

In total, we compared hiPSC NPCs (12 SZ and 12 control) and
CCLs (8) using 135 drugs, generating 4320 unique signatures.
NPCs used in this study were previously characterized as part of
two independent hiPSC cohorts of SZ and control hiPSCs12,15;
hiPSC NPCs from 11 SZ patients and 11 controls were used
across all 135 drugs, whereas 2 SZ patients and 2 controls each
received half of the drugs tested. Seven CCLs were selected from
the LINCS30 dataset, prioritized according to the fraction of
transcriptomic variance captured by each cell type31,32. An
additional CCL derived from neuroblastoma cells (SH-SY5Y) was
added to ensure that a neural cell type was represented. Available
clinical data for all cell lines is presented in Supplementary
Table 3. Drug treatment concentrations are listed in Supplemen-
tary Table 4.

Drug-induced gene expression profiles were generated using
the L1000 platform33 (Supplementary Figure 1 and Supplemen-
tary Data 1). Direct measures of 978 landmark probes were used
to impute normalized transcriptomic expression31,32 (see Meth-
ods). Drug perturbation signatures for each unique
drug–cell–plate combination were transformed to robust Z-
scores (RZS)34, representing the comparison of normalized gene
expression for treated wells with cell-line-matched, dimethyl
sulfoxide (DMSO)-treated wells within each plate.

As expected, cell type (hiPSC NPC and CCL) was a major
source of variation in the gene expression data (Fig. 2a).
Clustering of CCLs was more distinct; there was little to no
separation between individual hiPSC NPC lines or between SZ
and control hiPSC NPC group means. Variance partition
analysis35 quantified the sources of variance across all L1000
experiments (Supplementary Figure 2a), confirming that multiple
covariates, particularly technical variables (such as L1000 plate,
treatment plate, and project phase) accounted for significant
proportions of variation in the gene expression data. Transfor-
mation of data to RZS-based comparisons eliminated the effect of
these technical drivers of variance. Although this strategy
precluded our ability to draw insights about baseline differences
between cell lines, it clarified the cell-type-dependent drug
responses described below.

Amelioration of post-mortem SZ transcriptomic signatures.
We evaluated each drug on its ability to reverse a SZ tran-
scriptomic signature. We used an external post-mortem, rather
than a within-study-derived hiPSC-based signature, because our
hiPSC NPC donor sample size was small relative to available
post-mortem datasets23 and because the RZS transformation we
used to remove technical sources of variation precluded studying
baseline differences between cell lines. We used a gene-set
enrichment analysis36–38, instead of a direct examination of
relative expression levels, because the L1000 platform better
examines correlational patterns of gene response than relative
expression differences of inferred genes.

Across each hiPSC NPC and CCL, we asked to what extent the
post-mortem SZ-related transcriptomic signature was modulated
by drug treatment. Multi-dimensional scaling assigned each
hiPSC NPC and CCL a connectivity score between the 135 drugs
and the SZ post-mortem differentially expressed (DE) genes23

(Fig. 3a). In general, CCLs occupied the lower segment of the plot
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and hiPSC NPCs the upper half. The neuroblastoma cell line (SH-
SY5Y) sat relatively closer to the majority of hiPSC NPCs than
the other CCLs, perhaps reflecting its neural origins. For one SZ
and one control hiPSC NPC (selected based on their differential
connectivity), as well as SH-SY5Y, we noted the top 15 drugs
predicted to normalize SZ DE genes, conveying that for some
drugs (i.e., suloctidil) there was a strong and shared response,
whereas for others there was not. In fact, suloctidil reversed SZ-
related transcriptomic signatures across all CCL and hiPSC NPC
contexts, with a high pairwise correlation between all RZS (mean
pairwise correlation: 0.42).

Fifty-two of the 135 drugs (39%) ameliorated the SZ-related
transcriptomic signature in hiPSC NPCs, 61% of these in a
diagnosis-dependent manner (Fig. 3c). Twenty drugs ameliorated

the SZ DE in both control and SZ hiPSC NPCs, 15 in SZ hiPSC
NPCs only, and 17 in control hiPSC NPCs only. Many of the
drugs found to reverse the SZ transcriptional signature (Fig. 3c,
highlighted in bold) also produced diagnosis-dependent regula-
tion of SZ sets (see below).

