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Abstract

Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the
relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript
abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid
for .43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype (, two X chromosomes
and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X
chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the
system ‘‘anticipates’’ the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This
feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose.
Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi
knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome
genes show Male Specific Lethal–independent compensation that fits a first order dose-response curve. Our data indicate
that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X
chromosome, compensation includes fixed and dose-dependent components.
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Introduction

The somatic cells of multicellular animals are almost exclusively

diploid, with haploidy restricted to post-meiotic germ cells. Having

two copies of every gene has an obvious advantage. Mutations

arise de novo within cells of an organism and within organisms in

populations, such that deleterious mutation-free haploid genomes

are extremely rare. The wild type alleles of genes tend to be

dominant to the recessive loss-of-function alleles, providing a

degree of redundancy allowing diploid organisms to survive even

with a substantial genetic load of deleterious mutations in each

haplotype.

While the dose of most individual genes is of little consequence

to the organism, larger scale genomic imbalance, or aneuploidy, is

detrimental [1–4]. Chromosomal aneuploidy occurs when whole

chromosomes are lost or duplicated and segmental aneuploidy

results from deletions, duplications, and unbalanced transloca-

tions. In Drosophila, a systematic genome-wide segmental aneu-

ploidy study [5] demonstrated that of all genes (now known to be

about 15,000 [6]), only about 50 are haploinsufficient and just one

gene is triplo-lethal. However, these same experiments showed

that large deletions and duplications result in reduced viability and

fertility that depends on the extent of aneuploidy, and not on any

particular region or gene [5]. This indicates that the detrimental

effect of aneuploidy is a collective function of multiple small effects,

not a function of particular genes.

Interestingly, while aneuploidy results in inviability at the

organism level, aneuploid cells can out-compete diploid cells for

growth in vivo or in vitro. Human cancer cells are a good example

of proliferating cells characterized by aneuploidy [7]. Most tumors

are nearly diploid or tetraploid with extra or lost chromosomes.

Even tumors with a normal number of chromosomes contain

other rearrangements that result in segmental aneuploidy. It is

likely that aneuploidy results in a systems or gene interaction

defect. Given that a deleterious effect of aneuploidy is likely to

occur at the level of genome balance, understanding the response

to aneuploidy requires the exploration of general control

mechanisms that operate at the network level.

We have turned to widely used Drosophila S2 tissue culture cells

as an aneuploid model [8,9]. These cells are generally tetraploid

[9] and studies of gene expression and X chromosome dosage

compensation indicate that they are male [10]. As a natural

consequence of chromosomal sex determination in Drosophila,

females have two X chromosomes and two pairs of autosomes

(2X;2A) and males have a single X chromosome (1X;2A) [11].

Therefore, male cells can be thought of as naturally occurring
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chromosomal aneuploids. The response to altered gene dose

probably occurs at multiple levels, but transcription is an early step

in the flow of information from the genome and is a likely site for

control. For example, X chromosome dosage compensation

clearly occurs at the transcriptional level [12] and is exquisitely

precise [13].

The Male Specific Lethal (MSL) complex regulates the

balanced expression of X chromosomes in wild type 1X;2A male

flies. MSL is composed of at least four major proteins (Msl1, Msl2,

Msl3, and Mof) and two non-coding RNAs (RoX1 and RoX2)

[11]. Mof is an acetyltransferase responsible for acetylating

H4K16 [11,14,15]. Mof is highly enriched on the male X

chromosome as a component of the MSL complex. However, Mof

also associates with a more limited repertoire of autosomal genes

independently of MSL [16]. H4K16ac is associated with increased

transcription in many systems [17]. Therefore, it is widely believed

that this acetylation results in increased expression of the X

chromosome [11], although an alternative hypothesis suggests that

MSL sequesters Mof from the autosomes to drive down autosome

expression [18]. Determining which of these mechanisms occurs is

complicated by the very nature of sampling experiments when

much of the transcriptome is altered. The number of X

chromosome transcripts sampled from the transcriptome depends

on the relative abundance of the X chromosome and autosome

transcripts. The salient feature of both models is balanced X

chromosome and autosome expression.

While the term dosage compensation is used to describe X

chromosome expression, dosage compensation is not restricted to

X chromosomes in Drosophila. Autosomes also show significant, but

much less precise, dosage compensation at the expression level

[13,19–21], suggesting that there is a general dose response

genome-wide. Despite the clear role of MSL in X chromosome

dosage compensation, the control system rules for MSL function

and the contribution of global compensation mechanisms to the

specific case of the X chromosome are poorly understood.

