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axotomy and expanded into deeper layers. Carrageenan-in-
duced peripheral inflammation increased the number of p-
Akt-IR NPs after 1 h. Both axotomy and inflammation caused 
a clear increase in nuclear p-Akt-like immunoreactivity in 
DRG neurons. Our findings support a role for Akt as a key 
signaling molecule in sensory neurons and spinal cord after 
peripheral injury.  Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Primary sensory neurons synthesize a large number of 
signaling molecules involved in the transmission and 
modulation of nociceptive information from the periph-
eral to the central nervous system  [1] . A well-known as-
pect of sensory neurons is the remarkable chemical plas-
ticity following peripheral nerve injury  [1–6] , as also 
shown in more recent array studies  [7–9] . Thus, after nerve 
injury the phenotype of sensory neurons is markedly 
changed, which may be important for regeneration/sur-
vival and development of neuropathic pain for example.

  Akt, also known as protein kinase B, is a serine/threo-
nine kinase with sequence homology to protein kinases 
A and C  [10, 11] . As a key downstream substrate in the 
phosphatidyl-inositol 3-kinase (PI3-K) pathway, Akt 
plays important roles in various biological processes, in-
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 Abstract 

 Akt has been implicated in pro-survival and anti-apoptotic 
activities in many cell types, including dorsal root ganglion 
(DRG) and spinal motor neurons. In this immunohistochem-
ical study we have monitored phosphorylated Akt (p-Akt) 
levels in adult mouse DRGs and spinal cord following unilat-
eral peripheral sciatic nerve transection (axotomy) or carra-
geenan-induced inflammation. In control animals around 
half of the lumbar DRG neuron profiles (NPs), mainly small 
and medium-sized ones, were p-Akt immunoreactive (IR), 
and of these around 50% expressed calcitonin gene-related 
peptide and/or isolectin IB4. Two weeks after axotomy, the 
number of p-Akt-positive NPs was only slightly reduced, but 
p-Akt immunofluorescence intensity was strongly increased. 
One third of the ipsilateral p-Akt-IR NPs was galanin positive, 
but virtually without colocalization with neuropeptide Y. 
Furthermore, p-Akt-like immunoreactivity significantly in-
creased in intensity in the ipsilateral spinal dorsal horn after 
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cluding intermediary metabolism, cell proliferation and 
differentiation, as well as cell survival  [12–17] . In the ner-
vous system, Akt has been investigated in various animal 
models under both physiological and pathological condi-
tions, providing evidence for important roles in both the 
peripheral and the central nervous system. For example, 
the PI3-K/Akt pathway is involved in regulating neural 
plasticity in the brain  [18–23] . Moreover, recent data in-
dicate that Akt participates in nociceptive information 
processing through modulating the transduction of in-
tracellular signals in dorsal root ganglions (DRGs) and 
spinal dorsal horn  [24–27] .

  An important sequel of nerve injury and other ner-
vous system diseases is neuronal degeneration and death. 
It is well known that neurotrophic factors can regulate 
neuronal cell survival and apoptosis  [28–30] . Through 
activation of the Trk family of receptor tyrosine kinases, 
neurotrophic factors elicit various signaling cascades, in-
cluding mitogen-activated protein kinase, PI3-K/Akt and 
phospholipase C  [31–35] . Among these three pathways, 
PI3-K/Akt signaling is crucial in promoting neuronal cell 
survival and preventing apoptosis  [36–40] .

  Sensory neurons in DRGs are known to be dependent 
on neurotrophic factors for their development and dif-
ferentiation at embryonic and neonatal stages. In con-
trast, adult DRG neurons survive for several days in cul-
ture without requiring such factors. A number of signal-
ing molecules, including PI3-K/Akt, have been suggested 
to be involved in age-dependent sensitivity of sensory 
neurons  [41–45] . Adult sensory neurons may die in re-
sponse to peripheral nerve injury, as shown in several in 
vivo studies  [46–56] .