For a subset of the SZ cases in this study, clinical
responsiveness to clozapine was previously evaluated39.
Perhaps due to our small sample size, we observed only a
poor stratification of patients by multi-dimensional scaling
of clozapine-induced gene expression changes to known
clozapine response (Supplementary Figure 3). We cannot
conclude whether hiPSC NPC transcriptional response to
clozapine differed between patients with clozapine-responsive
and non-responsive SZ.
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Cell-type-specific transcriptomic drug responses. We compared
drug-induced gene expression changes between CCLs and overall
hiPSC NPC drug signatures before separately considering SZ and
control hiPSC NPC drug signatures. All DE (absolute RZS ≥ 2)
drug–gene results within hiPSC NPCs and CCLs were identified
(Supplementary Data 1). Unexpectedly, CCLs showed diminished
overall drug responsiveness, with approximately 15% fewer total
drug-probe DE results (Bonferroni (BF) p < 0.001) (Supplementary
Data 1; Fig. 2b). In total, 11,132 genes were perturbed by an average
of 3.1 drugs across hiPSC NPCs, whereas 10,882 genes were per-
turbed by an average of 2.7 drugs in CCLs; 7288 genes showed a
differential DE (absolute difference in median RZS ≥ 2) between cell
types by an average of 2.2 drug perturbations (Supplementary
Data 1; Fig. 2b). Of the 50,744 drug–gene DE results, 15,855 showed
a differential DE result between hiPSC NPCs and CCLs.

The overall pattern of drug response between hiPSC NPCs and
CCLs was distinct (Fig. 2a), but the biological pathways associated
with the most frequently perturbed gene sets overlapped between
CCLs and hiPSC NPCs (hiPSC NPC; Supplementary Figure 4b,d;
CCL, Supplementary Figure 4a,c). Two hundred and fourteen
genes were differentially perturbed in a cell type-specific manner
by ≥ 5 drugs (absolute difference in RZS ≥ 2, |hiPSC NPC – CCL|,
Up: 93, Down: 119, both Up and Down: 2). The top cell-type
enrichment for the genes most frequently downregulated in
hiPSC NPCs was an independent NPC gene signature set
(Supplementary Data 1).

In total, 129 drugs showed significant (false discovery rate
(FDR) < 0.1) differential regulation of at least one SZ set between
hiPSC NPCs and CCLs (Fig. 4, Supplementary Data 1). As many

SZ sets were originally identified in the brain, we restricted the
analyses to genes expressed in CCLs under vehicle-treated
conditions (see Methods). We examined systematic differences
in the transcriptomic profiles that were generated when profiling
hiPSC NPCs compared with CCLs. Figure 4b shows the 15 drugs
that induced the largest relative perturbations to SZ-risk loci
genes and/or drug SZ-DE genes, dependent on cell line type.
Celastrol was the drug with the strongest single cell-type-specific
enrichment (NPC vs. CCL enrichment T-statistic: 2.79, FDR <
1.2e− 44, Fig. 4b, c, Supplementary Data 1). The observed effect
included multiple HSP genes (consistent with evidence that
celastrol induces HSP proteins in neurons40 as well as Fragile X
Mental Retardation 1 (FMR1) (linked with autism spectrum
disorder (ASD)41 and SZ25).

We performed a chemogenomic enrichment analysis to ask
whether drugs that regulated SZ sets differently in hiPSC NPC
and CCL contexts shared any pharmacological features (Fig. 4d;
Methods; Supplementary Data 1). Drugs that differentially
regulated each SZ set (FDR < 0.1) were grouped and compared
across diverse chemogenomic annotations (see Methods). We
identified two shared pharmacological features, targeting of the
serotonin receptor HTR1A and upregulation of SZ-associated
miR-1373 (Fig. 4e; Supplementary Figure 5a).

Taken together, multiple drugs induced perturbations of SZ
sets differently in hiPSC NPCs and CCLs, including antipsycho-
tics. The chemogenomic enrichments, although short of func-
tional validation, reinforced this context dependence of drug
perturbations. Overall, transcriptomic profiling of drug effects in
SZ-relevant cell types better revealed disease signal.
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Diagnosis-dependent transcriptomic drug responses. SZ hiPSC
NPCs showed a greater responsiveness to drug perturbations than
control hiPSC NPCs (BF p < 0.002); both showed a greater
responsiveness than CCLs (BF p < 0.001 all comparisons). Over-
all, drug-induced transcriptomic differences between SZ and
control hiPSC NPCs were markedly less than observed between
hiPSC NPCs and CCLs. Of the 47,510 DE results, 3394 show a
differential DE result between SZ and control hiPSC NPCs.

