
Abstract. The prognosis of patients with pancreatic cancer is
very poor because of late diagnosis and the lack of response
to various therapies. We tried to identify proteins that might
be available for early diagnosis and effective therapies by
proteomic profiling of pancreatic cancer tissues. Pancreatic
cancerous and paired non-cancerous tissues obtained from
surgical resections or autopsies of 10 patients were analyzed by
two-dimensional gel electrophoresis. The differential display
showed 11 spots whose expression was increased in cancerous
tissues compared with the paired non-cancerous tissues.
The liquid chromatography-mass spectrometry/mass
spectrometry (LC-MS/MS) system identified the spots as ·-
enolase, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), triosephosphate isomerase, transgelin, calmodulin,
superoxide dismutase(Mn) mitochondrial precursor,
glutathione S-transferase P, cyclophilin A, protein disulfide
isomerase A3 precursor, and apolipoprotein A-I precursor.
Two of the 11 spots were detected as GAPDH. We noticed
that 4 of 11 spots were enzymes involved in glycolytic

pathway. Increased glycolysis in cancer cells has been
regarded as the effect of intratumoral hypoxia and is possibly
associated with tumor invasion, metastasis or resistance to
therapies. These glycolytic proteins and transgelin, were
confirmed by Western blotting and immunohistochemistry.

Introduction

Molecular diagnostics and thrapeutics for human malignancies
have been developed recently. However, the prognosis of
patients with pancreatic cancer is still very poor because of
its aggressiveness and lack of early diagnosis and effective
therapies (1). Surgical resection is the only curative therapy,
but the disease has usually already progressed by the time of
diagnosis. Therefore, novel diagnostic tools for pancreatic
cancer have to be developed and the biological characteristics
giving rise to aggressiveness of this disease should be clarified.

Recent intensive studies have identified genetic abnor-
malities frequently expressed in human malignancies, including
pancreatic cancer (2-4). Following gene analysis, proteomic
studies have been performed to find proteins as candidates
for new diagnostic markers and therapeutic targets (5,6). 

Two-dimensional gel electrophoresis (2-DE) is regarded
as a useful method to analyze proteins comprehensively.
Using this method, we tried to identify proteins overexpressed
in pancreatic cancerous tissues and to detect protein factors that
might be available for diagnosis and more effective therapies. 

Materials and methods

Tissue samples. We examined 10 pairs of cancerous and
corresponding non-cancerous pancreas tissues obtained from
patients who were diagnosed with pancreatic adenocarcinoma
and underwent surgical resection or autopsy at Yamaguchi
University Hospital between 2001 and 2004. The authors
received informed consent for all patients, including 7 males
and 3 females whose mean age at collection was 65 years
(range, 51-79 years). None of the patients had received
chemotherapy or radiation therapy prior to cancer resection.
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Histologically, 7 were classified as moderately differentiated
tubular adenocarcinoma, 1 as well differentiated, 1 as poorly
differentiated, and 1 as mucinous carcinoma. According to
the TMN classification (7), 1 was classified as stage II, 6 as
III, 1 as IVA, and 2 as IVB (Table I). 

Sample preparation. Resected pancreas tissues were immed-
iately frozen in liquid nitrogen and stored at -80˚C until use.
They were disrupted and homogenized in lysis buffer (1%
NP-40, 1 mM sodium vanadate, 1 mM PMSF, 50 mM Tris-
HCl, 10 mM NaF, 10 mM EDTA, 165 mM NaCl, 10 μg/ ml
leupeptin, 10 μg/ml aprotinin) using a microtube mixer with
a teflon tip at 4˚C for 2 h. The lysate was separated by
centrifugation at 15,000 x g for 30 min. The supernatant was
stored at -80˚C until use.

Two-dimensional gel electrophoresis (2-DE). Three hundred
micrograms of protein from the supernatant was applied to
immobiline dry strips (pH 3.0-10.0, 7 cm; Amersham Bio-
science, NJ) in a total volume of 125 μl containing 8 M urea,
2% CHAPS, 0.5% IPG buffer (Amersham Bioscience) and
2.8 mg/ml dithiothreitol (DTT). After dehydration for 14 h,
proteins were separated by isoelectrofocusing (IEF) at 20˚C
using 50 μA/strips with the following linear voltage increases:
500 V for 1 h, 1000 V for 1 h, and 8000 V for 2 h. The strips
were then equilibrated twice in 50 mM Tris-HCl containing
6 M urea, 30% glycerol and 2% sodium dodecyl sulfate (SDS)
for 15 min. DTT was then added, followed by iodoacetamide.
The second dimension was performed on SDS-polyacrylamide
gels (2-D homogeneous 12.5%; Amersham Bioscience) in two
steps: 600 V, 20 mA for 30 min and 600 V, 50 mA for 70 min
in a multiphor horizontal electrophoresis unit (Amersham
Pharmacia Biotechnology). Separated protein spots were
stained on the gel with 30% methanol, 10% acetic acid, and
0.1% Coomassie Brilliant Blue R-250 (CBB) overnight. The
gel was destained with 30% methanol and 10% acetic acid
for 30 min, and then with 7% acetic acid until the background
of the spots turned clear.

