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Research Article
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Endogenously formed prostacyclin (PGI2) and synthetic PGI2 analogues have recently been shown to regulate cell survival in
various cell lines. To elucidate the signi	cance of PGI2 in human breast cancer, we performed immunohistochemistry to analyze
expression of prostacyclin-synthase (PGIS) in 248 human breast cancer specimens obtained from surgical pathology 	les. We
examined patients’ 10-year survival retrospectively by sending a questionnaire to their general practitioners and performed
univariate analysis to determine whether PGIS expression correlated with patient survival. Lastly, the e�ects of PGI2 and its
analogues on cell death were examined in a human breast cancer cell line (MCF-7) and a human T-cell leukemia cell line (CCRF-
CEM). PGIS expression was observed in tumor cells in 48.7% of samples and was associated with a statistically signi	cant reduction
in 10-year survival (� = 0.038; � = 193). Transient transfection of PGIS intoMCF-7 cells exposed to sulindac increased cell viability
by 50% and exposure to carbaprostacyclin protected against sulindac sulfone induced apoptosis in CCRF-CEM cells. Expression
of PGIS is correlated with a reduced patient survival and protects against cell death in vitro, suggesting that PGIS is a potential
therapeutic target in breast cancer.

1. Introduction

Epidemiological studies have shown that regular intake of
nonsteroidal anti-in�ammatory drugs (NSAIDs) is associ-
ated with a reduced incidence of a range of epithelium-
derived malignancies [1]. NSAIDs inhibit the enzymatic
activity of cyclooxygenase (COX), the enzyme that provides
prostaglandin H2 (precursor to prostacyclin [PGI2]) and is
therefore considered to provide the rate-limiting step during
prostanoid synthesis [2]. Two isoforms exist: the constitutive
COX-1 and the inducibleCOX-2. Speci	c inhibitors of the lat-
ter (also called coxibs or COX-2 selective NSAIDs) have been
developed because gastrointestinal side-e�ects of NSAIDs
are thought to result from COX-1 inhibition. As COX-2 is
expressed in the majority of human cancers, including breast

cancer [3, 4], COX-2 selective inhibitors (coxibs) next to
COX-2 unselective ones (conventional NSAID) are tested for
their antitumor activity.

�e most signi	cant e�ects of NSAIDs have been
observed in cancers of the digestive tract, including the colon
[5]. �e potential e�ect of NSAIDs in the chemoprevention
of breast cancer is being investigated; however, current
understanding is less clear than in colon cancer. A study in
rats found a reduced relative risk of breast cancer associated
with the use of coxib celecoxib [6]. Results in women are
con�icting: a cohort study in women, which analyzed the
incidence of breast cancer, did not 	nd a protective e�ect
linked to the intake of aspirin [7]. A bene	cial e�ect of
NSAIDs on the incidence of breast cancer has however
been demonstrated in recent meta-analyses [8–10]. In vitro,
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incubation ofNSAIDswith human breast cancer cell lines has
been shown to induce apoptosis [11].

In contrast to the extensively studied function of COX-
2 in tumor formation, little information exists on the role
of prostanoid forming enzymes and receptors acting down-
stream of COX. Prostacyclin-synthase (PGIS) has recently
been implicated in the regulation of cell survival and induc-
tion of NSAID-mediated cell death in HT29 colon cancer
cells can be abrogated by the addition of carbaprostacyclin, a
synthetic analogue of PGI2 [12].When exposed to hypertonic
stress, cell death in rabbit renal cells was signi	cantly reduced
by addition of carbaprostacyclin but not by other prostanoids
[13]. In contrast, overexpression of PGIS, as well as exoge-
nously added carbaprostacyclin, induces apoptosis in human
embryonic kidney cells (HEK293) [14]. Prostacyclin activates
the adenylate cyclase coupling prostacyclin-receptor (IP),
whichmediates the anti-aggrgatory e�ect of PGI2 on platelets
as well as its vasodilatory action on smooth muscle cells [15].
However, the e�ects of PGI2 on cell survival are independent
of cyclic adenosine monophosphate (cAMP) generation and
thus activation of IP. Mounting evidence suggests that PGI2
can activate the nuclear transcription factor peroxisome
proliferator activated receptor �/� (PPAR �/�). Various fatty
acids including carbaprostacyclin have been suggested to
activate PPAR �/� [16]. Activation of PPAR �/�-reporter
plasmids by cotransfection of PGIS indicate that, in addition
to carbaprostacyclin, endogenously formed PGI2may also be
a ligand for PPAR �/� [14, 17]. However, in a more recent
study, endogenous PGI2 was not con	rmed as a PPAR �/�
agonist [18]. Taken together, previous studies suggest that
PGI2 can regulate cell survival possibly by activation of PPAR
�/�. �erefore, that PGIS could be a target in tumor biology.