One hundred and five drugs induced diagnosis-dependent (SZ
vs. control hiPSC NPCs) differential gene expression changes
(Supplementary Data 1; Fig. 5); 99 showed significant (FDR < 0.1)
diagnosis-dependent differential regulation of at least one SZ set.
Although glipizide was the drug with the single strongest
diagnosis-specific enrichment (SZ vs. control hiPSC NPC
enrichment T-statistic: 2.11, FDR < 1.6e− 12 (Supplementary
Data 1)), trimethobenzamide showed the strongest enrichment
over a range of SZ sets (synapse PPI communities, SZ DE, and SZ
risk) (Fig. 5b, c, Supplementary Data 1). Critically, 18 of the top
30 drugs that were identified as having the most SZ-related
transcriptional changes (Fig. 5b) also showed the best normal-
ization of SZ-related transcriptional signatures (notably trimetho-
benzamide (Fig. 5c) in SZ hiPSC NPCs and haloperidol (Fig. 5d)
in control hiPSC NPCs (Fig. 3c)).

To probe synaptic biology, we created synaptic PPI networks.
Within these, we identified dense interacting sets of proteins
(referred to as PPI clique communities), representing known
pathways with higher coherence (Supplementary Table 2). Multi-
ple drugs induced significant (FDR < 0.1) diagnosis-dependent
perturbation of specific synapse PPI clique communities (Supple-
mentary Data 1; top 30 such drugs shown in Fig. 5b), with

enrichment for known antipsychotics (driven by aripiprazole,
iloperidone, and risperidone) (Fig. 5e; Supplementary Figure 5b).

To confirm that these observed gene-set enrichments were not
driven exclusively by imputed probes, we regenerated the SZ-set
enrichments for each drug using only the landmark probe set.
The enrichment t-statistics generated in a comparison of drug-
induced responses between hiPSC NPCs and CCLs (shown in
Fig. 4), and SZ and control hiPSC NPCs (shown in Fig. 5) were
significantly positively correlated with statistics generated only
from the landmark probe subset of the transcriptome (Corr: 0.55,
Student’s p-value: 1.6e− 213 and Corr: 0.44, Student’s p-value:
9.4e− 136, respectively). Specifically the Synapse PPI Commu-
nity set enrichments identified in SZ and control hiPSC NPCs
(shown in Fig. 5b, d) were significantly positively correlated with
landmark probe-set drug enrichment scores, most strongly for
Syn-509 (Supplementary Figure 6). Taken together, these findings
are supportive of the general accuracy of the enrichments
generated using the full L1000 expression set.

We observed significant (FDR < 0.1) diagnosis-dependent changes
(SZ vs. control hiPSC NPCs) in drug-induced perturbations in
FMR1 protein (FMRP) targets (Fig. 6a; Supplementary Figure 9a–c).
Thirty-three percent (45/135) of drugs induced significant (FDR <
0.1) differential (21 increased, 24 decreased) and 13% (18/135)
induced significant (FDR < 0.1) concordant (6 increased, 12
decreased) expression changes in both of two independent FMRP
targets sets42,43. The antipsychotic loxapine, a drug that we
previously reported to impact key SZ-associated cellular and
molecular alterations12, induced the largest increase in FMRP target
expression (FMRP target enrichments: NPC SZ vs. control
enrichments, Ascano Targets: T-statistic: 0.99, FDR < 8.1e− 6,
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Darnell Targets: T-statistic: 0.99, FDR < 0.0024, Supplementary
Data 1). This suggested altered regulation of FMRP targets in the
context of SZ hiPSC NPCs and may point to FMRP activity as a
potential point of mechanistic convergence between the drugs tested.

FMRP targets and differential transcriptomic drug responses.
To confirm the observed diagnosis-dependent impact of select
drugs on FMRP targets, we employed RNA-sequencing (RNA-
seq), which is a higher fidelity platform. We selected two L1000-
flagged drugs with dissimilar FMRP target responses, loxapine
and methylparaben, for validation across two hiPSC NPC lines
from three SZ and three controls each (Methods; Supplementary
Table 1; Supplementary Figure 7). As with the L1000 data, var-
iance partition analysis demonstrated that transformation of
expression to RZS from isogenic comparisons dramatically
reduced variation attributed to the cell line and donor variables
(Supplementary Figure 2b). Moreover, RNA-seq confirmed dis-
similar FMRP target responses to these two drugs; loxapine, but
not methylparaben (see Supplementary Figure 8), increased

FMRP target levels in two independent FMRP targets sets42,43

(Fig. 6b).
FMRP acts through negative regulation of mRNA translation at

polyribosomes, although roles for RNA folding, subcellular
trafficking, and regulation of microRNA-mediated translational
repression are also reported (reviewed44). We tested whether the
genes driving SZ hiPSC NPC-specific differences in loxapine-
induced perturbation of FMRP targets were associated with any
particular binding motifs. Eight nucleotide sequence patterns
associated with FMRP binding45 were evaluated for differences in
motif density between FMRP targets differentially perturbed in
the loxapine experiments (Fig. 6c). Perturbed FMRP targets were
enriched for the ACUK motif (T-statistic: 2.48, p-value: 0.013,
two-sample T-test), an enrichment driven by the upregulated
targets (relative to unchanged targets) (T-statistic: 2.65, p-value:
0.0083, two-sample T-test).

