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Expression of a fungal ferulic acid esterase in
alfalfa modifies cell wall digestibility
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Abstract

Background: Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass

production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in

plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production.

Results: In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH

vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast,

chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in

Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed

lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants

regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed

infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall

morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they

were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline

peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from

transgenic lines as compared to the control line.

Conclusion: Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also

exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The

combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement

each other towards efficient and effective digestion of transgenic lines.
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Background
Plant cell walls containing cellulose, hemicellulose, pec-

tin and lignin are the most abundant organic resource

on the planet [1]. Due to the limited availability of fossil

carbon, as well as environmental concerns, comprehen-

sive utilization of lignocellulosics for fuel and chemical

production has currently raised much interest. Recalci-

trance to scarification is a major limitation for conver-

sion of lignocellulosic biomass to biofuels [2]. Plant cell

walls represent a major source of nutritional energy for

ruminants, but unfortunately with many types of forage,

less than 50% of the cell wall fraction is readily digested

and utilized by the ruminant host. Substantial benefits

would be realized if a greater percentage of this potential

energy was made available for fermentation through an

increase in the digestibility of the cell wall fraction [3].

Plants have evolved effective mechanisms for resisting

assault on their cell walls from the microbial and animal

kingdoms. This intrinsic property underlies what has

been termed ‘recalcitrance’, creating technical barriers to

the cost effective transformation of lingo-cellulosic bio-

mass into fermentable sugars. The natural factors

believed to contribute to the recalcitrance of ligno-

cellulosic feedstock to chemicals or enzymes include: 1)

the epidermal tissue of the plant body, particularly the

cuticle and epicuticular waxes; 2) the degree of lignifica-

tion; 3) the structural heterogeneity and complexity of

cell wall constituents such as microfibrils and matrix
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polymers; 4) the challenges for enzymes acting on an in-

soluble substrate; and 5) the inhibitors to subsequent

fermentation that exist naturally in cell walls or are ge-

nerated during the conversion process [4]. These che-

mical and structural features of biomass affect liquid

penetration and/or enzyme accessibility and activity and,

thus, conversion costs. These same constraints are

equally relevant to the utilization of forage by ruminants.

Physical and chemical pretreatments have been deve-

loped to optimize the separation of lignin and cell wall

polysaccharides from different feedstocks [5,6]. Plant

fiber engineering is also seen as a route to improve feed-

stock characteristics and further reduce the energy and

cost of refining biomass [7-9]. Several publications also

describe the potential of modifying plant cell wall com-

position by altering the expression of endogenous en-

zymes involved in cell wall synthesis [10-12]. Similarly,

cell wall composition, architecture and susceptibility to

downstream processing can be improved through trans-

genic expression of exogenous carbohydrate-active en-

zymes (CAZymes) in planta. Expression of the type A

ferulic acid esterase from Aspergillus niger (AnFaeA) in

the grasses Lolium multiforum [13] and Festuca arundi-

nacea [14] has been explored as a means of reducing cell

wall crosslinking and thus increasing ruminal digestibil-

ity. The vast majority of AnFaeA transformed plant lines

showed significant decreases in the cell wall content of

ferulic acid and diferulate as compared to controls. Re-

cently, Tsai et al. [15] reported altered intermolecular

crosslinking within plant cell walls as a result of consti-

tutive expression of a fungal glucuronoyl esterase in

Arabidopsis. Likewise, improved rumen digestibility of

forage could also increase their potential as raw mate-

rials for biofuel production. A recent study showed that

simple modification of the cell wall in alfalfa dramati-

cally increased its susceptibility to hydrolysis [16].

The aims of our study were to express the fungal

(A. niger) feruloyl esterase B gene (faeB) in alfalfa by

stable transformation, and to evaluate apoplast (A),

chloroplast, endoplasmic reticulum (ER) and vacuole (V)

targeted transgenic lines as a new feedstuff for rumi-

nants as well as a biomass resource for cellulosic biofuel

production. faeB was preferred over the feruloyl esterase

A gene (faeA) considering its suitability for hydrolyzing

ferulic acid esters in dicot cell walls (alfalfa), as dicots

contain ferulated pectic polysaccharides as compared to

grasses where ferulic acid is esterified to arabinoxylans.

FAEB has been reported to be highly active against es-

terified pectin, while FAEA prefers esterified xylan.

Results

Transgenic plants

The number of plants regenerated from in vitro culture

ranged from 33 (for the faeB targeted to endoplasmic

reticulum) to 168 (for the faeB targeted to apoplast)

using kanamycin resistance screening, with a total of

136 of these successfully rooted and established in the

greenhouse. The efficiency of stable transformation, cal-

culated as the percentage of explants (petioles) producing

stable transgenic plants, varied with the construct. The

recovery rate, based on PCR detection, of faeB-apoplast

transgenic plants was found to be the highest at 54.2%,

while the recovery rate of faeB-ER transgenic plants was

the lowest at 8.3%. Transformation efficiencies of alfalfa

for the faeB construct targeted to the chloroplast was

20.8% and 30.0% for faeB targeted to the vacuole

(Additional file 1).

faeB expression in planta

As a reporter gene for evaluating and optimizing the proto-

col for transient expression of the introduced gene in planta,

we monitored transient expression of β-glucuronidase (GUS)

in alfalfa leaves. To confirm the functionality of the construct

and its ability to express in dicotyledonous plants in the tar-

geted organelle, we used Western blot analysis of transiently

transformed tobacco lines (Figure 1A) prior to stable trans-

formation, and showed that the codon-optimized faeB genes

were expressed in the apoplast, endoplasmic reticulum and

vacuole with expression being highest in the endoplasmic

reticulum. The gene did not express in the chloroplast. Tran-

sient GUS expression could be seen 5 days after infiltration

with expression levels plateauing 10 days after infiltration

(Figure 1B).