In order to elucidate a potential role of PGIS in breast
cancer, we analyzed the expression of this enzyme in human
breast cancer and retrospectively examined its e�ect on
patient survival. Furthermore, the e�ect of overexpressing
PGIS on NSAID-induced cell death was studied in a breast
cancer cell line (MCF-7); and the e�ect of the synthetic
analogue carbaprostacyclin was tested similarly in a human
T-cell leukemia cell line (CCRF-CEM).

2. Materials and Methods

2.1. Case Selection and Histopathology. Cases of patients
with breast cancer (� = 248, surgery performed 1986–
1990) were retrieved from the surgical pathology 	les of
the Robert Bosch Krankenhaus (Stuttgart, Germany) and
followed up with a questionnaire sent to their general prac-
titioner. �e drop-out rate was 55 patients (22.1%) without
further selection or bias in the remaining 193 cases. �e
mean follow-up time was 67.4 months (median: 55 months
[range: 1–119]). Tumor staging was performed according
to World Health Organization guidelines [19]. All patients
had initially undergone either mastectomy surgery or a
breast-conserving resection of their primary carcinomas. We
discriminated ductal invasive carcinoma (78.2%), lobular
invasive carcinoma (8.8%), and invasive carcinoma speci-
	ed otherwise (13.0%). Estrogen and progesterone receptor
expression was analyzed biochemically with charcoal and

dextran using 20 fmol/mg protein as cuto� point [20]. In
addition to reviewing pathology reports, slides of all cases
were reexamined for uniform assignment of grade and stage
and other histopathologic features. Only the invasive tumor
component was considered for evaluation.

2.2. Immunohistochemistry. Sections were cut (3 �m thick-
ness), depara�nized in xylene, and incubated for 30 minutes
in methanol containing 0.3% H2O2 to block endogenous
peroxidase activity. Sections were then incubated with rabbit
anti-PGIS polyclonal antibodies, as described previously [21].
Brie�y, sections were microwaved in phosphate bu�ered
saline (PBS) containing 0.1M sodium citrate and primary
antibodies were incubated overnight at room temperature.
Immunolabeling was detected using a biotinylated rabbit
anti-goat antibody followed by visualization with an avidin-
biotin horseradish peroxidase labeling kit (Vectastain ABC
kit) and diaminobenzidine staining. �e speci	city of the
polyclonal antibodies for PGIS used in this study has been
extensively characterized in our previous study analyzing
routinely formalin 	xed human tissue cut in serial sections
where identical staining patterns could be demonstrated for
PGIS immunoreactive protein and mRNA using immuno-
histochemistry and radioactive in situ hybridization (ISH),
respectively [21]. Expression of PGIS immunoreactive protein
in human breast cancer samples was analyzed independently
by two investigators who were blinded to patient data. In
tumor tissues, staining intensity was scored visually as absent
(0), weak (1), moderate (2), or strong (3). �e percentage of
PGIS-positive tumor cells was graded as absent (0), 1% to
10 (1), 11% to 50% (2), 51% to 80% (3), and 81% or more
(4). �e immunoreactive score (IRS) index was calculated
as the product of the two values [22]. Photomicrographs
were viewed with a Leitz RMB microscope and pictures
were captured with a digital camera (Spot-Cam, Diagnostic
Instruments, Sterling Heights, MI). Color composites were
generated by using Adobe Photoshop v5.0 on a Power
Macintosh.