Image analysis. The protein spots on the gel were recorded
using an Agfa ARCUS 1200™ image scanner (Agfa-Gevaert
N.V., Mortsel, Belgium) and analyzed using Image Master
2D Platinum ver. 5.0 (Amersham Bioscience). Spots stained
at different intensities between cancerous and non-cancerous
tissues were excised from the gels and identified by LC-
MS/MS (LC-MSD XCT, Agilent). 

In-gel digestion. The CBB dye was removed by rising the
gel twice in 60% methanol containing 50 mM ammonium
bicarbonate and 5 mM DTT for 15 min each time, and twice
in 50% acetonitrile containing 50 mM ammonium bicarbonate
and 5 mM DTT for 7 min each time. The gel piece was
dehydrated in 100% acetonitrile, and then rehydrated with an
in-gel digestion reagent containing 10 μg/ml sequencing
grade trypsin (Promega, Madison, WI) in 30% acetonitrile
with 50 mM ammonium bicarbonate and 5 mM DTT. The
in-gel digestion was performed overnight at 30˚C. 

Amino acid sequencing by LC-MS/MS. Lyophilized samples
were dissolved in 20 μl of 0.1% formic acid and centrifuged

at 15,000 x g for 5 min. Peptide sequencing of identified
protein spots was performed using the LC-MS/MS system
with a Spectrum Mill MS Proteoics Workbench (Agilent
Technologies, Santa Clara, CA).

Statistical analysis. Expression levels of the protein spots
were quantified by analyzing the intensity of each spot with
Image Master (Amersham Bioscience). The differences in
expression between cancerous tissues and non-cancerous
tissues were analyzed by Student's t-test.

Western blot analysis. Protein samples of 15 μg were separated
by SDS-PAGE and 100 μg were separated by 2-DE. Frac-
tionated proteins were transferred electrophoretically onto
a PVDF membrane and blocked with TBS containing 5%
skim milk. Primary antibodies used were anti-enolase goat
polyclonal antibody (1:200), anti-GAPDH polyclonal antibody
(1:200), anti-triosephosphate isomerase polyclonal antibody
(1:200) and anti-transgelin goat polyclonal antibody (1:250)
(from Santa Cruz Biotechnology, Inc., Santa Cruz, CA).
Membranes were incubated for 1 h, washed four times with
TBS containing 0.05% Tween-20, incubated for 1 h with a
secondary antibody (1:2,000), and developed with a chemi-
luminescence reagent (ECL; Amersham Bioscience).

Immunohistochemical analysis. Immunohistochemical analysis
was performed using ABC Kit (Vector Laboratories, Burlin-
game, CA) on the same samples as tissue specimens described
in Tissue samples. The primary antibodies were the same as
those used for Western blot analysis and used at dilutions of
1:200 or 1:250.

Results

Detection of protein spots on 2-DE gels. At least 190 protein
spots were matched on each 2-DE gel. The differential
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Table I. Summary of all cases of pancreatic cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––
No. Age Sex Histology T N M Stage
–––––––––––––––––––––––––––––––––––––––––––––––––
1 71 F Tubular (moderate) 3 0 0 II

2 75 M Tubular (moderate) 4 1 0 IVA

3 54 M Tubular (moderate) 2 1 0 III

4 67 F Tubular (moderate) 2 1 0 III

5 79 M Mucinous 4 1 1 IVB

6 51 F Tubular (well) 3 1 0 III

7 61 M Tubular (poor) 4 1 1 IVB

8 64 M Tubular (moderate) 3 1 0 III

9 70 M Tubular (moderate) 2 1 0 III

10 58 M Tubular (moderate) 3 1 0 III
–––––––––––––––––––––––––––––––––––––––––––––––––
M, male; F, female; tubular, tubular adenocarcinoma; well, well
differentiated; moderate, moderately differentiated; poor, poorly
differentiated type; mucinous, mucinous carcinoma. Tumor staging
was performed according to the TMN classification.
––––––––––––––––––––––––––––––––––––––––––––––––– 
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expression of paired cancerous and non-cancerous tissues
was visually compared. Eleven spots were up-regulated in
cancerous tissues in at least 4 of the 10 samples by ≥2-fold
higher intensity (Figs. 1 and 2).

