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Abstract

We present an expression-invariant method for face
recognition by fitting an identity/expression separated 3D
Morphable Model to shape data. The expression model
greatly improves recognition and retrieval rates in the unco-
operative setting, while achieving recognition rates on par
with the best recognition algorithms in the face recognition
great vendor test. The fitting is performed with a robust
nonrigid ICP algorithm. It is able to perform face recogni-
tion in a fully automated scenario and on noisy data. The
system was evaluated on two datasets, one with a high noise
level and strong expressions, and the standard UND range
scan database, showing that while expression invariance in-
creases recognition and retrieval performance for the ex-
pression dataset, it does not decrease performance on the
neutral dataset. The high recognition rates are achieved
even with a purely shape based method, without taking im-
age data into account.

1. Introduction

We present a system which is using shape information
from a 3D scanner to perform automated face recognition.
The main novelty of the system is its invariance to expres-
sions. The system is tested on two public datasets. It is fully
automatic and can handle the typical artifacts of 3D scan-
ners, namely outliers and missing regions. Face recognition
in this setting is a difficult task, and difficult tasks benefit
from strong prior knowledge. To introduce the prior knowl-
edge we use a 3D Morphable Model (3DMM) [4], which is
a generative statistical model of 3D faces. 3DMMs have
been applied successfully for face recognition on differ-
ent modalities. The most challenging setting is recognition
from single images under varying light and illumination.
This was adressed by [5, | 1]. There, a 3DMM with shape,
texture and illumination model was fit to probe and gallery
images. As the model separates shape and albedo param-
eters from pose and lighting, it enables pose and lighting-
invariant recognition. We use the same idea for expression-
invariant face recognition from 3D shape. We fit an iden-
tity/expression separating 3DMM [2] to shape data and nor-
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Figure 1. Expression normalisation for two scans of the same in-
dividual. The robust fitting gives a good estimate (b) of the true
face surface given the noisy measurement (a). It fills in holes and
removes artifacts using prior knowledge from the face model. The
pose and expression normalized faces (c) are used for face recog-
nition.

malize the resulting face by removing the pose and expres-
sion components. See Figure 1 for an example of expression
normalization. The expression and pose normalized data al-
lows then efficient and effective recognition. A 3D MM has
been fitted to range data before [3] and the results were even
evaluated on part of the UND database. Our approach dif-
fers from this work in the fitting method employed, which
is independent of the acquisition device, and in the use of
an expression model to improve face recognition. Addition-
ally, our method is fully automatic, while [3] needed seven
manually selected landmarks.

Expression-invariant recognition for shape data was also
approached in [8], where a person specific 3D Morphable
Expression Model was learned for each subject in the
gallery. In contrast, we are using a general 3DMM learned
from an independent database of face shapes which can be
applied without any relearning to a new scan. This makes



the enrollment phase trivial and the recognition phase ef-
fectively constant in the size of the gallery while still being
accurate. We have to fit just one model to the probe, which
can then be compared efficiently to the enrolled subjects,
by comparing their coefficients in the low dimensional face
space. While the number of comparisions is still at most
linear in the number of examples (and can be made sublin-
ear with an indexing method) the time it takes to compare
coefficients in face space is neglectible compared to fitting
time. Model-less approaches which align the probe to each
example in the database using e.g. ICP [12] suffer from the
same problem as [8]. Because the probe has to be aligned
with each gallery scan these methods scale linearly in the
gallery size, While our model based approach needs only a
single fit to the probe.

Another interesting model-less approach [6] compares
surface by the distribution of geodesics, which stays con-
stant for nonrigidly deforming (but not stretching or tear-
ing) objects. This approach is difficult to apply in this set-
ting though, as the scanning produces holes, disconnected
regions and strong noise, which can best be handled by a
method which uses specific information about the object
class.