2.3. Cell Culture. MCF-7 human breast carcinoma cells and
CCRF-cells were obtained from DMSZ (Hannover, Ger-
many). MCF-7 cells were cultured in Dulbecco’s modi	ed
Eagle’s medium (DMEM) tissue culture medium supple-
mented with 10% (v/v) fetal bovine serum (FBS) and strepto-
mycin and penicillin. CCRF-cells were grown in Roswell Park
Memorial Institute (RPMI) medium 10% FBS supplemented
with gentamycin. Cultures were incubated at 37∘C in 95% O2
and 5% CO2. Tissue culture medium was changed every 48–
72 hours.

2.4. Generation and Functional Characterization of a
Prostacyclin-Synthase Expression Vector. A murine full
length PGIS cDNA was ampli	ed from total neonatal
kidney cDNA using Advantage two-step polymerase chain
reaction (Clontech, CA). �e PGIS upstream primer was
5�CTTGTTGCCACCCTGCAGCC 3�, and the downstream
primer was 5�CAGGAAGTCAGAAGGCCCCA 3�. DNA-
fragments were cloned into pCDNA 3.1 expression vector
(Invitrogen, Nl) to yield pCDNA3.1mPGIS. An enzymatically
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(a) (b) (c)

Figure 1: Immunological detection of prostacyclin-synthase. (a) Western blot analysis of MCF-7 cells transfected with control vector (lane
I: pCDNA 3.1), wild-type (lane II: pCDNA3.1mPGIS), and mutant prostacyclin-synthase (lane III; pCDNA3.1 mPGISC441A). As positive
control PGIS from bovine aorta is shown on the le�. ((b), (c)) Expression of immunoreactive PGIS in tumor cells of a ductal carcinoma
showing moderate (b) or intense labeling (c). Slides were photographed at 63x magni	cation.

inactive mutant of mPGIS (PGIS C441A) was prepared by
site directed mutagenesis (QuikChange, Stratagene, CA)
according to Hatae and coworkers [23]. Oligonucleotide
primers used to prepare the mutants were 5�-AGG GCA
CAA CCA GAG CCT GGG GAA GAG TTA TGC C-3�

and 5�-GGC ATA ACT CTT CCC CAG GCA CTG GTT
GTG CCC T-3�. Expression of wild-type and mutant PGIS
was analyzed by Western blot analysis using the same rabbit
polyclonal antibodies as for the immunohistochemical
analysis as described previously [24]. Brie�y, 20�g of
total cell lysates was harvested 48 hours a�er transfection,
separated on 10% SDS-PAGE, blotted onto nitrocellulose,
and probed with the rabbit polyclonal anti-PGIS antibodies
(diluted 1 : 500). Enzymatic activity of wild-type PGIS
protein was shown by detection of 6-keto-prostaglandin
F1� (6-keto-PGF1�), the stable metabolite of PGI2, by
gas-chromatography/mass spectrometry (GC/MS) in
supernatants from transfected cells, as described previously
[25]. Cotransfection for 48 hours of a COX-2 expression
vector (pCDNA3.1COX-2, kindly provided by Dr. Guan
et al. [26], with pCDNA3.1mPGIS (wild-type PGIS)) into
MCF-7 cells resulted in abundant generation of 6-keto-
PGF1� (1.48 ± 0.286 ng/mL of supernatant). No signi	cant
generation of 6-keto-PGF1� was observed in MCF-7 cells
coexpressing pCDNA3.1COX-2 with either pCDNA3.1 or
pCDNA3.1mPGISC441A (0.03 ± 0.009 and 0.0023 ± 0.01
6-keto-PGF1� ng/mL, resp.).

2.5. Transfection of cDNA and Experimental Design. All
plasmid-mediated transfections were performed on 40–
60% con�uent cells using Polyfect (Qiagen, Germany).
pCDNA3.1mPGIS and pCDNA3.1COX-2 (2�g each) were
transfected into 6-well dishes. Cells were then transferred to
DMEM medium supplemented with 0.5% (v/v) FBS for 24
hours and exposed to 150 �M sulindac and sulindac sulfone
for additional 24 hours. Cell viabilitywas assessed using the 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay.

