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represses mitochondrial electron transport
gene expression and promotes flowering in
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Abstract

Background: Recently we showed that de novo expression of a turtle riboflavin-binding protein (RfBP) in transgenic
Arabidopsis increased H2O2 concentrations inside leaf cells, enhanced the expression of floral regulatory gene FD and
floral meristem identity gene AP1 at the shoot apex, and induced early flowering. Here we report that RfBP-induced
H2O2 presumably results from electron leakage at the mitochondrial electron transport chain (METC) and this source of
H2O2 contributes to the early flowering phenotype.

Results: While enhanced expression of FD and AP1 at the shoot apex was correlated with early flowering, the foliar
expression of 13 of 19 METC genes was repressed in RfBP-expressing (RfBP+) plants. Inside RfBP+ leaf cells, cytosolic H2O2

concentrations were increased possibly through electron leakage because similar responses were also induced by a
known inducer of electron leakage from METC. Early flowering no longer occurred when the repression on METC genes
was eliminated by RfBP gene silencing, which restored RfBP+ to wild type in levels of FD and AP1 expression, H2O2, and
flavins. Flowering was delayed by the external riboflavin application, which brought gene expression and flavins back to
the steady-state levels but only caused 55% reduction of H2O2 concentrations in RfBP+ plants. RfBP-repressed METC gene
expression remedied the cytosolic H2O2 diminution by genetic disruption of transcription factor NFXLl and compensated
for compromises in FD and AP1 expression and flowering time. By contrast, RfBP resembled a peroxisomal catalase
mutation, which augments the cytosolic H2O2, to enhance FD and AP1 expression and induce early flowering.

Conclusions: RfBP-repressed METC gene expression potentially causes electron leakage as one of cellular sources for the
generation of H2O2 with the promoting effect on flowering. The repressive effect on METC gene expression is not the
only way by which RfBP induces H2O2 and currently unappreciated factors may also function under RfBP+ background.

Background

Riboflavin (vitamin B2) is the precursor of flavin mononu-

cleotide (FMN) and flavin adenine dinucleotide (FAD), es-

sential cofactors for many metabolic enzymes involved in

multiple cellular processes, such as mitochondrial electron

transport chain (METC) and cellular redox regulation in

other cellular compartments [1-3]. Flavin-mediated redox

is critical for the generation of reactive oxygen species

(ROS) of different types [4-6], such as superoxide radical

O2
•– [7,8] and hydrogen peroxide H2O2 [4,9]. H2O2 is a

more stable ROS form, than O2
•– for example, and thus

frequently functions as a cellular signal to regulate mul-

tiple aspects of plant development [10,11].

ROS can be generated by a number of redox processes

outside and inside plant cells [9,11-13]. An intracellular

source of ROS is redox-associated electron-carrier pro-

tein complexes I to IV in METC [14]. If METC func-

tions normally, an electron tetrad (four electrons as a

group) in each transport round is transferred through

the carrier-protein complexes to a single O2 accepter,

which reduces O2 to form H2O with protons from
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coenzymes NADH2 (nicotinamide adenine dinucleotide

carrying two protons) and FADH2 [15-17]. Under METC

dysfunction, single electrons are transferred to O2 to

generate O2
•–, which is further converted to H2O2

[18-21]. This process is known as electron leakage and

increases cytosolic concentrations of H2O2 through sub-

cellular trafficking [11,13]. Electron leakage and H2O2

generation may take place in protein complexes I, II,

and III in living organisms including plants [22-25].

Electron leakage and H2O2 generation subsequent to

complex I inhibition by rotenone, a ketonic chemical

compound that interferes with METC, have been well

demonstrated in animals [20,21]. Because FMN/FMNH2

and FAD/FADH2 serve as redox centers in complexes I

and II, respectively, flavins are likely to play a pivotal

role in electron leakage and H2O2 generation from

METC [13,21,26].

In agreement with this notion, recently we demon-

strated that cell cytosolic H2O2 concentrations could be

altered by modulating concentrations of free flavins

(riboflavin, FMN, and FAD) in leaves of Arabidopsis

thaliana [13]. Flavin concentrations were modulated by

de novo expression of the turtle (Trionyx sinensis japoni-

cus) gene encoding riboflavin-binding protein (RfBP).

This protein contains a nitroxyl-terminal ligand-binding

domain, which is implicated in molecular interactions,

and a carboxyl-terminal phosphorylation domain, which

accommodates the riboflavin molecule [27-30]. In the

RfBP-expressing (RfBP+) Arabidopsis plants, RfBP local-

izes to chloroplasts and binds with riboflavin, resulting

in significant decreases of free flavin concentrations.

This change accompanies an elevation in the cytosolic

level of H2O2. All these RfBP-conferred responses can be

eliminated by nullifying RfBP production under RfBP+

background, and the RfBP gene silencing (RfBP−) Arabi-

dopsis lines resemble the wild-type (WT) plant in flavin

and H2O2 concentrations [13]. Thus, the alteration of fla-

vin content is an initial force for H2O2 generation in the

plant cytosol. Nevertheless, how altered flavin content in-

duces H2O2 generation was unclear.

H2O2 has been implicated in flowering time control

[31-35] by the photoperiod pathway, which comprises a

number of regulators [36,37]. An essential regulator, the

bZIP transcription factor FLOWERING LOCUS D (FD),

functions to activate the floral meristem identity (FMI)

gene APETALA1 (AP1), which marks the beginning of

floral organ formation at the shoot apex [38,39]. At the

shoot apex, FD and AP1 are coordinately expressed to

promote the growth of floral organ primordia [38,39].

The circadian clock is a central player of the photo-

period pathway [36], and H2O2 serves as an input signal

that affects the transcriptional output of the clock and

flowering time [35]. Flowering is promoted when the

cytosolic H2O2 level is increased, for example, by

enhanced activities of chloroplastic lipoxygenase and as-

corbate peroxidase in Arabidopsis [31,32].

