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ABSTRACT
Leptin acts on specific brain regions to affect body weight regula-

tion. As leptin is made by white adipose tissue, it is thought that leptin
must cross the blood-brain barrier or the blood-cerebrospinal fluid
barrier to reach key sites of action within the brain. High expression
of a short form leptin receptor has been reported in the choroid plexus.
However, whether one or more of the known leptin receptor isoforms
is expressed in brain capillaries is unknown. To identify and quan-
titate leptin receptor isoforms in rat brain microvessels, we applied
quantitative RT-PCR to RNA from purified rat brain microvessels in
parallel with in situ hybridization. The results show that the amount
of short form leptin receptor messenger RNA (mRNA) in brain mi-

crovessels is extremely high, exceeding that in choroid plexus. In
contrast, low levels of this mRNA were detected in the cerebellum,
hypothalamus, and meninges. The long form leptin receptor mRNA
is only present at low levels in the microvessels, but surprisingly, its
level in cerebellum is 5 times higher than that in the hypothalamus.
In situ hybridization experiments confirmed strong expression of
short leptin receptors in microvessels, choroid plexus, and leptome-
ninges. The distribution and type of leptin receptor mRNA isoforms
in brain microvessels are consistent with the possibility that receptor-
mediated transport of leptin across the blood-brain barrier is medi-
ated by the short leptin receptor isoform. (Endocrinology 139: 3485–
3491, 1998)

LEPTIN, the adipose tissue-derived hormone (1), plays an
important role in the regulation of food intake, energy

expenditure, and adiposity (2–4). Through alternative mes-
senger RNA (mRNA) splicing, leptin receptors exists as sev-
eral different isoforms with varying intracellular domains (5,
6), of which only the longest isoform has the capacity to
activate STAT (signal transducer and activator of transcrip-
tion) signaling (7–9). The mRNA of this isoform has been
found at the highest levels within the hypothalamus and at
much lower levels in other tissues (7). Several studies
strongly suggest that the effects of leptin on body weight
involve initial actions within the hypothalamus (10–14), al-
though possible direct actions on peripheral tissues have
been reported (15–18). The essential role of the long isoform
of the leptin receptor is demonstrated by the fact that its
absence results in extreme obesity in the db/db mice (6, 19).
Among the other leptin receptor isoforms, a predominant
form with a predicted short intracellular domain is expressed
at very high levels in choroid plexus, from which it was
cloned, as well as in lung and kidney, and is present at
detectable levels in most other tissues (5, 7). This receptor is
thought to play a role in the clearance of leptin from the
circulation (20) and in the transport of leptin into the brain
(5, 21, 22).

Lack of functional leptin or of long form leptin receptors
in ob/ob and db/db mice, respectively, causes severe obesity.
Obesity in humans, therefore, may be related to low levels of
functional circulating leptin or to decreased action at the
target cells expressing long form leptin receptors. Supporting
the latter possibility are data demonstrating that serum leptin
levels are increased in obesity and correlate positively with
body weight (23, 24). This raises the possibility that circu-
lating leptin is not accessible to leptin receptor-expressing
neurons in the hypothalamus, or that these cells are them-
selves deficient in leptin binding or in leptin action. A de-
creased cerebrospinal-fluid/serum ratio in human obesity
has been reported, thus suggesting that a defect in leptin
transport into the brain is a possible mechanism for leptin
resistance (25, 26).