�e e�ect of the stable PGI2 analogue carbaprostacyclin
on cell viability was analyzed in CCRF-CEM cells exposed to

sulindac sulfone. Cells were grown in RPMI supplemented
with 10% (v/v) FBS and gentamycin. CCRF-CEM cells were
coincubated for 48 hours with sulindac sulfone (100 and
300 �M) and either vehicle, increasing concentrations of
carbaprostacyclin (0.01–1 �M), or the membrane permeable
cAMP analogue dibutyryl-cAMP (dbcAMP, 0.001–10mM).
Apoptotic cell death was analyzed by measuring caspase-3
activity as assessed by cleavage of Ac-DEVD-AMC �uoro-
genic substrate (Pharmingen, CA).

2.6. Statistical Methods. Patient data assessments were con-
ducted using SPSS (SPSS So�ware GmbH, Munich, Ger-
many). Survival curves were established according to the
Kaplan-Meier method, and comparisons between survival
curves were performed with the log-rank test. Overall sur-
vival was calculated from the date of surgery to death or to
the date of the last patient contact. Disease-free survival was
measured from the date of surgery until the time of relapse,
cancer-related death, or last contact. Patients who died from
unrelated causes were considered censored by the time of
their death. To de	ne a cuto� point for PGIS expression, the
minimal � value approach was applied. �e IRS ≥3 was used
for all further analyses. Multivariate analyses were performed
using Cox regression analysis in amodel with T, N,M, G, and
ER and PR status. Association between PGIS expression and
other parameters such as age, tumor size, nodal status, and
hormonal status was assessed by the test.

Cell culture experiments were analyzed with Student’s 	-
test.

3. Results

3.1. Expression of Prostacyclin-Synthase in MCF-7 Cells. To
con	rm expression of wild-type and mutant PGIS pro-
tein, Western blot analysis was performed using MCF-7
cell lysates (20�g per lane). In Figure 1(a), a band could
not be detected in cells transfected with the control vec-
tor pCDNA 3.1 (lane I). Bands of approximately 52 kD
corresponding to the molecular weight of PGIS could be
detected in cells transfected with both the PGIS wild-type
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Table 1: Statistics on patients’ clinical data, classical prognostic factors, and PGIS expression (� = 193).

Parameter



(193)

PGIS expression

�IRS: 0–2
%

IRS: 3–12
%

Patients (
) Patients (
)
Median age, years 54

Age </>median 83/110 0.127∗

<56 years 83 66 79.5 17 20.5% >0.05∗∗

>56 years 110 84 76.4 54 23.6%

Menopausal status

Pre/post/? 56 37/100/56 0.715∗

Premenopausal 37 30 81.1 7 18.9% >0.05∗∗

Postmenopausal 100 81 81.0 19 19.0%

Tumor size

T1/T2/T3/T4/? 4 29/102/45/8/9 0.0068∗

<2 cm 45 39 86.7 6 13.3% >0.05∗∗

>2 cm 144 109 75.7 35 24.3%

Nodal status

N0/N1/N2/N3/? 3 80/92/13/5/3 <0.0001∗

N0 node negative 80 63 78.8 17 21.3% >0.05∗∗

N1–N3 node positive 110 85 77.3 25 22.7%

Grading

G1/G2/G3/? 4 8/122/59/4 0.0402∗

G1 & G2 130 108 83.1 22 16.9% >0.05∗∗

G3 59 39 66.1 20 33.9%

ER/PR

++//+−&−+//−−//? 96/30/57/10 0.230∗

Pos/pos 96 78 81.2 18 18.8% >0.05∗∗

Pos/neg or neg/pos 30 20 66.6 10 33.3%

Neg/neg 57 43 75.4 14 24.6%

PGIS = prostacyclinsynthase; IRS = immunoreactive score; IRS 0–2 = low PGIS expression; IRS 3–12 = high PGIS expression;� = number; cm = centimeter;
ER = estrogen receptor; PR = progesterone receptor; pos = positive; neg = negative.
∗� value for overall survival (log-rank test).
∗∗P value for expression of PGIS (�2 test).

vector pCDNA3.1mPGIS (lane II) and the mutant PGIS
vector pCDNA3.1 mPGISC441A (lane III). Puri	ed PGIS
frombovine aorta endothelial cell (le� lane) served as positive
control.