There are three basic transcript control mechanisms that could

modify the effect of gene dose: buffering, feedback, and feed-

forward [22]. Here we define buffering as the passive absorption of

gene dose perturbations by inherent system properties. For

example, if transcription obeys mass-action kinetics and the

gene/transcription complex is considered an enzyme [23], then

one would not expect a one-to-one relationship between mRNA

and gene copy because of the small effect of a change in enzyme

concentration at steady-state [24]. In addition to the enzymatic

properties of transcription, more than a generation of molecular

biologists has elegantly described extensive transcriptional regula-

tion networks controlling key phenotypes [25]. These regulatory

motifs are sensitive to changes in gene dose [26]. Feedback is an

outstanding error-controlled regulator that detects deviations from

the norm and implements corrective action. Feed-forward

regulation differs in that it anticipates the possible effect of

perturbations on the system rather than correcting the perturba-

tion after the deviation occurs. This could operate if cells detect

copy number and correct transcription levels before a quantitative

error in transcript abundance is evident.

In male embryos, the sex determination hierarchy detects X

chromosome number and leads to association of the MSL complex

with the X chromosome before zygotic transcription is activated

[27], as expected for a feed-forward regulator. However, MSL is

selectively bound to transcribed genes [28], which is also consistent

with feedback regulation. By examining the response of X

chromosome genes to dose in the presence and absence of MSL,

we show that X chromosome dosage compensation results from a

combination of MSL-dependent feed-forward regulation based on

anticipated effects from unbalanced gene dose and a more general

and dynamic response to perceived gene dose. The latter could be

due to negative feedback, buffering, or both.

Results

Segmental Aneuploidy in S2 Cells
To determine the extent of aneuploidy in S2 cells, we performed

next generation sequencing (DNA-Seq) and comparative genome

hybridization (CGH). These data confirmed the predicted male

genotype of S2 cells, as the average sequence depth of the X

chromosome (reads per kb per million reads, RPKM) was 54% of

the autosome RPKM (Figures 1 and 2A).

We also found that S2 cells exhibit numerous large regions of

segmental aneuploidy (Figure 1, Figure S1, Table S1). Stepwise

deviations from expected dose covered ,42% (,40.0 Mb) of the

autosomes and ,17% (,3.8 Mb) of the X chromosome (Figure

S1). The vast majority of the aneuploid segments showed an extra

or lost copy. There was high congruence between DNA-Seq and

CGH methods. For example, we determined that .93% of calls

for copy numbers between one and five made by DNA-Seq

analysis were confirmed by CGH, even when comparing different

lots of cells grown under slightly different conditions (Figure S2,

Table S2). These data suggest that S2 cells are highly aneuploid

but show a reasonably stable genotype. There was much more

variability seen when copy number was greater than five (30%

agreement between methods and cultures). This could be due to

failure to call short segmental duplications or to repeat expansion/

retraction in different cultures. Regardless of cause, we decided to

focus our subsequent expression analyses on the high-confidence

one to five copy genes (Table S3).

Genome-Wide Compensation
We observed striking differences in DNA-Seq read density

among chromosome arms due to segmental aneuploidy (Figure 2A,

p,10215, KS test). To determine if these DNA differences are also

associated with similar changes at the transcript level, we profiled

transcript expression by next generation sequencing (RNA-Seq).

We validated RNA-Seq data by microarray profiling and found

outstanding agreement (rs=0.87, p=0). Expression analysis

revealed striking dosage compensation. Even though copy number

values significantly differed at the chromosome level (Figure 2A),

we found that expression from autosome arms and the X

Author Summary

While it is widely recognized that mutations in protein
coding genes can have harmful consequences, one can
also have too much or too little of a good thing. Except for
the sex chromosomes, genes come in sets of two in diploid
organisms. Extra or missing copies of genes or chromo-
somes result in an imbalance that can lead to cancers,
miscarriages, and disease susceptibility. We have examined
what happens to gene expression in Drosophila cells with
the types of gross copy number changes that are typical of
cancers. We have compared the response of autosomes
and sex chromosomes and show that there is some
compensation for copy number change in both cases. One
response is universal and acts to correct copy number
changes by changing transcript abundance. The other is
specific to the X chromosome and acts to increase
expression regardless of gene dose. Our data highlight
how important gene expression balance is for cell
function.

Expression in Aneuploid Cells
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Figure 1. S2 cell DNA copy number. (A–D) DNA density and copy number profiles of the X chromosome (A, B) and chromosome 2L (C, D),
showing copy number of aneuploidy segments along chromosome length. The RPKM DNA-Seq density in nonoverlapping 1 kb windows was plotted
against the chromosome coordinates and the final deduced copy number is indicated (color key). The copy number was determined by Bayesian
change point analysis (CPA) (A, C) and CGH (B, D). The CGH results are projected onto the DNA-Seq data. The average DNA densities of each
aneuploid segment between predicted breakpoints (black lines) are shown.
doi:10.1371/journal.pbio.1000320.g001
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chromosome were similar inter se (Figure 2B). In no case was the

expression of a chromosome arm significantly different from all

other arms (p.1022, KS test), indicating that dosage compensa-

tion occurs genome-wide, not just on the X chromosome.

