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Abstract

Multiple sclerosis (MS) is a complex trait in which allelic variation in the MHC class II region exerts the single strongest effect
on genetic risk. Epidemiological data in MS provide strong evidence that environmental factors act at a population level to
influence the unusual geographical distribution of this disease. Growing evidence implicates sunlight or vitamin D as a key
environmental factor in aetiology. We hypothesised that this environmental candidate might interact with inherited factors
and sought responsive regulatory elements in the MHC class II region. Sequence analysis localised a single MHC vitamin D
response element (VDRE) to the promoter region of HLA-DRB1. Sequencing of this promoter in greater than 1,000
chromosomes from HLA-DRB1 homozygotes showed absolute conservation of this putative VDRE on HLA-DRB1*15
haplotypes. In contrast, there was striking variation among non–MS-associated haplotypes. Electrophoretic mobility shift
assays showed specific recruitment of vitamin D receptor to the VDRE in the HLA-DRB1*15 promoter, confirmed by
chromatin immunoprecipitation experiments using lymphoblastoid cells homozygous for HLA-DRB1*15. Transient
transfection using a luciferase reporter assay showed a functional role for this VDRE. B cells transiently transfected with
the HLA-DRB1*15 gene promoter showed increased expression on stimulation with 1,25-dihydroxyvitamin D3 (P = 0.002)
that was lost both on deletion of the VDRE or with the homologous ‘‘VDRE’’ sequence found in non–MS-associated HLA-
DRB1 haplotypes. Flow cytometric analysis showed a specific increase in the cell surface expression of HLA-DRB1 upon
addition of vitamin D only in HLA-DRB1*15 bearing lymphoblastoid cells. This study further implicates vitamin D as a strong
environmental candidate in MS by demonstrating direct functional interaction with the major locus determining genetic
susceptibility. These findings support a connection between the main epidemiological and genetic features of this disease
with major practical implications for studies of disease mechanism and prevention.
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Introduction

Multiple sclerosis (MS) is a common inflammatory disease of the

central nervous system characterized by myelin loss, axonal

pathology, and progressive neurological dysfunction [1]. The

aetiology of MS is unknown, however it is clear that genetic and

environmental components are important [1,2].

The only genetic association with MS in Northern Europeans

had been with extended MHC haplotypes, especially those

containing HLA-DRB1*1501 [3]. The interleukin 7 receptor

(IL7RA), interleukin 2 receptor (IL2RA), ecotropic viral integration

site 5 (EVI5) and kinesin family member 1B (KIF1B) genes have

recently been shown to be additional MS susceptibility loci

[4,5,6,7]. The largest of these, KIF1B, has a relatively small effect

size (odds ratio (OR) = 1.3). The MHC (OR = 5.4) is the key

susceptibility locus in MS and other susceptibility genes identified

to date appear to contribute little to overall risk [3].

The principal MHC class II haplotype that increases MS risk in

individuals of Northern European descent is HLA- DQB1*0602-

DQA1*0102 -DRB1*1501-DRB5*0101 [8], although other HLA-

DRB1 haplotypes have important influences on risk by epistatic

interactions [9,10,11,12]. Intense linkage disequilibrium within the

MHC has frustrated attempts at fine mapping and no precise

susceptibility locus has been identified [9,13].

Twin studies have established that monozygotic (MZ) twin

concordance is significantly greater than for dizygotics (DZ). In the

study by Willer and colleagues concordance was 25.3% and 5.4%

respectively [14]. The observation that most MZ twin pairs are

discordant for MS suggests environmental, stochastic factors or

both but the most striking illustration of the importance of the
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environment in MS susceptibility is the 5-fold difference in MS risk

between Tasmania and Queensland [15]. In the Northern

Hemisphere, MS prevalence shows a north-south gradient,

mirrored by a south-north gradient in the southern hemisphere

(reviewed by [16]).