Given the association of FMRP target genes to NPD risk24,25,
we hypothesized that these ACUK motifs might correspond to
sites of NPD-associated genetic variation. We evaluated coding
and splice-associated DNA variants (collected and annotated by
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ref. 25), from individuals with SZ (918 variants total), ASD (1044
variants total), Intellectual Disability (166 variants total), and
controls (591 variants total). For each variant, we identified
occurrences of FMRP-binding motifs (Fig. 6d); the ACUK motif
was enriched among de novo variants reported in SZ (Fisher’s
exact test, FDR < 0.0028), ASD (Fisher’s exact test, FDR < 0.057),
and ID (Fisher’s exact test, FDR < 0.083) (Fig. 6e), particularly at
essential splice sites (Fisher’s exact test, FDR < 0.076). Therefore,
although identified in the context of FMRP binding43, the ACUK
motif may also regulate mRNA splicing (Fig. 6f) within de novo
variants associated with NPD (Supplementary Figure 9d). These
results highlight the FMRP-binding motif ACUK as a novel
therapeutic point of intervention and mechanism of SZ and pro-
vide an example of a SZ-relevant transcriptomic-based insight
that could not have emerged from a study of CCLs alone.

Discussion
Here we provide a resource of 4320 transcriptional signatures
generated from hiPSC NPCs (derived from 12 SZ cases and 12
controls) and 8 CCLs treated with 135 SZ-relevant drugs. By
combining two emerging technologies, hiPSC-based models with
in silico drug-screening methodologies, we established the

feasibility of transcriptomic-based drug screens of patient-derived
neural cells. Drug-induced perturbations were overall very similar
between hiPSC NPCs and CCLs; however, when specifically
considering differential drug-induced perturbations in SZ hiPSC
NPCs, relative to control hiPSC NPCs and particularly CCLs,
select drugs induced differential responses in subsets of genes,
and those differentially impacted gene sets were enriched for SZ
biology. Although many drug–gene perturbations were
shared, there were important differences between cell types.
While more drugs showed larger differences in drug-induced
perturbations between hiPSC NPCs and CCLs than between
hiPSC NPC cell line groups, surprisingly, CCLs were overall less
drug responsive than either SZ or control hiPSC NPCs. Our data
suggests that inclusion of patient-derived neural cell lines
will enrich the results for transcriptomic responses relevant to
disease processes. Importantly, we identified drugs capable of
ameliorating a SZ-related transcriptional signature in hiPSC
NPCs; the genes differentially impacted by many of these drugs
(i.e., trimethobenzamide, loxapine) specifically enriched for SZ
biology in our subsequent analyses. Our ability to independently
identify a common set of 18 drugs that both reversed SZ sig-
natures in hiPSC NPCs (Fig. 3c) and differentially regulated SZ-
set genes in SZ hiPSC NPCs (Fig. 5b) supports the validity of our
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transcriptomic drug-screening approach. Although our SZ-
signature and SZ-set analyses identified groups of genes differ-
entially regulated by select drugs on a cell type (hiPSC NPC vs.
CCL) or diagnosis (SZ vs. control)-specific basis, it was by che-
mogenomic analysis that we identified hypotheses as to why these
differential effects occurred.

The use of hiPSC-derived NPCs and neurons has already
identified novel targets for neurodegenerative disease such as
ALS46,47, Parkinson’s disease48, Wolfram Syndrome48, and neu-
rotoxicity49; mitochondrial risk effects can also be modeled and
screened for with hiPSCs NPCs50. However, to the best of our
knowledge, our work presents one of the first studies using hiPSC
NPCs at this scale to support the discovery of novel biology and
therapeutic targets in SZ. The next steps to further the use of hiPSC
NPCs in NPD must include rigorous reduction of the sources of
biological and technical variation (particularly those related to
miniaturization to enable high-throughput screening) to improve
the reproducibility of data and full expression profiling to increase
the strength of donor transcriptional signatures18,51. Given the
resemblance of hiPSC NPCs and neurons to fetal tissue52–56, it
remains to be investigated how the targets or drug candidates
identified through this approach could be provided clinically (e.g.,
preventive treatments in high-risk individuals, early intervention,
or symptomatic treatment of established or chronic SZ).

