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Abstract

Background: The SRY-related HMG-box family of transcription factors member SOX2 has been mainly studied in

embryonic stem cells as well as early foregut and neural development. More recently, SOX2 was shown to

participate in reprogramming of adult somatic cells to a pluripotent stem cell state and implicated in

tumorigenesis in various organs. In breast cancer, SOX2 expression was reported as a feature of basal-like tumors.

In this study, we assessed SOX2 expression in 95 primary tumors of postmenopausal breast cancer patients.

Methods: Samples from 95 patients diagnosed and treated at the University of Tuebingen Institute of Pathology

and Women’s Hospital were analyzed by immunohistochemistry for SOX2 expression in the primary tumor samples

and in corresponding lymph node metastasis, where present. Furthermore, SOX2 amplification status was assessed

by FISH in representative samples. In addition, eighteen fresh frozen samples were analyzed for SOX2, NANOG and

OCT4 gene expression by real-time PCR.

Results: SOX2 expression was detected in 28% of invasive breast carcinoma as well as in 44% of ductal carcinoma in

situ (DCIS) lesions. A score of SOX2 expression (score 0 to 3) was defined in order to distinguish SOX2 negative (score

0) from SOX2 positive samples (score 1-3) and among latter the subgroup of SOX2 high expressors (score 3 > 50%

positive cells). Overall, the incidence of SOX2 expression (score 1-3) was higher than previously reported in a cohort

of lymph node negative patients (28% versus 16.7%). SOX2 expression was detected across different breast cancer

subtypes and did not correlate with tumor grading. However, high SOX2 expression (score 3) was associated with

larger tumor size (p = 0.047) and positive lymph node status (0.018). Corresponding metastatic lymph nodes showed

higher SOX2 expression and were significantly more often SOX2 positive than primary tumors (p = 0.0432).

Conclusions: In this report, we show that the embryonic stem cell factor SOX2 is expressed in a variety of early

stage postmenopausal breast carcinomas and metastatic lymph nodes. Our data suggest that SOX2 plays an early

role in breast carcinogenesis and high expression may promote metastatic potential. Further studies are needed to

explore whether SOX2 can predict metastatic potential at an early tumor stage.

Background
Pluripotency-associated transcription factors like

NANOG, SOX2 and OCT4 are known as regulators of

cellular identity in embryonic stem cells and more

recently have been identified in tumors of various ori-

gins. Consistent with their role in sustaining stemness of

embryonic stem cells, pluripotency-related factors have

been suggested to be expressed with higher frequency in

tumors displaying lower degrees of differentiation [1].

In the current study, breast tumor samples were

examined for expression of SOX2 (short for Sex determ-

ing Region Y - box 2), a High Mobility Group (HMG)

domain transcription factor located at chromosome

3q26.33 and member of the SRY-related HMG-box

(SOX) family of transcription factors [2]. SOX proteins

play critical roles during organogenesis and in the

embryonic development of several tissues. Their expres-

sion displays a restricted spatial-temporal pattern. For
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example, overexpression of Sox2 in mouse neural stem

cells blocks their differentiation, and conversely, deple-

tion of Sox2 in neural stem cells causes their premature

exit from the cell cycle and respectively differentiation

into neurons [3,4]. In the foregut, Sox2 is a key regula-

tor of embryonic development and expression is found

in all endodermal cells of the undivided foregut. During

bronchogenesis in the developing lung, Sox2 is precisely

regulated and forced overexpression of Sox2 leads to a

block of airway branching [5].

Consistent with the hypothesis that stemness and

embryonic pathways may reactivate during oncogenesis,

SOX family members have been found to be deregulated

in a variety of tumors [4]. SOX2 was detected as an

immunogenic antigen in a significant percentage of

small cell lung cancer patients [6] and meningeoma

patients [7]. In the pancreas, SOX2 expression has been

involved in invasion and metastasis of pancreatic intrae-

pithelial neoplasia [8]. Furthermore, SOX2 was also

shown to be expressed in gastric [9] and prostate can-

cers [10] and more recently, was identified as a lineage-

survival oncogene in squamous cell carcinomas of the

lung [11,12]. However, the significance of SOX2 expres-

sion and its role in different cancers requires further

research since the transcriptional activity of SOX pro-

teins depends on the recruitment of protein partners

and thus profound functional differences may occur in

distinct tissues of origin [13].