2. Model

A PCA model [4] built from 175 subjects was used. It
was build from one neutral expression face scan per identity
and 50 expression scans of a subset of the subjects. The
data was registered with a modification of [1]. The identity
model consists of a mean shape p and a matrix of offset
vectors M, such that a new face instance f is generated
from a vector of coefficients «,, as

f=p+Ma, . (1)

The model is constructed such that the «; are independently
normally distributed with zero mean and unit variance under
the standard assumption of a Gaussian distribution of the
data. This was done by performing PCA on the data matrix
built from the mean free shape vectors. Additionally, for
each of the 50 expression scans, we calculated an expres-
sion vector as the difference between the expression scan
and the corresponding neutral scan of that subject. This data
is already mode-centered, if we regard the neutral expres-
sion as the natural mode of expression data. On these offset
vectors again PCA was applied to get an expression matrix
M. and expression coefficients ., such that the complete
expression model is

f:N+Mnan+Meae:N+Ma ) 2
oy
M=[M, | M] a= {a] SNG)

The basic assumption of this paper is, that the face and ex-
pression space are linearly independent, such that each face
is represented by a unique set of coefficients. While the
resulting expression and identity matrices are not perfectly
orthogonal, they do have little overlap, which together with
the regularisation employed is sufficient for this application.
We assume, that the overlap between the spaces is due to the
fact that it is impossible to aquire perfectly consistent neu-
tral expressions.

We use the registered scans and a mirrored version of
each registered scan to increase the variability of the model.
This allows us to calculate a model with more than 175 neu-
tral coefficients.

3. Fitting

The fitting algorithm used in this paper is a variant of
the nonrigid ICP work in [1]. The main difference, is that
the deformation model is a statistical model and the opti-
misation in each step is an iterative method, which finds
the minimum of a convex function. Additionally, as it is
applied on noisy data (see Figure 2), we included a more
elaborate robust weighting term. Like other ICP methods,
it is a local optimization method, which does not guarantee
convergence to the global mimimum, but is dependent on
the initialization. It consists of the following steps

« Iterate over regularization values 6; > --- > O

— Repeat until convergence:

1. Find candidate correspondences by search-
ing for the closest compatible point for each
model vertex.

2. Weight the correspondences by their dis-
tance using a robust estimator.

3. Fit the 3DMM to these correspondences us-
ing a regularization strength of 6;.

4. Continue with the lower 6, if the median
change in vertex position is smaller than a
threshold.

The search for the closest compatible point takes only points
into account which have conforming normals, are closer
than a threshold, and are not on or close to the border of the
scan. This has the effect of removing many outliers. The
search is sped up by organizing the target scan in a space
partitioning tree made up of spheres. The correspondences
are then weighted with a robust function by their residual
distance. The robust function is linear for distances smaller
than 2mm, behaves like 1/x between 2mm and 20mm, and
is zero for a distance larger than 20mm. Note, that it is
necessary to balance robustness and regularization, as the
right balance depends on the noise characteristic of the data.
Suitable values were determined manually from a few scans
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Figure 2. The reconstruction (b) is robust against scans (a) with
artifacts, noise, and holes.

of the GavabDB database and kept constant for all experi-
ments as well on the GavaDB as on the UND database. In
step 3 the 3DMM is fit to 3D-3D point correspondences.
This is done with a gauss-newton least squares optimiza-
tion, using an analytic Jacobian and Gauss-Newton Hes-
sian approximation. Denote the correspondence points by
u = [u1,...,u,] and the rows of the model which corre-
spond to the 7th vertex by subscript ¢, then we can write the
cost function mimized in this step as

FRta) =D [R(pi + M) +t — u|* + A e”
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This can be minimized more efficiently by changing the di-
rection of the rigid transform to

fR. ) = s+ Mo+t — Rlwg||* + A ]

=Rt R =R! . (5)

because then the Jacobian consists of a large constant part
and three columns which depend on the iteration.
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Accordingly, the Hessian can be approximated as
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By precalculating the constant parts of the matrices we can
remove most of the computation time, making step 3 very
fast.