Of the 136 stably transformed lines based on PCR detec-

tion of the faeB gene and Southern blot (Additional file 2),

18 showed detectable levels of faeB activity (Figure 2A,B;

data shown for representative lines 2 V, ER28 and 3A co-

vering one line from each genotype) using a microplate

rapid screening assay [17]. Of the 18 faeB-expressing lines,

11 were targeted to apoplast, five targeted the vacuole and

two targeted the endoplasmic reticulum. Transformed

plants were clonally multiplied by taking cuttings of young

growing shoots and rooted in a moist sand bed. Figure 2B

shows PCR confirmation of expression of the faeB tran-

script in transgenic lines used for further study. Representa-

tive transgenic lines were assessed using a whole-mount

immunolocalization technique after Sauer et al. [18] to

confirm recombinant protein localization in the target

(endoplasmic reticulum, apoplast and vacuole) area and,

as shown in Figure 2C, expression of genes was con-

firmed in the targeted plant cell compartment.

In vitro digestion by mixed rumen microorganisms

In vitro dry matter disappearance (IVDMD, %) was lower

(P < 0.05) for most of the transgenic lines as compared

to the non-transformed clonal line after 6 h and 72 h of

incubation with mixed ruminal fluid (Figure 3). This re-

sult suggests a possible negative effect of transgenic
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esterase activity on digestibility of the plant cell wall, an

unanticipated outcome. Total volatile fatty acid (VFA)

concentrations arising from digestion (Additional file 3)

were observed to be similar for the parental and transgenic

lines. In vitro ammonia production was lower in transgenic

as compared to non-transgenic lines (Additional file 4),

suggesting that the transformation process also altered the

fermentability of alfalfa protein.

Cell wall analysis using Fourier transformed infrared

spectroscopy (FTIR)

To gain better insight into alterations in cell wall architec-

ture, we further analyzed the cell walls of transgenic and

non-transgenic alfalfa using Fourier transformed infrared

spectroscopy (FTIR). FTIR spectra from cell walls of

transgenic lines (spot (A) apoplast: average of spectrum

from transgenic line 43A, 41A and 1A; spot (ER) endo-

plasmic reticulum: average of spectrum from transgenic

line 28ER and 24ER; spot (V) vacuole: average of

spectrum from transgenic line 61 V, 15 V and 2 V) and

the control (C) line were used for data analysis. Principal

component analysis (PCA) of spectra (Figure 4A), showed

that vacuole and apoplast transgenic lines grouped sepa-

rately from endoplasmic reticulum and control lines,

suggesting compositional differences among lines. How-

ever, although the correlation map (Figure 4A) projected

endoplasmic reticulum as being closely related to the con-

trol, the correlation matrix value of 0.9 for the control ver-

sus endoplasmic reticulum is indicative of significant

compositional differences between these lines, a result

confirmed by the correlation map of axis F1 versus F3

(Additional file 5). Loading factor score (F1) correspond-

ing to PCA (Figure 4B) showed a characteristic peak of an

ester bond at 1,750, 1,735 and 1,715 cm−1 indicating dif-

ferences in the degree of esterification between the control

and transgenic lines [19,20]. Furthermore, bands specific

for lignin (1,030, 1,508, 1,660 and 2,945 cm−1) also differed

between the transgenic and control lines [19]. A broad

peak between 3,200 to 3,400, 2,915 and 1,462 cm−1 was

also indicative of elevated wax content in the transgenic as

compared to the parental cell wall (Figure 4B) [20]. Ele-

vated lignin content of transgenic lines was also evident

from the peaks at 1,462 cm−1 (representing substituted H

and HOC bending of aromatic skeletal vibration),

1,508 cm−1 (Aryl ring structure), 1,608 cm−1 (indicating

existence of aromatic skeletal vibration, guaiacyl-syringyl

type), 1,620 cm−1 (ring conjugated C = C structure of coni-

feraldehyde) and 1,660 cm−1 (ring conjugated C = C

B

A

Figure 1 Gene expression analysis. (A) Western blot showing transient expression of faeB proteins in tobacco leaves. L1, protein ladder

(catalogue number 161-0374; Bio-Rad, Hercules, CA, USA); L2, uninoculated leaf proteins; L3, proteins of tobacco leaves infected with LBA4404

(no construct); L4, proteins of tobacco leaves infected with agro harboring pEACH 5,103; L5, proteins of tobacco leaves infected with agro

harboring faeB-apoplast; L6, proteins of tobacco leaves infected with agro harboring faeB-chloroplast; L7, proteins of tobacco leaves infected with

agro harboring faeB-ER; and L8, proteins of tobacco leaves infected with agro harboring faeB-vacuole. (B) Transient expression of GUS in alfalfa

leaves. tCUP:GUS was stably transformed into alfalfa plants (obtained from Dr Lining Tian, Agriculture and Agri-Food Canada London, ON, Canada),

served as a positive control. ER, endoplasmic reticulum; GUS, β-glucuronidase.
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structure of coniferyl alcohol; C =O structure of coniferal-

dehyde) (Figure 4B) [19,20].

To investigate the effect of these variations in cell wall

composition on rumen digestibility, we further analyzed

the residue remaining after 72 h of in vitro rumen diges-

tion by mixed rumen microorganisms. Digital subtraction

of FTIR spectrum of residual cell walls (control-transgenic

lines) after 72 h of in vitro digestion showed that the

residue from transgenic lines with esterase activity tar-

geted to the endoplasmic reticulum exhibited significantly

higher levels of hemicellulose (1,100 to 1,300 cm−1) as

compared to the control (Additional file 6A), whereas

residue remaining when esterase was targeted to the apo-

plast had higher residual cellulose and hemicellulose (900

to 1,050 cm−1) content as compared to the control

(Additional file 6B). To follow the progression of digestion

A

B

a)

C

b) c) d)

Figure 2 FAEB activity assay, PCR validation of faeB and immunocytochemical localization of FAEB. (A) FAEB activity as indicated by the

change in absorbance over 60 min as a result of the hydrolysis of ethyl ferulate. Data represents three absorbance readings from the same

extract from a single plant. Error bars indicate relative standard error. Apoplast (A), transgenic line 3A; control, wild type plant; endoplasmic

reticulum (ER), transgenic line 28ER and vacuole (V), transgenic line 2 V. (B) PCR validation of faeB gene in transgenic lines. Apoplast-expressing

sample: lane 1, nptII (apoplast); lane 2, faeB-apoplast and lane 3, wild type negative control for faeB-apoplast. ER-expressing sample: lane 4,

nptII (ER); lane 5, faeB-ER and lane 6, wild type negative control for faeB-ER. Vacuole-expressing sample: lane 7, nptII (vacuole); lane 8, faeB-vacuole

and lane 9, wild type negative control for faeB-vacuole. (C) Immunocytochemical localization to confirm recombinant protein expression in:

(a) apoplast; (b) endoplasmic reticulum; (c) vacuole and (d) non-transgenic control in alfalfa leaves. A, apoplast; ER, endoplasmic reticulum;

FAEB, type B ferulic acid esterase; V, vacuole.
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we further subtracted FTIR spectra of residual cell walls

after 72 h of incubation from FTIR spectra of residue of

cell walls after 6 h of incubation. Results indicated that the

majority of the non-transgenic cell walls were digested be-

tween 6 h and 72 h (Additional file 7A). In contrast, the

transgenic lines were observed to contain much higher

levels of undigested cellulose and hemicellulose in the

residue (Additional file 7B,C).