In addition to increasing H2O2, downregulation of leaf

flavin content by RfBP also induces early flowering in rela-

tion to enhanced expression of floral promoting genes

[13,40]. Early flowering was a serendipitous phenomenon

[13] and was prudently characterized as a constant pheno-

type of RfBP+ plants [40]. This phenotype was eliminated

when leaf flavins were brought back by RfBP− to the

steady-state levels. RfBP-induced early flowering was cor-

related with enhanced foliar expression of floral promot-

ing photoperiod genes, but not related to genes in

vernalization, autonomous, and gibberellin pathways [40],

which provide flowering regulation mechanisms alternative

to the photoperiod [41-43]. RfBP-upregulated photoperiod

genes encode red/far red light receptor phytochrome

PHYA, blue light receptor cryptochromes CRY1 and CRY2,

circadian clock oscillator TIMING OF CAB EXPRES-

SION1 (TOC1), and putative zinc finger transcription fac-

tor CONSTANS (CO) proteins [40]. PHYA, CRY1, and

CRY2 serve as the entry of the clock and transmit the light

signal to the central oscillator, which deploys a TOC1-part-

nering transcriptional feedback loop to control day-night

rhythm of photoperiod gene expression [44-46] and the

production of CO as an output of the clock and an activa-

tor of the florigen gene FT in leaves [45,47]. Thus, RfBP-

induced early flowering is attributable to the photoperiod

pathway. RfBP-induced early flowering also correlates with

increased expression of FD and AP1 at the shoot apex [40],

suggesting the role of RfBP in concurrently enhancing the

expression of flowering-related genes assigned to photo-

period, floral regulation, and FMI categories. By contrast,

the expression of FT and photoperiod genes in leaves and

the expression of FD and AP1 in the shoot apex were no

longer enhanced when the RfBP gene was silenced, RfBP

protein production canceled, and flavin concentrations

were brought back to the steady-state levels [40], confirm-

ing the initial effects of RfBP modulation on the sequential

responses. These findings indicate that leaf flavin content

downregulation by RfBP induces early flowering coinci-

dently with increased content of cytosolic H2O2 and en-

hanced expression of genes that promote flowering

through the photoperiod pathway. However, causal rela-

tionships of these responses were unknown. Here, we focus

on a particular question: how is H2O2 induced to affect

flowering time under RfBP+ background?

In the plant cell, H2O2 can be generated by multiple

sources, such as peroxisomal redox [48,49], chloroplastic

metabolisms [31,32], transcriptional regulation related to

growth and development [50], and METC as well [11,13].

However, which of these sources is related to flowering

time control was unknown. In this study, we elucidate that

leaf flavin content downregulation by RfBP [13,40] induces

H2O2 generation presumably through electron leakage
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from METC and this source of H2O2 causes a promoting

effect on flowering in Arabidopsis.

Results
RfBP induces early flowering and expression of FD and

AP1 genes

Previously we tested WT, RfBP+, and RfBP− plants under

typical short days (8-hour light), atypical short days

(12 hours), typical long days (16 hours), or inductive photo-

period (plant shift from short days to long days ) [13,40].

To simplify experimental conditions in this study, we in-

vestigated those plants grown in typical long days and

under this condition we confirmed de novo expression of

the RfBP gene in RfBP+ and gene silencing in RfBP−. The

gene was highly expressed (Figure 1a) and a substantial

quantity of the RfBP protein was produced (Figure 1b) in

leaves of RfBP+ in contrast to the absence of gene expres-

sion and protein production in the WT plant. The gene

expression and protein production were markedly reduced

in the RfBP− plant (Figure 1a,b). Flowering was promoted

in RfBP+ compared to WT or RfBP− plants (Figure 1c).

WT plants needed 24 days to flower with 20 rosette leaves

(Figure 1d). RfBP− resembled WT in flowering time and

rosette leaf number while RFBP+ flowered 6 days earlier

with a reduction of 11 rosette leaves than WT (Figure 1d).

Then, we studied the floral initiation marker gene AP1

Figure 1 De novo expression of the turtle RfBP gene and its effects on flowering and expression of FD and AP1 genes in Arabidopsis. WT,
RfBP+, and RfBP− plants were grown in long days. Northern blotting (a) and electrophoresis (b) analyses were performed with RNAs and proteins,
respectively, isolated from the two youngest expanded leaves of 12-day-old plants. Gel staining with in (b) verified consistent loading of proteins.
Three-week-old plants were photographed (c). Days to flower and rosette leaf number were scored as mean values ± standard deviations from seven
experimental repeats each containing 50 plants (d). On bar graphs, different letters shown in regular and italic fonts indicate significant differences by
analysis of variance using Fisher’s least significant difference test and Tukey-Kramer’s test, respectively (n = 7; P < 0.01). FD and AP1 were analyzed by
Northern blotting with RNAs from shoot apices of 12-day-old plants (e). In (a) and (e), the constitutively expressed EF1α gene was used as a reference.
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and its regulator gene FD because enhanced expression of

both genes well reflects the molecular basis of RfBP-

induced early flowering [40]. We found that FD and AP1

displayed higher expression levels in RfBP+ than in WT

and RfBP− plants on 12 days after stratification, 6 days be-

fore RfBP+ flowering in typical long days (Figure 1e).

Therefore, it is pertinent that we further explore the mo-

lecular mechanism that underpins RfBP-induced early

flowering under typical long day condition.

Flavin downregulation by RfBP represses expression of

METC genes

Based on the RfBP-regulated transcriptome profiling by

the Affymetrix Arabidopsis genome ATH1 array (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18417),

expression levels of 13 of 19 METC genes were reduced 2

to 4 times in RfBP+ compared to the WT plant (Figure 2).

The rest six genes encode: (1) NADH dehydrogenase (ubi-

quinone, CoQ) Fe-S protein; (2) iron-sulfur protein A; (3)

iron-sulfur protein B; (4) iron-sulfur protein C; (5) flavo-

protein and (6) alternative oxidase. Proteins encoded by

RfBP-repressed METC genes in order are: (1) NADH-

ubiquinone (NADHU) oxidoreductase-related,; (2) NADHU

oxidoreductase-related; (3) NADHU oxidoreductase B18

subunit; (4) NADHU oxidoreductase 19-kD subunit

(NDUFA8) family protein; (5) pridine nucleotide-

disulphide oxidoreductase family protein; (6) ubiquinol-

cytochrome (Cyt) c reductase (UCCR) complex 7.8-kD

protein, putative; (7) putative UCCR complex CoQ-

biding protein; (8) putative UCCR complex CoQ-biding

protein; (9) Cyt c oxidase (UCCO) copper chaperone

family protein; (10) UCCO subunit 6b, putative; (11)

mitochondrial ATP synthase g subunit family protein;

(12) mitochondrial ATP synthase g subunit family pro-

tein; and (13) mitochondrial ATP synthase episilon

chain. In this list, the last three proteins function in the

production of energy and the first 10 ones are all re-

quired for electron transport, initiated by NADH in

complex I and finished by Cty in complex IV [16]

(Figure 2).

The array result was confirmed by quantitative real-time

RT-PCR analyses of gene expression in leaves. Based on

ratios of transcript quantities to the constitutively

expressed EF1α gene used as a reference, expression levels

of the 13 METC genes were significantly (P < 0.01) lower

in RfBP+ than in WT plants (Figure 3). The difference was

more explicitly recognized by presentation of RfBP+ to

WT ratios of gene transcript amounts (Additional file 1:

Figure S1). Quantitative analyses did not detect evident re-

pression of METC gene expression in RfBP− plants. In-

stead, the 13 METC genes were expressed similarly in

RfBP− and WT leaves (Figure 3). This, repression of

METC gene expression was caused by de novo expression

of RfBP.