Identification of proteins. The LC-MS/MS system identified
these up-regulated protein spots as ·-enolase (spot 1), glycer-

aldehyde-3-phosphate dehydrogenase (GAPDH) (spots 2
and 3), triosephosphate isomerase (spot 4), transgelin (spot 5),
calmodulin (spot 6), MnSOD (spot 7), PDI-A3 (spot 8),
cyclophilin A (spot 9), GST-P (spot 10), and apolipoprotein
A-I precursor (spot 11). In Table II, information about the
eleven spots is summarized. 

Expression profiles of proteins. In all 10 paired samples, the
intensities of the 11 protein spots were analyzed and quantified
using Image Master (Table III). The expression of four
proteins, ·-enolase, GAPDH, triosephosphate isomerase and
transgelin were confirmed by 2-D immunoblot analysis
(Fig. 3). The intensity of each spot was increased in cancerous
tissues. In 2-D immunoblot analysis, ·-enolase, GAPDH and
TPI were observed as multiple spots with slightly different
isoelectric points or molecular weights. These spots may be
explained by post translational modifications of the proteins.
We can also detect some of these spots on 2-DE gels stained
by CBB.

The expression of ·-enolase, GAPDH, TPI and transgelin
was also confirmed by immunohistochemistry. ·-enolase
and GAPDH were predominantly expressed in cancer cells.
·-enolase was also detected in islet cells. While weak staining
was detected in normal epithelial cells, acinar cells and in
stromal cells. TPI was detected predominantly in cancer
cells and also detected in normal epithelial cells. TPI was
barely detectable in acinar cells, stromal cells and islet cells.
Transgelin was mainly expressed in stromal cells but not in
cancer cells or normal epithelial cells. We found that transgelin
expression was much stronger in stromal cells around cancer
cells than in those around normal epithelial cells (Fig. 4).
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Figure 1. Protein patterns obtained by 2-DE of cancerous tissues and paired
non-cancerous tissues of patients with pancreatic adenocarcinoma. Proteins
were separated on pH 3-10 linear, immobilized pH gradient strips and then
by 12.5% SDS-PAGE. Gels were stained with CBB R-250. Eleven spots
were up-regulated in cancerous tissues and numbered from 1 to 11.

Figure 2. Comparison of 2-DE patterns between cancerous tissues and non-cancerous tissues. Eleven spots up-regulated in cancerous tissues are shown.
·-enolase (1), two spots of GAPDH (2, 3), triosephosphate isomerase (4), transgelin (5), calmodulin (6), MnSOD (7), protein disulfide isomerase A3 (8),
cyclophilin A (9), GST-P (10), apolipoprotein A-I (11). Each spot number is the same as those in Fig. 1.
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Discussion

In this study, we detected 11 protein spots whose expression
increased in human pancreatic adenocarcinoma tissues.
Interestingly, four of them, ·-enolase, two spots of GAPDH,
and triosephosphate isomerase, were enzymes involved in
the glycolytic pathway. It is known that increased rates of
glucose uptake and glycolysis are generally found in tumor
cells (8). Hypoxia inducible factor (HIF-1), which is expressed
under hypoxic conditions with tumor proliferation, has been
shown to activate transcription of genes encoding vascular

endothelial growth factor, glucose transporters, and glycolytic
enzymes, including ·-enolase and GAPDH (9,10). Up-
regulation of the three enzymes might be caused by hypoxia
and increased activity of glycolysis. 

·-enolase has been reported to be up-regulated in several
cancer cell lines in previous proteomic studies using 2-DE
(11,12). ·-enolase is found in the cytoplasm of most cells and
works as a glycolytic enzyme. Previous studies have reported
its ability to function as a heat shock protein (13), cell surface
receptor for plasminogen (14), and as a Myc-binding protein
that negatively regulates transcription of the c-myc oncogene
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Table II. Up-regulated proteins in pancreatic cancerous tissues.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Spot Frequency Mass Mr/pl Accession no. Protein
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
1 9/10 47037/6.99 P06733 ·-enolase 