Acetyl bromide solubilized lignin content, total sugar

content, total uronic acid and cell wall phenolic analysis

Most transgenic lines (43A, 41A, 1A, 28ER, 24ER and

15 V) exhibited higher (P < 0.05) levels of acetyl bro-

mide soluble lignin as compared to non-transgenic lines

(Figure 5A). Moreover, relative lignin content of residual

cell walls after 72 h of digestion was also observed to be

higher for transgenic lines (Figure 6A). Although the

total sugar composition of sulfuric acid extracted cell

wall fractions were observed to be similar among forage

lines (Figure 5B and Additional file 8), the total sugar

and uronic acid content were higher in residual cell

walls of transgenic lines after 72 h of in vitro digestion

as compared to the controls (Figures 6B,C). Transgenic

lines with targeted esterase expression in the vacuole

showed the highest release of phenolics (Figure 7A).

Spectra showed characteristic peaks for ferulic and p-

coumaric acid at 290 and 330 nm and 290 and 310 nm,

respectively. Elevated ferulic and p-coumaric acid in

transgenic lines were evident from higher peaks at 290,

310 and 330 nm as compared to the control line

(Figure 7B).

Enzyme hydrolyzability assay

As in vitro rumen digestion suggested a greater recalci-

trance of transgenic lines it was proposed that cell wall

carbohydrates in these lines could be made more access-

ible by delignification using alkaline hydrogen peroxide

(AHP). To further explore this possibility, the AHP pre-

treated control and transgenic lines (43A, 41A, 1A, 28ER,

24ER, 61 V, 15 V and 2 V) were digested with a commer-

cial mixed enzyme preparation (Accellerase 1500 contain-

ing endoglucanase: 2,200 to 2,800 carboxymethylcellulose

(CMC) U/g and beta-glucosidase: 450 to 775 p-nitrophe-

nyl-β-D-glucopyranoside (pNPG) U/g). In agreement with

incubations with mixed rumen microbes, glucose release

from untreated control lines did not differ from untreated

transgenic lines. In contrast, after pretreatment most

transgenic lines released more glucose as compared to the

control (Figure 8). Compared to the control, pretreated

transgenic line 1A yielded 39% more glucose, whereas

transgenic lines 24 ER and 15 V released 38% and 29%

more glucose, respectively.

Discussion

Alfalfa is a valuable forage crop, primarily because of its

high protein content and palatability for ruminants.

However, the fiber fraction of alfalfa is often poorly

digested and in fact can be even more lignified than

grasses [21]. Acetyl group and linkages of uronic acid

side chains to phenolic material have been identified as

factors that limit the ruminal digestion of alfalfa [22].

Similarly, Giraldo et al. [23], Nsereko et al. [24] and

Wang et al. [25] reported ester linkages between hemi-

cellulose and lignin as the rate limiting factor in the ru-

minal digestion of plant cell walls. Hydrolyzing these

linkages by chemical treatment with alkali is known to

increase biodegradability and the nutritional value of

low-quality feed. Reducing the level of crosslinking of

cell wall carbohydrates is therefore a predictable way

of improving forage quality through increases in the rate

and possibly the extent of digestion [13].

In this study we developed alfalfa plants with trans-

genic ferulic acid esterase activity targeted to the apo-

plast, endoplasmic reticulum and vacuole. The targeting

to these specific cellular organelles was based on

Figure 3 Effect of FAEB activity on in vitro dry matter

disappearance (IVDMD) of control and various transgenic lines

incubated with mixed ruminal fluid. Bars indicate standard error.

*Differs to control at P < 0.05. Repeated two times with triplicate

samples per incubation. A, apoplast; ER, endoplasmic reticulum;

FAEB, type B ferulic acid esterase; IVDMD, in vitro dry matter

disappearance; V, vacuole.
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previous work using tobacco [26], which showed expres-

sion of recombinant proteins in these organs at a detec-

table level, particularly in the endoplasmic reticulum.

The cell wall composition of transgenic lines assessed in

this study (43A, 41A, 1A, 28ER, 24ER, 61 V, 15 V and

2 V) was altered as a result of transgenic esterase activity

to varying magnitudes. Interestingly, it seems that trans-

genic expression of ferulic acid esterase in alfalfa re-

duced its in vitro ruminal digestibility (Figure 3). This is

likely attributed to the increase in lignin content of

transgenic lines of alfalfa as indicated by FTIR spectrum

analysis and wet chemistry. Likewise, the major

monolignol constituents of lignin, that is the hydroxy-

cinnamic acids, ferulic and p-coumaric acid, were found

to be elevated in transgenic lines as compared to the

control, likely a reflection of their higher lignin content.