Very little is known at present about how leptin enters the
brain. For leptin to reach most sites within the brain, the
hormone must cross the blood-brain barrier (BBB) and/or
the blood-cerebrospinal fluid (CSF) barrier. High expression
of the short leptin receptor isoform in the choroid plexus (5),
the major site for production of CSF, has resulted in specu-
lation that this site is an important site for leptin entry into
the brain. On the other hand, consistent with the BBB being
a site for transport of leptin into the brain, a recent report
demonstrated specific binding of [125I]leptin to isolated hu-
man brain microvessels (22). However, whether brain mi-
crovessels have the capability to transport leptin has not been
demonstrated directly, and the identity of the leptin receptor
species on brain microvessels is at present unknown.
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Here we applied quantitative RT-PCR in combination with
in situ hybridization to identify and quantitate leptin receptor
mRNA isoforms in rat brain microvessels. Our results show
that the abundance of short form leptin receptor mRNA in
brain microvessels is very high, exceeding that of choroid
plexus. Other brain regions, including cerebellum, hypothal-
amus, and meninges express low amounts of this mRNA
species. The long form leptin receptor mRNA is present at
low levels in the microvessels. In cerebellum, however, the
level of long form leptin receptor mRNA is 5 times greater
than that in the hypothalamus, 7 times higher than that in
microvessels, and 14 times higher than that in the choroid
plexus. In situ hybridization revealed strong expression of
short leptin receptors in brain microvessels, leptomeninges,
and choroid plexus.

Materials and Methods
Animals and histology

Adult male pathogen-free Sprague-Dawley rats (250–350 g) were
housed individually with food and water available ad libitum in a light-
(12 h on/12 h off) and temperature-controlled environment (21.5–22.5
C). The animals and procedures used were in accordance with the
guidelines and approval of the Harvard Medical School and Beth Israel
Deaconess institutional animal care and use committees. For RT-PCR
experiments, rats were deeply anesthetized by inhalation of Metofane
(Mallinckrodt Veterinary, Mundelein, IL) and then decapitated. The
skull was reflected from the brain, and the meninges were dissected from
the scull. Meninges consisted mainly of dura together with some vas-
cular elements of the leptomeninges pooled from 10 rats. Choroid plexi
were carefully dissected from all ventricles and finally pooled from the
same 10 animals. Samples of cerebellum and hypothalamus were also
taken from these animals. Microvessels were isolated from brains after
removal of cerebellum and brain stem as described previously using the
method of Brendel et al. (27), as modified by Brecher et al. (28) and
Sussman et al. (29). Sixteen rats were killed by decapitation, and their
brains were placed in an aerated solution containing 118 mm NaCl, 5.4
mm KCl, 1.8 mm CaCl2, 1.0 mm MgSO4, 1.0 mm NaH2PO4, 5.5 mm
d-glucose, 0.2% (wt/vol) fraction V albumin, and 28 mm HEPES (pH
7.4). The forebrains were dissected, stripped of pia-arachnoid mater
using a cotton-tipped applicator, and then homogenized by hand in a
Dounce glass homogenizer (Kontes Co., Vineland, NJ). Subsequently,
nylon mesh filtration through (147 mm pore size) was performed, fol-
lowed by trapping microvessels by filtering them through a 74-mm and
a 37-mm nylon mesh. Microvessels were gently removed from the
meshes with a rubber policeman and washed in PBS that was subse-
quently centrifuged at 1800 rpm. Aliquots were taken for assays of
purity. Alkaline phosphatase and g-glutamyl transpeptidase were mea-
sured in all microvessel preparations and compared to original brain
homogenates according to the method of Hausamen et al. (30) and as
described previously (29). This method results in a specific activity of
this enzyme in microvessel samples that is increased approximately 20-
to 30-fold compared with that in the respective original brain homog-
enates. Total rat brain RNA was purchased from Ambion (Austin, TX).
For in situ experiments, rats were deeply anesthetized with ip chloral
hydrate (7%; 350 mg/kg) and perfused transcardially with diethylpy-
rocarbonate-treated 0.9% saline followed by 500 ml phosphate-buffered
4% paraformaldehyde (pH 7.0). The brains were removed, stored in the
same fixative for 4 h, and submerged in 20% sucrose in DEPC-PBS, and
five series of coronal sections were cut at 30 mm. The sections were stored
at 220 C in an antifreeze solution until being mounted for in situ
hybridization histochemistry (31).