In accordance with the disease geography, sunlight, specifically

through its role in generating active vitamin D, has been proposed

as a key environmental factor for the disease [17]. Circumstantial

evidence to support this comes from studies showing that MS

patients are deficient in vitamin D [18] and that dietary vitamin

intake reduces disease risk [19]. Additionally, a pooled analysis of

over 40,000 patients from Canada, Great Britain, Denmark, and

Sweden showed that fewer people with MS were born in

November and more in May [20], highlighting a risk factor that

varies seasonally. Vitamin D is primarily known for its critical role

in calcium homeostasis, however recent evidence has highlighted

many actions on immune and central nervous system development

and function [21]. These have contributed to the notion that this is

how vitamin D affects MS risk, although direct links have not yet

been identified.

Vitamin D is a secosteroid hormone synthesized in the skin or

ingested in the diet. Intake from dietary sources accounts for a

much smaller proportion of total vitamin D, mainly owing to its

rarity in foods [22,23]. During exposure to sunlight, ultraviolet B

(UVB) radiation (290–315 nm) is responsible for photolyzing 7-

dehydrocholesterol, the precursor of vitamin D3, to previtamin D3

which, in turn, rapidly spontaneously isomerizes to vitamin D3

[22,23]. Vitamin D3 is biologically inert and requires hydroxyl-

ation in the liver to 25-hydroxyvitamin D3 (25(OH)D). Once

formed, this major circulating form of vitamin D3 is further

hydroxylated in the kidney to its active form, 1,25-dihydroxyvi-

tamin D3 (1,25(OH)2D), by 25-hydroxyvitamin D-1a-hydroxylase

(1-OHase). Recently it has been recognized that most tissues in the

body (including the brain, thymus and cells of the immune system)

also possess the 1-OHase enzyme. Thus numerous tissues in the

body have the capacity to locally produce 1,25(OH)2D [22,23].

Most biological effects of 1,25-dihydroxyvitamin D3 or

calcitriol, are mediated by the vitamin D receptor (VDR). This

receptor is a member of the steroid receptor super-family and

influences the rate of transcription of vitamin D responsive genes

by acting as a ligand activated transcription factor that binds to

vitamin D response elements (VDREs) in gene promoters [21].

Early studies had provided evidence for an effect of vitamin D on

HLA gene expression [24,25], although no specific mechanism has

been characterised. Here we examined the hypothesis of a direct

interaction between vitamin D and MS associated MHC class II

genes. Genetic variation characteristic of the most significant risk

haplotypes for MS, those bearing HLA-DRB1*15, includes a

functional vitamin D response element (VDRE) in the proximal

promoter region of HLA-DRB1. This provides a mechanism

linking the major environmental and genetic risk factors for MS.

Results

In Silico Identification of Putative Vitamin D Response
Elements

Using the sequence for the HLA-DRB1*15 haplotype carried by

the homozygous lymphoblastoid cell line PGF we scanned in silico

for VDREs using Jaspar [26] with a profile score threshold of

80%. We analysed the entire genomic sequence of the HLA-DRB1,

HLA-DQA1 and HLA-DQB1 genes as well as 5 kb upstream of the

transcriptional start sites of these genes to include promoter

regions. VDREs exhibit a multitude of sequence variations,

providing a spectrum of binding affinities for VDR, thus enabling

these elements to respond to differing concentrations of VDR/

1,25(OH)2D [22]. The analysis revealed only one potential VDRE

located in the proximal promoter region immediately 59 to the

transcriptional start site of HLA-DRB1 (Figure 1). IL2RA and

IL7RA were also searched in silico for potential VDR binding

sequences; no putative VDREs were found.