The increase in lignin content of transgenic lines ob-

served in this study is in agreement with a recent report

of elevated lignin levels in another dicot, Arabidopsis,

expressing a fungal glucuronoyl esterase [15]. These re-

sults suggest that targeted expression of faeB in the

endoplasmic reticulum/golgi apparatus (where ferulated

arabinoxylan and pectin are formed prior to secretion to

the cell wall) increased free ferulate content and the

A

B
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b
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o
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e

Figure 4 Fourier transformed infrared spectroscopy (FTIR) data analysis. (A) PCA of FTIR data. (B) Loading of factor score (F1) corresponding

to PCA major spectral differences between transgenic and wild type lines. Apoplast (A), average spectrum of 43A, 41A and 1A; endoplasmic

reticulum (ER), average spectrum of 24ER and 28ER; and vacuole (V), average spectrum of 61 V, 15 V and 2 V. C, control.
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synthesis of lignin in transgenic lines. This hypothesis is

supported by the finding that phenolic polymers are pro-

duced when levels of phenylpropanoid pathway interme-

diates or end products are increased [27]. Elevated wax

content may also have contributed to the higher recalci-

trance of transgenic lines. The visible phenotypic charac-

teristics of recovered lines did not seem to be affected

due to this change in lignin or wax content as transgenic

plants were largely indistinguishable from controls, al-

though expression of the introduced gene did impact the

recovery of plants from cell culture. For dicots, strong

negative correlations have been shown between initial

lignin content and cellulose digestibility in alfalfa pre-

treated with dilute acid [16]. Phenolic components of

the plant cell wall, especially p-coumaric acid, ferulic

acid and p-hydroxybenzaldehyde have been reported to

inhibit the growth of rumen microorganisms and cellu-

lase activity [28,29]. Furthermore, it has been reported

that lignin physically hinders the accessibility of enzymes

to cellulose [30]. Moreover, soluble lignin-derived com-

pounds may also cause enzyme inhibition [31]. The ten-

dency of cellulase to bind irreversibly to lignaceous

surfaces restricts conformational shifts in enzymes,

which is crucial for the degradation of insoluble polysac-

charides [32].

Notably then, delignification pretreatments such as

AHP resulted in higher glucose release from transgenic

as compared to the control line, a reflection of low recal-

citrant core hemicellulose and cellulose constituents in

transgenic lines. Previously, it has been reported that

AHP not only effectively delignified cell walls but also

improved overall hydrophilicity of the cell wall matrix,

thereby increasing water and enzyme penetration [33].

Likewise, the relative improved digestibility of transgenic

lines observed in this study after AHP treatment can be

attributed to a combination of efficient delignification by

AHP and transgenic esterase activity, leading to im-

proved accessibility of cellulase and/or xylanase to low

B

A

Figure 5 Lignin content and sugar compositional analysis. (A) Acetyl bromide soluble lignin content. Bars indicate standard error of mean

(n = 3). *Differs to control at P 0.05. (B) Sugar composition of control and transgenic alfalfa. Sugars were quantified as alditol acetate derivatives

by GC-MS. Error bars indicate standard deviation (n = 3) of technical replicates from ground samples pooled from 50 to 60 whole plants per

genotype. Alfalfa lines indicate expression of faeB in endoplasmic reticulum (ER), 24ER and 28ER; apoplast (A), 43A, 41A and 1A; and vacuole (V),

61 V, 15 V and 2 V. A, apoplast; C, wild type control; ER, endoplasmic reticulum; GC-MS, gas chromatography–mass spectrometry; V, vacuole.
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recalcitrant core cell wall components. The approach

adopted here therefore indicates the potential utility of

modified cell wall crosslinking for improved and effec-

tive digestibility of plant cell walls for ethanol produc-

tion and use by ruminants.

Conclusions

The results suggested reduced esterification, but in-

creased lignin content in transgenic lines which possibly

correlated to decreased rate of digestibility by ruminal

microorganisms. Interestingly, alkaline peroxide pre-

treatment followed by commercial enzyme hydrolysis re-

sulted in higher glucose release from transgenic lines

than from wild type plants suggesting higher digestibility

of the holocellulose content for transgenic lines after lig-

nin removal. The present study demonstrates that ex-

pression of some genes involved in cell wall digestion

can have unintended consequences on the cell wall di-

gestibility of alfalfa.

Methods

faeB gene

Feruloyl esterase B (faeB) from A. niger is composed of

521 amino acids. Among them, 18 amino acids in the N-

terminus function as a signal peptide that aides in the

secretion of faeB. To target the expression of faeB to

specific plant organelles, we cleaved the N-terminal sig-

nal peptide coding region, and replaced it with PR1b to

target the proteins to the endoplasmic reticulum [34]

and Rubisco leading the peptide to target expression to

the chloroplast [26]. Endoplasmic reticulum retention

signal KEDL [35] and vacuole retention signal CTPP

(from R Menassa, Agriculture and Agri-Food Canada,

London, ON, Canada) were fused immediately after the

protein to target the protein to the endoplasmic

reticulum and vacuole, respectively. The c-Myc tag was

used for protein purification and StrepII was used for

detection. The schematic maps of the four faeB con-

structs are shown in Additional file 9. The codon usage

of the faeB gene was optimized based on alfalfa codon

usage preference with faeB synthesized at GenScript

(Township, NJ, USA). The sequences of synthetic faeB

genes are shown in Additional file 10.

Plasmid construction

The transformation vector pPZP100 [36] was obtained

from P Maliga (Rutgers University, New Brunswick, NJ,

USA), and modified. In the pPZP100 vector, the CmR

selectable marker gene was replaced with NPTII for se-

lection of bacteria on kanamycin. The CmR gene gene-

rated instability in the vector, whereas it was stable with

kanamycin (data not shown). In pEACH the non-

mutated form of the NPTII gene [37] was inserted into

the CmR gene, leaving the interrupted CmR gene se-

quence in the vector (Additional files 11 and 12). The

MYB recognition sequence [38] allowed the excision of

all sequences cloned into the multicloning site and acted

as filler DNA to provide distance from the transfer DNA

(T-DNA) borders [39], thereby minimizing interactions

with elements at the insertion sites.

The plant selectable marker gene for kanamycin resis-

tance was regulated by the enhanced tCUP4 promoter

and ARBC terminator with the terminator adjacent to

the left T-DNA border. Any deletions occurring at the

A

B

C

Figure 6 Residual lignin, total sugar and uronic acid content of

cell walls after 72 h of in vitro digestion. .Relative percentage of

(A) residual lignin, (B) sugar and (C) uronic acid, which equal the

percentage of lignin, sugar and uronic acid, respectively, remaining

after 72 h of digestion relative to that of the control (control being

100%). Bars indicate standard error of mean (n = 3). *Differs to control

at P 0.05. Apoplast (A), faeB-apoplast (average of 43A, 41A and 1A);

endoplasmic reticulum (ER), faeB-ER (average of 24ER and 28ER); and

vacuole (V), faeB-vacuole (average of 61 V, 15 V and 2 V). A, apoplast;

ER, endoplasmic reticulum; V, vacuole; WT, wild type.
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left border would be selected against during plant tissue

culture in the presence of kanamycin.