2 8/10 35922/8.58 P04406 Glyceraldehyde 3-phosphate

dehydrogenase, liver type 

3 8/10 35922/8.58 P04406 Glyceraldehyde 3-phosphate

dehydrogenase, liver type

4 7/10 26538/6.51 P60175 Triosephosphate isomerase

5 6/10 22479/8.88 Q01955 Transgelin

6 6/10 16706/4.09 P02593 Calmodulin

7 5/10 24722/8.34 P04179 Superoxide dismutase(Mn),

mitochondrial precursor

8 6/10 56782/5.99 P30101 Protein disulfide isomerase

A3 precursor

9 5/10 17881/7.82 P05092 Peptydyl-prolyl cis-trans isomerase

(cyclophilin A) 

10 4/10 23224/5.44 P09211 Glutatione S-transferase P

11 4/10 30778/5.56 P02647 Apolipoprotein A-I precursor
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table III. The intensities of the up-regulated protein spots in cancerous tissues.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Spot intensity (average ± SD)
––––––––––––––––––––––––––––––––––––––

Protein Cancerous tissue Non-cancerous tissue Ratio of spot intensity p-value
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
· enolase 0.30±0.24 0.12±0.11 2.46 0.0058

GAPDH 0.19±0.15 0.07±0.05 2.95 0.0145

GAPDH 0.11±0.04 0.04±0.04 3.91 0.0131

TPI 0.38±0.27 0.17±0.11 2.2 0.0449

Transgelin 0.34±0.29 0.13±0.10 2.62 0.0434

Calmodulin 0.36±0.23 0.14±0.14 2.55 0.0059

MnSOD 0.34±0.03 0.17±0.004 6.36 0.0191

PDI-A3 0.43±0.09 0.09±0.004 6.34 0.0203

Cyclophilin A 0.20±0.005 0.11±0.003 2.31 0.0161

GST-P 0.33±0.02 0.15±0.003 4.20 0.0370

Apolipoprotein A-I 0.55±0.07 0.21±0.007 2.66 0.0175
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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in the nucleus (15,16). Enolase has three isoenzymes: ·-enolase
is found in a variety of tissues including liver, ß-enolase in
muscle tissues and Á-enolase in neurons and neuroendocrine
tissues (17). Enolase exists in heterodimetric forms such as
··, ·ß, ßß, ·ß and ÁÁ (18). Neuron-specific enolase (NSE, ·Á

and ÁÁ isoforms) in serum of small cell lung carcinoma and
neuroblastoma is known to be a useful marker for monitoring
the progression of disease and response to treatment (19,20).
Gerbitz et al showed that Á-enolase was increased in the

plasma of patients suffering from small cell lung carcinoma,
while most patients with squamous cell carcinoma of the
lung or prostatic cancer exhibited normal Á-enolase and
high concentrations of ·-enolase (21). Oskam et al studied
expression of enolase isoenzymes in rat medullary thyroid
carcinomas and reported that the ·Á and ÁÁ isoenzyme levels
were relatively high in well-differentiated rat tumors, whereas
the majority of enolase isoenzymes were ·· in undifferen-
tiated and anaplastic tumors (22). Takashima et al reported a
relation between the expression of ·-enolase and differentiation
of hepatocellular carcinoma (23). In heart and skeletal muscles
of the rat, the ·· isoenzyme predominates in the fetus; how-
ever, this isoenzyme is replaced by the ·ß and ßß types as
development progresses (24-26). These results might suggest
that the expressed form of enolase is associated not only with
tissue specificity of the three isoenzymes, but also with the
degree of cell differentiation. Further experiments will be
required to determine whether ·-enolase increases in serum
of patients with pancreatic adenocarcinoma and to clarify
the relationship between the expression of enolase and cell
differentiation.

GAPDH has been known as a housekeeping protein whose
gene expression remains constant in spite of various cellular
conditions. In recent years, however, that view has changed
since GAPDH has proved to have diverse cellular functions,
including nuclear RNA export, DNA replication, DNA repair,
exocytotic membrane fusion, cytoskeletal organization, and
phosphotransferase activity (27). Indeed, increased expression
levels of GAPDH mRNA were reported in many malignant
tumors (28-30), including pancreatic adenocarcinoma (31).
Some of these reports showed that GAPDH expression levels
were associated with hypoxic conditions (32,33) and the
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Figure 3. 2-D immunoblot analysis of up-regulated proteins in pancreatic
cancerous tissues. We used three pairs of samples for each 2-D immunoblot
analysis of ·-enolase, GAPDH, triosephosphate isomerase and transgelin.
Protein expression of all 4 increased in cancerous tissues.