To our knowledge, there is no data reporting a role of

SOX2 in breast organogenesis or function. Adult healthy

breast tissue does not show significant SOX2 expression

[14]. However, SOX2 expression was detected in a sub-

group of patients with breast tumors [15], supporting

the notion that in the breast, activation of SOX2 is part

of the malignant progression [14,15]. An active role for

SOX2 during mammary tumorigenesis is further sup-

ported by data collected in breast cancer cell lines,

where SOX2 drives cell proliferation and in vivo tumori-

genesis, partially by facilitating the G1/S transition and

regulating, in concert with b-catenin, the expression of

downstream effector genes such as CCND1 [14,15].

In this report, we analyze the expression of SOX2 in a

cohort of 95 sporadic postmenopausal early-breast can-

cers with respect to clinicopathological factors.

Methods
Tumor Samples

We analyzed a group of 86 sporadic invasive early-stage

breast carcinomas and nine ductal in situ carcinoma

(DCIS) diagnosed and treated at the Institute of Pathol-

ogy and respectively the Women’s University Hospital

Tuebingen. All tissue samples were derived from a series

of consecutive cases at the Department of Pathology ana-

lyzing the differences of clinicopathological factors

between screening-carcinomas and carcinomas detected

outside the screening programme in the same age group.

The age of patients ranged therefore from 50 to 69 years

and all were diagnosed between March 31st 2008 and

January 19th 2009. From this group a randomly selected

subset of 86 cases with available paraffin material was

included in this retrospective study. Breast cancer sub-

types were defined by immunohistochemistry profiles as

previously described [16]. Further clinicopathological

characteristics of the cohort are summarized in Table 2.

Furthermore, fresh frozen tissue samples were collected

prospectively from eighteen patients undergoing diagno-

sis and treatment in 2009 and 2010 at the Women’s Uni-

versity Hospital Tuebingen and used for gene expression

analysis as described below.

The study was approved by the institutional Ethics

Review Board of the University Hospital Tuebingen.

Human pluripotent stem cells cultures

The human induced pluripotent stem cell line hFib2-

iPS5 kindly provided by George Q. Daley and In-Hyun

Park, Children’s Hospital Boston [17], was used and

grown in undifferentiated state according to previously

published protocols [17,18].

Immunohistochemistry

Immunohistochemistry was performed with the Ventana

Discovery automated immunostaining system (Ventana

Medical Systems, Tucson, AZ, USA), using Ventana

reagents. Paraffin sections (5 μm) were mounted on

superfrost slides, deparaffinized in inorganic buffer, and

pretreated with EDTA-based buffer (pH 8.4). Primary

antibody (polyclonal goat anti-human SOX2 antibody,

AF2018, R&D systems, dilution 1:40, heat induced epi-

tope retrieval (HIER)) was applied to assess for SOX2

protein expression status. Dilution was performed with

Ventana diluent. Bound antibody was visualized using a

biotinylated detection kit based on diaminobenzidine

and horseradish peroxidase (DABMap-kit, Ventana).

Slides were counterstained with hematoxylin and Blue-

ing Reagent (Ventana). Subsequently, sections were

washed, dehydrated in a graded alcohol series and cov-

ered with Cytoseal. Only nuclear staining was consid-

ered positive and scored by a pathologist according to

published criteria using a semiquantitative score: score

0: no positive cells, score 1: >0 to 10%, score 2 ≥ 10%,

score 3 ≥ 50% [19] (Figure 1A-E). As positive controls

were used samples of squamous cell carcinoma of the

lung [20].