Sequencing of the HLA-DRB1 Promoter in MS Patients
and Controls

The occurrence and conservation of the putative VDRE

element identified in the PGF sequence was examined in

individuals with the HLA-DRB1*15 MS risk allele. The HLA-

DRB1 promoter was resequenced in 322 HLA-DRB1*15 homozy-

gous individuals, both MS affected and unaffected. An additional

168 individuals homozygous for other HLA-DRB1 alleles were also

sequenced. The putative VDRE was present on all HLA-DRB1*15

bearing haplotypes with no variants found which disrupted the

VDRE consensus sequence. In contrast, a number of nucleotide

changes were found within the 15 base pairs of the VDRE on all

non-HLA-DRB1*15 haplotypes. For example, nearly all (98% of

57 sequenced individuals) of HLA-DRB1*04, HLA-DRB1*07 and

HLA-DRB1*09 haplotypes, all of which are non-MS associated

alleles in the Canadian population [10], carried the sequence

GGGTGGAGAGGGGTCA. This sequence was predicted to

function less effectively as a VDRE than the one on HLA-

DRB1*15 bearing haplotypes according to Jaspar [26]. The

modestly MS associated haplotype, HLA-DRB1*17, differed from

HLA-DRB1*15 at the VDRE in 50% of the individuals sequenced.

In Vitro Binding of VDR to the HLA-DRB1*15 VDRE
The putative VDRE in the HLA-DRB1 promoter was

investigated for ability to bind the vitamin D receptor in vitro

using an electrophoretic mobility shift assay (EMSA). Upon

addition of recombinant VDR and retinoic acid receptor beta

(RXR, a co-regulator of VDR binding and transactivation [22]) to

a radiolabelled probe spanning the putative VDRE in the HLA-

DRB1 promoter, two protein-DNA complexes on EMSA were

observed (Figure 2, lane 2). Both complexes were specifically

Author Summary

Multiple Sclerosis (MS) is a complex neurological disease
with a strong genetic component. The Major Histocom-
patibility Complex (MHC) on chromosome 6 exerts the
strongest genetic effect on disease risk. A region at or near
the HLA-DRB1 locus in the MHC influences the risk of MS.
HLA-DRB1 has over 400 different alleles. The dominant
haplotype of Northern Europe, marked by the presence of
DRB1*1501, increases risk of MS by 3-fold. The environment
also plays a key role in MS. The most striking illustration of
this is the geographical distribution of the disease in
populations matched for ethnicity. This has led to the
proposal that sunshine, and in particular, vitamin D, is an
environmental factor influencing the risk of MS. Circum-
stantial evidence supporting this comes from studies
showing the involvement of vitamin D in immune and
nervous system function. The current investigation sought
to uncover any relationship between vitamin D and HLA-
DRB1. It was found that vitamin D specifically interacts with
HLA-DRB1*1501 to influence its expression. This study
therefore provides more direct support for the already
strong epidemiological evidence implicating sunlight and
vitamin D in the determination of MS risk, and implies that
vitamin D supplementation at critical time periods may be
key to disease prevention.

HLA, MS, and Vitamin D
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competed with 10 to 100-fold molar excess of unlabelled VDRE

probe (Figure 2, lanes 3–5), while 10 to 100 fold molar excess of an

unrelated probe containing an early growth response (EGR) factor

binding site had no effect (Figure 2, lanes 6–7). Finally, addition of

a polyclonal antibody directed against VDR specifically retarded

complex I, resulting in a supershift of the upper complex (Figure 2,

lane 8). This data showed the putative VDRE in the HLA-DRB1

promoter corresponding to the HLA-DRB1*15 haplotype could

bind recombinant VDR/RXR with high specificity in vitro. When

probes corresponding to the HLA-DRB1*04/07/09 variant VDRE

were used, significantly lower affinity binding was found (data not

shown).