Quantification of leptin receptor (ObR) mRNA isoforms in
rat brain by RT-PCR

Total RNA from the various tissues was isolated using the RNA-
STAT-60 reagent as described by the manufacturer (Tel-Test, Friends-
wood, TX). The complementary DNA (cDNA) was synthesized from 1.0

mg total RNA using deoxythymidine-oligonucleotides and the Advan-
tage RT-PCR kit from Stratagene (La Jolla, CA). The final volume of the
cDNA samples was 100 ml. For amplification of 764 bp rat b-actin cDNA,
the following primers were used; upstream primer, 59-TTGTAAC-
CAACTGGGACGATATGG-39; and downstream primer, 59-GATCTT-
GATCTTCATGGTGCTAGG-39 (Clontech, Palo Alto, CA). The follow-
ing primers were used for specific PCR amplification of 400 bp (C-
terminal 129 amino acids) of rat leptin receptors (ObR) cDNA (short
form): ObR-1, 59-GTTATATCTGGTTATTGAATGG-39; and ObR-2, 59-
GAGATACTTCAAAGAGTGTCC-39 (GenBank accession no. D85558).
The ObR-2 primer is complementary to the rat ObR short form (ObRs)
cDNA in the region encoding the C-terminus of the receptor and to part
of the 39-untranslated region of the corresponding mRNA (GenBank
accession no. D85557). The following primers were used for specific PCR
amplification of 400 bp (amino acids 930-1063) of rat ObR long form
(ObRl) cDNA: ObR-A, 5-AAAGAGCTCGAGATGGT-ACCAGCAGC-
TATGG-39; and ObR-B, 59-AAAAAGCTTCCCTCCAGTT-CCAAAAG-
CTCATCC-39. The single underlined sequences are complementary to
leptin receptor cDNA, and the double underlined sequences represent
recognition sites for specific restriction enzymes. These primers were
also used for generation of a probe for in situ hybridization (see below).
Each 50-ml PCR reaction was performed with 5.0 ml cDNA as template.
The assay conditions were 10 mm Tris-HCl (pH 8.8), 50 mm KCl, 1.5 mm
MgCl2, 0.01% gelatin, 0.2 mm deoxy (d)-NTPs, 20 pmol of each primer,
2.5 U Taq polymerase (Stratagene, La Jolla, CA), and 0.50 ml [a-32P]dCTP
(29.6 tetrabecquerels/mmol; 370 megabecquerels/ml; New England
Nuclear, Boston, MA). The mixture was overlaid with 25 ml mineral oil,
and after initial denaturation at 96 C for 3 min, the samples were
subjected to 24–32 cycles of amplification: denaturation at 95 C for 1 min,
annealing at 55 C for 1 min, and extension at 72 C for 30 sec. Five
microliters of the reaction were then combined with 5 ml sequencing stop
solution (Amersham International, Aylesbury, UK) and heated to 85 C
for 5 min before loading 4 ml onto a 4% urea-acrylamide gel (38 3 31 3
0.03 cm). Electrophoresis was performed at 65 watts of constant power
for 3 h before the gels were transferred to filter paper, dried, and finally
subjected to 32P quantification by PhosphorImager analysis (Molecular
Dynamics, Sunnyvale, CA).

Generation of rat leptin receptor complementary RNA
(cRNA) probes

Fragments of rat leptin receptor cDNAs were generated by RT-PCR
using total rat brain RNA (Ambion, Austin, TX) and the Advantage
RT-PCR kit. The following primers were used for amplifying a 500-bp
fragment corresponding to part of the extracellular domain of the leptin
receptor (amino acids 293–460); ObR-C: 59-AAAGAGCTCACAGCGTG-
CTTCCTGGGTCTTC-39 and ObR-D: 59-AAAAAGCTTCACAGTGC-
TTCCCACTAGTGATTGG-39. The single underlined sequences are com-
plementary to rat leptin receptor cDNA, and the double underlined
sequences represent recognition sites for SacI and HindIII in primers A
and B, respectively. The PCR products obtained were digested with SacI
and HindIII restriction enzymes and cloned into pGEM-11Zf1 (Promega,
Madison, WI) using standard techniques. The ObR-A and ObR-B prim-
ers from above were used for the cloning of 400 bp from the ObR cDNA,
corresponding to part of the intracellular domain of the long rat leptin
receptor. The inserts of positive clones were verified by sequencing
using standard, double stranded plasmid techniques. For generation of
sense and antisense 35S-labeled cRNA, the plasmids were linearized by
digestion with HindIII or SacI, respectively, and subjected to in vitro
transcription with T7 or SP6 polymerase, according to the manufactur-
er’s protocols (Promega).