Figure 2 The effect of RfBP on METC gene expression. The MapMan program [85] was employed to analyze previously obtained data (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18417), show scaled reciprocal values of ratios of gene expression levels between RfBP+ and
WT plants, and locate RfBP-affected genes with colored square patterns and other genes with grey dots in METC. Electron-carrier protein com-
plexes and redox centers are indicated. In the MapMan map, RfBP-repressed genes are digitally coded (1–13) and the other genes are numbered
with superscript commas. RfBP-repressed METC gene numbers 1–13 were used constantly in this figure and Figures 4, 5, and 10. See text for
products encoded by METC genes.
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We analyzed the relationship between the dual roles of

RfBP in reducing METC gene expression and flavin con-

centrations. The 13 RfBP-repressed genes function in

electron-carrier protein complexes I to IV while I and II

employ FMN/FMNH2 and FAD/FADH2 as redox cen-

ters, respectively [14]. Thus, the suppression of METC

gene expression might be attributed to flavin content re-

duction by RfBP. This hypothesis was validated by the

pharmacological study in which plants were fed with an

aqueous riboflavin solution or treated with water in the

experimental control group. The 13 METC genes were

expressed to greater extents in all plants following ribo-

flavin feeding treatment compared to control, and in

riboflavin-fed RfBP+ plants all of gene transcripts were

retrieved approximately to the levels in water-treated

WT plants (Figure 4). Meanwhile, the intrinsic flavin

concentrations were increased in all plants following

riboflavin feeding treatment, and flavin levels in

riboflavin-fed RfBP+ plants were retrieved approximately

to the steady-state level in water-treated WT plants

(Figure 5a). RfBP− performed similarly to WT in

the riboflavin-feeding effect on flavin concentrations

(Figure 5a). Based on statistical analyses, differences be-

tween RfBP+ and WT or RfBP− plants in METC gene

expression levels and the effects of riboflavin feeding

treatment were constant and significant (P <0.01) for

every gene (Figures 4 and 5a). Therefore, the suppres-

sion of METC gene expression is attributable to flavin

content downregulation by RfBP.

Repressed METC gene expression accompanies H2O2

generation presumably through electron leakage

As stated above, the repression of METC gene expression

might impair METC functions and cause H2O2 generation

through electron leakage. Electrons leak mainly from

electron-carrier protein complex I or III and occasionally

from complex II [24,25,51]. Because the redox center is

FMN/FMNH2 in complex I and FAD/FADH2 in complex

II ([14]; Figure 2), flavin content reduction by RfBP is

likely to impair functions of both complexes and induce

electron leakage. To verify this hypothesis, we tested H2O2

in leaves of WT, RfBP+, and RfBP− plants following ribofla-

vin feeding treatment since the treatment eliminated the

inhibitive effect of RfBP on METC genes (Figure 4) and re-

stores RfBP+ to WT in flowering time [40].

Fluorescent H2O2 probes Amplex red (AR) and

Amplex ultra red (AUR) were employed to visualize

H2O2 in Arabidopsis cells. In reaction with H2O2, AR

and AUR are converted into resorufin and a resorufin

analog, respectively, which emit strong crimson fluores-

cence [9]. AR can penetrate the plasma membrane and

thus probes H2O2 in the cytosol, whereas, AUR can not

penetrate the plasma membrane and thus probes H2O2

present in the apoplastic space [9]. Apoplastic and cyto-

solic H2O2 signals reported by AUR and AR, respect-

ively, are shown in Figure 5b. AUR staining signals were

weak and similar in all plants irrespectively of treatment

with riboflavin or with water as a control, suggesting low

steady-state levels of the apoplastic H2O2 that was un-

affected by RfBP or riboflavin. By contrast, AR staining

signals were stronger in all plants treated with water

compared to riboflavin, suggesting that riboflavin feeding

treatment decreased the quantity of cytosolic H2O2. Es-

pecially, RfBP+ plants displayed the strongest signal with

water treatment but the signal was highly reduced by

riboflavin feeding treatment. Thus, RfBP-induced H2O2

mainly accumulates in the cytosol and can be decreased

by feeding plants with riboflavin.

Figure 3 Relative levels of METC gene expression in WT, RfBP+, and RfBP− plants. Water and aqueous solutions of riboflavin and rotenone were
used separately to immerse seeds and treat 10-day-old plants by spraying over plant tops. Gene expression in the two youngest expanded leaves of
12-day-old plants was analyzed by real-time RT-PCR using EF1α as a reference gene. Data shown are average values ± standard deviations of results from
six experimental repeats each containing 15 individuals of 12-day-old plants. Different letters in regular and italic fonts indicate significant differences by
analysis of variance using Fisher’s least significant difference test and Tukey-Kramer’s test, respectively (n = 6; P< 0.01), for every of 13 data pairs shown
within the range of bidirectional arrowhead line.
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Leaf H2O2 concentrations were measured. With water

treatment, H2O2 levels were approximately 1.6-fold

higher in RfBP+ than in WT or RfBP− (Figure 5c). Ribo-

flavin feeding treatment significantly (P < 0.01) decreased

H2O2 concentrations in all plants. Unexpectedly, H2O2

concentrations in riboflavin-fed RfBP+ plants were re-

duced only by 55%, from 831 to 372 ng/mg fresh leaf

weight, still significantly (P < 0.01) lower than in water-

treated WT (573 ng/mg) or RfBP− (530 ng/mg) plants

(Figure 5c). In all cases, however, H2O2 and flavin levels

(Figure 5a,b) were correlated with expression extents of

METC genes (Figure 4). These analyses are in agreement

with H2O2 imaging assays and both lines of evidence

suggest the possibility that increased cytosolic H2O2 re-

sults from electron leakage in flavin-dependent METC.

This notion was supported indirectly by analyses of

METC gene expression and H2O2 concentrations in

plants treated with rotenone, a ketonic chemical that in-

hibits electron-carrier protein complex I and induces

electron leakage from this complex [18,19]. Rotenone

was dissolved in ethanol and used as a water-diluted so-

lution containing 0.1% ethanol to treat plants, and plants

were treated with 0.1% ethanol in the experimental con-

trol group. Equivalent quantities of the 13 transcripts

were detected in rotenone-treated and control plants

irrespectively of genotype, WT or RfBP+ (Figure 6;

Additional file 2: Figure S2). In RfBP+, however, rote-

none treatment further reduced gene expression levels

on the basis of RfBP-caused repression (Figure 6). This

analysis indicated that rotenone and RfBP had a similar

effect on the expression of METC genes. In contrast to

the inhibitory effect on METC gene expression, rote-

none treatment increased H2O2 concentrations in all

plants (Figure 6). H2O2 concentrations in rotenone-

treated WT and RfBP− plants were elevated approxi-

mately to 90% of that in water-treated RfBP+ plants,

indicating the similar function of rotenone and RfBP.