Evidence Ex Vivo of VDR Binding to the VDRE Found on
the HLA-DRB1*15 Haplotype

Whether or not the VDR is recruited to the VDRE in the HLA-

DRB1 gene promoter was examined ex vivo. Chromatin immuno-

precipitation (ChIP) experiments were performed using lympho-

blastoid cells bearing the HLA-DRB1*15 haplotype (the PGF cell

line) which were either unstimulated or stimulated for 24 hours

with 1,25-dihydroxyvitamin D3 and then cross-linked in the

presence of formaldehyde. Immunoprecipitation was performed

using antibodies against VDR. The VDR bound DNA fragments

were then recovered after reversal of protein-DNA crosslinking

and analysed by PCR using primers specific for the HLA-DRB1

promoter. A representative agarose gel is shown in Figure 3. This

revealed clear evidence of binding by VDR to the HLA-DRB1

promoter when compared to input chromatin and mock antibody

controls for cells with the HLA-DRB1*15 haplotype, complement-

ing the in vitro data from the EMSA experiments.

Transient Transfection
The VDRE was then investigated to see if it modulated levels of

gene expression in vitro. Reporter gene constructs were engineered

in which 2181 to +53 of the HLA-DRB1 gene sequence was

placed upstream of a pGL3 luciferase reporter. pGL3_DRB1prom

had the complete 2181 to +53 sequence, pGL3_DRB1prom_

hap1 had the same sequence as pGL3_DRB1prom but the VDRE

replaced with the HLA-DRB1*04/07/09 VDRE and

pGL3_DRB1prom_del had the 15 base pair VDRE sequence

specifically deleted. These constructs were then transiently

transfected into Raji B cells. A renilla luciferase reporter construct

driven by the thymidine kinase promoter (pRL_TK) was co-

transfected to normalise luciferase activity. pGL3_DRB1prom had

significantly higher basal reporter gene activity than

pGL3_DRB1prom_del (P = 0.03 on paired t-test, two tailed).

After stimulation with 1,25-dihydroxyvitamin D3, there was a

significant 1.6 fold increase in luciferase activity with

Figure 1. HLA-DRB1 promoter. Sequence shown is that for HLA-DRB1*15. Important regulatory elements (S, X and Y Boxes) are highlighted.
doi:10.1371/journal.pgen.1000369.g001

Figure 2. In vitro binding of VDR protein to the HLA-DRB1*15
VDRE. Electrophoretic mobility shift assay showing binding of
recombinant VDR and retinoic acid receptor beta (RXR) to radiolabelled
oligoduplex probe corresponding to the VDRE in the proximal HLA-
DRB1 promoter region for the HLA-DRB*15 haplotype. Two specific
complexes are indicated, denoted I and II, together with a supershifted
complex shown by an * symbol in the presence of antibody to VDR.
doi:10.1371/journal.pgen.1000369.g002

HLA, MS, and Vitamin D
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pGL3_DRB1prom (P = 0.002), but no significant change with

pGL3_DRB1prom_del (P = 0.12), nor pGL3_DRB1prom_hap1

(P = 0.58) (Figure 4).

Flow Cytometry
To investigate any effect of vitamin D on the cell surface

expression of HLA-DRB1, the HLA-DRB1*15 homozygous lym-

phoblastoid cell line PGF and the HLA-DRB1*07 homozygous

lymphoblastoid DBB cell line were stained with anti-HLA-DRB1

antibody. PGF cells constitutively expressed HLA-DRB1 at higher

levels then DBB (average geometric mean fluorescence intensity

(MFI) PGF = 97.1, DBB = 42.8, P = 0.0002). Upon addition of

1,25-dihydroxyvitamin D3, there was a 1.3 fold increase in the

expression of HLA-DRB1 in PGF cells (P = 0.031 on paired t-test,

two tailed) but no significant difference in the expression of HLA-

DRB1 in DBB cells (P = 0.10).

Discussion

While the role of the environment is clearly important in

determining MS risk, the relevant underlying mechanism(s) have

remained elusive and there has been no experimental support for a

direct environment-gene interaction. Although differences in

Epstein-Barr virus infection are seen when MS patients are

compared to controls, extensive searches for specific viral

infections have failed to confirm direct involvement. [2]. Where

appropriate data is available, the amount of winter sunlight

parallels the range of MS prevalence, and high sunlight exposure is

associated with low disease prevalence [2]. The effects of

migration between high and low risk geographic regions have

been examined in several populations (e.g.UK immigrants to

South Africa, or Asian and Caribbean immigrants to the UK).