To examine the precision of dosage compensation, we

determined the relationship between expression and copy number.

Compensation was not perfect, as expression increased with copy

number (Figure 2C, p,1024, KS test). This imperfect compen-

sation resulted in a sublinear relationship between copy number

and gene expression, such that per copy expression values

decreased with increased copy number on the autosomes

and especially on the X chromosome (Figure 2D). This

inverse relationship between copy number and expression per

copy indicates that partial dosage compensation occurs

genome-wide.

The X Chromosome
X chromosome dosage compensation was of particular interest.

In wild type males, X chromosome dose (1X) is 50% of autosomal

dose (2A). In S2 cells this relationship occurred at 2X;4A due to

tetraploidy. The precision of X chromosome dosage compensation

in S2 cells was revealed by the indistinguishable expression of two

copy X chromosome genes and four copy autosome genes

(Figure 2C, p=0.15, KS test). Thus X chromosome dosage

compensation shows similar efficacy in diploid 1X;2A flies and in

aneuploid 2X;4A tissue culture cells.

Figure 2. Expression at varying copy numbers. (A, B) Boxplots showing the distribution of DNA-Seq read densities (in non-overlapping 1 kb
windows) mapped to chromosome arms in S2 cells (A) and the distribution of RNA-Seq expression values at the gene-level (B). Pie charts (A, B) show
the distributions of copy numbers on each chromosome arm (for expressed genes only). See Figure 1 for copy number color key. The X chromosome
is in red. (C, D) Boxplots showing the distribution of RNA-Seq expression values by copy number (C) and expression per copy (D). Equivalent
expression medians for two copies on the X and four copies on the autosomes are indicated (dashed line). For all boxplots, the 25th to 75th
percentiles (boxes), medians (lines in boxes), and ranges (whiskers, 1.5 times the interquartile range extended from both ends of the box) are shown.
Asterisks indicate significant differences from all other chromosome arms (A, B) or from the 2X or 4A baseline (C).
doi:10.1371/journal.pbio.1000320.g002
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The aneuploid S2 cells also allowed us to examine the effect of

X chromosome dosage compensation when the X chromosome

dose was greater or less than 50%. Precise X chromosome dosage

compensation did not occur at these other gene doses (Figure 2C,

p,1029, KS test). For example, when we compared expression

from three copy genes on the X chromosome and autosomes, X

chromosome gene expression per copy was higher despite identical

copy number (Figure 2D). Thus, we suggest that X chromosome

dosage compensation is error generating when the underlying X

chromosome gene dose is equivalent to the autosomal gene dose.

Similarly, we found under-compensated X chromosome expres-

sion when there was a single copy of an X chromosome segment.

These data indicate that the anticipated or predicted X

chromosome copy number that implements the sex and dosage

compensation pathway determines X chromosome expression.

The actual X chromosome dose is not a factor. This error

generation following perturbation is a property of feed-forward

regulation [22].

MSL Complex
To evaluate the effect of the MSL complex on appropriate and

error generating X chromosome dosage compensation in S2 cells,

we performed RNA interference (RNAi) experiments to knock-

down expression of two genes encoding key MSL components,

msl2 and mof. If MSL operates via feedback regulation, then

knockdown should differentially alter expression depending on

dose, whereas if MSL is a feed-forward regulator, the effect of

MSL on expression should be X chromosome specific but dose

independent.

We selected double stranded RNAs (dsRNA) targeting msl2 and

mof that resulted in greater than 90% knockdown at the mRNA

(not shown) and protein levels (Figure 3A). MSL is a chromatin-

modifying machine. We therefore also determined if RNAi altered

X chromatin. The X chromosome showed high levels of

acetylation at expressed genes (Figure 3B and 3C), and both

msl2 and mof RNAi resulted in markedly reduced H4K16ac levels

on the X chromosome as determined by chromatin immunopre-

cipitation on microarray (ChIP-chip, Figure 3B, 3D, and 3E).

RNAi against mof also resulted in decreased autosomal H4K16ac

(Figure 3B and 3E). All these data suggest that the RNAi

treatments were effective.

We then measured the effect of msl2 and mof RNAi on

expression by RNA-Seq. As in the previous experiments, we

validated expression by microarray expression profiling and found

outstanding agreement (rs = 0.87–0.89, p=0, Figure S3). We

observed decreased expression of X chromosome genes following

either RNAi treatment (Figure 4, p,1022, KS test), consistent with

the role of MSL in promoting expression of X chromosome genes

relative to autosomes. For example, in mof RNAi cells we observed

a median expression of 26.4 RPKM for autosomal genes present at

four copies and only 18.6 RPKM for X chromosome genes

present at two copies (p,10215, KS test). The msl2 or mof RNAi

treatments broke the precise equilibration of 2X with 4A

expression.