Moreover, rotenone appeared to synergize the role of

RfBP in increasing H2O2 concentrations as H2O2 in

RfBP+ was near 50% increased by rotenone compared to

control. The similar effects of rotenone and RfBP on

METC gene expression and H2O2 concentrations

(Figures 3, 4, 5 and 6) suggest that RfBP induces H2O2

generation possibly through electron leakage.

Figure 4 Expression levels of METC genes in riboflavin-fed and water-treated WT, RfBP+, and RfBP− plants. Water or an aqueous riboflavin
solution was used to immerse seeds and treat 10-day-old plants by spraying over plant tops. Gene expression in the two youngest expanded leaves of
12-day-old plants was analyzed by real-time RT-PCR using EF1α as a reference gene. Ratios of transcript quantities between the tested METC genes
and EF1α were quantified as mean values ± standard deviations from six experimental repeats each containing 15 plants. On bar graphs, different
letters in regular and italic fonts indicate significant differences by analysis of variance using Fisher’s least significant difference test and Tukey-Kramer’s
test, respectively (n = 6; P < 0.01).
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RfBP-induced H2O2 contributes to early flowering

All plants flowered later with more rosette leaves when

H2O2 concentrations were decreased by riboflavin feed-

ing treatment compared to treatment with water in con-

trol (Figure 7a). The delayed flowering phenotype was

coincident with decreased expression of the FD and

AP1 genes in shoot apices of plants fed with riboflavin

(Figure 7b), which increases expression levels of METC

genes in all plants and especially eliminate the inhibi-

tory effect of RfBP on METC gene expression in RfBP+

(Figure 4). In RfBP+, riboflavin feeding treatment re-

trieved leaf flavins (Figure 5a), the expression of METC

genes (Figure 4), FD and AP1 genes (Figure 7b) to ap-

proximations of WT levels, and decreased H2O2 con-

centrations but did not fully cancel the RfBP-induced

quantity (Figure 5c). In this case, RfBP+ no longer dis-

played the early flowering phenotype; instead, they flow-

ered approximately as WT or RfBP− plants (Figure 7a).

These analyses indicate that RfBP-induced H2O2 con-

tributes to the early flowering phenotype in correlation

with enhanced expression of FD and AP1 genes in the

shoot apex.

The extrinsic application of H2O2 promotes flowering

To confirm the promoting effect of H2O2 on flowering,

we performed pharmacological studies in which plants

were treated with H2O2 only or in combination with

H2O2 scavenger catalase. Both compounds were used in

aqueous solutions to immerse seeds and treat 10-day-old

plants grown on agar medium. We first treated WT

Figure 5 Intrinsic flavins and H2O2 in riboflavin-fed and water-treated plants. Water or an aqueous solution of riboflavin was used to
immerse seeds and treat 10-day-old plants by spraying over plant tops. Analyses for flavin concentrations (a), subcellular H2O2 distribution (b),
and H2O2 concentrations (c) were performed on the two youngest leaves of 12-day-old plants. Quantitative data shown are average values ±
standard deviations based on three experimental repeats each containing 15 plants. On bar graphs, different letters in regular and italic fonts indi-
cate significant differences by analysis of variance using Fisher’s least significant difference test and Tukey-Kramer’s test, respectively
(n = 3; P < 0.01).
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seeds and plants with a range of H2O2 concentrations and

two days later we found that 4 mM H2O2 well enhanced the

expression of FD and AP1 in shoot apices (Figure 8a) and

increased the intrinsic level of H2O2 in leaves (Figure 8b).

We further found that 4 mM H2O2 was effective to induce

early flowering and reduce rosette leaf number (Figure 8c,d).

However, H2O2 treatment did not cause evident changes in

expression levels of METC genes (Additional file 3:

Figure S4). Then, we treated seeds and plants with water in

control and with 4 mM H2O2 or a mixture of 4 mM H2O2

plus5 U/ml catalase. We found significant (P < 0.01) in-

creases in the intrinsic H2O2 content (Figure 9a) and en-

hancements of FD and AP1 expression (Figure 9b), and we

also observed the early flowering phenotype (Figure 9c,d), in

all plants treated with H2O2 compared to water. However,

these effects were removed by the presence of catalase in

the H2O2 treatment (Figure 9a-d). Thus, the extrinsically ap-

plied H2O2 caused a promoting effect on flowering. More

precocious flowering and greater increases in the intrinsic

H2O2 and in FD and AP1 expression levels were observed

in RfBP+ compared to WTand RfBP− plants under the same

treatment conditions (Figure 9a-d). Presumably, the extrinsic

(artificially applied) and intrinsic (RfBP-induced) H2O2 co-

operates to promote flowering and enhance FD and AP1 ex-

pression at the shoot apex.

H2O2 from different sources contributes to the similar

effect on flowering

To elucidate whether H2O2 from different cellular sources

contributes to the similar effect on flowering, we determined

Figure 6 Relative levels of METC gene expression in rotenone-treated and control plants. Ten-day-old plants were treated with an aqueous solution
containing 40 μM rotenone and 0.1% ethanol or treated with 0.1% ethanol in control. Two days later, gene expression in the two youngest expanded leaves
was analyzed by real-time RT-PCR using EF1α as a reference gene. Data shown are average values ± standard deviations of results from six experimental
repeats each containing 15 plants. Different letters in regular and italic fonts indicate significant differences by analysis of variance using Fisher’s least significant
difference test and Tukey-Kramer’s test, respectively (n = 6; P< 0.01), for every of 13 data pairs shown in both bar graph panels and within the range indicated
by bidirectional arrowhead grey line.