In situ hybridization histochemistry

The protocol for in situ hybridization histochemistry was a modifi-
cation of that previously reported (31–33). Tissue sections were mounted
onto slides, air-dried, and stored in desiccated boxes at 220 C. Before
hybridization, the slides were immersed in 10% neutral buffered for-
malin, incubated in 0.001% proteinase K (Boehringer Mannheim, Indi-
anapolis, IN) for 30 min and then in 0.025% acetic anhydride for 10 min,
and dehydrated in ascending concentrations of ethanol. The cRNA
probes were then diluted to 106 cpm/ml in a hybridization solution of
50% formamide, 10 mm Tris-HCl (pH 8.0), 5 mg transfer RNA, 10 mm
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dithiothreitol, 10% dextran sulfate, 0.3 m NaCl, 1 mm EDTA (pH 8), and
1 3 Denhardt’s solution (Sigma). Hybridization solution and a glass
coverslip were applied to each slide, and sections were incubated for
12–16 h at 56 C. The coverslips were removed, and the slides were
washed four times with 4 3 SSC (standard saline citrate). Sections were
then incubated in 0.002% ribonuclease A (Boehringer Mannheim) with
0.5 m NaCl, 10 mm Tris-HCl (pH 8), and 1 mm EDTA for 30 min at 37
C. Sections were rinsed in decreasing concentrations of SSC containing
0.25% dithiothreitol: 2 3 at 50 C for 1 h, 0.2 3 at 55 C for 1 h, and 0.2 3
for 1 h at 60 C. Sections were next dehydrated in graded ethanol (50%,
70%, 80%, and 90%) containing 0.3 m NH4OAc, followed by 100% eth-
anol. Slides were air-dried and placed in x-ray film cassettes with BMR-2
film (Eastman Kodak, Rochester, NY) for 3–5 days. Slides were then
dipped in NTB2 photographic emulsion (Kodak), dried, and stored with
desiccant in foil-wrapped slide boxes at 4 C for 2–3 weeks. Slides were
developed with D-19 developer (Kodak), counterstained with thionin,
dehydrated in graded ethanols, cleared in xylene, and coverslipped with
Permaslip. Sections were analyzed with a Zeiss Axioplan light micro-
scope using bright- and darkfield optics. Photomicrographs were pro-
duced by capturing images with a digital camera (Kodak, DCS) mounted
directly on the microscope and an Apple Macintosh Power PC computer.
Image-editing software (Adobe Photoshop) was used to combine pho-
tomicrographs into plates, and figures were printed on a dye sublima-
tion printer (Kodak 8600). Only the sharpness, contrast, and brightness
were adjusted.

Results
Isolation of tissue

In this study our primary aim was to identify and quantify
mRNA levels of leptin receptor isoforms in brain microves-
sels. We, therefore, first isolated microvessels from rat brains
according to methods described previously (27, 29). The total
yield of microvessels from 16 rats was approximately 200 mg.
We found approximately 20- and 30-fold enrichments of
g-glutamyl transferase and alkaline phosphatase, respec-
tively, in the microvessel sample vs. the total brain homog-
enate, consistent with strong enrichment of cerebral endo-
thelial cells in the purified microvessel sample (data not
shown) (29). In addition, the preparation was highly en-
riched in fine threadlike strands, as determined by micros-
copy (Fig. 1). From another set of rats, we isolated choroid
plexi and hypothalami as positive controls for receptor ex-
pression, because these tissues have been shown to express
high amounts of short and long isoforms of leptin receptor,
respectively (5, 7). Total RNA was purified in parallel from
all tissue samples, including cerebellum and meninges