SOX2 amplification fluorescence in-situ hybridization

assay

To assess for SOX2 amplification status at the chromo-

somal level, we applied the same two-color interphase
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FISH assay as described by Bass et al. [20]. Briefly, a

probe spanning the locus 3q26.33 (BAC clone CTD-

2348H10) was applied to detect SOX2 copy number sta-

tus and was compared to a reference probe hybridizing

to 3p22.3-3p22.2 (BAC clone RP11-286G5) (both clones

were purchased from Invitrogen, Carlsbad, CA, USA).

The target probe was labelled with biotin and detected

with a streptavidin-conjugated red fluorochrome (SAV-

Alexa Fluor-594, Invitrogen). The reference probe was

labelled with digoxigenin and detected via an anti-digox-

igenin-conjugated green fluorochrome (FITC, Roche,

Basel, Switzerland).

Figure 1 Immunohistochemical staining of SOX2 shows different expression levels in early-stage breast carcinoma samples.

(A) Classification of SOX2 expression in different scores. (B) Staining of normal breast tissue as control. (C) Breast tumor tissue that shows no

positive staining for SOX2 are part of Score 0. (D) Tumor samples with > 0% and < 10% are referred to Score 1. (E) Score 2 samples show ≥ 10%

and < 50% positive stained cells. (F) Samples demonstrating ≥ 50% positive cells belong to Score 3. Pictures were taken with 200X magnification.
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Assessment of the SOX2 amplification status was per-

formed semiquantitatively by comparing the number of red

signals (SOX2 target region, respectively) to the number of

corresponding green signals (reference region). A non-

amplified nucleus showed one red target signal for every

corresponding green reference signal, with a red/green ratio

of 1:1. TMA slides were analyzed under a 63x oil immer-

sion objective using a fluorescence microscope (Zeiss, Jena,

Gemany) equipped with appropriate filters. At least 100

nuclei per case were assessed. Cases were included into the

analysis if there was at least one core assessable.

Gene expression analysis

Total RNA from fresh frozen tissue samples was isolated

using RNA isolation kit from Qiagen according to the

manufacturer’s instructions, including Dnase I treatment

to remove contaminating genomic DNA (Invitrogen).

Purified RNA samples were used for RT reaction con-

taining oligo d(pT)18 primers and Superscript II RT

enzyme (Invitrogen) according to the supplier’s protocol.

The synthesis of cDNA was carried out for 50 min at 42°

C followed by 10 min at 70°C to inactivate the RT

enzyme. The amplification of SOX2, NANOG, OCT4, and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

genes in the subsequent RT-PCR was achieved with the

following primer pairs (Sigma) and probes (Roche): For

SOX2 (75 bp): 5’-ttgctgcctctttaagactagga-3’, 5’-

ctggggctcaaacttctctc-3’, and Probe #35; for NANOG (103

bp): 5’-atgcctcacacggagactgt-3’, 5’-aagtgggttgtttgcctttg-3’,

and Probe #31; for OCT4 (114 bp): 5’-agcaaaacccggag-

gagt-3’, 5’-ccacatcggcctgtgtatatc-3’, and Probe #35; for

GAPDH (66 bp): 5’-agccacatcgctcagacac-3’, 5’-gcccaatac-

gaccaaatcc-3’, and Probe #60. The PCR reaction mixture

was incubated at 95°C for 10 min, followed by 35 cycles

of 95°C for 15 s, 60°C for 30 s and 72°C for 1 s. As posi-

tive control we used RNA purified from undifferentiated

human induced pluripotent stem cells. The amplification

of SOX2OT, ALX4 and ACTIN genes was achieved with

SYBR-Green (Eurogentec) and the following primer

pairs: For SOX2OT (76 bp): 5’-tccatggaatgaatgaaatgtt-3’,

5’-cagcctccaagacctagcc-3’; for ALX4 (99 bp): 5’-tggccat-

gaggacagacc-3’, 5’-gctgcatctgcccaaaac-3’; for ACTIN (86

bp): 5’-agtcctgtggcatccacgaaacta-3’, 5’-cactgtgttggcgta-

caggtcttt-3’. The PCR reaction mixture was incubated at

95°C for 10 min, followed by 40 cycles of 95°C for 15 s,

60°C for 1 min and a melting curve 40 - 95 °C for 1 s.