We observed 1.35-fold greater X chromosome expression

attributable to wild type Msl2 or Mof (average RNAi/Mock

expression ratio = 0.74, p,10215, KS test), with little to no effect

on autosomal expression (Figure 5A and 5B). If MSL acts as a

strict feed-forward regulator, then MSL would have the same fold

effect on all populations of X chromosome genes at a given copy

number, irrespective of the actual copy number. Indeed, we

observed a similar fold effect on the expression of X chromosome

genes with different copy numbers (Figure 5C and 5D,

0.58,p,0.89 in msl2 RNAi, 0.21,p,0.91 in mof RNAi, KS

test). These data clearly indicate that MSL acts on expression

based on X chromosome gene nature, rather than monitoring

actual copy number.

Drosophila X chromosomes are dosage compensated over the full

range of gene expression values. Given that MSL is bound

selectively to expressed genes, we also asked if there is a

relationship between expression levels and dosage compensation.

We determined that the RNAi treatments had the same effect on

X chromosome gene expression regardless of expression levels

(Figure 5E and 5F). Interestingly, these experiments also showed

only a modest effect of mof on autosomal expression, suggesting

that the proposed autosomal function of Mof [16] is subtle. The

effect of Mof on autosomes was expression level dependent, as we

observed a greater fold effect at low expression levels. However,

the most overt effect of wild type Msl2 or Mof was a 1.35-fold

increase in X chromosome expression at all expression values.

These data indicate that MSL acts as a feed-forward multiplier

causing a fixed-fold effect on X chromosome expression regardless

of gene copy number and basal gene expression value.

Genome-Wide Sublinear Expression Response to Gene
Dose
X chromosome dosage compensation is 2-fold, but we observed

only a 1.35-fold effect of MSL. If MSL is the only contributor to X

chromosome dosage compensation and if knockdown was

complete, we would expect X chromosome and autosome genes

with the same copy number to show the same expression levels

following msl2 or mof RNAi treatment. However, following either

msl2 or mof RNAi, three copy genes on the X chromosome were

still 1.19-fold over-expressed relative to three copy genes on

autosomes (Figure 6A, p,0.01, KS test). This difference between

expected and observed expression could be due to residual MSL

activity exclusively, or due to a combination of residual MSL

activity and an MSL-independent component of X chromosome

dosage compensation. The MSL-independent compensation could

be the same as observed on the autosomes. Given that the fixed-

fold properties of MSL also apply to residual activity, then the

over-expression of X chromosome genes following RNAi treat-

ment should also have a fixed fold effect if there is residual MSL

activity. We observed significantly increased variance in the

expression ratios between the X chromosome and autosomes

following RNAi (p,1022, F test, Figure 6B). This supports the idea

that much of the unexplained X chromosome dosage compensa-

tion is not due to a fixed-fold effect on expression. It is possible that

there are MSL-dose dependent effects on X chromosome

expression due to variable affinity, although the fixed-fold effect

of MSL knockdown on the population of genes makes this less

likely. These data suggest that there is an MSL-independent

component of X chromosome dosage compensation.

To determine if the MSL-independent component is the same

dosage compensation system that operates on autosomes, we

characterized the sublinear expression response to gene dose for

the X chromosome and autosomes with or without RNAi

treatment. There were three distinct trend lines for the relationship

between copy number and expression: one for the autosomes and

one each for the X chromosome with and without RNAi

treatment (Figure 6A). There are an infinite number of possible

sublinear curves. If the nature of the dose response on the X

chromosome differed from the autosomes, or the presence or

absence of MSL, then scaling should not result in a common fit.

However, if the three dose response curves are the result of a

common dosage compensation mechanism, then they should scale

to yield a single curve that fits all three of the absolute dose-

response curves.

Expression in Aneuploid Cells
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We set median expression fold change at 2X and 4A to 1.0 for

both copy number and expression (Figure 6C). We found that X

chromosome and autosomes show remarkably similar fold changes

in expression relative to fold changes in copy number. Addition-

ally, the relationship between X chromosome expression and copy

number is MSL independent following scaling. These data suggest

that like the autosomes, the X chromosome is subject to dosage

compensation based on actual gene dose. The gene dose to

Figure 3. msl2 and mof RNAi. (A) Western analysis showing changes in MSL protein abundance following RNAi for msl2 and mof in S2 cells. (B) K-
means clustering (k = 3) of H4K16ac ChIP/input ratio for expressed genes on the X chromosome and chromosome 3R in RNAi and mock treated S2
cells. Genes enriched (yellow) and depleted (blue) for H4K16ac are indicated. (C) Boxplots showing the distribution of H4K16ac ChIP/input ratios in
mock treated cells for expressed genes on different chromosome arms. (D–E) Boxplots showing the distribution of H4K16ac ChIP ratios betweenmsl2
RNAi cells (D) or mof RNAi cells (E) and mock treated cells for expressed genes on different chromosome arms. Significant differences (p,1022)
among chromosome arms (C) and between RNAi and mock treated cells (D, E) are indicated by asterisks.
doi:10.1371/journal.pbio.1000320.g003
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expression response fits a one parameter model y = x(EC50 +1)/