  Several studies have been published on localization, 
expression and regulation of Akt/phosphorylated Akt (p-
Akt) in DRG neurons and spinal cord of the rat  [24–27, 
57] , but with regard to the mouse there are only two re-
ports, one in vitro study  [58]  and one report focused on 
spinal motor neurons in vivo  [57] . The aim of the present 
study is therefore to quantitatively and qualitatively in-
vestigate, in the mouse and in vivo with immunohisto-
chemistry, p-Akt in DRG neurons and spinal cord after 
sciatic nerve transection and after peripheral inflamma-
tion induced by intradermal injection of carrageenan.

  Materials and Methods 

 Animals and Animal Models 
 The experiments were performed on male C57BL/6J Bom-

mince mice (A/S Bomholtgaard, Ry, Denmark) weighing 25–28 g. 
All animals were kept under standard conditions on a 12-hour 

day/night cycle with free access to food and water. The study has 
been approved by the local Ethical Committee for animal experi-
ments (Stockholms Norra Djursförsöksetiska Nämnd; N55/06). 
Twenty animals were anesthetized with sodium pentobarbital 
(Mebumal, 10 mg/kg, i.p.), and the left sciatic nerve was transect-
ed at ‘mid-thigh’ level (axotomy; around 20 mm distal to the 
DRG). A 5-mm portion of the nerve was resected, and the proxi-
mal end was ligated to prevent regeneration. The animals were 
allowed to survive for 2 and 14 days after surgery (n = 10 in each 
group). Twenty animals received an injection of 20  � l carrageen-
an (1%, Sigma, St. Louis, Mo., USA) into the plantar surface of the 
left hindpaw (anesthetized with sodium pentobarbital as above) 
and were allowed to survive for 15 min or 1 h after injection (n = 
10 in each group).

  Immunohistochemistry 
 All operated animals as well as control animals (n = 10) were 

deeply anesthetized with sodium pentobarbital (Mebumal; 50 
mg/kg, i.p.) and transcardially perfused with 20 ml of warm sa-
line (0.9%; 37   °   C), followed by 20 ml of a warm mixture of para-
formaldehyde (4%; 37   °   C) with 0.4% picric acid in 0.16  M  phos-
phate buffer (pH 7.2) and then by 50 ml of the same, but ice-cold 
fixative  [59, 60] . The L5 DRGs as well as the L4 and L5 segments 
of the spinal cord were dissected out and postfixed in the same 
fixative for 3 h at 4   °   C and subsequently stored in 20% sucrose in 
phosphate-buffered saline (PBS; pH 7.4) containing 0.01% sodium 
azide (Sigma) and 0.02% bacitracin (Sigma) at 4   °   C for 2 days. Tis-
sues were embedded with OCT compound (Tissue Tek, Miles 
Laboratories, Elkhart, Ind., USA), frozen and cut in a cryostat 
(Microm, Heidelberg, Germany) at 12- � m (DRGs) or 20- � m (spi-
nal cord) thickness and mounted onto chrome-alum-gelatin-
coated slides. Thaw-mounted sections were dried at room tem-
perature (RT) for 30 min and rinsed with PBS for 15 min. Sections 
were incubated for 24 h at 4   °   C in a humid chamber with rabbit 
anti-p-Akt antiserum (1:   400; Promega Neuroscience, Madison, 
Wisc, USA; catalogue No. G7441) diluted in PBS containing 0.2% 
(w/v) bovine serum albumin and 0.03% Triton X-100 (Sigma). Im-
munoreactivity was visualized using the tyramide signal ampli-
fication system (TSA Plus; NEN Life Science Products, Boston, 
Mass., USA). Briefly, the slides were rinsed with TNT buffer 
(0.1  M  Tris-HCl, pH 7.5; 0.15  M  NaCl; 0.05% Tween 20) for 15 min 
at RT, blocked with TNB buffer (0.1  M  Tris-HCl; pH 7.5; 0.15  M  
NaCl; 0.5% DuPont blocking reagent) for 30 min at RT followed 
by a 30-min incubation with horseradish peroxidase-labeled 
swine anti-rabbit antibody (1:   200; Dako, Copenhagen, Denmark) 
diluted in TNB buffer. After a quick wash (15 min) in TNT buffer, 
all sections were exposed to biotinyl tyramide-fluorescein (1:   100) 
diluted in amplification diluent for approximately 15 min, and 
finally washed in TNT buffer for 30 min (all steps at RT). For 
double-staining experiments, p-Akt-stained sections were probed 
with antibodies raised against calcitonin gene-related peptide 
(CGRP; rabbit; 1:   400)  [61] , galanin (rabbit; 1:   400)  [62]  or neuro-
peptide Y (NPY; rabbit; 1:   400)  [63] , visualized by lissamine rho-
damine sulfonyl chloride-conjugated donkey anti-rabbit (1:   100; 
Jackson ImmunoResearch, West Grove, Pa., USA). Another group 
of p-Akt-labeled sections was incubated with the isolectin B4 
from  Griffonia simplicifolia  I (GSA I; IB4; 2.5  � g/ml; Vector Lab-
oratories, Burlingame, Calif., USA) followed by incubation with 
a goat anti-GSA I antiserum (1:   4,000; Vector Laboratories) and a 
rhodamine red X-conjugated donkey anti-goat antibody (1:   200; 
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Jackson ImmunoResearch). For studying the nuclear transloca-
tion of p-Akt, sections were counterstained for 15 min with 
0.001% (w/v) propidium iodide (PI; Sigma) in PBS. Finally, all 
slides were coverslipped with glycerol/PBS (9:   1) containing 0.1% 
 p -phenylenediamine  [64, 65] .