RNA purified from undifferentiated human induced plur-

ipotent stem cells was used as a positive control.

Statistical Analysis

To test associations between categorical variables, we

used the Chi square and Fisher’s exact test. Values of p

< 0.05 were considered significant. All tests were two-

tailed and 95% confidence intervals were adopted. The

analyses were carried out using the SPSS 12.0 for Win-

dows statistical program (SPSS Inc., Chicago, IL).

Results
SOX2 expression in early-stage breast cancer

95 patients yielded material that could be analyzed

immunhistochemically for SOX2 expression. Human

squamous lung cancer samples were used as positive

controls for immunohistochemical detection of SOX2

expression [20]. Four expression scores were defined in

order to distinguish SOX2 negative and positive sam-

ples, and among latter the subgroup of SOX2 high

expressors (Figure 1A). Considering cases with any

SOX2 expressing cells as positive (score 0 vs. score 1-3)

nuclear SOX2 expression was detected in 24 out of 86

analyzed samples of invasive breast carcinoma and 4 out

of 9 DCIS (Table 1). Of note, while numbers of positive

cells were highly variable, the expression showed com-

parable strong intensity among samples and was mostly

restricted to the nucleus, as previously reported in

embryonic stem cells. Thus, intensity and localization of

the positive signal was not introduced as a variable in

the applied scoring system. Representative stainings for

tumors belonging to each score group are shown in

comparison to healthy breast tissue (Figure 1).

Correlation between SOX2 expression and

clinicopathological characteristics

Our comparative study of SOX2 negative and positive

tumors did not show significant correlations between

the SOX2 expression status and other tumor parameters

such as grading, breast cancer subtype, hormone recep-

tor or HER2 expression, or presence of lymphangiosis.

A trend to larger tumor size (p = 0.073) and to a histol-

ogy other than of ductal or lobular type was noted in

SOX2 expressors (p = 0.053; Table 2). Interestingly, if

high SOX2 expressors (score 3) were analyzed separately

and compared to the rest of the group (score 0 to 2),

they displayed significantly more often lymph-node

metastases (p = 0.018) and larger primary tumors (p =

0.047; Figure 2; Table 3). Although larger numbers are

required to analyze expression in DCIS, our data indi-

cate that SOX2 is expressed already aberrantly in DCIS

and therefore may be an early event in disease

progression.

SOX2 FISH and gene expression analysis in primary

tumors

Eleven SOX2 positive samples (7 belonging to expression

score 3 and 4 of score 2), 4 SOX2 negative samples as well

as 3 lymph-node samples showing high SOX2 expression

(score 3) were analyzed by FISH to explore whether aber-

rant SOX2 expression is a result of gene amplification as

previously reported in other carcinomas [20]. Surprisingly,
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with the exception of one case of low level amplification

documented in a score 3 primary tumor, unlike reported

in other tumors, the majority of analyzed samples did not

show SOX2 gene amplifications, suggesting that at least in

part of the breast carcinomas expressing SOX2, the aber-

rant gene expression is driven by other mechanisms. To

explore whether SOX2 induction is part of a more general

reactivation of embryonic genes, we assessed co-expres-

sion of NANOG and OCT4 in the same tumors by per-

forming real-time PCR analysis and using human

pluripotent stem cells as positive controls [17]. Among

fresh frozen samples collected prospectively from n = 18

patients we observed various degrees of SOX2 gene

expression (Figure 3), confirming our immunohistochem-

ical data. However, samples showing more pronounced

SOX2 expression levels (sample 1, 3 and 10) displayed sub-

stantial co-expression of OCT4 and NANOG (Figure 3).