(EC50 + x), where y is transcript abundance, x is DNA copy

number expressed as a ratio relative to wild type, and EC50 is the

copy number required for half maximal expression (r2.0.99). This

indicates that gene expression is a saturating function of gene dose

regardless of chromosome location or the presence of MSL.

Discussion

Our data indicate that the MSL complex and general

compensation mechanisms independently contribute to male X

chromosome dosage compensation. The MSL complex recognizes

active X chromosome genes [28–31]. We have shown that MSL

then acts as a simple unidirectional multiplier of expression

regardless of the actual gene dose and gene expression level. In

contrast, buffering and feed-back are dose sensitive and absorb the

expression perturbations caused by unbalanced dose. We suggest

that all these mechanisms are critical for proper X chromosome

dosage compensation.

Some rough accounting illustrates the composite nature of X

chromosome dosage compensation. In the Drosophila genus, dosage

compensation results in a 2.0- to 2.2-fold increase in X

chromosome expression in males relative to autosomes [13,32].

Similarly, in S2 cells we observed a 2.08-fold increase in X

chromosome expression. The fixed-fold effect of MSL resulted in

at least a 1.35-fold increase in X-chromosome expression. Dose-

responsive compensation also acted to increase X chromosome

expression and was independent of MSL function. We can

estimate the contribution of dose-responsive compensation from

work performed on whole flies and on S2 cells. Autosomal dosage

compensation increases per copy expression by 1.4- to 1.6-fold in

diploid flies with a single copy of tens of genes [13,19]. In

agreement with those reported values, we can project that a 2-fold

change in scaled DNA dose in S2 cells results in about a 1.5-fold

increase in scaled gene expression. Thus, at face value, the layered

effect of dose-responsive compensation and feed-forward dosage

compensation may explain all of the final increase in S2 cell X

chromosome expression (1.50-fold61.35-fold = 2.03-fold).

While most work on dosage compensation focuses on the X

chromosome [2,11], other organisms also show dosage compen-

sation on autosomes [33]. For example, mammalian trisomies

show only about a 1.3-fold increase in gene expression as a result

of a 1.5-fold change in gene dose [34,35]. Compensation is likely

to be a universal property of biological systems that enables cells to

avoid deleterious effects of genetic load and other perturbations.

Materials and Methods

Cell Strains and Media
Drosophila S2 cells [9] (a.k.a. SL2) were obtained from Drosophila

RNAi Screening Center (DRSC, Harvard Medical School,

Boston, MA) and were grown at 25uC in Schneider’s Drosophila

Medium (Invitrogen, Carlsbad, CA) supplemented with 10% Fetal

Bovine serum (SAFC Biosciences, Lenexa, KS) and Penicillin-

Streptomycin (Invitrogen, Carlsbad, CA). These cells were used

for all experiments, except CGH, where S2-DRSC cells were

obtained from the Drosophila Genomics Resource Center (#181,

Bloomington, IN).

Sequencing
We extracted S2 cell genomic DNA using a genomic DNA kit

(Qiagen, Valencia, CA). Approximately 2 mg of purified genomic

DNA was randomly fragmented to less than 1,000 bp by 30 min

sonication at 4uC with cycles of 30 s pulses with 30 s intervals

using the Bioruptor UCD 200 and a refrigerated circulation bath

RTE-7 (Diagenode, Sparta, NJ). Sonicated chromatin (see ChIP

protocol) was purified by phenol/chloroform extraction.

We extracted S2 cell total RNA with Trizol (Invitrogen,

Carlsbad, CA) and isolated mRNA using Oligotex poly(A)

(Qiagen, Valencia, CA). The number of cells used for each

extraction was counted using a haemocytometer. The quality of

mRNA was examined by RNA 6000 Nano chip on a Bioanalyzer

Figure 4. Expression following msl2 or mof RNAi. Boxplots showing the distribution of expression RPKM values at indicated copy number on
the X chromosome (left) and autosomes (right) in RNAi and mock treated S2 cells. Equivalent expression of two copy X chromosome genes and four
copy autosomal genes in mock treated cells is shown (dashed line). See Figure 2 for boxplot format. Asterisks indicate significant expression decrease
in RNAi cells compared to mock treated cells.
doi:10.1371/journal.pbio.1000320.g004