3.2. Expression of Prostacyclin-Synthase in Breast Cancer
Tissue. Expression of PGIS immunoreactive (ir) protein was
examined in tumor samples from 248 patients with breast
cancer obtained at diagnosis of primary breast cancer disease.
Patient age was 26–86 years; median (±SD) age was 56.49
± 12.11 years. PGIS-immunoreactivity in tumor cells was
observed in 48.7% of samples and was generally weak in
tumor cells. In PGIS-positive tumor cells, cytoplasm and per-
inuclear staining was observed consistent with the expression
of PGIS in the endoplasmic reticulum and the perinuclear
envelope [27]. Expression of PGIS ir-protein in tumor cells
di�ered in both staining intensity and percentage of positive
tumor cells (Figures 1(b) and 1(c)). PGIS-immunoreactivity
was also observed in various cell samples known to express

this enzyme (	broblasts: 68%; in�ammatory cells: 62.2%; and
vessels 61.7%; data not shown).

3.3. Univariate Analysis. Kaplan-Meier survival curves were
created from the data of 193 patients with complete infor-
mation (see Table 1) to evaluate the prognostic value of
established parameters for overall survival. As expected, the
classical prognostic factors, that is, histology grade, tumor
size, and nodal status, were all signi	cantly associated with
overall survival, whereas age, steroid receptor status, and
menopausal age were not (Table 1). To evaluate a possible
relationship between PGIS expression and disease outcome,
di�erent IRS subgroups were initially de	ned and Kaplan-
Meier analysis was performed for overall survival. In these
analyses, it became apparent that subgroups with higher
PGIS expression levels had shorter mean survival times
than subgroups with lower expression (data not shown).
�is suggested the use of a single cuto� value to simplify
further analyses. To select a value, the minimal � value
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Table 2: Kaplan-Meier overall survival analysis for di�erent
immunoreactive scores.

Cuto� (IRS) Number
Overall survival prognosis

Log-rank � Corrected �∗
≥1 99/94 5.56 0.0184

≥2 129/64 4.37 0.0377

≥3 150/43 8.37 0.0038

≥4 161/32 6.35 0.0117

≥5 177/16 4.50 0.0338

IRS = immunoreactive score, ∗Bonferroni correction for multiple testing.
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∗P = 0.038, ∗Bonferroni correction

Figure 2: Relationship between PGIS expression and overall sur-
vival of 193 patients.�eKaplan-Meier survival curves shown are for
subgroups with either low (IRS2) or high (IRS ≥ 3) PGIS expression
among all patients under study.

approach was used, and cuto�s from IRS 1 to 5 were
compared by Kaplan-Meier analysis. �e statistical results,
with and without application of the Bonferroni correction
for multiple statistical testing, are listed in Table 2. �e most
discriminative value (IRS ≥ 3) was used for further subgroup
analyses andmultivariate Cox regression analysis. At 10 years
following their diagnosis, 64.6% of patients with low PGIS
expression (IRS < 3) were still alive compared with 36.4% in
the group with high PGIS expression (IRS ≥ 3, Figure 2).

3.4. Multivariate Analysis. On multivariate Cox analysis,
the following factors were tested: tumor size, nodal status,
tumor grading, and PGIS expression (cuto� IRS ≥ 3). In this
model, PGIS expression did not prove to be an independent
prognostic factor.

3.5. Overexpression of PGIS in MCF-7 Cells. �e role of PGIS
in the protection against NSAID-induced cell death was
examined in human MCF-7 breast cancer cells. In vehicle-
treated (0.1% DMSO) cells viability was not a�ected by
transfection with wild-type or mutant PGIS vector (com-
pared to control vector, data not shown). Upon exposure
to sulindac (150 �M) for 24 hours, the viability of cells
transfected with control vector and cells transfected with

mutant PGIS was signi	cantly reduced compared withMCF-
7 cells transfected with wild-type PGIS as assessed by the
MTT assay (mock: 0.153 ± 0.19 and PGISC441A: 0.2065 ±
0.038 compared with wild-type PGIS: 0.312 ± 0.048 opti-
cal density 540 nm/690 nm). In contrast to mock- and
pCDNA3.1PGISC441A-transfected cells, overexpression of
wild-type PGIS also increased cell viability in MCF-7 cells
exposed to 150�M sulindac sulfone compared with, albeit to
a lesser extent than with, sulindac (data not shown).