Figure 7 The effects of riboflavin feeding treatment on flowering

and expression of FD and AP1. An aqueous solution of riboflavin or
water was used to immerse seeds and treat 10-day-old plants by spraying
over plant tops. In (a), flowering time and rosette leaf number were
scored. In (b), relative levels of FD and AP1 expression in shoot apices of
12-day-old plants were quantified by real-time RT-PCR using the
constitutively expressed EF1α gene as a reference. Data shown are average
values ± standard deviations based on three experimental repeats each
containing 15 plants. On bar graphs, different letters in regular and italic

fonts indicate significant differences by analysis of variance using Fisher’s
least significant difference test and Tukey-Kramer’s test, respectively
(n = 3; P< 0.01).
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H2O2 concentrations, FD and AP1 gene expression, and

flowering time of Arabidopsis cat2 and nfxl1 mutants in

comparison with WT and RfBP+ plants. Due to a mutation

in peroxisomal enzyme catalase 2 (Cat2), the cat2 mutant

loses 80% of catalase activity and produces a higher level of

the cytosolic H2O2 compared to the WT plant [48,49]. This

was confirmed in this study by measuring leaf H2O2

concentrations, being 43% higher in cat2 (536 ng/mg fresh

leaves) than in WT (942 ng/mg) [Additional file 4: Figure

S5a]. Compared to WT, cat2 displayed higher levels of FD

and AP1 expression and was 10 days earlier to flower

(Additional file 4: Figure S5b,c). As an indirect result of dis-

ruption in the transcription factor NFXL1, the nfxl1 mutant

incurs a 20% decrease of the cytosolic H2O2 in relative to

the steady-state level [50]. Compared to WT, nfxl1 had

lower levels of cytosolic H2O2 and FD and AP1 expression

and displayed the late flowering phenotype leaves

(Additional file 4: Figure S5b,c). These analyses suggest that

H2O2 from the different sources, Cat2 or NFXL1 defection

and RfBP as well, functions similarly to affect flowering time

and the expression of FD and AP1.

RfBP compensates for flowering repression in the nfxl1

mutant

Because RfBP+ and nfxl1 are opposite and likely to coun-

teract the role in H2O2 content alterations and the effect

on flowering, both plants were crossed and the RfBP+

nfxl1 hybrid was generated for further analyses. METC

genes were expressed similarly in RfBP+ nfxl1 and RfBP+

plants (Figure 10a), suggesting that the nfxl1 mutation

was unrelated to METC gene expression. However,

the hybrid appeared to be intermediate of both parents

in the cytosolic H2O2 content (Figure 10b), levels of

FD and AP1 expression (Figure 10c), flowering time

(Figure 10d), and rosette leaf number (Figure 10e).

Clearly, RfBP+ compensates for flowering repression in

the nfxl1 mutant.

Discussion

This study was attempted to mainly elucidate how H2O2

is induced by RfBP to affect flowering time on the basis of

our recent evidence that early flowering is a constant

phenotype conferred by de novo expression of the turtle

RfBP gene and associated with a constant increase of leaf

H2O2 concentrations and timely enhanced expression of

FD and AP1 at the shoot apex in RfBP+ Arabidopsis plants

under short days, long days, or inductive photoperiod

[40]. Under these conditions, enhanced expression of FD

and AP1 is essential for floral organ formation at the shoot

apex [38,39,52] and well reflects the molecular basis of

RfBP-induced early flowering [40]. In this study, we simpli-

fied the experiment system by growing plants only in long

days and under this condition we correlated the early flow-

ering phenotype with enhanced expression of FD and AP1,

floral regulatory and FMI genes, respectively (Figure 1).

Data obtained from multiple experimental repetitions

demonstrated that: (i) RfBP represses the expression of 13

of 19 METC genes (Figures 2, 3 and 4; Additional file 1:

Figures S1 and Additional file 2: Figure S2) and induces

H2O2 probably results from electron leakage at METC

(Figures 5 and 6; Additional file 3: Figure S4 and

Additional file 5: Figure S3); (ii) H2O2 promotes flowering

and enhances the expression of FD and AP1 (Figures 7, 8

and 9); and (iii) the potential electron leakage appears to be

one of biochemical sources for the generation of H2O2 with

the promoting effect on flowering (Figure 10; Additional file

4: Figure S5). Previously we showed that the foreign RfBP

protein is capable of modulating the intrinsic content of

free flavins with physiological and pathological conse-

quences. Inside the RfBP+ cell, RfBP binds with riboflavin,

reduces quantities of free flavins in leaves, and concomi-

tantly elevates concentrations of the cytosolic H2O2, which

acts in turn to regulate defense responses to a bacterial

pathogen [13]. Therefore, flavin content downregulation by

the foreign RfBP protein has developmental and defensive

consequences.

Figure 8 The effects of plant treatment with H2O2 on flowering and

related responses. Aqueous solutions of H2O2 at the indicated
concentrations were used separately to immerse seeds of wild-type plants
and treat seven-day-old plants grown on a medium by adding every
H2O2 solution into the medium in correspondingly labeled bottles. Two
days later, FD and AP1 expression at the shoot apex was analyzed by
Northern blotting analyses using EF1α gene as a reference (a); H2O2

concentrations were measured by spectrometry (b). Subsequently,
flowering time (c) and rosette leaf number (d) were scored. Quantitative
data shown are average values ± standard deviations based on three
experimental repeats each containing 30 plants. On bar graphs, different
letters in regular and italic fonts indicate significant differences by
analysis of variance using Fisher’s least significant difference test and
Tukey-Kramer’s test, respectively (n = 3; P < 0.01).
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In recent 10 years, genetic modification of the ribofla-

vin biosynthesis pathway alters some aspects of plant de-

velopment, such as leaf senescence regulated by the

COS1 protein characteristic of lumazine synthase, which

catalyzes the penultimate step of the riboflavin biosyn-

thesis pathway [53] and is an essential component of jas-

monic acid signaling pathway [54]. In plants, moreover,

externally applied riboflavin induces plant growth en-

hancement by activating ethylene signaling pathway [55].

Externally applied riboflavin also induces resistance to

pathogens in a manner of salicylic acid dependence or

independence according to the type of pathogens

[26,41]. These findings suggest that changes in riboflavin

content cause physiological and pathological responses

by affecting phytohormone signaling pathways. Based on

our studies detailed here and reported earlier [40], novel

functions of flavins have been extended from hormone

signaling to flowering time control.