Expression in Aneuploid Cells
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Figure 5. Mof and Msl2 effects on expression. (A, B) Boxplots showing the distribution of expression ratios between msl2 RNAi cells (A) or mof
RNAi cells (B) and mock treated cells by chromosome arms. The expected fold decrease in X chromosome expression after RNAi treatment is
indicated (red dashed line). (C, D) Boxplots showing the expression ratios for msl2 (C) and mof (D) RNAi treated cells at indicated gene copy numbers.
The X chromosome (left) and autosomes (right) are shown separately. (E, F) The relation between gene expression and fold expression change inmsl2
(E) and mof (F) RNAi treated cells plotted as a moving average (20 gene/window).
doi:10.1371/journal.pbio.1000320.g005

Expression in Aneuploid Cells
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2100 (Agilent, Santa Clara, CA) according to the manufacture’s

protocol. One hundred ng of the extracted mRNA was then

fragmented in fragmentation buffer (Ambion, Austin, TX) at 70uC

for exactly 5 min. The first strand cDNA was then synthesized by

reverse transcriptase using the cleaved mRNA fragments as

template and high concentration (3 mg) random hexamer Primers

(Invitrogen, Carlsbad, CA). After the first strand was synthesized,

second strand cDNA synthesis was performed using 50U DNA

polymerase I and 2U RNaseH (Invitrogen, Carlsbad, CA) at 16uC

for 2.5 h.

Deep sequencing of both DNA and short cDNA fragments were

performed [36,37]. Libraries were prepared according to instruc-

tions for genomic DNA sample preparation kit (Illumina, San

Diego, CA). The library concentration was measured on a

Nanodrop spectrophotometer (NanoDrop products, Wilmington,

DE), and 4 pM of adaptor-ligated DNA was hybridized to the flow

cell. DNA clusters were generated using the Illumina cluster

station, followed by 36 cycles of sequencing on the Illumina

Genome Analyzer, in accordance with the manufacturer’s

protocols. Two technical replicate libraries were constructed for

each DNA-Seq sample. Two libraries were prepared from two

biological replicates of each RNA material (RNAi or mock

treated).

RNAi
dsRNA for RNAi treatment [38] was produced by in vitro

transcription of a PCR generated DNA template from Drosophila

genomic DNA containing the T7 promoter sequence on both

ends. Target sequences were scanned to exclude any complete 19

mer homology to other genes [39]. The dsRNAs were generated

using the MEGAscript T7 kit (Ambion, Austin, TX) and purified

using RNAeasy kit (Qiagen, Valencia, CA). Two different primer

sets were used for each target gene, and the one with better RNAi

efficiency was used for downstream experiments. The selected

primer sequences for generation of msl2 dsRNA template by PCR

were as follows: forward, 59-taatacgactcactatagggTTGCTCC-

GACTTCAAGACCT-39, and reverse, 59-taatacgactcactatagggG-

CATCACGTAGGAGACAGCA-39 and the selected primer

sequences for generation of mof dsRNA template were as follows:

forward, 59-taatacgactcactatagggGACGGTCATCACAACAGG-

TG-39, and reverse, 59-taatacgactcactatagggTGCGGTCGCTG-

TAGTCATAG-39.

For RNAi treatment, S2 cells were resuspended in serum free

media at 26106 cells/ml. Twenty mg dsRNA was added to 1 ml of

cell suspension and incubated for 45 min at room temperature.

Cells with the same serum free media treatment but without added

dsRNA were used as mock treated controls. After the incubation,

3 ml complete medium was added and the cells were cultured for

another 4 d. Cells were collected and split into three aliquots for

mRNA extraction, chromatin immunoprecipitation, and western

analysis.

ChIP
For ChIP [40], 5–106106 S2 cells were fixed with 1%

formaldehyde in tissue culture media for 10 min at room

temperature. Glycine was added to a final concentration of

0.125 M to stop cross-linking. After 5 min of additional incubation

and two washes with ice-cold PBS, cells were collected and

resuspended in cell lysis buffer (5 mM PH 8.0 PIPES buffer,

85 mM KCl, 0.5% Nonidet P40, and protease inhibitors cocktail

from Roche, Basel, Switzerland) for 10 min and then resuspended

in nuclei lysis buffer (50 mM PH 8.1 Tris.HCl, 10 mM EDTA,

1% SDS and protease inhibitors) for 20 min at 4uC. The nuclear

extract was sheared to 200–1,000 bp by sonication on ice for

8 min (pulsed 8 times for 30 s with 30 s intervals using a Misonix

Sonicator 3000; Misonix, Inc. Farmingdale, NY). The chromatin

solution was then clarified by centrifugation at 14,000 rpm for

10 min at 4uC. Five ul anti-H4AcK16 (Millipore, Billerica, MA)

was incubated with the chromatin for 2 h and then was bound to

protein A agarose beads at 4uC overnight. The beads were washed

three times with 0.1% SDS, 1% Trition, 2 mM EDTA, 20 mM

PH 8.0 Tris, and 150 mM NaCl; three times with 0.1% SDS, 1%

Trition, 2 mM EDTA, 20 mM PH 8.0 Tris, and 500 mM NaCl;

and twice with 10 mM PH 8.1 Tris, 1 mM EDTA, 0.25 M LiCl,

1% NP40, and 1% sodium deoxycholate. The immunoprecipitat-

ed DNA was eluted from the beads in 0.1 M NaHCO3 and 1%

SDS and incubated at 65uC overnight to reverse cross-linking.