Genes regulated by the enhanced tCUP4 promoter

and the PIN terminator were inserted in the same orien-

tation as the selectable marker gene. The position of the

enhanced tCUP4 promoter at the right border reduced

the likelihood of promoter interactions with sequences

within the adjacent insertion site. Enhanced tCUP4 has

been shown to have no effect on the expression of adja-

cent genes, whereas the commonly used 35S promoter

and super-promoter have been shown to interact with

elements at the insertion site over large distances [40].

The EcoR I-Hind III fragment from the pEACH

vector was released from pEACH 5,103 and sub-

cloned into pUC18. In the resulting pUC18 vector,

the synthetic faeB genes with protein signaling pep-

tides were inserted between BamH I and Xba I sites.

Finally, the EcoR I-Hind III fragment from pUC18

vector was cloned back into pEACH 5,103, resulting

in faeB-apoplast, faeB-chloroplast, faeB-ER and faeB-

vacuole constructs, respectively. All inserts were se-

quenced to confirm identity to original sequences.

The schematic map of the four faeB constructs is

shown in Additional file 9.

A

B

Figure 7 Cell wall extractable phenolics analysis. (A) Release of ferulic acid and p-coumaric acid as a result of extraction with 1 M NaOH. (B)

UV spectra of lignin fraction extracted with 1 M NaOH from control and three representative transgenic lines from endoplasmic reticulum (ER),

apoplast (A), vacuole (2 V). and C, control.
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faeB transient expression in tobacco

The four faeB expression constructs were integrated into

Agrobacterium tumefaciens strain LBA4401 using electro-

poration and were transiently expressed in 5- to 6-week-

old Nicotiana benthamiana as described by Joensuu et al.

[41]. Total proteins were extracted from tobacco leaves in-

fected with LBA4404 Agrobacterium, LBA4404 trans-

formed with pEACH 5,103 (GUS-intron), faeB-apoplast,

faeB-chloroplast, faeB-ER and faeB-vacuole vectors, re-

spectively, and 25 μg of each protein was run on SDS-

PAGE gel. Expressed faeB proteins were detected using

the primary antibody anti-c-Myc (GenScript; 1,500 ×) and

the secondary antibody, goat anti-mouse immunoglobulin

G (IgG) with horseradish peroxidase (Bio-Rad; 3,000 ×).

Tissue culture and plant transformation

Donor plants of alfalfa (Medicago sativa L.) genotype

N.4.4.2 were propagated in vitro by subculturing indivi-

dual nodes in 10 cm magenta containers containing 0.5 ×

Murashige and Skoog medium (MSO) [42]. The standard

conditions for maintaining the cultures in a growth cham-

ber were 25°C (day/night) with a photoperiod of 16 h at

approximately 3,500 lux.

For alfalfa tissue culture and transformation, the proce-

dures were performed as outlined in Han et al. [43].

Briefly, the petioles were cut to 1 cm lengths and pre-

cultured on SH2K medium [44] for 48 h at 25°C with a

photoperiod of 16 h. After pre-culture, explants were

immersed (shortly for 2 to 5 seconds) in a suspension of

Agrobacterium cells cultured overnight (OD600 = 0.6 to

0.8). After immersion, petioles were blotted onto filter

paper and placed on SH2K medium and co-cultivated for

5 days in the dark. The petioles were then transferred to

the medium used for co-cultivation containing 300 mg/l

timentin, and incubated for 2 weeks. When callus forma-

tion was observed, calli were transferred onto SH2K

medium containing 50 mg/l kanamycin and 300 mg/l

timentin. Calli surviving 1 week on this selection medium

were moved to medium containing 75 mg/l kanamycin

and 300 mg/l timentin, and incubated for another 2 weeks.

The calli were then transferred to the embryo induction

medium BOi2Y [45,46] containing 300 mg/l timentin and

75 mg/l kanamycin, and incubated for 3 weeks in the light

with a photoperiod of 16:8. Green elongated mature em-

bryos with well-formed cotyledons were collected and

transferred to 0.5 × MSO medium with 300 mg/l timentin

and 75 mg/l kanamycin for 2 to 3 weeks. Germinated

embryos were transferred to MSO containing 300 mg/l

timentin and 25 mg/l kanamycin in magenta boxes. Well-

established plants were transferred to soil. As a negative

control, non-transformed explants were placed in SH2K

medium with kanamycin (75 mg/l) to ensure effective se-

lection of transformants (Additional file 13).

Plant material

The control (non-transformed) and regenerated trans-

genic lines were multiplied in a greenhouse using cut-

tings of actively growing young shoots rooted in a

moist sand bed, transferred to a soilless potting mix-

ture (Pro-Mix, Premier Tech Horticulture, Rivière- du-

Loup, QC, Canada) and grown in 200 cm plastic pots

under seasonal greenhouse conditions, with daily watering

and weekly fertilization (20 N:20P:20 K). Actively growing

shoots were collected from all lines at the pre-bud vegeta-

tive stage, freeze-dried and stored at −20°C.

Validation by PCR and southern hybridization

Genomic DNA was extracted from leaves of putative

transformed and non-transformed alfalfa plants using a

commercially available kit (REDExtract-N-Amp™ Plant

PCR Kit; Sigma-Aldrich, St Louis, MO, USA). The inte-

gration of transgenes into the alfalfa genome was con-

firmed by PCR with primers targeting the nptII and faeB

genes. Additionally, a common tCUP4 promoter forward

primer was used in combination with transgene specific

reverse primers for faeB-apoplast, faeB-chloroplast, faeB-

ER and faeB-vacuole. For amplification of the nptII gene, a

699 bp fragment was amplified using the forward pri-

mer (5’GAGGCTATTCGGCTATGACTG3’) and the

reverse primer (5’ATCGGGAGCGGCGATACCGTA3’).