3.6. E�ect of Carbaprostacyclin on Cell Viability in CCRF-
Cells. Exposure of CCRF-CEM cells to 100 and 300 �M
sulindac sulfone induced apoptotic cell death in a dose-
dependent manner as analyzed by measurement of caspase-
3 activity (Figure 3(b)). Coincubation of CCRF-CEM cells
with sulindac sulfone and increasing concentrations of car-
baprostacyclin (0.01–1�M) resulted in a decrease of apoptotic
cells by about 50% at either sulindac sulfone concentration
and by carbaprostacyclin 1�M. �us, treatment with the
synthetic PGI2 analogue carbaprostacyclin protected against
NSAID-induced apoptosis. Cells were coincubated with
sulindac sulfone and the membrane permeable cAMP ana-
logue dibutyryl-cAMP (dbcAMP) to rule out involvement
of the classical prostacyclin-receptor IP in protection against
apoptotic cell death via elevation of intracellular cAMP. Cell
viability was not a�ected upon treatment with dbcAMP
suggesting a mode of action independent of IP modulation
(Figure 3(c)).

4. Discussion

To address directly the potential role of PGIS in cell survival,
we analyzed the e�ects of PGIS-overexpression in a human
breast cancer cell line MCF-7 and of carbaprostacyclin
treatment in a human immature T-cell line CCRF-CEM
cells. MCF-7 cells overexpressing PGIS showed a signi	cant
increase in cell viability when challenged with sulindac and
sulindac sulfone. Given that sulindac inhibits prostaglandin-
production, and thus PGI2 formation, we assume that PGI2
generated during the 	rst 24 hours a�er transfection and
prior to the addition of sulindac rendered the cells resistant
to the adverse e�ects of sulindac (sulfone).

Apoptotic cell death of sulindac sulfone treated CCRF-
CEM cells exposed to increasing concentrations of car-
baprostacyclin was also signi	cantly reduced. To exclude
an activation of the classical IP pathway, CCRF-CEM cells
were treated with a stable cell permeable cAMP analogue
(dbcAMP). �e lack of e�ect of this agent argues against a
role of the IP-receptor in the protection against apoptosis.

To the best of our knowledge this is the 	rst study to
investigate the expression of PGIS in primary human breast
cancer. Data currently available are con�icting. One investi-
gation found no PGIS expression in human lung carcinoma
[28], whereas another described a signi	cant reduction of
PGIS protein expression in non-small cell lung cancers [29].
However, no correlation with overall patient survival was
observed. A more recent study used the same antibody (anti-
PGIS) to investigate expression in head and neck squamous
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Figure 3: E�ects of overexpression of PGIS and carbaprostacyclin on cell survival. (a) MCF-7 cells were transiently cotransfected with
pCDNA3.1COX-2, together with control vector pCDNA3.1, pCDNA3.1mPGIS, and pCDNA3.1mPGISC441A. Cell viability upon exposure
to 150�M sulindac for 24 hours was examined by the MTT assay as compared to vehicle-treated controls (0.1% DMSO). ((b), (c))
Carbaprostacyclin-mediated protection from sulindac sulfone-induced apoptosis. CCRF-CEM cells were treated with 0, 100, and 300�M
sulindac sulfone in the presence of (b) 0.01–1 �M carbaprostacyclin or (c) 0.001–10mM dbcAMP. 24 hours posttreatment caspase-3 activity
was measured by cleavage of �uorogenic substrate Ac-DEVD-AMC.

cell carcinoma [30]. Lower PGIS levels were observed in
tumor samples than in nontumoral mucosa. Patients who
expressed high levels of PGIS in head and neck squamous cell
carcinomahad a higher 5-year survival rate than the lowPGIS
expressing group.