These studies show that MS risk is influenced by the migrant’s

country of origin [27]. Despite the limits of small sample sizes, a

‘critical age’ has been hypothesized: immigrants who migrate

before adolescence acquire the risk of their new country, while

those who migrate after retain the risk of their home country.

Dietary difference for vitamin D intake (oily fish consumption)

plausibly explains the striking exception to MS latitudinal risk in

Norway [2]. As familial aggregation is genetically determined [28],

environmental factors thus appear to be operative at a broad

population level, perhaps acting at a young age [27] and/or

during gestation [20]. A good candidate for an environmental

factor that influences MS disease risk is vitamin D.

We approached the candidacy of vitamin D by searching first

for vitamin D response elements within the MHC class II region.

Specifically we investigated the major candidate genes in the

disease associated locus, HLA-DRB1, HLA-DQA1 and HLA-DQB1

and identified a consensus binding site for VDR next to the HLA-

DRB1 gene. This was the only VDRE we found and strikingly it

shows haplotype-specific differences, being highly conserved in the

major MS associated haplotype HLA-DRB1*15 dominant in

Northern European populations, but not conserved among non-

MS associated haplotypes. This was itself circumstantial evidence

supporting a vitamin D role in the functional characteristics of this

haplotype. The identified VDRE lies close to the highly conserved

MHC class II specific regulatory SXY module. This module

comprises S, X and Y regulatory elements important for

constitutive, and indirectly for IFN-c-induced, expression of

HLA class II genes co-ordinated by the MHC class II

transactivator MHC2TA [29]. The VDRE was highly conserved

on HLA-DRB1*15 haplotypes (no mutations on over 600

chromosomes) suggesting a selective pressure to maintain this

response element for the HLA-DRB1*15 allele. Variants were

found to some extent on all other non HLA-DRB1*15 haplotypes.

The results may additionally/alternatively reflect the ancestral

Figure 3. VDR is recruited to HLA-DRB1*15 VDRE in PGF cells.
Chromatin immunoprecipitation experiment using PGF cells either
unstimulated (#) or after stimulation with 1,25-dihydroxyvitamin D3
(N). Input controls are shown (lanes 1 and 2), mock antibody
immunoprecipitated controls (lanes 3 and 4) and VDR primary antibody
immunoprecipitated DNA (lanes 5 and 6).
doi:10.1371/journal.pgen.1000369.g003

Figure 4. Reporter gene analysis of DRB1 promoter VDRE. Raji B cells were transiently transfected with pGL3 luciferase constructs as indicated
together with pRL_TK to normalise luciferase activity. Open bars indicate resting cells, grey shaded bars results following stimulation of transfected
cells with 1,25-dihydroxyvitamin D3. Mean+/2SD of three independent transient transfection experiments are shown, each performed in
quadruplicate.
doi:10.1371/journal.pgen.1000369.g004

HLA, MS, and Vitamin D

PLoS Genetics | www.plosgenetics.org 4 February 2009 | Volume 5 | Issue 2 | e1000369



origin of the HLA-DRB1*15 (DR51) haplotype [30] which displays

the strongest linkage disequilibrium among the MHC class II

haplotypes [31]. We note the association between this haplotype

and MS risk is characteristic of Northern European populations,

the ones most vulnerable to vitamin D deficiency [2].

EMSA experiments using recombinant proteins demonstrated

that in vitro VDR can bind specifically to the putative VDRE in

the proximal HLA-DRB1 promoter found on the HLA-DRB1*15

haplotype. ChIP data showed specific enrichment of the

region spanning the VDRE in VDR immunoprecipitated

samples relative to input and mock antibody controls, demon-

strating that the vitamin D receptor was recruited to this

haplotype in this ex vivo model system. Finally, transient

transfection and flow cytometric assays established that the

VDRE present in the HLA-DRB1 promoter can influence gene

expression and imparts 1,25-dihydroxyvitamin D3 sensitivity to

HLA-DRB1*15. The variant VDRE present on other, non-MS

associated HLA-DRB1 haplotypes was not responsive to 1,25-

dihydroxyvitamin D3.