DNA was purified by phenol-chloroform extraction and ethanol

precipitation. The precipitated DNA for Chromatin immunopre-

cipitation was amplified using a Ligation-mediated PCR (LM-

Figure 6. Characterization of dose-response curves. (A, C) Median expression RPKM values plotted against the DNA copy for X chromosome
and autosome genes in RNAi and mock treated S2 cells based on absolute (A) or scaled (C) data. Fitted trend lines for the X chromosome (red) and
autosomes (black) following mock (solid), msl2 (dashed), and mof (dotted) RNAi treatment are indicated. (B) Boxplots and table showing the
distribution of expression ratios among different copy numbers. Expression fold change values were calculated based on real median RPKM values
(bold) or projected expression values. Asterisks indicate significant variation for the expression fold change between X chromosome and autosome
genes at an equivalent dose in RNAi cells (p,1022).
doi:10.1371/journal.pbio.1000320.g006
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PCR) protocol from FlyChip [41]. ChIP was performed on

triplicate biological samples.

Microarrays
Six hundred ng of amplified DNA (ChIP enriched DNA or

input DNA) were labeled using 6ug Cy3- or Cy5-labeled random

nonamers (Trilink Biosciences, San Diego, CA) with 50U Klenow

(New England Biolabs, Ipswich, MA) and 2 mM dNTPs. The

labeled DNA was purified and hybridized to FlyGEM microarrays

[42]. Arrays were scanned on an Axon 4000B scanner (Molecular

Devices Corporation, Sunnyvale, CA) and signal was extracted

with GenePix v.5.1 image acquisition software (Molecular Devices

Corporation).

Two hundred ng aliquots of the same extracted mRNA used for

RNA-Seq were labeled as described [42] and were hybridized to

NimbleGen custom 12 plex microarrays at 42uC using a MAUI

hybridization station (BioMicro Systems, Salt Lake City, UT)

according to manufacturer instructions (NimbleGen Systems,

Madison, WI). Arrays were scanned on an Axon 4200AL scanner

(Molecular Devices Corporation, Sunnyvale, CA) and data were

captured using NimbleScan 2.1 (NimbleGen Systems, Madison,

WI).

Western Analysis
Cell lysates were prepared from cells 4 d after dsRNA or mock

treatment by boiling for 5 min in NuPAGE LDS sample buffer

(Invitrogen, Carlsbad, CA). Samples were run by SDS-PAGE

using a 4%–12% Bis-Tris gel (Invitrogen, Carlsbad, CA) and

transferred to PVDF membrane. Blots were incubated with anti-

MSL antibody (1:500), anti-MOF antibody (1:3,000, gifts of M.

Kuroda), or anti-a tubulin antibody (1:10,000, Sigma, St. Louis,

MO) and then with HRP-secondary antibodies in PBS buffer with

0.1% Tween 20. Protein signals were detected by Pierce Super-

Signal West Dura extended Duration Substrate (Thermo Fisher

Scientific, Rockford, IL). Images were captured using a Fuji LAS-

3000 Imager and quantified using the Image Gauge software (Fuji

Film, Tokyo, Japan).

Data Processing
Both DNA-Seq and RNA-Seq sequence reads were compiled

using a manufacturer-provided computational pipeline (Version

0.3) including the Firecrest and Bustard applications [36].

Sequence reads were then aligned with the Drosophila melanogaster

assembly (BDGP Release 5, dm3) [6,43] using Eland. Only

uniquely mapped reads with less than two mismatches were used.

For DNA-Seq data, we counted the number of reads in the non-

overlapped 1 kb region along each chromosome using all

sequenced reads from two technical DNA-Seq libraries and

calculated the read density by the number of unique mapped reads

per kb per million mapped reads (RPKM) [37]. The breakpoint

positions of aneuploid segments were identified using the Bayesian

analysis of change point (bcp) package from R [44]. Because some

reads mapped to multiple positions in the genome and thus

inappropriately lower the deduced copy number in regions with

low sequence complexity, we removed all the 1 kb windows with

RPKM lower than 2 (RPKM value of one copy = 2.29) prior to

change point analysis. Breakpoints with posterior possibility .0.95

were used. Copy number was assigned to segments based on the

fold between average segments RPKM value between breakpoints

(2.2961.15 RPKM =1 copy, 4.5861.15 RPKM =2 copy, etc.).