Furthermore, co-expression with the previously described

SOX interacting gene ALX4 as well as with the SOX2-

overlapping transcript (SOX2OT) could be documented in

Table 2 Correlation of SOX2 score and clinicopathological parameters

SOX2

N total Negative Score 0 Positive Score 1-3 p-value

Tumor size

pT1 59 46 (78%) 13 (22%) 0.073

pT2 to pT4 27 16 (59%) 11 (41%)

Nodal status

Node-negative 62 44 (71%) 18 (29%) 0.789

Node-positive 23 17 (74%) 6 (26%)

Histology

Ductal 76 49 (73%) 18 (27%)

Lobular 11 10 (91%) 1 (10%) 0.053

Others 8 5 (38%) 5 (63%)

Grading

I-II 60 45 (75%) 15 (25%) 0.361

III 26 17 (65%) 9 (35%)

Lymphovasc. inv.

Negative 63 48 (76%) 15 (24%) 0.161

Positive 23 14 (61%) 9 (39%)

ER status

Negative 17 12 (71%) 5 (29%) 0.877

Positive 69 50 (73%) 19 (28%)

PR status

Negative 22 16 (73%) 6 (27%) 0.939

Positive 64 46 (72%) 18 (28%)

HER2

Negative 75 55 (73%) 20 (27%) 0.503

Positive 11 7 (64%) 4 (36%)

Subtype

Luminal A/B * 73 53 (73%) 20 (27%)

HER2 subtype 6 4 (67%) 2 (33%) 0.952

Triple negative 7 5 (71%) 2 (29%)

*Luminal A tumors are defined as tumors with expression of one or both hormone receptors without overexpression of Her2; Luminal B tumors express one or

both hormone receptors and show also Her2 overexpression.

Table 1 SOX2 expression in primary carcinoma (DCIS and invasive carcinoma) and lymph node samples

N total Score 0 Score 1 Score 2 Score 3

DCIS 9 5 (55.6%) 1 (11.1%) 2 (22.2%) 1 (11.1%)

Invasive Carcinoma 86 62 (72%) 11 (12.8%) 5 (5.8%) 8 (9.3%)

Lymph nodes 18 9 (50%) 4 (22.2%) 1 (5.5%) 4 (22.2%)

DCIS: ductal carcinoma in situ.
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SOX2-expressing samples (Additional file 1, Figure S1)

[21,22].

Higher SOX2 expression in metastatic lymph nodes

To further dissect whether SOX2 plays a role in devel-

opment of metastases, we analyzed SOX2 expression in

metastatic lymph nodes. 23 out of 86 patients with inva-

sive primary tumors showed lymph node metastases,

out of which 18 yielded material that could be analyzed

for SOX2 expression (Table 1, Figure 2). The remaining

5 cases only presented with positive sentinel lymph-

nodes, which had been completely analyzed in step sec-

tions, and thus no material for additional SOX2 analysis

was available. As expected, SOX2 expression was

detected in all lymph-nodes from SOX2 positive primary

tumors (Figure 2A-B). Interestingly, SOX2 was addition-

ally detected in lymph-nodes derived from primary

tumors devoid of SOX2 expression (Figure 2B and 2D)

while no case could be detected where SOX2 was

expressed only in primary but not in metastatic cells.

Thus, the frequency of SOX2 positive samples in lymph

nodes was significantly higher than those of primary

tumors (p = 0.0432; Figure 2B). Of note, 3 out of 9 posi-

tive lymph nodes showed very high expression in nearly

all tumor cells, while such high expression was only

observed in 1 out of 24 positive primary tumors.

Discussion
SOX2, NANOG and OCT3/4 form the core of the self-

renewal transcription network in embryonic stem cells.

Figure 2 SOX2 expression in primary tumors and corresponding metastatic lymph nodes. (A) SOX2 is expressed in a higher percentage

of metastatic lymph nodes as compared to primary tumors; (B) Development of SOX2 expression in lymph nodes in comparison to the

corresponding metastatic primary tumor investigated in 18 samples. Positive SOX2 expression was detected in lymph node metastases

originating from both SOX2 positive or negative primary tumors while no loss of SOX2 positivity was observed during progression from primary

tumor to metastasis (C) Representative immunohistochemical staining of SOX2 in a primary tumor and the corresponding lymph node. Pictures

were taken with 200X magnification.