  Image Analysis 
 Specimens were analyzed on a Bio-Rad Radiance Plus confo-

cal scanning microscope (Bio-Rad, Hemel Hempstead, UK) in-
stalled on a Nikon Eclipse E 600 fluorescence microscope (Tokyo, 
Japan) equipped with  ! 10 (0.5 numerical aperture, NA),  ! 20 
(0.75 NA) and  ! 60 oil (1.40 NA) objectives. Fluorescein labeling 
was excited using the 488-nm line of the argon ion laser and de-
tected after passing a HQ 530/60 (Bio-Rad) emission filter. For the 
detection of lissamine rhodamine sulfonyl chloride and rhoda-
mine, the 543-nm HeNe laser was used in combination with the 
HQ 570 (Bio-Rad) emission filter. All the slides were scanned in 
a series of 1- � m-thick optical sections. Consequently, images 
were analyzed separately and merged to evaluate possible colocal-
ization. To examine the nuclear translocation of p-Akt in DRG 
neurons, each p-Akt-positive neuron counterstained with PI was 
scanned in a series of 0.5- � m-thick optical sections.

  Quantitative Evaluations 
 The percentage of immunoreactive (IR) neuron profiles (NPs) 

was counted in every fifth 12- � m-thick section (Nike Micro-
phot-FX microscope,  ! 20 objectives). The total number of p-
Akt-IR NPs was divided by the total number of PI-stained NPs 
(Nike Microphot-FX microscope,  ! 20 objectives) in the DRG 
sections, and the percentage of positive NPs was calculated. The 
relative f luorescence levels (intensity) of p-Akt-like immunore-
activity (LI) in DRGs and spinal dorsal horn (lamina I–II) were 
measured using a Sarastro 1000 confocal laser-scanning system 
(Molecular Dynamics, Sunnyvale, Calif., USA). Images were re-
corded with a  ! 20/0.75 air objective and stored in a computer 
for subsequent analysis in Image Space Software (Molecular Dy-
namics). The mean fluorescence intensity of p-Akt-LI was mea-
sured, and the ratio for whole NP versus nucleus profiles was 
calculated for individual p-Akt-positive neurons using the fol-
lowing formula:

  R = [(I 1  – I 2 )/( �  1  –  �  2 )]/(I 2 / �  2 )