The primers for amplification of faeB gene fragments

of four constructs were as follows. For the faeB-apo-

plast construct, the forward primer was (5’ACGGTG-

GAGAGGCTGATA3’) and the reverse primer was

(5’GGATGACTCCAAAGATCCTC3’), generating a prod-

uct of 652 bp. For the faeB-chloroplast construct, the for-

ward primer was (5’CTGCTGCTGTTGCAACAAGG3’)

Figure 8 Effect of delignification by alkaline peroxide

pretreatment on glucose released from control and transgenic

lines as a result of hydrolysis with commercial enzyme

preparations (Accellerase 1500). Bars indicate standard error of

mean (n = 8). *Differs to control at P <0.05. Alfalfa lines indicate

expression of faeB in endoplasmic reticulum (ER), 24ER and 28ER;

apoplast (A), 43A, 41A and 1A; and vacuole (V), 61 V, 15 V and 2 V. A,

apoplast; C, wild type control; ER, endoplasmic reticulum; V, vacuole.
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and the reverse primer was (5’GGAAAGCACCC-

CATGA3’), generating a product of 765 bp. For the

faeB-vacuole construct, the forward primer was

(5’ACGGTGGAGAGGCTGATA3’) and the reverse pri-

mer was (5’CCTTACATAGTAACAAGCAAACCG3’),

generating a product of 695 bp. For the faeB-ER construct,

the forward primer was (5’ACGGTGGAGGCTGATA3’)

and the reverse primer was (5’GGATCCTTAAAGTT-

CATCTT3’), with PCR product size of 680 bp. The condi-

tions of PCR were set as follows: 94°C, 5 min; 30 cycles at

94°C, 30 sec; 58°C, 30 sec; 72°C, 30 sec; and a final exten-

sion at 72°C, 5 min. The primers used for amplification of

the tCUP4 promoter and transgene specific reverse

primers for faeB-apoplast, faeB-chloroplast, faeB-ER and

faeB-vacuole were used. The forward primer flanking

tCUP4 promoter was (5’CGGCAGAATTTCCCTATATA-

TATTTTTAATTCCCAAA3’) and the transgene specific

reverse primers were as follows: faeB-apoplast reverse pri-

mer was (5’GGATGACTCCAAAGATCCTC3’), the size

of PCR product was 1,809 bp; faeB- chloroplast reverse

primer was (5’GGAAAGCACCCCATGA3’), generating a

PCR product of 956 bp; faeB-ER reverse primer was

(5’GGATCCTTAAAGTTCATCTT3’), the size of PCR

product was 1,842 bp; and faeB-vacuole reverse primer

was (5’CCTTACATAGTAACAAGCAAACCG3’), genera-

ting a PCR product of 1,695 bp. PCR conditions were as

follows: 94°C, 5 min; 35 cycles at 94°C, 30 sec; 55°C, 30 sec;

72°C, 1 min 45 sec; and the final extension at 72°C, 5 min.

For Southern analysis, total genomic DNA was iso-

lated from selected transgenic and control plants, then

digested overnight with HindIII (New England Biolabs,

Ipswich, MA, USA), with 10 μg of digested DNA being

separated by agarose electrophoresis. DNA was trans-

ferred onto a Hybond-N membrane (GE Healthcare Life

Sciences, Mississauga, ON, Canada) by capillary blotting.

DNA was fixed to the membrane by UV crosslinking

and probed with digoxigenin-labeled faeB prepared by

PCR of plasmid DNA.

In situ immunolocalization

In situ immunolocalization of transgenic protein in the

different organelles was performed on young alfalfa leaf

tissue from transgenic and control plants, according to

the protocol described by Sauer et al. [18]. A 1:1,000 di-

lution of the 0.5 mg/ml stock of c-Myc anti-mouse anti-

body was used as the primary antibody and a 1:30

dilution of donkey anti-mouse IgG antibody stock (Mo-

lecular Probes, catalogue number A21202) labeled with

Alexa Fluor 488 (Life Technologies, Carlsbad, CA, USA)

was used as the secondary antibody.

Feruloyl esterase activity screening

Enzyme was extracted by grinding 3 g of stem and leaf

tissue in liquid nitrogen, followed by suspension in

10 ml of extraction buffer (0.1% PBS Tween-20, 2% PVPP,

1 mM EDTA, 1 mM PMSF, 1 μg leupeptin, 100 mM as-

corbic acid, pH 7.4). Crude protein extract was recovered

by centrifugation and concentrated using centrifugal filters

(Centriprep YM-10; EMD Millipore, Billerica, MA, USA).

The concentrate was resuspended in 3 ml of 2.5 mM 3-

(N-morpholino)propanesulfonic acid (MOPS) buffer

(pH 7.2) and reisolated by centrifugation into a final vol-

ume of less than 1 ml. For preliminary assessment of feru-

loyl esterase activity in transgenic lines, enzyme was

qualitatively estimated using a microplate screening assay

[17] by measuring the hydrolysis of ethyl ferulate (50 mM

ethyl ferulate, 5 mM of p-nitrophenol in isopropanol, di-

luted in nine volumes of 2.5 mM MOPS, pH 7.2). To test

the samples, 10 mg (in triplicate) of concentrated plant

protein extracts in 20 μl of 2.5 mM MOPS (pH 7.2) were

placed in each microplate well, and 100 μl of substrate

was added immediately before readings. Decrease in ab-

sorbance at 415 nm at 30°C was recorded (from tripli-

cates) every 5 min for 1 h. Relative enzyme activity was

determined by linear regression of the decrease in absorb-

ance versus time and slope of the regression equation

(Figure 2A).

In vitro ruminal incubation

In vitro ruminal incubations were performed in 125 ml

serum vials fitted with rubber stoppers. Whole alfalfa

plants were ground to pass a 1.0 mm screen, and

weighed into filter bags (F57; Ankom, Macedon, NY,

USA; 0.5 g per bag) and loaded into vials prior to

addition of ruminal inoculum. Six cows with permanent

rumen cannula, fed an alfalfa hay diet were used as

rumen fluid donors. Cattle used in this study were cared

for in accordance with standards of the Canadian Coun-

cil on Animal Care (CCAC, 1993). Rumen fluid was col-

lected 2 h after feeding from five different locations in

the rumen-reticulum and strained through four layers of

cheese cloth. Equal amounts of rumen fluid from each

cow were combined, mixed with a mineral buffer [47] in

a ratio of 1:2 to serve as inoculum. Incubations were ini-

tiated by dispensing 20 ml of inoculum under a stream

of CO2 into vials containing each substrate in F57 filter

bags. The vials were immediately sealed and affixed to a

rotary shaking platform (125 rpm) in a 39°C incubator

(model 39419-1; Forma Scientific, Marietta, OH, USA).