Table 3 SOX2 high expressors (Score 3) versus negative

or low (Score 0-2)

p-value

Tumor size 0.047

Nodal Status 0.018

Histology 0.272

Grading 0.252

Lymphovascular Invasiveness 0.470

ER Status 0.140

PR Status 0.373

Subtype 0.456

ER: Estrogen Receptor; PR: Progesteron Receptor.
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They physically interact with each other forming large

protein complexes [20], and furthermore are transcrip-

tionally interconnected and co-occupy promoters of

numerous target genes [23-26]. On a functional level,

selective downregulation of one of these factors induces

embryonic stem cell differentiation and exit from the

pluripotent stem cell state. More recently, combinatorial

overexpression of OCT4, SOX2, NANOG and others

was shown to reprogram several types of adult somatic

cells to a pluripotent stem cell like state [17,27,28]. In

these experiments, cells were reprogrammed fully or

only partially [29] possibly through heterogeneous expo-

sure to reprogramming factors. It is tempting to specu-

late that acquisition or overexpression of individual

factors (i.e. by chromosomal gain, as described in some

tumors), can promote tumorigenesis by processes

resembling partial reprogramming [17,29].

In our study we have focused on SOX2, a member of

the SOX (SRY-related HMG-box) family of transcription

factors. SOX proteins are expressed during early embry-

ogenesis and play important roles in embryonic and

extra-embryonic cell types [30]. To our knowledge there

is no data indicating a specific role of SOX2 during

breast tissue development and as far no relevant SOX2

expression could be detected in healthy human breast

specimens [14]. However, SOX2 expression was

described in a smaller percentage (16.7%) of lymph-

node negative breast carcinomas, suggesting a role in

breast tumorigenesis.

Breast cancer is a heterogeneous disorder presenting

in a variety of pathological entities and clinical manifes-

tation ranges. Based on molecular profiling and gene

expression signatures, five groups of breast cancers with

distinct prognostic and predictive significance have been

identified: basal-like, luminal A and B, HER2+ and nor-

mal breast-like carcinomas [31]. Of these, the most

malignant phenotype is shown by the basal-like cancers

encompassing high grade tumors negative for estrogen

receptor (ER) or HER2 expression, which are associated

with a tendency to visceral metastasis especially to the

lung and the brain and which also have the most repro-

ducible gene expression pattern across different studies

and technical platforms [32-35]. Among sporadic can-

cers, basal-like tumors are showing most genetic and

phenotypic similarities to the aggressive tumors arising

in BRCA1 germ line mutation carriers [32-34,36-39].

Consistently, 3q gains are most frequently observed in

tumors arising in BRCA1 mutation carriers [40,41] and,

among sporadic cancers, seen with highest incidence in

basal-like tumors (20% of cases, in comparison to 10%

of luminal tumors [42]).

In squamous lung and esophageal cancers, aberrant

SOX2 expression was linked to the genomic amplifica-

tion of its chromosomal location on chromosome

3q26.33. 3q copy number gains are a common event in

breast cancers and have been implicated as an indepen-

dent predictor of poor prognosis in node-negative breast

cancers [43]. A previous immunohistochemical study

performed in a cohort of lymph-node negative patients

observed predominant SOX2 expression in tumors with

basal-like phenotype [15], consistent with the pattern

described for 3q chromosomal gain. In our study on a

cohort of postmenopausal patients displaying both nega-

tive and positive lymphonodal status we could confirm

the aberrant expression of SOX2 in breast cancer. Inter-

estingly, we assessed a higher overall incidence of SOX2

expression than reported by the previous study (ca.