(mainly dura mater). The total yields of RNA from microves-
sels (16 rats), choroid plexi (10 rats), and meninges (10 rats)
were 40, 100, and 75 mg, respectively. The integrity of the
RNA was tested by agarose-gel electrophoresis in combina-
tion with ethidium bromide staining, and no degradation of
the ribosomal RNA bands were detected (data not shown).
In addition, the quality of the RNA from each tissue sample
was tested by amplifying b-actin cDNA by RT-PCR using
limiting cycle numbers, under which conditions the amounts
of b-actin PCR products were similar (data not shown).

Quantification of short and long isoforms of leptin receptor
mRNA by RT-PCR in rat brain microvessels

First we determined the number of cycles necessary for
detection and exponential amplification of ObRs and ObRl

FIG. 1. Light photomicrograph of isolated rat brain capillaries. The
microvessels were prepared from rat forebrains as described in Ma-
terials and Methods.

FIG. 2. Determination of exponential phase of RT-PCR amplification
of the short and long forms of leptin receptor mRNA. Top, Equal
amounts of cDNA derived from 1.0 mg total RNA from microvessels
(f) and from total brain (Œ) were subjected to PCR amplification
reactions spiked with [32P]dCTP and primers specific for the short
leptin receptor cDNA. Reactions were terminated after 24–32 cycles
of amplification. Equal amounts from each reaction were subjected to
denaturing urea-PAGE and subsequent PhosphorImager quantifica-
tion. Plotted are the average arbitrary units of measured 32P from
duplicate samples. Bottom, Equal amounts of cDNA derived from 1.0
mg total RNA from cerebellum (f]) and microvessels (Œ) were sub-
jected to PCR amplification reactions spiked with [32P]dCTP and
primers specific for the long leptin receptor cDNA.
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cDNAs. Preliminary RT-PCR experiments showed that the
levels of ObRs mRNA were relatively high in the microves-
sels and low in the total brain sample. In addition, ObRl
mRNA levels were relatively high in cerebellum and low in
microvessels (data not shown). These samples were then
used for cycle number determination (Fig. 2). As shown at the
top of Fig. 2, amplification of ObRs from microvessel and total
brain cDNA proceeded at the same rate during the measured
cycles. The two ObRl reactions were also amplified at the
same rate during cycles 24–28, but at a faster rate than the
ObRs PCR reactions (Fig. 2, bottom). However, the cerebellum
reaction entered nonlinear amplification after 28 cycles. We,
therefore, chose 26 cycles of amplification for both ObRs and
ObRl in the subsequent quantitative PCR experiments. PCR
reactions were then performed in triplicate for cerebellum,
choroid plexus, meninges (dura mater), total brain, mi-
crovessels, and hypothalamus. An autoradiogram of the final
results is shown in Fig. 3. The quantification of these results
by PhosphorImager analysis is shown in Fig. 4 after nor-
malization to the levels in hypothalamus. Clearly, the mRNA
of the short form of the leptin receptor is most highly ex-
pressed in brain microvessels (Fig. 4, top). This level is even
higher than that in the choroid plexus, the tissue in which
ObRs mRNA levels are the highest tested to date. The mRNA
level in the microvessels was more than 40-fold higher than
that in the hypothalamus. The results obtained when am-
plifying the long form of the leptin receptor from the same
samples are entirely different (Fig. 4, bottom). Surprisingly,
the mRNA levels of ObRl in cerebellum exceeds those in all
other tissues tested, including the hypothalamus, in which
ObRl expression levels were previously thought to be the
highest (7). Low levels of ObRl mRNA were detected in all
other tissues. When no reverse transcriptase enzyme was
added to the samples, no specific RT-PCR product was de-
tected in any sample (data not shown). Expression of ObRl
mRNA was not detected in samples of peripheral arteries
and veins, whereas ObRs mRNA levels were barely detect-
able in these tissues (data not shown).