We initialize the registration by locating the tip of the
nose with a heuristic, which assumes that the head is up-
right and looking into the camera. This initialization is good
enough to for a fully automatic fit, as the fitting behaves like
rigid ICP in the beginning, and rigid ICP is known to have
a large basin of convergence.

4. Experiments

We evaluated the system on two databases with and
without the expression model. We used the GavabDB [9]
database and the UND [7] database. For both databases,
only the shape information was used. The GavabDB
database contains 427 scans, with seven scans per ID, three
neutral and four expressions. The expressions in this dataset
varies considerably, including sticking out the tongue and
strong facial distortions. Additionally it has strong artifacts
due to facial hair, motion and the bad scanner quality. This
dataset is typical for a non-cooperative environment. The
UND database was used in the face recognition grand chal-
lenge [10] and consists of 953 scans, with one to eight scans
per ID. It is of better quality and contains only slight expres-

. sion variations. It represents a cooperative scenario.

The fitting was initialized by detecting the nose, and as-
suming that the face is upright and looking along the z-axis.
To detect the nose we first removed the spike artifacts typi-
cal of range scanners by repeated min-filtering and removal
of large triangles, then we detect the vertex with the small-
est depth, which in its horizontal slice is sufficiently closer
to the camera than the other pixels in that slice. For the
UND dataset this gives us reliably a point on the tip or ridge
of the nose. The heuristic worked for 939 out of 953 Scans,
in the remaining 16 scans we marked the nose manually.
The GavabDB database has the scans already aligned and
the tip of the nose is at the origin. We used this informa-
tion for the GavabDB experiments. The same regularisation
parameters were used for all experiments, even though the
GavabDB data is more noisy than the UND data. The pa-
rameters were set manually based on a few scans from the
GavabDB Database. We used 100 principal identity com-
ponents and 30 expression components for all experiments.

In the experiments the distances between all scans were
calculated, and we measured recognition and retrieval rates
by treating every scan once as the probe and all other scans
as the gallery. Both databases were used independently.
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Figure 3. For the expression dataset the retrieval rate is improved by including the expression model, while for the neutral expression
dataset the performance does not decrease. Plotted is the mean normalized cumulative gain, which is the number of retrieved correct
answers divided by the number of possible correct answers. Note also the different scales of the MNCG curves for the two datasets. Our

approach has a high accuracy on the neutral (UND) dataset.
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Figure 4. Use of the expression model improves retrieval performance. Plotted are precision and recall for different retrieval depths. The
lower precision of the UND database is due to the fact that some queries have no correct answers. For the UND database we achieve
total recall when querying nine answers, while the maximal number of scans per individual is eight, while for the GavabDB database the
expression model gives a strong improvement in recall rate but full recall can not be achieved.

4.1. Retrieval Measures

We measure similarity between faces in parameter space
as the angle between the face parameters in Mahalanobis
space, which has proven to have high recognition rates [5].
The distance measure is

T
X1 a2 ) a2
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We observed that the angular measure gives slightly larger
recognition rates than the Mahalanobis distance. The Maha-
lanobis angle has the effect of regarding all caricatures of a
face, which lie on a ray from the origin towards any identity,
as the same identity. We also evaluated other measures, but
found them to be consistently worse than the Mahalanobis
angle.

4.2. Results

As expected, the two datasets behave differently because
of the presence of expressions in the examples.
4.2.1 UND