Although repeated genetic studies of SZ have identified
enrichment for rare mutations that impact synaptic proteins and
FMRP targets24,25,57,58, FMRP is not yet a focus of SZ therapeutic
discovery. Future work might benefit from an adaptation of an
existing FMR1-Nluc reporter high throughput assay in hiPSC
NPCs59. A major function of FMRP is to stall ribosomal trans-
location on its target mRNAs, suggesting that compounds that
inhibit translation elongation might alleviate neuronal pheno-
types associated with FMRP (reviewed60; critically, many anti-
biotics act by stalling the translocation of bacterial ribosomes and
were predicted to reverse SZ gene signatures in our drug repur-
posing analyses (Supplementary Table 1). Consistent with this,

the antibiotic minocycline can reverse abnormal synaptic struc-
ture and behaviors exhibited by Fmr1-knockout mice61 and
dfmr1-null flies62.

Importantly, continued quality control of data and use of
orthogonal assays is important when applying transcriptomic
technologies; L1000 and RNA-seq median platform self-
correlation across CCLs and >3000 tissues was reported to be
0.8433,63. Here, our RNA-seq experiments do not specifically
address the fidelity of the L1000 platform, as they were conducted
on independently cultured and drug-treated hiPSC NPCs (with
the addition of a second independent NPC line differentiated
from an independent clonal hiPSC line), using different batches
of all critical reagents, reflecting both biological as well as tech-
nical effects. In addition, the L1000 platform is largely designed to
query signature level changes rather than examine gene-specific
differences. However, its cost-effectiveness, when coupled with a
gene-set enrichment analysis approach, allowed us to profile a
substantially larger number of drugs than would have otherwise
been feasible using a higher fidelity platform.

In conclusion, consistent with work by Subramanian et al.33,
this study demonstrates the feasibility of large scale drug
screening using a transcriptomic readout. By projecting our
transcriptomic signatures onto biologically diverse, SZ-associated
genomics datasets, our approach has the potential to significantly
improve the success rate of NPD drug discovery. As sequencing
costs continue to drop, RNA-seq based screening64 should be
substituted in order to capture specific drug-induced changes at
the gene and isoform level. Integration of high-content imaging65

and proteomic66 readouts will further facilitate annotation of
molecular and cellular response to drug perturbations. Further-
more, and along the lines of integrating multiple layers of data,
network models will be necessary to capture large ensembles of
gene loci and variants associated with disease. Ultimately, mul-
tiscale biology approaches that integrate pre-clinical, clinical, lit-
erature, and imaging data will be required to construct predictive
disease network models and advance target and drug discovery21.
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Methods
CCLs and hiPSC NPCs. CCLs used in this study were purchased from ATCC:
HT29 (Catalog Number HTB38), A549 (Catalog Number CCL-185), VCaP (Cat-
alog Number CRL-2876), MCF7 (Catalog Number HTB-22), AGS (Catalog
Number CRL-1739), A673 (Catalog Number CRL-1598), HepG2 (Catalog Number
HB-8065), and SH-SY5Y cells (Catalog Number CRL-2266). NPCs used in this
study were obtained from two sources. For cohort #1, four patients and five control
hiPSCs were reprogrammed from fibroblasts obtained from Coriell or ATCC12,55.
For cohort #2, 13 child-onset SZ patients and 13 control hiPSCs were repro-
grammed from fibroblasts obtained from NIH15,18. All hiPSCs were differentiated
to hiPSC NPCs between passages 10 and 20 through an embyroid body-based
strategy12,15,18; all hiPSC NPCs were used for drug screening between passages 5
and 10. The cell lines used in each experiment, as well as available technical and
clinical information, are available in Supplementary Table 3.

For CCLs, fetal bovine serum (FBS, Catalog Number 16000-044, Lot Number
1551835), penicillin streptomycin (P/S, Catalog Number 15140-122, Lot Number
1523694), and culture media were from ThermoFisher Scientific, unless noted
otherwise. Growth media for all cancer cells contained 10% FBS and 100 UmL−1

of P/S. HT29 cells grew in McCoy’s 5A (Catalog Number 16600-082, Lot Number
1459946); A549 cells grew in F-12K (Catalog Number 21127-022, Lot Number
1550730); VCaP cells grew in Dulbecco’s modified Eagle’s medium (DMEM)
(Catalog Number 11995-040, Lot Number 1550730); MCF7 cells grew in EMEM
(ATCC, Catalog Number 30-2003, Lot Number 61756726) containing 10 ng mL−1

insulin (Sigma, Catalog Number I9978-5ML, Lot Number 1374942); AGS cells
grew in F-12K; A673 cells grew in DMEM; HepG2 grew in EMEM, and SH-SY5Y
cells grew in 1:1 F-12K and EMEM. CCLs were expanded according to vendor’s
instructions, tested for mycoplasma, and banked (within five passages) before
experiments. Cell lines used in all experiments were from the same lot of a given
banked passage for the cell line. Seeding cell density was adjusted to ensure 70% cell
confluence for all CCLs at the initiation of drug treatment.