  Here, R is the ratio, I 1  the intensity of p-Akt-LI in the whole NP, 
I 2  the intensity of p-Akt-LI in the nucleus profile,  �  1  equals the 
area of the NP and  �  2  the area of the nucleus profile. The final 
ratio was the mean from 50 NPs in each group.
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  Fig. 1.  Expression of p-Akt in DRGs after peripheral injury.
 a–c  Immunofluorescence micrographs showing p-Akt-IR neu-
rons in control animals ( a ), 1 h after carrageenan injection ( b ) and 
14 days after axotomy ( c ). Of note, fluorescence intensity in-
creased after axotomy.  d  Percentage of p-Akt-IR NPs in the DRGs 
of control animals ( g ), after inflammation, contralateral ( W ), or 
after peripheral injury, ipsilateral ( i ).  e  Size distribution of p-
Akt-IR NPs in control or ipsilateral DRGs after peripheral injury 

( g  = control;  W  = inflammation 1 h;  i  = axotomy) (200 NPs were 
measured in each group).  f  Immunofluorescence levels (intensity) 
of p-Akt-IR NPs in control (C) and ipsilateral DRGs 1 h after pe-
ripheral inflammation (I) or 2 weeks after axotomy (A). Error bars 
represent SEM.  a  p  !  0.05 vs. contralateral DRGs ( d );  b  p  !  0.01 
axotomy vs. control;  c  p  !  0.01 vs. inflammation ( f ). Bar indicates 
100  � m ( a–c ). 
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  The size of p-Akt-IR NPs with a visible nucleus as well as the 
area in the dorsal horn covered by p-Akt-IR fibers were also mea-
sured (5 animals in each group) using the Sarastro system (as 
above). We divided the profiles of DRG neurons into small, me-
dium-sized and large ones according to previous studies  [66, 67] . 
Small NPs were considered to be those with a somal area of 80–
600  � m 2 ; medium-sized 600–1,400  � m 2 , and large NPs were 
those with a somal area  1 1,400  � m 2 .

  Statistics 
 Regarding the percentage of p-Akt-IR NPs as well as the inten-

sity of p-Akt-LI in DRG neurons and spinal dorsal horn, differ-
ences between ipsilateral and contralateral neurons within each 
operated group were evaluated by Student’s t test. Differences 
among groups were assessed using one-way ANOVA with New-
man-Keuls test. A p value  ! 0.05 was considered significant.

  Results 

 p-Akt in DRGs 
 In control animals, p-Akt-LI was detected in 49.5% of 

all DRG NPs with varying intensity levels ( fig. 1 a), a per-
centage which was not changed 2 days after axotomy 
 (ipsilateral: 43.8  8  4.3% vs. contralateral: 47.2  8  5.3%, 
p  1  0.05). A small but significant reduction in p-Akt-pos-
itive NPs was, however, seen in ipsilateral DRGs 2 weeks 
after unilateral axotomy ( fig. 1 d; 43.8  8  4.6 vs. 52.8  8  
2.7%, p  !  0.05), with no significant difference between 
control and ipsilateral DRGs ( fig. 1 d; 49.5  8  1.5 vs. 43.8 
 8  4.6%, p  1  0.05). The proportion of p-Akt-IR NPs was 
similar between ipsi- and contralateral DRGs (53.2  8  4.2 
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  Fig. 2.  Expression of p-Akt in subpopulations of DRG neurons 
( a–h ): immunofluorescence micrographs of control ( a–d ) and ip-
silateral DRGs 2 weeks after axotomy ( e–h ), incubated with anti-
serum to p-Akt ( a ,  c ,  e ,  g ), IB4 ( b ), antiserum to CGRP ( d ), galanin 
( f ) or NPY ( h ).  a / b ,  c / d ,  e / f  as well as  g / h  show the same sections, 
respectively. Arrows indicate coexistence of p-Akt with IB4 ( a ,  b ), 
CGRP ( c ,  d ), galanin ( e ,  f ), respectively.  i–l  Quantitative evalua-