Triplicate vials for each sample and blank were retrieved

from the incubator after 6 h and 72 h of incubation and

processed for determination of VFAs, ammonia and

IVDMD as previously described [48].

Residue remaining in the filter bag was rinsed thrice

with phosphate buffer (pH 7.0), dried at 55°C and

weighed to estimate the IVDMD. Two subsamples of the

liquid culture were taken (1.5 ml each) from each vial

immediately after retrieval of the filter bags. One sample

Badhan et al. Biotechnology for Biofuels 2014, 7:39 Page 11 of 15

http://www.biotechnologyforbiofuels.com/content/7/1/39



was transferred to a 2 ml microcentrifuge tube contain-

ing 126 μl of trichloroacetic acid (TCA; 65% w/v) and

centrifuged at 14,000 × g for 10 min to precipitate par-

ticulate. The supernatant was transferred into 2.0 ml

microcentrifuge tubes and stored at −20°C until analysis

for ammonia by the phenyl-hypochlorite method [49].

Another sample was mixed with 0.3 ml of metaphos-

phoric acid (25% w/v), centrifuged at 14,000 × g for

10 min and the supernatant was analyzed for VFA as de-

scribed by Wang et al. [50].

Attenuated total reflectance Fourier transform infrared

spectroscopy (ATR-FTIR)

Ground samples and residues from in vitro digestion of

transgenic (43A, 41A, 1A, 28ER, 24ER, 61 V, 15 V and

2 V) and control plants were subjected to FTIR spectros-

copy using ALPHA FT-IR spectrometer (Bruker Optics,

Ettlingen, Germany) equipped with a platinum diamond

attenuated total reflectance (ATR) attachment. Spectra

were collected over 4,000 to 600 cm−1 with resolution of

4 cm−1 and 32 repetitious scans were averaged for each

spectrum. The sample contact area was circular with a

diameter of approximately 1.5 mm as the samples were

pressed against the diamond crystal of the ATR device.

Spectra were baseline corrected and area normalized

manually using Opus software (Opus Software Limited,

Grantham, UK). Averages of 43A, 41A and 1A spectra

were used to represent apoplast lines, while representative

spectra for endoplasmic reticulum and vacuole targeted

lines were computed by averaging data from lines 28ER

and 24ER and 61 V, 15 V and 2 V, respectively. Spectra

were subject to PCA and digital subtraction data analysis

(XLSTAT 2013.4 statistical software; Addinsoft, New

York, NY, USA).

Cell wall analysis

For each line, 50 to 60 whole plants were pooled and

ground as described above. Ground samples (60 to 70 mg)

were used to prepare alcohol insoluble residue (AIR) as

described previously [33]. Briefly, ground material was se-

quentially extracted over a sintered glass funnel under

vacuum with two volumes of 100 ml of ice cold 80% etha-

nol, 100% ethanol, chloroform:methanol (1:1) and 100%

acetone. Starch was removed by treatment with Type II-A

Bacillus α-amylase (Sigma-Aldrich; approximately 1,000

units/100 mg cell wall AIR) in 50 mM sodium phosphate

buffer (pH 7.0) at 25°C in a shaking incubator for 48 h.

De-starched samples were centrifuged (3,660 × g for

10 min at 25°C) and the pellet was subsequently washed

thrice with deionized water and recovered by centrifuga-

tion (3,660 × g for 10 min at 25°C). The resulting pellets

were suspended in 500 μl of acetone and evaporated with

a stream of air at 36°C until dry. For total sugar analysis,

triplicate AIR samples (5 mg) of each line (43A, 41A, 1A,

28ER, 24ER, 61 V, 15 V, 2 V and C) were hydrolyzed with

72% H2SO4 and the released sugars were quantitated by a

combination gas chromatography −mass spectroscopy

(GC-MS) of alditol acetate derivatives. The remains after

trifluoroacetic acid (TFA) treatment were hydrolyzed in

Updegraff reagent (acetic acid:nitric acid:water, 8:1:2 v/v)

and used in an anthrone assay to quantify crystalline cellu-

lose [51]. Uronic acid content in triplicate AIR samples of

each representative line (43A, 41A, 1A, 28ER, 24ER, 61 V,

15 V, 2 V and C) were quantified by adapting the micro-

assay of van den Hoogen et al. [52] and using galacturonic

acid as a standard. An average of 43A, 41A and 1A, 28ER

and 24ER and 61 V, 15 V and 2 V were used to represent

apoplast lines (A), endoplasmic reticulum (ER) and vacu-

ole (V) targeted lines, respectively.

To determine lignin content [53], approximately 1 mg

of AIR samples (three replicates for each line, that is,

43A, 41A, 1A, 28ER, 24ER, 61 V, 15 V, 2 V and C) were

solubilized in freshly prepared acetyl bromide solution

(100 μl of 25% (v/v) acetyl bromide in glacial acetic acid)

for 3 h at 50°C, with 2 M sodium hydroxide (400 μl) and

0.5 M hydroxylamine hydrochloride (70 μl) being added

to stop the reaction. Absorbance at 280 nm was mea-

sured using Synergy HT multi-detection microplate

reader (Biotek Instruments, Inc., Winooski, VT, USA).

Cell wall phenolics were extracted according to Buanafina

et al. [14] with minor modifications. Briefly, following the

extraction of chlorophyll pigments with aqueous

methanol, ester bound compounds were extracted from

ground plant material (50 mg, three repeats) with 1 M

NaOH (5 ml) followed by incubation at 25°C for 24 h in

the dark. Aliquots of the mixture were combined with a

1.2 volume of 100 mM HCl and centrifuged (1,000 × g,

20 min). The supernatant was diluted with four volumes

of methanol and UV spectrum was recorded between

200 to 400 nm.