For hiPSC NPCs, growth media used was DMEM/F12+GlutaMAX™ -I
(ThermoFisher Scientific, Catalog Number 10565, Lot Number 1715888)
containing 1 × N2 (ThermoFisher Scientific, Catalog Number 17502-048, Lot
Number 1672893), 1 × B27-RA (ThermoFisher Scientific, Catalog Number 12587-
010, Lot Number 1731195), and 20 ng ml−1 FGF2 (R&D Systems, Catalog Number
233-FB, Lot Number HKW12815061). Accutase for cell dissociation was from
Innovative Cell Technologies (Catalog Number AT-104, Lot Number 5S2415A).
Cyto One (USA Scientific) and Corning (Fisher Scientific) culture plasticware was
used for expansion and plating of cells. hiPSC NPCs were grown on Matrigel (BD
Biosciences, Catalog Number 354230, Lot Number 3018665)-coated plates in NPC
media. NPC experiments were conducted on myocoplasma-free passage-matched
populations, generally between passages five and seven.

After plating, all cell lines were incubated overnight before starting the drug
treatments.

Drug prioritization. We compared hiPSC NPCs (12 SZ and 12 control) and CCLs
(8) using 135 small molecule perturbagens (referred to as drugs in this manuscript),
generating over 4,300 unique signatures. Drugs were prioritized based on known or
predicted connections with diverse SZ biology (Supplementary Table 1). We first
collated (i) SZ transcriptomic, genetic, and protein-centric data [including SZ post-
mortem brain gene expression23, (SZ DE genes), gene coexpression modules
reported as differentially activated in SZ post-mortem brain tissue67 (SZ networks),
SZ-risk gene sets based on common3 and rare variants24,25 (SZ-risk genes), and
synaptic protein PPI communities generated from subsetting human protein
interaction data] with (ii) synapse-specific gene sets26 filtered on NPD-associated
gene sets (Supplementary Table 2) (Synapse PPI communities). Next, we applied
two methods to select the drugs: (1) a connectivity mapping approach27 prioritized
drugs according to their predicted ability to differentially regulate the transcription
of each SZ set and (2) an enrichment analysis incorporating referenced (DrugBank
4.128) and predicted (SEA29) drug-target associations with targets that are enriched
among compounds that regulate each SZ set. We prioritized 75 drugs by method 1
and the remainder by method 2, from a total of 6269 drugs (Fig. 1).

Drug screening. Drugs tested in this study were provided by Eli Lilly as 10 mM
stocks in DMSO, in heat-sealed 96-well plates or purchased from Tocris and
dissolved in DMSO (Sigma Catalog Number D5879, Lot Number SHBF7682V).
HP D300 T8 cassettes for pilot experiment were from Tecan. All other automated
liquid handling consumables, experiments in stages 1 and 2, were from Perkin
Elmer. Concentration of each drug was selected by accounting for concentrations
calculated from ChEMBL (https://www.ebi.ac.uk/chembl/) and Lilly-generated
internal data, to identify for each compound, the highest affinity target available in
the databases, and concentrations from The Connectivity Map (CMap)27,33. If the
calculated concentration was lower than CMap27, the calculated concentration was
used. If the calculated concentration exceeded that in CMap, then the CMap
concentration was used. If either concentration exceeded 10 µM, the test con-
centration was capped at 10 µM (Supplementary Table 4).

In a pilot experiment, we performed a procedural dry run using 2 CCLs (SH-
SY5Y and A549), 2 NPCs (1 SZ and 1 control), 5 pairs of agonists and antagonists
(to D2R, mGluR2/3, NMDAR, 5HT2A, and Ca(V)1) at 2 concentrations each (20
test wells), and a combination of 1 concentration of antagonist in the presence of 2

concentrations of an agonist (10 test wells) (Supplementary Table 3). HP D300
digital dispenser (Integrated Screening Core at Mount Sinai) was used to
administer test compounds and vehicle (DMSO) to designated wells. DMSO was
normalized to 0.2%. Total of 30 test conditions, 12 vehicles, 2 positive controls
(duplicate), and 1 empty well were used per cell line, per time point (6 and 18 h)
(Supplementary Table 4). Eight half 96-well plates were used for 6- and eight for
18 h time point. The resulting cell lysates were assembled onto a single 384-well
plate as per Genometry’s instructions for L1000 assay. Based on the strong
concordance in drug signatures between the 6 and 18 h time points in the pilot
analysis, particularly at the higher drug concentrations (capped at 10 μM), a 6 h
treatment at the higher dose range (Supplementary Table 4) was selected for the
larger study.