tion of coexistence situations (at least 200 NPs were counted in 
each group). Left graphs show percentage of p-Akt-positive NPs 
expressing IB4 ( i ), CGRP ( j ), galanin ( k ) and NPY ( l ), respective-
ly, and right graphs percentage of IB4- ( i ), CGRP- ( j ), galanin- ( k ) 
and NPY-positive ( l ) NPs expressing p-Akt, respectively. Bar in-
dicates 50  � m ( a–h ). 
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vs. 48.8  8  3.0%, p  1  0.05) 15 min after unilateral intra-
plantar injection of carrageenan. However, p-Akt levels 
were significantly increased 1 h after injection ( fig. 1 d; 
62.0  8  4.4 vs. 51.8  8  2.3%, ipsi- vs. contralateral, respec-
tively; p  !  0.05). The percentage of p-Akt-IR NPs in con-
tralateral DRGs in each lesion group was similar to con-
trol ( fig. 1 d; p  1  0.05). Most p-Akt-IR NPs were small-
sized NPs ( ! 600  � m 2 ), but 2 weeks after nerve injury 
there seemed to be more medium-sized neurons express-
ing p-Akt in the ipsilateral DRGs than in controls ( fig. 1 e). 
The intensity of p-Akt-LI in individual neurons increased 
significantly in 2-week-axotomized DRGs as compared 
to control and to 1-hour inflamed DRGs, respectively 
( fig. 1 f; 44.6  8  4.7 vs. 26.5  8  1.3 or 31.0  8  3.1; p  !  0.01; 
cf.  fig. 1 c with a, b). In control DRGs, many p-Akt-posi-
tive neurons were IB4-IR ( fig. 2 a, b); about half of the p-
Akt-IR NPs coexpressed IB4, and 83% of the IB4-IR NPs 
were p-Akt positive ( fig. 2 i). In addition, 53% of the p-
Akt-positive NPs stained for CGRP-LI, and 57% of the 
CGRP-IR NPs also expressed p-Akt ( fig. 2 c, d, j). Two 
weeks after axotomy, around one third of the p-Akt-pos-
itive NPs expressed galanin, a peptide which is strongly 
upregulated after nerve injury  [2] , mainly in small and 
medium-sized DRG NPs ( fig. 2 e, f, k). Almost no p-Akt-
IR NPs coexpressed NPY, a peptide dramatically in-
creased in large-sized DRG NPs after nerve injury  [68]  
( fig. 2 g, h, l).

  Subcellular Translocation of p-Akt in DRGs 
 In control animals, p-Akt-LI (green) was mostly pres-

ent in the cytoplasm of DRG neurons, with only weak 
staining in the nucleus ( fig. 3 a). Two weeks after axotomy, 
the strong upregulation of p-Akt was associated with 
higher levels in both the cytoplasm ( fig. 1 c, f;  fig. 3 b) and 
the nucleus ( fig. 3 b). The labeling ratio for whole NP ver-
sus nuclear profiles was 0.07  8  0.03 in controls and de-
creased to –0.02  8  0.02 and –0.11  8  0.01 in the 1-hour 
‘inflamed’ and 2-week-axotomized DRGs, respectively 
( fig. 3 c). The increased nuclear translocation of active 
Akt was further demonstrated in serial, optical slices 
through the nucleus of a single neuron of control ( fig. 3 d, 
top) and 2-week-axotomized ( fig. 3 d, bottom) animals.

  p-Akt in Spinal Cord 
 p-Akt-LI was found in a dense fiber plexus in dorsal 

horn laminae I and II of control animals ( fig. 3 e, f), but 
p-Akt-positive cell bodies could not be detected. In addi-
tion, a few but weakly labeled p-Akt-IR motor neurons 
were observed in the ventral horns ( fig. 3 g). A 2-week 
axotomy caused expansion of p-Akt-IR fibers into the 