Figure 4. Immunohistochemistry staining of ·-enolase, GAPDH, triosephosphate isomerase (TPI) and transgelin. ·-enolase and GADPH were predominantly
expressed in tumor cells. ·-enolase was also detected in islet cells, while weak staining was found in acinar cells and in stromal cells. TPI was detected
predominantly in cancer cells and also detected in normal epithelial cells. TPI was barely detectable in acinar cells, stromal cells and islet cells. Transgelin was
mainly expressed in stromal cells and its expression was much stronger in stromal cells around cancer cells than in normal epithelial cells. We did not detect
transgelin expression in cancer cells or in normal epithelial cells. d, non-cancerous pancreatic ductal cell; ca, cancerous pancreatic ductal cell; a, acinar cell; i,
islet cell; s, stromal cell.
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aggressiveness of tumors (34,35). Epner and Coffey have
analyzed GAPDH expression in normal and malignant human
prostate tissues and reported that GAPDH is abundant in the
nucleus in normal prostate basal cells, but in cytoplasm of
prostate cancer cells (36). They also found five forms of
GAPDH with isoelectric points in metastatic rat prostate
cancer cell lines, but one to four forms in non-metastatic cell
lines, suggesting that each of them has a unique function. In
our study, we detected two forms of GAPDH overexpressed
in cancerous tissues. Further examination is necessary to
analyze their functions and localization.

Triosephosphate isomerase (TPI) has been reported to be
up-regulated in lung adenocarcinoma (37), melanoma (38),
and squamous metaplasia and carcinoma of the bladder (39).
The mRNA and protein expression of TPI has also been
shown to be increased by hypoxia (40), but the mechanism is
unknown. Recent studies identified a mutated form of TPI
known as HLA-DR4-restricted melanoma antigen, which
may become a target for immunotherapies for cancer (41,42).

Transgelin, which is also identical to SM22-·, is reported
as predominantly expressed in smooth muscle cells and
fibroblasts. It was shown to play a role in cell transformation
and shape change by binding actin and gelling it (43,44).
Tansgelin expression is observed to be lost in human breast
and colon tumor samples. Down-regulation of it may associate
with oncogenic Ras (45). In renal cell carcinoma (RCC), in situ
hybridization revealed that transgelin is not expressed in the
malignant cells but in mesenchymal cells of the tumor stroma
(46). This report corresponds to the result of immunohisto-
chemistry of transgelin in this study. Gene expression of
transgelin is found to be up-regulated in the cell lines from
metastatic lesions of RCC (47). Recent study identified the
expression of this protein as down-regulated in microdissected
cells of Pan IN-2 grades, precursor lesions of pancreatic
ductal adenocarcinoma (48).

Ott et al and Kellner et al reported proteomic study using
epithelial cell preparation procedure by epithelial cell surface
antibody Ber-Ep4 (49,50). Shekouh et al showed that the
protein profiles of undissected normal or malignant pancreas
differed from those of normal or malignant pancreatic ductal
epithelia dissected by laser capture microdissection (51). But
they also noted that the undissected and dissected tumor
samples showed similar profiles. Our data indicate that
particularly non-malignant samples may include many proteins
that are expressed in cells other than ductal cells. In this study,
we reported only on increased proteins in cancerous tissues
because many of the decreased proteins may have originated
from non-epithelial cells.

It is important to clarify proteins expressed specific to
cancer cells although we consider the protein profile from
whole tissue biopsies to have important information because
recent studies have noted that invasion and tumor metastasis
are closely related to interaction between cancer cells and the
surrounding tissues (52). Especially, pancreatic cancer is
characterized by abundant stroma cells, so the study using
whole tissues including stroma cells may help to identify
proteins participating in invasion and metastasis of pancreatic
cancer.

Almost all of these identified proteins are expressed not
only in cancerous tissues but also in non-cancerous tissues

and most of them were previously reported as differentially
expressed in types of human cancer other than pancreatic.
So the possibility that these proteins are specific markers
of pancreatic cancer is humble, but they may reflect the
mechanism of the cancer spreading.

The number of patients included in this study is not
sufficient to produce any conclusion. The sample size would
need to be larger in heterogeneous tissue samples from a
multi-gender, and multi-age cohort of humans (53). Studies
should be continued to confirm these results.

In this study, 10 proteins overexpressed in pancreatic
adenocarcinoma were detected. In order to clarify the role of
these proteins in pathogenesis and to estimate whether these
proteins are useful for developing new diagnostic markers or
therapies, further study is needed. Although it is difficult to
obtain samples of early pancreatic cancer, it is particularly
important to clarify if these proteins are expressed in the early
stage of pancreatic cancer. 
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