A T cell repertoire with millions of specificities provides

surveillance against a multitude of foreign pathogens [32]. An

inherent danger in recognizing so many foreign proteins is the

potential to respond to self-proteins. To circumvent this problem

T cells are scrutinised for self-reactivity as they mature in the

thymus with deletion of those posing the greatest threat (central

deletion) [32]. One constraint on central deletion is the

requirement for the relevant autoantigen to be present in the

thymus. Whether or not these are expressed as proteins at levels

sufficient to induce T cell deletion is not clear. Given the results of

this study, variable expression of HLA-DRB1 could affect central

deletion of autoreactive T cells. It is plausible that a lack of vitamin

D in utero or early childhood can affect the expression of HLA-

DRB1 in the thymus, and impacting on central deletion. For MS,

in HLA-DRB1*15 bearing individuals, a lack of vitamin D during

early life could allow auto reactive T cells to escape thymic

deletion and thus increase autoimmune disease risk. Indeed it has

been shown that antigen presentation in the thymus of VDR

knock-out mice is impaired [33]. However the mechanism for a

HLA- vitamin D interaction remains unclear as is the timing and

tissue in which such interactions might occur. A major selective

pressure on skin pigmentation is thought to have been vitamin D

deficiency with progressively lighter skin pigmentation at increas-

ing distance from the equator related to variation in intensity of

ultraviolet radiation with latitude [34]. The presence of a VDRE

specific to HLA-DRB1*15- bearing haplotypes, present at high

allele frequencies among Northern Europeans, suggests a possible

role for vitamin D in selection at this locus. The intriguing

possibility that vitamin D responsiveness rather than any antigen-

specificity determines the increased MS risk of the HLA-DRB1*15

haplotype warrants consideration and can be tested in the

infrequent haplotypes bearing the VDRE on other non-HLA-

DRB1*15 haplotypes.

In summary, we have identified and functionally characterised a

vitamin D response element (VDRE) in the HLA-DRB1 promoter

region. These studies imply direct interactions between HLA-

DRB1, the main susceptibility locus for MS, and vitamin D, a

strong candidate for mediating the environmental effect. This

study provides more direct support for the already strong

epidemiological evidence implicating sunlight and vitamin D in

the determination of MS risk. Given that a high frequency of

vitamin D insufficiency in the general population has been

observed [35], our data support the case for supplementation

during critical time periods to reduce the prevalence of this

devastating disease.

Materials and Methods

Subjects, HLA-DRB1 Genotyping, Sequencing
All participants in the study were ascertained through the

ongoing Canadian Collaborative Project on the Genetic Suscep-

tibility to MS (CCPGSMS) [36]. Subject ascertainment, genotyp-

ing and sequencing has been previously described [9,10,37].

Ethical Statement
Each participating clinic in the CCPGSMS obtained ethical

approval from the relevant institutional review board, and the

entire project was reviewed and approved by the University of

British Columbia and the University of Western Ontario.

EMSA
EMSAs were performed as previously described [38]. The

VDRE probe comprised of the annealed sense and antisense

strands of the nucleotide sequence agctGTGGGTG-

GAGGGGTTCATAG, the EGR probe agctAAATCCCCGCC

CCCGCGATGGA and the VDRE variant probe agctGTGG

GTGGAGAGGGGTCATAG. Full length recombinant purified

VDR and recombinant purified RXR beta were purchased from

Invitrogen, and polyclonal VDR antibody from Affinity Bior-

eagents. Radioactivity was quantitated with the Packard Cyclone

phosphorimager, and analyzed with Optiquant (Perkin Elmer Life

Sciences). Values were compared using the Chi square test.