deeper layers (from laminae I–II to III–IV or even V; 
 fig. 3 e, h; 49.4  8  4.6 vs. 33.8  8  2.1, p  !  0.01 vs. contralat-
eral) with a parallel increase in labeling intensity ( fig. 3 h; 
25.8  8  5.7 vs. 13  8  1.9, p  !  0.05 vs. control). However, no 
effect was seen ipsilaterally after inflammation ( fig. 3 h; 
36.4  8  2.3 vs. 37  8  3.0 in the 15-min group, p  1  0.05; 36 
 8  2.0 vs. 38.3  8  2.4 in the 1-hour group, p  1  0.05). p-Akt 
levels did not differ between ipsi- and contralateral sides, 
neither after inflammation nor axotomy (inflammation 
15 min: 9.8  8  3.1 vs. 14  8  1.6, p  1  0.05; inflammation
1 h: 18.7  8  2.2 vs. 16.7  8  1.5, p  1  0.05; axotomy 2 days: 
13.4  8  2.5 vs. 10.4  8  2.1, p  1  0.05).

  Double-labeling experiments showed that a 2-week 
unilateral axotomy reduces ipsilateral CGRP-IR fibers 
(red;  fig. 4 a/b), in contrast to the marked increase and 
expansion of p-Akt-IR fibers (green;  fig. 4 b/a, d/c, f/e) 
from laminae I–II to III–IV. Galanin-IR fibers increased 
in laminae I–II and also in lamina III (red;  fig. 4 c/d). 
NPY-IR fibers were also increased in laminae I–II and 
more so in laminae III–IV (red;  fig. 4 e/f). Partial overlap 
(yellow) of p-Akt-LI (green,  fig. 4 a–f) with CGRP- (red; 
 fig. 4 a, b), galanin- (red;  fig. 4 c, d) or NPY-LIs (red;  fig. 4 e, 
f) was observed contra- ( fig. 4 a, c, e) and ipsi laterally 
( fig. 4 b, d, f). Note that the separation of colors/markers 
is most distinct for p-Akt versus CGRP, due to the fact 
that CGRP is downregulated after axotomy, whereas p-
Akt is both upregulated and expands into deeper layers. 
Using the confocal microscope, it was possible to analyze, 
at least to some degree, actual coexistence (yellow;  fig. 4 g–
o), whereby p-Akt mostly colocalized with CGRP ( fig. 4 g–
i), less so with galanin ( fig. 4 j–l) and to a very limited ex-
tent with NPY ( fig. 4 m–o).

  Discussion 

 The present in vivo study in the adult mouse demon-
strates that under normal conditions Akt is phosphory-
lated in around 50% (mostly small sized) of all DRG 
neurons, both ‘non-peptidergic’ ( � 50% are IB4-posi-
tive) and peptidergic ( � 53% are CGRP-positive) popu-
lations. Peripheral axotomy caused a marked increase in 
p-Akt levels, whereas inflammation significantly in-
creased the percentage of p-Akt-IR NPs without affect-
ing phosphorylated protein levels. Moreover, both axot-
omy and inflammation caused translocation of p-Akt 
into nuclei. In the spinal dorsal horn, the ipsilateral 
p-Akt-IR fibers increased and expanded into deeper lay-
ers after unilateral axotomy, but such an effect was not 
seen after inflammation.
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  Pezet et al.  [25]  reported that very low p-Akt levels were 
present in ‘almost all neurons’ in the rat. This is in agree-
ment with the in vitro study in the mouse by Edström and 
Ekström  [58] , reporting that most neurons from freshly 
dissected DRGs are p-Akt-IR, whereas other cell types, 
such as satellite cells, were negative. Zhuang et al.  [24]  and 
Xu et al.  [26]  found that  � 10% of rat DRG neurons are p-
Akt positive, versus our 50% in the mouse. This could 
represent a species difference but could also be due to our 
use of the sensitive TSA immunohistochemical method.

  Similar to the rat  [25, 26] , in the mouse many p-Akt-IR 
neurons stain for IB4, a marker for small, non-peptider-
gic neurons  [69–72] . With regard to the peptide pheno-
type, 30–50% of the p-Akt-positive NPs express CGRP 
both in rats  [25]  and mice (present results). Thus, p-Akt 
neurons are both peptidergic and non-peptidergic neu-
rons in both species.