Genes spanning two segments were not used in gene expression

analysis.

For RNA-Seq data, we counted the number of unique mapped

reads within all unique exons of Drosophila Flybase [45] Release

5.12 annotation (Oct. 2008) and calculated the total number of

reads of all unique exons per kb of total length of unique exons per

million mapped reads (RPKM) for each annotated gene. The

RPKM calculation was done for individual RNA-Seq libraries

separately, and then RPKM values were averaged for biological

replicates (r2=0.98 between replicates). Non-expressed genes are

not useful for ratiometric analysis and these were therefore

excluded. We used RPKM values for intergenic regions to

determine expression thresholds. For intergenic regions, the

RPKM values were calculated for total number of reads between

adjacent gene model pairs. Only 5% of intergenic regions in S2

cells have a RPKM value greater than or equal to 4. Therefore, we

called genes with RPKM values no less than 4 in S2 cells as

expressed with an estimated type I error rate of 5%.

All microarray data (except CGH) and statistical tests were

processed and analyzed in R/Bioconductor [46]. For the ChIP-

chip experiments, we used quantile normalization based on the

input channel. The distributions of raw and normalized intensities

were checked to make sure that normalization was appropriate

(i.e., that the skew was maintained). We used the average ChIP/

input ratio from biological replicates (r2=0.40–0.54 between

replicates). The ChIP/input ratios in RNAi and mock treated cells

were used for K-means clustering analysis with 3 nodes using

Euclidean similarity metric and genes on X chromosome and

autosomes were clustered separately using Cluster3.0 and then

visualized using Tree-View [47]. For expression profiling, we

normalized using loess within each 12-plex and quantile between

12-plexes. Average probeset log2 intensities were calculated in

both channels for each gene. Correlations between array

intensities and RPKM values were estimated by Spearman’s rank

correlation coefficient. The comparisons for the distributions of

DNA densities or expression values among different chromosomes

and different copy numbers were performed using two sample

Kolmogorov-Smirnov tests (KS tests).

Normalization is inherently problematic when a large fraction

of the genome changes expression, as in the RNAi experiments.

Given that 20% of the genome is encoded on the X chromosome

(X) and 80% is encoded on autosomes (A), and that one samples

transcripts from a total mRNA pool to generate an expression

profile, and that X chromosome expression is reduced by half and

autosome expression does not change, then autosomal transcripts

must be over-sampled in the experiment. Conversely, if the

autosome expression is doubled, then X chromosome transcripts

must be under-sampled. While it is imprudent to formally state the

precise contribution of X chromosome expression changes and

autosomal expression changes due to MSL-mediated dosage

compensation, we can determine which makes the larger

contribution based on the RPKM, total mRNA, and cell count

measurements. Using this information, we calculated the log-

likelihood value for two hypotheses:

H0 : ARNAi~AWT ,XRNAi~
1=2XWT

H1 : ARNAi~2AWT ,XRNAi~XWT

Here hypothesis H0 states that the expression of autosomes (A)

remains the same and the expression of the X chromosome (X)

decreases by half after RNAi treatment. Hypothesis H1 states that

the expression of autosomes (A) is increased by 2-fold after the

RNAi treatment and the expression of X chromosome (X) remains

the same. The expected sum of expression in the RNAi treated

cells is 90% of wild type for H0 and 180% for H1. E is the

measured mRNA per cell. In the duplicate RNA-Seq experiments,
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we obtained mRNA yields of 0.16 pg and 0.17 pg/cell from mock

treated, 0.15 pg and 0.19 pg/cell from Msl2 knockdown, and

0.14 pg and 0.20 pg/cell from Mof knockdown S2 cells.

log likelihoodH0~

X

n
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1

2
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� �2
!!

The log-likelihood of H0 – the log-likelihood of H1 =26.4

suggests that X chromosome expression change contributes more

than autosomal expression change to the observed measurements

of expression in wide type cells relative to RNAi treated cells.

Comparative Genomic Hybridization (CGH)
DNA was isolated from Drosophila S2-DRSC cells obtained from

the Drosophila Genomics Resource Center (#181, Bloomington, IN)

and from w1118 0–2 h embryos as described previously [48]. The

isolated cell line and embryonic DNA were labeled with either Cy5

or Cy3 conjugated dUTP and subsequently hybridized to a custom

Agilent genomic tiling array (GEO; GPL7787). Changes in copy

number along each of the Drosophila chromosome arms were

detected by a dynamic programming algorithm which divided each

arm into the optimal number of copy number segments [49].

Accession Numbers
All Seq and array data sets are available at GEO under

accession number GSE16344. The CGH data set is available at

modENCODE submission ID 596.
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