Detection of short leptin receptor mRNA by in situ
hybridization in rat brain microvessels

To substantiate our finding of high levels of mRNA for the
short form of the leptin receptor in rat brain microvessels, we
generated 35S-labeled RNA antisense probes for in situ hy-
bridization to rat brain sections as described in Materials and
Methods. The results with a probe specific to all forms of
leptin receptors are shown in Fig. 5. Specific hybridization to
perivascular cells from brain capillaries was found in most
regions of the brain, with no particular enrichment in the
hypothalamus compared with the rest of the brain. An ex-
ample of a vessel from thalamus is shown in Fig. 5A. No
expression of the long form leptin receptor was detected in
microvessels by applying an antisense probe specific to this
isoform (data not shown), thus supporting our RT-PCR data.
Strong specific signals with the all form probe were also
detected in the leptomeninges surrounding the brain (Fig.
5B), whereas no signal was found in these brain regions when
sections were hybridized with the long form probe (data not
shown). Furthermore, widespread hybridization with the all
form probe was detected in several cell types of the choroid
plexus (Fig. 5, C and D). Very little specific hybridization of
the long form probe was seen in the choroid plexus (data not
shown), which agrees with our RT-PCR results. Both the all
form probe and the long form probe showed extensive hy-
bridization to several hypothalamic nuclei, including the
arcuate nucleus, and to several cellular regions of the cere-
bellum (data not shown). In addition, lower intensity specific
signals were found in most parts of the brain with the long
form probe (data not shown). Sense probes for the all form
and long form probes did not exhibit any specific hybrid-
ization to any of the above regions of the rat brain.

Discussion

By applying RT-PCR and in situ hybridization we have
demonstrated relatively high levels of mRNA encoding the
short form of the leptin receptor in rat brain microvessels,

FIG. 3. RT-PCR of ObRs and ObRl mRNA from rat brain microvessels. Shown are autoradiograms of 32P-labeled RT-PCR samples from
cerebellum, choroid plexus, meninges, total brain, microvessels, and hypothalamus. The upper and lower panels show the results obtained
applying primers specific for ObRs and ObRl, respectively. The PCR reactions were terminated after 26 cycles. Each lane represents independent
PCR reactions. One RT-PCR reaction, in which no reverse transcriptase was added, was also loaded onto the gel (no RT).
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which constitute the BBB (34). The levels in microvessels
exceed those in choroid plexus, the site of the blood-CSF
barrier. As the surface area of the BBB is estimated to be
several thousand times greater than that of the blood-CSF
barrier, our results are consistent with the possibility that the
capillary endothelial cells comprising the BBB are the major
site of leptin transfer from the circulation into the brain.
Transport of leptin from the blood to brain interstitial fluid
is likely to occur via a saturable transport mechanism. This
probably involves binding of leptin to leptin receptors at the
luminal surface of the capillaries, followed by transport
across the endothelial cells and release of intact ligand at the
basement membrane side. Leptin would then pass by dif-
fusion through the interstitial fluid to activate leptin recep-
tors expressed on neuronal cells. However, additional careful
studies will clearly be needed to substantiate the above
scenario.

The RT-PCR data also show high levels of the mRNA
encoding the short isoform of the leptin receptor in the cho-

roid plexus, thus confirming results published previously.
The in situ hybridization results indicate that several cell
types in the choroid plexus, including epithelial cells and
microvessels, express high amounts of ObRs mRNA. These
results are consistent with the possibility that the choroid
plexus is a site at which leptin is transported into the CSF.
Indeed, several studies show that when leptin is adminis-
tered into the ventricles, it produces similar effects on body
weight regulation as leptin injected peripherally (3, 10).
When rats received much lower doses of leptin intracere-
broventricularly, no effects on food intake were detected (11).
The same dose delivered into the hypothalamus did evoke
a marked reduction in food intake (11). These results support
the possibility that transport of leptin into the CSF via the
choroid plexus is not the major route by which leptin reaches
the hypothalamus. Furthermore, the concentration of leptin
in the CSF is about 0.26 ng/ml in lean humans (25, 26), which
is about 40-fold lower than the equilibrium dissociation con-
stant of the leptin receptor (5). Although the latter is based
on in vitro results, these data also suggest that leptin is not
transported to specific hypothalamic nuclei via the CSF, as
the leptin concentration in the CSF is likely to be insufficient
to activate significant Janus kinase-STAT signaling by leptin
receptors. However, it is at present unknown what role ObRs
plays in the choroid plexus and whether the choroid plexus
is an important site for transport of leptin into or possibly out
of the CSF.