In stage 1 and stage 2 experiments, we used automated screening. Twenty-four
hiPSC-derived NPCs and 8 CCLs were used (total: 32 cell lines (Supplementary
Table 3)). Of the 24 NPC lines tested, three were replaced in phase 2 for technical
reasons, resulting in 21/24 NPC lines being tested in both phases and 3/24 tested
only in phase 2. All eight CCLs were tested in both phases without replacement
(Fig. 1). Each 96-well plate included the following: A1 empty well, 12 vehicle wells,
and 2 positive control wells (in duplicate) per cell line (i.e., per plate). The
remaining 79 wells were used for test compounds: (a) phase 1 had 6/79 drugs from
pilot and 73/79 phase 1 test compounds, (b) phase 2 had 6 pilot drugs re-tested, 6/
73 phase 1 drugs re-tested, and 67/79 phase 2 compounds. One hundred and
thirty-five unique compounds were tested (Supplementary Table 4).

High-throughput automated screening equipment included JANUS MDT
(Perkin Elmer) with integrated plate stack towers, incubator, gripper arm, and a 96
pin tool (VP Scientific, P/N 70229750), which was used to add all drugs. Cell
Explorer (Perkin Elmer) was used to remove media, lyse cells, and fill 384-well
plates for downstream processing by Genometry. Both systems were enclosed and
equipped with Hepa filters. Briefly, cells were loaded in JANUS MDT incubator.
Working plates of 1000 × test drugs in DMSO were used to pin drugs into each 96-
well plate containing cells. Cells were returned to the incubator for 6 h and then
lysed with cell lysis buffer (Genometry; 110 µL per well) (and stored at − 80 °C).
Eight 96-well cell plates were processed per day (days 1–4). At the end of
experiments (day 5), 96-well plates were thawed at RT and 50 µL of lysate
transferred into each of the two daughter 384-well plates (four 96-well plates were
combined per one 384-well plate; yielding a total of eight 384-well plates for phase
1 and another eight plates for phase 2). One 384-well plate was analyzed by
Genometry and one stored at − 80 °C as backup (Supplementary Figure 1).

Expression profiling, pre-processing, and quality control. The drug-screening
experiments were designed to minimize the impact of inter-cell line (hiPSC NPC
and CCL) and inter-batch variability in confounding the detection of drug
effects27,34. Each drug perturbation was generated alongside cell-matched, DMSO-
treated controls within the same treatment plate; each cell line therefore acted as its
own control, minimizing the effects of heterogeneity across individuals and clonal
hiPSC populations (Supplementary Figure 1). Drug-induced gene expression
profiles were generated using the L1000 platform33 cost-effective genome-wide
microarray assay based on Luminex bead technology that directly measures the
expression of 978 landmark probes, in order to impute probe expression values to
the full Affymetrix (HgU133A) probe space (22,268 probes)31,32. The L1000 gene-
expression profiling assay (Genometry, Inc.) was used to generate data; GCT files
with intra-sample scaled, intra-batch quantile-normalized, and log2-transformed
data were received and used for downstream analysis. The imputed probe set was
converted to an expression matrix corresponding to probes mapping to unique
Entrez gene identifiers. Entrez gene identifiers with multiple corresponding probes
were collapsed by retaining the probe with the highest expression across drug
signatures from all samples, totaling 12,500 unique Entrez gene identifiers. Overall,
normalized probe expression from 22,268 (978 landmark and 21,290 inferred)
probes was collapsed to an expression matrix corresponding to 12,500 unique
Entrez gene identifiers, retaining probes with the highest expression across all
samples68.

Drug signatures were generated by transforming gene expression to a RZS,
which reflects comparison with cell-matched, DMSO-treated wells within each
plate to minimize the effects of inter-batch variability as described in refs. 31–33. Z-
score signatures for drugs that were assayed multiple times on a given cell were
collapsed to the median expression value for each gene, and the following equation
used to generated the score:

RobustZgene ¼
Treated experssion�MedianDMSO experssion

Median absolute deviation

Drug signatures were quantified by transforming normalized gene expression to
a RZS34 reflecting a comparison between cell-line matched, DMSO-treated wells
within each plate. For the minority of drugs that were assayed multiple times on a
given cell type, RZS signatures were summarized to the median value for each
probe (Fig. 1).