Enzyme saccharification assay

Alkaline peroxide pretreatment was performed as de-

scribed by Banerjee et al. [54]. Briefly, 50 ml of 1% H2O2

was adjusted to pH 11.5 with 5 M NaOH and mixed

with 1 g of ground AIR plant material (as prepared

above) in a 250 ml Erlenmeyer flask. Final concentra-

tions were 1% H2O2 (300 mM), 0.8% NaOH (200 mM)

and 2% biomass. The flasks were incubated at 24°C with

shaking at 90 rpm for 24 h. The slurries were neutralized

to pH 7 by the addition of 12 N HCl. Residual H2O2 was

inactivated by addition of 59 μl of catalase (28 mg pro-

tein/ml; Sigma-Aldrich). After inactivation of catalase by

heating at 90°C for 15 min, the flask contents were cen-

trifuged and dried at 55°C. Alkaline peroxide treated ma-

terial from transgenic lines 43A, 41A, 1A, 28ER, 24ER,

61 V, 15 V, 2 V and control were suspended at a final

concentration of 0.5% (w/v) in 50 mM sodium citrate
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buffer (pH 5.0) containing 5 μg/ml tetracycline, 5 μg/ml

cycloheximide and 0.02% sodium azide. The slurry was

kept in suspension using a paddle reservoir designed for

dispensing pharmaceutical beads on the Biomek FXP

(model VP 756C-1P100; V&P Scientific, Inc., San Diego,

CA, USA). A total of 200 μl of substrate slurry was then

dispensed into mini-Eppendorf tubes, followed by

addition of commercial enzymes (Accellerase 1500) at a

final concentration of 15 mg protein per g of cellulose

and the mixture was incubated at 50°C for 48 h. The

tubes were centrifuged at 1,500 × g for 5 min to separate

solid residue from hydrolyzed biomass. The supernatants

(100 μl) were transferred into a Costar 96-well plate and

heated at 100°C for 10 min to inactivate the enzymes.

Each reaction mixture was run in duplicate, sampled

twice, and the supernatants were assayed twice for re-

leased glucose using a K-GLUC kit (Megazyme, Bray,

Ireland). Sugar assays were conducted in 96-well plates

using 194 μl of assay reagent and 12 μl of sample. The

plates were incubated at 50°C for 20 min before reading

absorbance at 510 nm using the Synergy HT multi-

detection microplate reader (Biotek Instruments, Inc.).

Additional files

Additional file 1: Summary of alfalfa transformation experiments

(n = 3).

Additional file 2: Southern blot analysis of faeB-apoplast line 10

A2. The gDNA was cut with BamHI and the blot was probed with

DIG-labeled faeB gene fragments (651 bp). Lane 1, 1 kb DNA ladder

(1 μg); lane 2, wild type alfalfa gDNA (20 μg); lane 3, 10 A2 gDNA (20 μg);

and lane 4, faeB-apoplast plasmid DNA (5 ng).

Additional file 3: Concentration of VFA (mM) after (A) 6 h and (B)

72 h of in vitro incubation of control and transgenic lines in mixed

rumen fluid. Bars indicate standard error. VFA, volatile fatty acid.

Additional file 4: Ammonia production during in vitro digestion of

control and transgenic lines in mixed ruminal fluid. Bars indicate

standard error. *Differs to control at P < 0.05.

Additional file 5: Correlation matrix table and correlation circle of

axis F1 and F3.

Additional file 6: Difference between digestion of control and

transgenic cell walls as evident from digital subtraction of FTIR

spectra of respective digesta residue after 72 h of incubation with

rumen fluid. (A) Average spectrum of 24ER and 28ER; and (B) average

spectrum of 43A, 41A and 1A versus wild type control. A, apoplast; ER,

endoplasmic reticulum; FTIR, Fourier transformed infrared spectroscopy.

Additional file 7: FTIR spectral differences between control and

transgenic cell walls after 6 h and 72 h of incubation with rumen

fluid as an indicator of the progressive digestion of the plant cell

wall. (A) Wild type control; (B) average spectrum of 24ER and 28ER; and

(C) average spectrum of 43A, 41A and 1A. A, apoplast; ER, endoplasmic

reticulum; FTIR, Fourier transformed infrared spectroscopy.

Additional file 8: Total sugar and uronic acid content of cell walls.

(A) TFA and sulfuric acid solubilized total sugar content as determined by

anthrone method. (B) Uronic acid content of TFA and sulfuric acid

solubilized cell wall fractions. Bars indicate standard error of mean (n = 3).

*Differs to control at P ˂0.05. Apoplast (A), faeB-apoplast (average of 43A,

41A and 1A); endoplasmic reticulum (ER), faeB-ER (average of 24ER and

28ER); and vacuole (V), faeB-vacuole (average of 61 V, 15 V and 2 V). A,

apoplast; ER, endoplasmic reticulum; TFA, trifluoroacetic acid; V, vacuole;

WT, wild type control.

Additional file 9: Schematic maps of vector sequence for apoplast,

chloroplast, endoplasmic reticulum and vacuole targeted feruloyl

esterase. c-Myc, cMyc tag mouse antibody sequence from GenScript;

CTPP, vacuole retention signal; ER, endoplasmic reticulum; KDEL,

endoplasmic reticulum retention signal; PIN, potato protease inhibitor II

terminator sequence; PR1b, secretory signal peptide from tobacco; StrepII,

StrepII purification tag WSHPQFEK; tCUP4, enhanced tCUP4 promoter

sequence.

Additional file 10: Sequences of synthetic faeB genes.

Additional file 11: Schematic map of the 5,103 bp pEACH vector

based on pPZP100 [36]. Modifications described in the Methods

section. Par A, par A MYB recognition sequences.

Additional file 12: Schematic map of the pEACH 7,205 construct

showing restriction enzyme sites and insert size.

Additional file 13: Alfalfa tissue culture and transformation with

Agrobacterium tumefaciens LBA4404. (A) Callus formation on selection

medium plates after culture with Agrobacterium containing faeB gene

targeted four different cellular compartments (apoplast, chloroplast,

vacuole and endoplasmic reticulum), 4 weeks. (B) Embryo formed on

callus, 5 weeks. (C, D) Embryo formation, 7 weeks. (E, F) Embryo

germination on selection medium, 9 to 10 weeks. (G) Transgenic alfalfa

plants transferred to magenta box, 12 weeks. (H) Transgenic alfalfa plant

transferred to soil, 18 weeks. (I) Potted transgenic alfalfa plants in a

growth chamber, 28 weeks.
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