Our present study using an ISH-validated polyclonal anti-
body [21] on mamma CA also showed weak immunoreactiv-
ity in tumors; however, our striking results from retrospective
analysis revealed that expression of PGIS is associated with a
reduction of patient survival. Although statistical signi	cance
was not achieved, the data indicated that patients with a
high IRS had a worse prognosis than patients with a low
IRS. Given the paucity of data addressing the expression and
roles of PGIS and its putative receptor PPAR �/� in human

breast cancer a variety of mechanisms can be postulated that
link PGIS expression with a reduction in patient survival.
Expression of PGIS in human breast cancer cells might
increase their viability in vivo resulting in a less favorable
prognosis than for patients who lack PGIS expression in
their cancerous cells. �is is supported by data that showed
that the PPAR �/� ligand, cPGI, protects HT29 colon cancer
cells against cell death in vitro [12]. Likewise, cPGI has been
shown to rescue renal medullary interstitial cells from cell
death [13]. Finally, activation of PPAR �/� protected cultured
murine keratinocytes against cell death [31]. Importantly, the
contention that PGI2 promotes survival of breast cancer cells
is compatible with the data from several meta-analyses that
demonstrated the chemopreventive e�ect of NSAIDs on the
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formation of breast cancer in women [8–10]. Inhibition of
PGI2 formation by NSAIDs would neutralize the stimulatory
e�ect of PGI2 in malignant cells, leading to a reduced
incidence of breast cancer.

Alternatively, PGI2 might actually reduce cell viability as
shown by a study in which endogenously expressed PGI2
promoted apoptosis in human embryonic kidney cells and
Caco-2 colon cancer cells [14]. �is might indicate that
administration of NSAIDs to patients expressing PGIS might
actually be disadvantageous. �is notion is not supported by
epidemiological data, although patient survival has not been
strati	ed in these patients in terms of PGIS expression.�ese
apparently contradictory actions of PGI2 on cell survival may
indicate that its e�ects are highly dependent on the speci	c
cellular environment.

Despite the fact that the e�ects of cPGI and PGIS on
cell survival are clearly divergent, there is agreement that
these e�ects are not dependent on cAMP generation (and
thus activation of IP) but are possibly mediated by PPAR
�/� [14, 17, 31–33]. In contrast to PPAR � the potential
roles of PPAR �/� have yet to be studied in mammary
cancer cells. Two studies addressed the role of PPAR �/�
in colon cancer, one demonstrated that xenogra�s of null

cells (PPAR �/�−/− cells) derived from the human colon
cancer cell line HCT 117 exhibited a signi	cant reduction
in tumor formation compared with wild-type HCT 117 cells

(PPAR �/�+/+ cells) [34]. However, the essential role of PPAR
�/� for intestinal tumor formation could not be con	rmed
in another study using PPAR �/� knockout mice; polyp
size, but not polyp number, was reduced in PPAR �/�-null
mice compared with wild-type mice [35]. More recently,
we published data showing impaired tumor-angiogenesis in
PPAR �/�-null mice [36].

Little information exists on the speci	c role of PGI2 in
human breast cancer. One study showed that elevated levels
of the PGI2 metabolite, 6-keto-PGF1�, in breast cancer tissue
are associated with a more aggressive phenotype [37]. In
rats, inhibition of thromboxane-synthase by imidazole led to
enhanced cancer multiplicity in an N-methyl-N-nitrosourea
induced breast cancer model. In contrast, administration of
tranylcypromine which inhibits PGIS has been shown to
reduce cancer multiplicity, indicating that inhibition of this
enzyme, but not thromboxane-synthase, might be useful in
the chemoprevention of breast cancer [38].

5. Conclusions

We have shown that expression of PGIS in human breast
cancer is a negative prognostic factor.Overexpression of PGIS
increases cell viability in MCF-7 cells exposed to sulindac
and sulindac sulfone and carbaprostacyclin protects against
sulindac induced apoptosis in CCRF-CEM cells. �e appar-
ent discrepancy to the inverse correlation of PGIS expression
and survival in other carcinomas (e.g., head and neck tumors)
could not only be explained by hormonal biases. More and
larger epidemiological studies in di�erent tumors are needed
to analyze the importance of PGIS expression as an indepen-
dent prognostic factor. �e products and molecular targets

of PGIS and their implication in mammary tumor formation
need to be further elucidated to investigate whether certain
subgroups of breast cancer patients show di�erent survival
rates in relation to PGIS expression.
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