  Activation of Akt in rat DRGs has been shown after 
intradermal injection of capsaicin  [24] . In agreement, 
Pezet et al.  [25]  reported a rapid onset and time-depen-
dent upregulation of p-Akt in small and medium-sized 
DRG neurons after peripheral administration of capsa-
icin, which was reduced by blocking neuronal activity in 
the sciatic nerve using tetrodotoxin. However, we only 
saw a very limited effect of intradermal carrageenan, 
which, like capsaicin, is associated with inflammatory 
mechanisms.

  The report by Xu et al.  [26] , the only study, to our 
knowledge, of p-Akt after peripheral nerve injury (L5 spi-
nal nerve ligation), showed an early, transient upregula-
tion of p-Akt in rat DRGs, predominantly in IB4-positive 
neurons, followed by a strong reduction 7 days after nerve 
injury, apparently contrasting our lack of effect at 2 days 
and strong upregulation 2 weeks after axotomy. Our 
findings also seem to contrast the marked decrease in p-
Akt after 24 h in mouse DRG cultures, where all neurons, 
of course, have been axotomized, an effect which, how-
ever, was recorded very early, just after 24 h in culture 
 [58] . So the differences could be explained by different 
experimental models and/or species differences.

  We compared p-Akt with some neuropeptides known 
to be upregulated after peripheral nerve injury in the 
mouse  [67, 73] . Thus, p-Akt was expressed in some 
galanin-, but rarely in NPY-positive neurons, in agree-
ment with the fact that in the mouse galanin is mainly 
upregulated in small/medium-sized neurons and NPY 
mainly in large neurons.

  In the rat spinal cord, p-Akt-LI has been described in 
both dorsal (fibers and interneurons)  [26, 27]  and ventral 
(motor neurons)  [57]  horns, only in partial agreement 
with our findings, since we did not see p-Akt in local dor-
sal horn neurons, not even after carrageenan or axotomy. 
Sun et al.  [27]  reported that capsaicin injection leads to 
upregulation of p-Akt in rat interneurons in the ipsilat-
eral dorsal horn, and Murashov et al.  [57]  detected in-
creased p-Akt levels in mouse motor neurons after sci-
atic nerve transection. We could not confirm any of these 
two findings.

  In addition to the ipsilateral expansion into deeper 
layers after axotomy in the mouse, we also observed in-