Early flowering associates with spontaneously repressed

expression of 13 of 19 METC genes (Figures 2, 3 and 4;

Additional file 1: Figure S1 and Additional file 2: Figure S2)

and concomitantly elevated cytosolic H2O2 concentrations

Figure 9 The effects of plant treatment with H2O2 or both H2O2 and catalase on flowering and related responses. Water and aqueous
solutions of the indicated compounds were used separately to immerse seeds of the indicated plants and treat seven-day-old plants grown on a
medium by adding every H2O2 solution into the medium in correspondingly labeled bottles. Two days later, H2O2 concentrations were measured
by spectrometry (a), and the expression of FD and AP1 at the shoot apex was analyzed by real-time RT-PCR using the EF1α as a reference gene
(b). Flowering time was scored (c), and plants were photographed after four weeks of growth (d). Quantitative data shown are average values ±
standard deviations based on three experimental repeats each containing 50 plants. On bar graphs, different letters in regular and italic fonts
indicate significant differences by analysis of variance using Fisher’s least significant difference test and Tukey-Kramer’s test, respectively
(n = 3; P < 0.01).
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(Figure 5) in RfBP+ plants. The repression on METC genes

is attributable to decreased concentrations of free flavins in

leaves and can be removed either by RfBP− or by riboflavin

feeding treatment under RfBP+ background (Figures 3

and 4; Additional file 1: Figure S1 and Additional file 2:

Figure S2). Based on the roles of RfBP− and riboflavin feed-

ing in restoring RfBP+ to WT in flavin content and flower-

ing time, as well as different extents by which riboflavin

feeding and RfBP increase H2O2 concentrations (Figures 5

and 7), increased H2O2 is at least partially caused by RfBP-

reduced flavin content and contributes to the early flowering

phenotype. On one hand, direct evidence for the promoting

effect of H2O2 on flowering was found in the pharmaco-

logical analysis with H2O2 and catalase (Figures 8 and 9).

On the other hand, the coincident decreases in levels of

three flavins (Figure 5) conform to dynamics of flavin form

conversions. Riboflavin and FMN conversion is reversible

[56], while FMN to FAD conversion is irreversible [57].

Accumulation of a particular flavin is concentration-

dependent, so that a smaller amount of free riboflavin or

FMN results in a smaller amount of FMN or FAD [1].

Therefore, downregulation of free riboflavin is an initial

cause of coordinate decreases of free FMN and FAD con-

centrations and is also a cause of the subsequent effect on

flowering time under RfBP+ background. In RfBP+, however,

although riboflavin feeding treatment only increases H2O2

but does not retrieve it to the WT level (Figure 5), the treat-

ment enables RfBP+ to resemble WT in flavin content, the

expression of METC, FAD, and AP1 genes, and flowering

time in particular (Figures 4 and 7). This discrepancy indi-

cates that downregulating flavin content is not the only

mechanism by which RfBP induces H2O2 and early flower-

ing. Alternatively, the extrinsically applied riboflavin is insuf-

ficiently effective as the intrinsically produced flavins to

affect cellular redox. At this point, we are unable to pertin-

ently prospect the relationship between flavin-mediated

redox and flowering time control based on the riboflavin-

feeding experiment.

Regarding to the riboflavin-feeding effect, a question is

how the extrinsically applied riboflavin increases the intrin-

sic flavin concentrations. In plants, riboflavin synthesis, its

conversion to FMN, and FMN conversion to FAD are

Figure 10 The antagonistic effects of RfBP and NFXL1 gene deletion (nfxl1) on flowering and related responses. Shown here are
measurements on METC gene expression in leaves (a), leaf H2O2 concentrations (b), FD and AP1 expression at the shoot apex (c), flowering time
(d), rosette leaf number (e). The antagonistic effects were analyzed on WT, RfBP+, nfxl1 mutant, and RfBP+ nfxl1 hybrid plants. Gene expression
was quantified by real-time RT-PCR using EF1α as a reference gene and H2O2 was measured by spectrometry, and both analyses were performed
on 12-day-old plants. Data shown are mean values ± standard deviations based on three experimental repeats each containing 30 plants. On bar
graphs, different letters in regular and italic fonts indicate significant differences by analysis of variance using Fisher’s least significant difference
test and Tukey-Kramer’s test, respectively (n = 3; P < 0.01).
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predicted to occur in plastids [56,57]. With the cell growth,

plastids differentiate into chloroplasts [58], in which RfBP is

localized [13]. Flavins are transported by subcellular traf-

ficking and function in processes such as METC [59]. In

animals, RfBP functions to mediate the cellular transloca-

tion of riboflavin [60,61]. Animals absorb riboflavin directly

from dietary sources [62] or produce this vitamin through

conversions from ingested FMN and FAD [63]. In both

cases, RfBP acts to redistribute riboflavin between cellular

compartments, between cells, and from one organ to an-

other [30,60]. A similar trafficking mechanism may be re-

sponsible for transport of the extrinsic riboflavin into plant

cells but this hypothesis remains to be examined.

Regarding to the effects of RfBP on flavin levels and

METC gene expression, an important question is how

RfBP-decreased flavin concentrations cause H2O2 gener-

ation potentially through electron leakage. Because

electron-carrier protein complexes I and II involve the first

five of RfBP-repressed 13 genes, and employ FMN/FMNH2

and FAD/FADH2 as redox centers (Figure 2), respectively,

electrons may leak from both complexes due to RfBP-

reduced flavin concentrations, resulting in increased

concentrations of the cytosolic H2O2 (Figure 5). This postu-

lation was indirectly supported by circumstantial evidence

as following: (i) similar dual roles that rotenone and short-

age of flavins play in repressing METC gene expression and

increasing H2O2 (Figures 4, 5 and 6; Additional file 5:

Figure S3); (ii) the ternary effects of riboflavin feeding in in-

creasing the intrinsic flavin and METC gene expression

levels but decreasing H2O2 concentrations (Figures 4, 5 and

7); and (iii) the lack of effect of the externally applied H2O2

on METC gene expression (Figure 6; Additional file 3:

Figure S4). In addition, a key point in (i) and (ii) is that the

increase of H2O2 concentrations is a result, but not a cause,

of repressed METC gene expression. These analyses sug-

gest the possibility that flavin shortage due to down-

regulation by RfBP causes the repressive effect as does the

toxicity of rotenone [21] on METC to induce electron

leakage.

Mechanisms by which rotenone and RfBP repress

METC gene expression may be different according to na-

tures of rotenone RfBP, as well as components and func-

tions of METC. Rotenone is a broad-spectrum insecticide,

pesticide, and piscicide, is toxic to METC, impairs the role

of electron carrier-protein complex I [64] in transport of

electron tetrad to single O2 accepter, and inhibits O2 reduc-

tion to form H2O with protons from NADH2 and FADH2

[15-17]. As regards the effect of RfBP, RfBP-caused shortage

of FMN and FAD [13] may lead to insufficient functions of

FMN to receive protons from NADPH in complex I and

FAD to supply protons for CoQ in complex II (Figure 2).