Drug–gene perturbations were classified as DE if the absolute median RZS
was ≥ 2 (Supplementary Data 1). A drug–gene perturbation was classified as
differentially DE between two cell types expressed if the absolute difference in
median RZS was ≥ 2. Proportions of DE drug–gene perturbations in each cell type
were compared by Mantel–Haenszel test stratifying by drug–gene perturbation69
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and p-values were corrected for multiple comparisons using the Bonferroni
method. Each gene was scored according to the number of drugs for which it was
DE.

Drug enrichments for SZ sets were generated using the R package GAGE (30) to
identify individual SZ sets that are differentially perturbed between groups under
comparison (i.e., NPC vs. CCL or SZ NPC vs. control NPC). For each drug, we
iterated over each SZ-set type and compared the transcriptome-wide matrices of
RZS between groups under consideration using an unpaired, two-sample t-test, as
implemented in the gage function. Raw enrichment p-values were adjusted
automatically by the software, using a Q-value to estimate the FDR.

We estimated an appropriate baseline gene expression background for the CCL
using a publicly available library of CCL RNA-seq profiles70. This includes profiles
for six of our eight CCLs (A549, A673, AGS, HEPG2, HT29, and MCF7). We
identified exactly 16,000 unique genes, with at least 10 mapped reads, in at least
half of the cell lines under consideration and classified these as an estimated
background for subsequent gene-set enrichment testing of our profiled CCLs in the
context of brain-derived SZ sets.

Chemogenomic enrichment analysis. We grouped drugs that differentially reg-
ulate each SZ set (FDR < 0.1), and then annotated them using diverse chemoge-
nomic data, including drug target, enzyme, transporter, and carrier information
from (DrugBank 4.128) structure-based drug-target predictions (SEA29), drug
therapeutic classes (ATC71), and side effects (SIDER72 and OFFSIDES73). For each
chemogenomic class of interest, we identified the relevant subset of compounds
(for instance, side effects are only meaningful for compounds that have been used
clinically), generating custom compound backgrounds for further enrichment
testing. For each chemogenomic feature, we considered the unique set of com-
pounds that were associated with each SZ set and calculated chemogenomic
enrichments using Fisher’s exact text, and one-sided p-values (to identify over-
representation of compounds) were adjusted using the Benjamini–Hochberg
method74.

RNA-seq validation. NPCs were treated for 6 h with equivalent volumes of
DMSO, methylparaben (10 μM), or loxapine (1 μM) diluted into NPC media. Total
RNA was purified using the RNeasy Plus Mini Kit (Qiagen) and eluted in water.
RNA libraries were prepared for sequencing using standard Illumina protocols
(Ribo-Zero) and sequenced at ISMMS using a Hi-Seq 2500 using pair-end 100 nt
reads, 8 samples per lane.

RNA-seq experiments were conducted after L1000 drug screening and data
analyses were completed, capturing both biological (independent cell culture and
RNA purification) and technical variation (independent transcriptomic analysis)
(Supplementary Figure 7). RNA-seq data were normalized using the voom
function75, retaining genes with at least 1 count per million mapped reads, in at
least 5 samples, resulting in 14,931 unique genes. L1000 data was restricted to
DMSO-, methylparaben-, or loxapine-treated hiPSC NPCs derived from the ten
individuals collectively included in the RNA-seq. Normalized gene expression was
merged across platforms, resulting in an expression matrix comprising the 9680
unique genes present in both datasets. The mean pairwise Spearman’s correlation
across platforms from samples derived from the each drug were generally high and
positive (mean cross-platform Spearman’s ρ, DMSO= 0.54, loxapine= 0.55, and
methylparaben= 0.55), although samples clustered most strongly by platform,
both when considering the full set of genes (Supplementary Figure 7a) or when
subsetting to the only the genes corresponding to the landmark probes
(Supplementary Figure 7b) (Median ρ, landmark= 0.43, inferred= 0.19, all= 0.3).

Data availability
All L1000 and RNA-seq data are available at the Gene Expression Omnibus (GEO) series
GSE119291, L1000 data under GSE119275, and RNA-seq data under GSE119290. hiPSC
lines have been deposited at the NIMH Stem Cell Center maintained by Rutgers Uni-
versity Cell and DNA Repository (RUCDR); CCLs were obtained from and available at
ATCC.
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