For the UND database we have good recognition rates with
the neutral model. The mean cumulative normalized gain
curve in Figure 3 shows for varying retrieval depth the

number of correctly retrieved scans divided by the maxi-
mal number of scans that could be retrieved at this level.
From this it can be seen that the first match is always the
correct match, if there is any match in the database. But
for some probes no example is in the gallery. Therefore
for face recognition we have to threshold the maximum al-
lowed distance to be able to reject impostors. Varying the
distance threshold leads to varying false acceptance rates
(FAR) and false rejection rates (FRR), which are shown in
Figure 5. Even though we have been tuning the model to
the GavabDB dataset and not the UND dataset our recogni-
tion rates at any FAR rate are as good or better than the best
results from the face recognition vendor test. This shows,
that our basic face recognition method without expression
modelling gives convincing results. Now we analyze how
the expression modelling impacts recognition results on this
expression-less database. If face and expression space are
not orthogonal, then adding invariance towards expressions
should make the recognition rates decrease. In fact, we ob-
serve that the recognition results are slightly lower, but only
by a marginal amount, and still on par with the results from
the face recognition vendor test. Let us now turn towards
the expression database, where we expect to see an increase
in recognition rate due to the expression model.



GavabDB: Recognition Performance

0.08 r 1 1 1 1
0.07 - neutral model
0.06 - expression model
o 0.05-
x 0.04 -
L 0.03 -
0.02 -
0.06 - i
0 0.005 0.01 0.015 0.02 0.025 0.03
FAR

UND: Recognition Performance

0.08 r 1 1 U 1 A
0.07 - neutral model .
0.06 - expression model -

o 0.05 - i
e :
0.02 - 4 i
0.01 - e — T -

0 L 1 1 — m— 2 —

0 0.005 0.01 0.015 0.02 0.025 0.03
FAR

Figure 5. Impostor detection is reliable, as the minimum distance to a match is smaller than the minimum distance to a nonmatch. Note
the vast increase in recognition performance with the expression model on the expression database, and the fact that the recognition rate is
not decreasing on the neutral database, even though we added expression invariance. We can operate at 0% false acceptance rate with less
than 4% false rejection rate, or less than 1% FAR with less than 1% FRR.

4.2.2 GavabDB

The recognition rates on the GavabDB without expression
model are not quite as good as for the expression-less UND
dataset, so here we hope to find some improvement by
using expression normalization. And indeed, the closest
point recognition rate with only the neutral model is 96.25%
which can be improved to 98.36% by adding the expression
model. Also the FAR/FRR values decrease considerably.
The largest improvement can be seen in retrieval perfor-
mance, displayed in the precision recall curves in Figure 4
and mean cumulative normalized gain curves in Figure 3.
This is because there are multiple examples in the gallery,
so finding a single match is relatively easy. But retrieving
all examples from the database, even those with strong ex-
pressions, is only made possible by the expression model.

5. Speed

Though the method as presented operates at only ap-
proximately 40 seconds per query, it has the potential for
speedup. It is possible to parallelize the closest point esti-
mation and the optimisation, and more elaborate fitting al-
gorithms including multiresolution schemes can be devel-
oped. The speed also depends on the number of vertices
and components, for the results presented here 11000 ver-
tices and 100 neutral plus 30 expression components were
fitted.

6. Conclusion

We have used a 3D Morphable Model with a separating
expression model to develop an expression-invariant face
recognition algorithm. We have shown, that the system has
excellent recognition rates on difficult expression data and
data taken in a cooperative environment. The introduction
of expression invariance did not incur a significant loss of
precision on easier neutral data. The strong prior knowledge
of the 3DMM allows robust handling of noisy data and al-
lowed us to build a fully automatic face recognition system.

We also introduced a relatively efficient fitting algorithm,
which, as it has the potential for paralellisation, could be
made even faster.

Note that, as we do establish correspondence between
the model and the scans, it is trivial to add image based
classification for datasets where a calibrated photo is avail-
able. This can be done by comparing the rectified textures,
which should result in even higher recognition rates. It is
also important to note that the expression normalization de-
scribed here for range data can be applied equally well to
other modalities, using any of the proposed 3DMM fitting
algorithms.

In the future we plan to include the additional texture
cues and make the method faster, such that it is applicable
in real world scenarios where a processing time of 40 sec-
onds per probe is still a problem. Furthermore we would
like to investigate more sophisticated fitting algorithms and
a morphable model with a larger expression space.
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