Electron leakage and H2O2 generation subsequent to com-

plex I inhibition by rotenone have been well studied in ani-

mals [20,21,64], but little was known about whether plants

incur a similar inhibition. Owing to the alternative oxidiza-

tion bypass located between complex III and the inner

membrane-associated CoQ, inhibition by rotenone may not

cause electron leakage from complex III, but electrons are

still likely to leak from complex I or II [15,16,63]. Moreover,

inhibition of plant complex I expands impacts far beyond

the complex itself since a number of metabolic pathways

associated with mitochondria and other organelles are al-

tered concomitantly [65]. This also explains a possible way,

alternative to reducing flavin content, by which RfBP affects

H2O2 accumulation and flowering time. Repressing METC

gene expression seems to be a mode of the rotenone action

on METC so that the consequence is similar in rotenone-

treated WT and water-treated RfBP+ plants (Figure 6;

Additional file 2: Figure S2). At present, however, there is

no evidence to elucidate the mechanism by which rotenone

causes repression of METC gene expression.

In addition to electron leakage from METC, H2O2 can be

generated by many other mechanisms at different sites in

plant cells through flavin-mediated cytosolic and peroxi-

somal redox processes [66]. Cytosolic and peroxisomal

redox genes whose expression levels are more than 50%

reduced by RfBP encode single alutaredoxin (At1G03850),

thioredoxin (At1G07960), and peroxiredoxin type 2

(At1G60740) proteins and three glutaredoxin (At1G77370,

At5G18600, and At5G40370) proteins (http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE18417). All these

proteins are H2O2 scavengers and may function concomi-

tantly with the potential electron leakage mechanism to ele-

vate cytosolic concentrations of H2O2 and affect flowering

time. As stated above, therefore, the repressive effect on

METC gene expression is not the only mechanism by which

RfBP induces H2O2 and promotes flowering under RfBP+

background. Testing of this hypothesis obviously needs nu-

merous challenged genetic, biochemical, and molecular

studies. In the present study, we are only able to provide in-

direct evidence that RfBP+ and nfxl1 plants mutually coun-

teract in altering cytosolic H2O2 concentrations and in the

subsequent effects on flowering time and expression of FD

and AP1 at the shoot apex (Figure 10; Additional file 4:

Figure S5).

With respect to H2O2 generation and function at differ-

ent sites in plant cells, a critical question is related to cel-

lular translocation of H2O2, or how mitochondrial H2O2

is recruited into flowering time control? Compared to the

apoplastic-cytoplasmic translocation [13], intracellular

translocation of H2O2 subsequent to generation in differ-

ent cellular compartments may play more important roles

in regulating multiple physiological processes [11]. The

supposed H2O2 translocation may not depend on free dif-

fusion, but instead, it may comply with certain modes of

the selectivity [67,68]. In a great attention, the aquaporin

channel originally assigned to water transport [69-71] has

been implicated in cellular translocation of other small
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compounds [72,73] including H2O2 [67,74]. Particular

aquaporins may mediate H2O2 translocation for its re-

cruitment into flowering time control. This hypothesis

needs to be tested.

Conclusions

We have shown that RfBP-induced H2O2 presumably re-

sults from METC electron leakage due to flavin down-

regulation by RfBP, H2O2 is a positive regulator of

flowering, and the hypothetical electron leakage appears

to be one of biochemical sources of H2O2 with the pro-

moting effect on flowering. In fact, early flowering is a

serendipitous phenomenon associated with the de novo

expression of RfBP, but we don’t exactly know what it

means with respect to flavin-mediated redox and flower-

ing time control.

Methods

Plant material and growth conditions

The RfBP-expressing Arabidopsis thaliana line was previ-

ously designated as REAT11 [13] and recently renamed

RfBP+ [40]. The RfBP-silenced line RfBPi11 generated

under RfBP+ (REAT11) background [13] was renamed

RfBP− [40]. The cat2 and nfxl1 mutants were generated

previously by T-DNA insertion into the Cat2 gene [48,49]

and the NFXl1 gene [50]. Their seeds were purchased

from The Arabidopsis Information Resource (http://www.

arabidopsis.org) under stock numbers SALK_076998 and

SALK_001399, respectively. Seeds of other plants were

maintained in this lab. Plants were grown in pots contain-

ing potting soil [75] or on Murashigie and Skoog (MS)

medium under environment-controlled conditions: 22 ±

1°C, 55% ± 2% humidity, long days (16-hour light and 8-

hour dark), and light at 200 μM quanta/m2/s. Day 0 was

considered after stratification. The flowering phenotype

was characterized by rosette leaf number and days to

flower scored with 50 plants of every genotype in each of

seven independent experimental repeats.

Gene expression analysis

Total RNA was isolated from combined samples of the two

youngest expanded leaves excised directly or from shoot

apices, which were excised under a binocular microscope,

from 15 plants in every of three or six experimental repeats.

Isolated RNA was subjected to Northern (RNA) blotting or

quantitative real-time reverse transcriptase-polymerase

chain reaction (RT-PCR) analyses using the constitutively

expressed EF1α gene as a reference. Northern blots were

hybridized to the RfBP-specific probe labeled with digoxi-

genin (EMD Biosci. Inc., Madison, WI, USA). Real-time

RT-PCR was performed with specific primers (Additional

file 6: Table S1) and followed previously described methods

[76,77]. Genes were amplified <26 cycles with a range of

template concentration increases by 0.5 ng and from 0 to

3.0 ng in 25 μl reaction solutions to select desired doses.

The 25 μl reaction mixture was composed of 1 μl first-

strand cDNA diluted 1:10, 2.5 μM primer and 1 × SYBR

Premix Ex Taq (TaKaRa Biotech. Co., Ltd, Dalian, China).

In each of three experimental repeats, all reactions were

performed in triplicate with null-template controls in which

cDNA was absent. Relative expression level of a tested gene

was quantified as the ratio of transcript amounts between

the tested gene and EF1α. Relative expression levels were

shown directly or converted to percentages for pharmaco-

logical treatments vs. control (treatment with water) or for

RfBP+ and RfBP− plants compared to WT.

Protein analysis

A histidine (His) tag had been added to the C-terminus

of RfBP in the transformation construction and was used

to facilitate purification of plant proteins by nickel chro-

matography [13,76]. The two youngest expanded leaves

were excised and used in isolation of total proteins from

10 mg fresh leaves as previously described [78]. Isolated

proteins were bound to nickel-polystyrene beads accord-

ing to the manufacturer’s instruction (Amersham Biosci-

ences Corp., Piscataway, NJ, USA), eluted with aqueous

solutions of imidazole at 100, 150, and 300 mM, respect-

ively. The 200-mM imidazole eluent was treated with

the Novagen Enterokinase Cleavage Capture Kit (EMD

Biosciences Inc., Darmstadt, Germany) to remove the

His tag and analyzed by tricine sodium dodecyl sulfate

polyacrylamide gel electrophoresis [76]. Proteins were vi-

sualized by gel staining with Coomassie G-250.