28%). This could be due to technical details and differ-

ent sensitivities of immunohistochemistry protocols,

although similar methods and the same cut-off defini-

tion for SOX2 positivity were applied. A more plausible

explanation is that inclusion of lymph-node positive

patients in our cohort may have enriched for samples

Figure 3 Gene expression of SOX2, NANOG and OCT4 in

different tumor samples shows clustering of embryonic factors

in certain tumors. Real-time PCR for SOX2, NANOG and OCT4 was

performed on isolated RNA from tumor tissue. RNA from

undifferentiated human pluripotent stem cells was used as a

control. Shown are fold relative gene expression levels in

comparison to undifferentiated pluripotent stem cells. Experiments

have been performed in triplicates: error bars depict standard

deviations.
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expressing SOX2. In contrast to the previous study, we

could not verify the correlation between SOX2 expres-

sion status and breast cancer with basal-like features

that is triple negativity for hormone receptors and

HER2 [16], although associations with other parameters

reflecting tumor aggressiveness such as tumor size and

positive lymphonodal status were observed. Taken

together, these results suggest that aberrant SOX2

expression plays a broader role in breast cancer patho-

genesis, exerting effects also outside of the subgroup of

triple negative tumors. However, it is possible that

SOX2 expression is indeed particularly enhanced in tri-

ple negative tumors and that our analysis in a cohort of

postmenopausal patients, where this molecular subtype

is underrepresented, failed to detect this correlation

because of low numbers. While some (especially the 3q

positive basal-like tumors) may acquire SOX2 as a result

of gains in specific chromosomal regions, SOX2 expres-

sion may be also induced by other upstream mechan-

isms inducing a general reactivation of an embryonic

genetic program. In support of this hypothesis, FISH

analysis performed in representative primary tumor and

lymph node samples with high SOX2 expression in

most cases did not show amplification of the SOX2

locus. Furthermore, SOX2 was detected to express in

concert with other pluripotency factors in a cohort of

18 patients analyzed by real-time PCR analysis where

high SOX2 expressing samples were found to also

express higher levels of OCT4 and NANOG (Figure 3).

In vitro and in vivo tumorigenesis studies performed

with breast cancer cell lines link SOX2 expression to

early events in tumor development and potentially to

tumor invasiveness [14]. Similar properties have been

shown in lung squamous cell carcinoma lines where in

vitro studies suggest SOX2-mediated induction of cell

proliferation and anchorage independent growth

[11,12,14]. Although SOX2 functions differ between

organ systems since transcriptional activation is influ-

enced by the recruitment of tissue-specific transcription

factors [44], SOX2-mediated induction of tumor inva-

siveness may be a common theme in different tumor

entities [45]. To further explore these findings in breast

cancer, we performed correlations between SOX2

expression levels and lymphonodal status and explored

expression of SOX2 in metastatic lymph nodes as well

as in earlier disease stages such as ductal carcinoma in

situ. Overall, our immunohistochemical study provides

evidence supporting an early role of SOX2 during dis-

ease pathogenesis, since similar expression levels were

found in DCIS and early-stage invasive tumors. How-

ever, expression was significantly higher in metastatic

lymph nodes supporting the notion that SOX2 plays a

role in disease invasiveness and progression. Since no

primary tumor expressing SOX2 produced a lymph-

node metastasis devoid of SOX2 expression and SOX2

positive lymph-nodes showed particularly high expres-

sion levels, we suggest that cells displaying SOX2

expression are enriched in metastatic potential and

SOX2 plays a specific role in the development of lymph-

node metastases. However, further studies are needed to

deepen our understanding of SOX2 and other embryo-

nic factors during mammary tumorigenesis and larger

numbers of prospectively collected samples should be

screened before proposing SOX2 as a predictor of lym-

phonodal status in breast cancer.

Conclusions
The embryonic stem cell factor SOX2 is expressed in a

variety of early stage postmenopausal breast carcinomas

and metastatic lymph nodes. Our data suggest that

SOX2 plays an early role in breast carcinogenesis and

high expression may promote metastatic potential.

Further studies are needed to explore whether SOX2

can predict metastatic potential at an early tumor stage.

Additional material

Additional file 1: Supplementary Figure 1: Gene expression of

SOX2OT and ALX4 in fresh frozen tumor samples. Real-time PCR for

SOX2OT and ALX4 was performed on isolated RNA from tumor tissue.

RNA from undifferentiated human pluripotent stem cells was used as a

control. Shown are fold relative gene expression levels in comparison to

undifferentiated pluripotent stem cells.
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