  Fig. 3.  Nuclear expression of p-Akt in DRG neurons.  a ,  b  Confo-
cal micrographs showing staining with p-Akt antiserum (green) 
and PI (red) to visualize the nucleus in control ( a ) and ipsilateral 
( b ) DRG 2 weeks after axotomy. Of note, nuclear translocation
of p-Akt-LI increased after axotomy compared with control.
 c  Confocal images were collected and quantified, and the ratio of 
nuclear fluorescence versus whole cell f luorescence was calcu-
lated (50 NPs were counted in each group). First column = Con-
trol; second column = inflammation 1 h; third column = axotomy 
2 weeks. Error bars represent SEM.  a  p  !  0.01,  b  p  !  0.001 vs. con-
trol,  c  p  !  0.01 vs. DRG treated by carrageenan.  d  Confocal im-
ages were collected from two individual neurons in control (top) 
or 2-week-axotomized (bottom) DRG.  e–g  Expression of p-Akt in 
spinal cord.  e  Immunofluorescence micrograph of p-Akt-IR in 
lumbar spinal cord 2 weeks after axotomy. p-Akt-IR fibers, main-
ly located in laminae I and II in control, extend to the deeper 
laminae after unilateral nerve injury (arrows). No clear p-Akt-IR 
cell body can be seen in the dorsal horns.  f  Expression of p-Akt-LI 
in the contralateral superficial spinal dorsal horn (longitudinal 
section).  g  Expression of p-Akt-LI (green) in a motor neuron in 
lumbar spinal ventral horn in a control animal shown after dou-
ble-labeling with PI (red, confocal).  h  Quantitative evaluation of 
p-Akt-LI in the spinal dorsal horn indicates that a 2-week-axot-
omy causes a significant increase in area covered by p-Akt-LI
( c  p  !  0.01 vs. control or contralateral). A significant increase in 
p-Akt-IR levels (intensity) is found in the ipsilateral dorsal horn 
14 days after axotomy ( d  p  !  0.05 vs. control). Bars indicate 10 ( a , 
 b ,  d ), 100 ( e ,  f ) and 50                                        � m ( g ). 
  Fig. 4.  p-Akt is coexpressed with neuropeptides in the spinal cord. 
 a–f  Immunofluorescence micrographs of contra- ( a ,  c ,  e ) and ip-
silateral ( b ,  d ,  f ) dorsal horns 2 weeks after axotomy and double 
staining with antiserum against p-Akt ( a–f ; green), CGRP ( a ,  b ; 
red), galanin ( c ,  d ; red) or NPY ( e ,  f ; red). Note that p-Akt expan-
sion into deeper layers is most distinctly seen in  b  (arrows), since 
CGRP-LI in fibers has been reduced as a consequence of the axot-
omy.  g–o  Confocal immunofluorescence micrographs of contra- 
( g ,  h ,  j ,  k ,  m ,  n ) and ipsilateral ( i ,  l ,  o ) dorsal horns 2 weeks after 
axotomy, coincubated with p-Akt antiserum ( g–o , green) and 
CGRP ( g ,  h ,  I , red), galanin ( j ,  k ,  l , red) or NPY antiserum ( m ,  n , 
 o , red), respectively.  g ,  i ,  j ,  l ,  m ,  o  Mid part of superficial layers 
(I–II).  h ,  k ,  n  Mid part of deep layers (III–V). Note that colocaliza-
tion is most frequent for CGRP ( g–i , arrows), less so for galanin 
( k , arrows;  j ,  l : arrowheads indicate galanin-IR interneurons in 
the superficial dorsal horn) and very limited for NPY. Bars indi-
cate 100 ( a–f ) and 50                                                                                  � m ( g–o ). 
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creased levels of p-Akt after nerve injury, as also indi-
cated by previous studies in the rat  [26, 27] . In fact, our 
studies indicate that virtually all p-Akt-LI in the dorsal 
horn originates in DRGs. The expansion of p-Akt to 
deeper layers in the dorsal horn is in agreement with our 
findings that p-Akt expression after axotomy occurs also 
in larger neurons than the normally p-Akt-positive ones, 
i.e. a shift towards mid-sized DRG neurons. However, it 
is unclear exactly what class of DRG neurons is involved. 
It does not seem to be the NPY-positive population, which 
also projects to deeper layers, both in the rat  [68]  and 
mouse  [67, 73] .

  Studies on cultured embryonic DRG neurons show 
that growth factor-related survival is associated with nu-
clear accumulation of p-Akt  [74] . In the present study, we 
found a significantly increased nuclear presence of p-Akt 
in DRG neurons after peripheral injury in vivo. While the 
functional significance of cytoplasmic PI3-K/Akt is well 
established  [75–80] , less is known about its role in the 
nucleus. Nuclear Akt has been reported to exert an anti-
apoptotic function via phosphorylation of acinus, a nu-
clear factor required for chromatin condensation  [81] . 
Akt phosphorylates acinus and inhibits its proteolytic 
cleavage, preventing chromatin condensation. Upregula-
tion of nuclear p-Akt may be an additional protective 
mechanism used by cells for escaping death induced by 
cellular stress.

  Taken together, the present study shows that localiza-
tion, expression and regulation of p-Akt in the mouse are 
often similar to previous reports in the rat  [24–27, 57] . 
However, distinct differences may exist, but the use of 
different experimental models and immunohistochemi-
cal techniques make a direct comparison difficult. Most 
studies indicate that all p-Akt in the dorsal horn origi-
nates in DRGs. The expansion of p-Akt to deeper layers 
in the dorsal horn after peripheral manipulations is in 
agreement with the findings that p-Akt expression after 
axotomy occurs in larger neurons than those normally 
expressing in p-Akt, but not in the population of large 
NPY-positive neurons.
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