Chromatin Immunoprecipitation
The lymphoblastoid cell line PGF was cultured in RPMI-1640

medium supplemented with 10% fetal bovine serum, 0.2 mM L-

glutamine at 37uC in 5% humidified CO2. 606106 cells were

harvested unstimulated or after stimulation with 0.1 uM calcitriol

(Sigma). Cells were crosslinked using a 1% formaldehyde buffer for

15 minutes at room temperature, quenched with glycine and

chromatin prepared as previously described [39]. Chromatin was

sheared by sonication in the presence of 212–300 microns glass

beads (Sigma) at 4uC using a double step microtip attached to a

Branson 450 Sonifier with coupler (Branson) in 30 second bursts

(six pulses at 40%) with the samples cooled on ice for 1 minute

between pulses. Sonicated chromatin was then processed and

subject to immunoprecipitation as previously described [39] using

magnetic ‘Dynabeads M-280’ (Dynal) precoated with anti rabbit

IgG to which the primary antibody VDR was bound (Affinity

Bioreagents). We followed the buffer used for immunoprecipita-

tion and subsequent washes as described [40]. Following reversal

of crosslinks, RNase A and Proteinase K digestion, DNA was

extracted using phenol-chloroform and amplified by PCR with

separation on a 2.0% agarose gel. The primers used for PCR were:

forward- GCAACTGGTTCAAACCTTCC and reverse-

GTCCCCAGACAAAGCCAGT. Cycling conditions were: 95uC
for 10 minutes; a touchdown of 14 cycles (95uC for 30 seconds;

61uC with 20.5uC per cycle, for 30 seconds; 72uC for 30 seconds);

35 cycles of 95uC for 30 seconds, 53.5uC for 30 seconds, 72uC for

30 seconds; 72uC for 7 minutes.

Cell Transfection and Luciferase Reporter Gene Assay
The plasmids were constructed by inserting the promoter region

(2181 to +53) of the human HLA-DRB1 gene (pGL3_DRB1prom

with the VDRE sequence (chr6:32,665,500–32,665,760),

pGL3_DRB1prom_del with the VDRE sequence deleted

(chr6:32,665,500–32,665,559 combined with chr6:32,665,575–

32,665,760)) into the pGL3 reporter plasmid. Two independent

plasmid preparations were used in transient transfection experi-

ments for each construct.

HLA, MS, and Vitamin D
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Raji B cells were cultured in RPMI-1640 medium supplement-

ed with 10% fetal bovine serum, 0.2 mM L-glutamine at 37uC in

5% humidified CO2. Lipofectamine-LTX and PLUS reagent

(Invitrogen) were used for transient transfection of expression

constructs, following the manufacturer’s protocol. pRL_TK was

co-transfected to normalize for transfection efficiency. When

indicated, cells were stimulated with 0.1 uM calcitriol (Sigma) for

24 hours. Cells were harvested after 24 hours and lysed in 500 ul

of 16 lysis buffer (Promega) and analyzed using the Dual-

Luciferase reporter assay kit (Promega) and a Turner luminometer

model 20 (Promega) following the manufacturer’s protocol. Paired

t-tests were used to compare expression values. Each transfection

was carried out 12 times in total.

Flow Cytometry
The lymphoblastoid cell lines PGF (International Histocompat-

ibility Workshop number IHW09318) and DBB (IHW09052) were

cultured in RPMI-1640 medium supplemented with 10% fetal

bovine serum, 0.2 mM L-glutamine at 37uC in 5% humidified

CO2. 16106 cells were harvested unstimulated or 24 hours after

stimulation with 0.1 uM calcitriol (Sigma) in three biological

replicates. Cells were stained with either a FITC conjugated

monoclonal anti-human HLA-DR antibody (Sigma, F1902) or a

FITC conjugated isotype control antibody (Sigma, F6522) for

30 minutes at room temp, then washed with 2% BSA in PBS and

re-suspended in 1 mL of 2% paraformaldehyde. Cells were

analysed using CyAn flow cytometer (Dako).
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