Pharmacological study

The riboflavin feeding experiment was performed on

plants grown in pots. Riboflavin (EMD Biosci. Inc.,

Darmstadt, Germany) was prepared as a 0.1 mM aque-

ous solution, amended with 0.03% (v/v) Silwet-L77 as a

surfactant, and applied to 10-day-old plants by spraying

plant tops with an atomizer [79]. Plants were treated

similarly with an aqueous solution containing 0.03%

Silwet-L77 in the experimental control group. Two days

later, shoot apices were excised as stated above and used

in the analysis of FD and AP1 gene expression, and the

two youngest expanded leaves were excised and used to

detect the subcellular distribution and concentrations of

H2O2, as well as expression of METC genes.

The effects of rotenone (Sigma-Aldrich, St. Luis, WA,

USA) on METC gene expression and H2O2 concentrations

were analyzed by experiments as for the riboflavin feeding

experiment. Rotenone was prepared as a 40 mM solution

in 100% (v/v) ethanol, diluted with water, and used at

40 μM in an aqueous solution containing 0.1% ethanol to

treat 10-day-old plants by spraying over plant tops. Plants

were treated similarly with 0.1% ethanol in control.
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The effects of H2O2 and catalase (Sigma-Aldrich) on the

intrinsic H2O2 concentrations and flowering time were

determined using plants grown on MS medium in glass

bottles (5 cm high, 2 and 1.5 cm wide diametrically at top

and bottom). Aqueous solutions of 4, 8, and 12 mM H2O2

and 5 μU/ml catalase were used after sterilization with

0.22 μm cellulose filters. Seeds were sterilized and sub-

jected to two types of experiments. The first type was de-

vised to estimate functional dosage of H2O2 in a range of

0 (sterile water only), 4, 8, and 12 mM applied in separate

seed immersion. The second type of experiment was to

test the combinative effect of H2O2 and catalase. Sterilized

seeds were immersed with 4 mM H2O2 or 5 U/ml catalase

or their mixture and immersed with sterile water in the

experimental control group. Seed immersion was main-

tained six hours under room temperature and then

washed with sterile water for five times under sterile con-

ditions. Washed seeds were sowed on the medium in ster-

ile 300-ml plastic bottles. Ten days later (when plants

were seven days old), the medium were supplied with

5 μM H2O2, 5 μU/ml catalase, or both and with sterile

water in the control group. After incubation for additional

two days, plants were used in the analysis of FD and AP1

expression in shoot apices and flavin concentrations in the

two youngest expanded leaves. Flowering time and rosette

leaf number were scored.

H2O2 detection

Subcellular localization of H2O2 was detected by fluor-

escent H2O2 probes Amplex Red (AR) and Amplex

Ultra Red (AUR) (Invitrogen, San Diego, CA, USA) as

previously described [9,13,80]. Both probes were used

because previous observations showed that AR and

AUR were oxidized in reaction with H2O2 to emit

strong crimson fluorescence [9,81]. The two youngest

expanded leaves were excised and immediately

immersed in the pH7.4 phosphate buffer solution con-

taining 10 μM AR or AUR, and were incubated within

the solution in dark for 3 hours under a low pressure

provided by a vacuum pump and a bell jar. Probed sam-

ples were observed under the ZEISS LSM700 laser scan-

ning confocal microscope. The fluorescence emission of

oxidized AR and AUR was observed between 585 and

610 nm using 543-nm argon laser excitation.

The content of H2O2 in plants was determined by quan-

tifying the leaf H2O2 extract with a spectrophotometer.

H2O2 was extracted from the first and second youngest

leaves of 15-day-old plants and quantified by monitoring

A415 of the titanium-peroxide complex formed with the

H2O2 extract [26]. The content of H2O2 in plant leaves

was determined according to the A415 curve of the

titanium-peroxide complex formed with a range of stand-

ard H2O2 from a commercial source [26].

Generation of the RfBP+ nfx1 hybrid

RfBP+ and nfx1 plants were crossed on 10 days after flow-

ering by pollinating atnfx11 pistils with RfBP+ microspore.

RfBP+ carries an IPT II gene [13], and nfnxl1 carries IPT II

and a T-DNA insert (http://signal.salk.edu/tdna_protocols.

html). Therefore, the RfBP+ nfxl1 hybrid was identified

based on growth in kanamycin-containing MS medium

and PCR analyses of both RfBP and the insertion flanking

sequence (Additional file 6: Table S1). The hybrid was

self-crossed and its homologous F3 progenies were used

in this study.

Data analysis

All experiments were carried out by completely random-

ized design and repeated at least three times with similar

results. Quantitative data were analyzed with commercial

IBM SPSS19.0 software package (IBM Corporation,

Armonk, NY, USA; http://www-01.ibm.com/software/ana-

lytics/spss/). Homogeneity-of-variance in data was deter-

mined by Levene test, and formal distribution pattern of

the data was confirmed by Kolmogorov-Smirnov test and

P-P Plots [82]. Then, data were subjected to analysis of

variance along with Fisher’s least significant difference test

[83] and Tukey-Kramer’s test [84], respectively, using

commercial SPSS19.0 software package.

Availability of supporting data

The microarray data supporting the results of this article

are available in NCBI Gene Expression Omnibus reposi-

tory (http://www.ncbi.nlm.nih.gov/geo/) under accession

number GSE18417.
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Additional file 1: Figure S1. Relative levels of METC gene expression in
WT, RfBP+, and RfBP− plants.

Additional file 2: Figure S2. Relative levels of METC gene expression in
rotenone-treated and control plants.

Additional file 3: Figure S4. Relative levels of METC gene expression in
H2O2-treated and control plants.

Additional file 4: Figure S5. Comparisons of RfBP+ and Cat2 and NFXL1

mutations in H2O2 concentrations, FD and AP1 expression, and flowering
time.

Additional file 5: Figure S3. The effect of rotenone on H2O2

concentrations in leaves.

Additional file 6: Table S1. Information on genes analyzed and
primers used in this study.
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AP1: APETALA1; AR: Amplex red; AUR: Amplex ultra red; cat2: an Arabidopsis
mutant with T-DNA-indexed CAT2 gene and decreased H2O2 content;
CoQ: Ubiquinone; Cyt: Cytochrome; FAD: Flavin adenine dinucleotide;
FMI: Floral meristem identity; FMN: Flavin mononucleotide;
METC: Mitochondrial electron transport chain; NAD: Nicotinamide adenine
dinucleotide; nfxl1: an Arabidopsis mutant with T-DNA-indexed NFXL1 gene
and decreased H2O2 content; RfBP: Riboflavin-binding protein; RfBP+:
RfBP-expressing transgenic Arabidopsis line; RfBP−: RfBP-silenced Arabidopsis
line generated under RfBP+ background; ROS: Reactive oxygen species.
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