Our in situ data show significant amounts of short form
leptin receptor mRNA expression in the leptomeninges of the
rat brain. However, the RT-PCR results demonstrated only
low receptor mRNA levels in the dura mater of the meninges.
Together, these results are consistent with the pia mater
and/or the arachnoid being a site of significant expression of
ObRs. The function of receptors in the leptomeninges is en-
tirely unknown, and further studies are needed to establish
a possible role for ObRs at these sites in the biology of leptin.
The possibility that the leptomeninges may degrade CSF
leptin should be considered.

The arcuate nucleus of the hypothalamus is a major site of
leptin action in the brain, as leptin modulates the expression
of neuropeptide Y (10, 35), POMC (13), and AGRP (12) at this
site. A recent report demonstrated significant uptake of
[125I]leptin into the region of the arcuate nucleus 20 min after
iv injection of radioiodinated leptin (21). However, the mech-
anism by which leptin gained access to this location is not
known. As the arcuate nucleus is located near the median
eminence, leptin may enter the interstitial fluid by diffusion
through the fenestrated capillaries of the median eminence
and/or through receptor-mediated transport across the BBB
to the arcuate nucleus (21, 34). The Koletsky rat, which lacks
all leptin receptor isoforms, has the same level of leptin in the
CSF as control rats (36). This suggests that leptin can enter the
brain by a mechanism independent of leptin receptors, and
one such mechanism might be by diffusion through the cir-
cumventricular organs into the CSF. On the other hand, the
level of plasma leptin in the Koletsky rat is 10 times higher
than in control animals, suggesting saturation of leptin trans-
port into the brain or lack of functional transporters. Careful
dose-response and time-course studies of iv injections of

FIG. 4. Quantification of ObRs and ObRl cDNA in rat brain microves-
sels. The two gels from Fig. 3, were subjected to 32P quantification by
PhosphorImager analysis and normalization to hypothalamic levels
(51.0). The upper and lower graphs show the results obtained for
ObRs and ObRl, respectively. Error bars are the mean 6 SE.
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gold-labeled leptin or [125I]leptin in combination with elec-
tron microscopy may be needed to address these questions.

An unanticipated finding of this study was that the mRNA
of the long isoform of the leptin receptor is highly expressed
in the cerebellum of the rat. Cerebellar expression exceeds
that in other regions of the rat brain including the hypothal-
amus, the site where leptin is thought to act most potently to
regulate body weight. Similar results have recently been
reported in a study of the human brain (37, 38). The cere-
bellum is concerned with the coordination of somatic motor
activity, the regulation of muscle tone, and mechanisms that
influence and maintain equilibrium. Defects in these func-
tions of the cerebellum have not heretofore been noted in
animal models of impaired leptin function or action or in
humans with lack of leptin function. Further studies are
needed to clarify the biology of these long form leptin re-
ceptors in the cerebellum, including the possibility that they
bind another, yet unidentified, ligand.

In summary, we have demonstrated that the mRNA en-
coding the leptin receptor short form is highly expressed in
rat brain microvessels. These data support the hypothesis
that the BBB is the major site for transport of leptin into the
brain. Further studies are clearly needed to characterize this
process, including efforts to demonstrate receptor-mediated
transcytosis of leptin across brain capillaries. Such studies are

critical, given the possibility that the BBB is a major site for
leptin resistance in humans.
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