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OBJECTIVES: MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that are commonly dysregulated in colorectal

tumors. The objective of this study was to identify smaller subsets of highly predictive miRNAs.

METHODS: Data come from population-based studies of colorectal cancer conducted in Utah and the Kaiser Permanente Medical

Care Program. Tissue samples were available for 1,953 individuals, of which 1,894 had carcinoma tissue and 1,599 had normal

mucosa available for statistical analysis. Agilent Human miRNA Microarray V.19.0 was used to generate miRNA expression profiles;

validation of expression levels was carried out using quantitative PCR. We used random forest analysis and verified findings with

logistic modeling in separate data sets. Important microRNAs are identified and bioinformatics tools are used to identify target

genes and related biological pathways.

RESULTS: We identified 16 miRNAs for colon and 17 miRNAs for rectal carcinoma that appear to differentiate between carcinoma

and normal mucosa; of these, 12 were important for both colon and rectal cancer, hsa-miR-663b, hsa-miR-4539, hsa-miR-17-5p,

hsa-miR-20a-5p, hsa-miR-21-5p, hsa-miR-4506, hsa-miR-92a-3p, hsa-miR-93-5p, hsa-miR-145-5p, hsa-miR-3651, hsa-miR-378a-3p,

and hsa-miR-378i. Estimated misclassification rates were low at 4.83% and 2.5% among colon and rectal observations,

respectively. Among independent observations, logistic modeling reinforced the importance of these miRNAs, finding the primary

principal components of their variation statistically significant (Po0.001 among both colon and rectal observations) and again

producing low misclassification rates. Repeating our analysis without those miRNAs initially identified as important identified

other important miRNAs; however, misclassification rates increased and distinctions between remaining miRNAs in terms of

classification importance were reduced.

CONCLUSIONS: Our data support the hypothesis that while many miRNAs are dysregulated between carcinoma and normal

mucosa, smaller subsets of these miRNAs are useful and informative in discriminating between these tissues.
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INTRODUCTION

MicroRNA (miRNA or miR) are noncoding RNAmolecules that

alter gene activity through both the translation reduction and

the decay of mRNA.1 They regulate key cellular processes

including division and differentiation,2 and altered miRNA

expression has been associated with several diseases

including cancer.3 Dysregulated miRNAs associated with

cancer, including colorectal cancer (CRC) specifically, have

been discussed as potential diagnostic tools4,5 and have

generated treatment ideas.6 Previous studies7–9 have identi-

fied several miRNAs with differential expression between

carcinoma and non-tumor tissue among individuals with CRC.

Many of these studies had relatively small sample sizes and

identified and focused on modest lists of differentially

expressed miRNAs. Our previous analysis10 with a compara-

tively large sample size indicated that over 86% of miRNAs

expressed in 480% of the population were differentially

expressed between carcinoma tissue and normal mucosa. As

more researchers use miRNA arrays that analyze thousands

of miRNAs rather than targeted miRNAs, identification of

key miRNAs in the carcinogenic process becomes more

challenging. Given the extent of dysregulated miRNAs in

CRC, it is desirable to identify important subsets of miRNAs

that distinguish these tumors from non-tumor tissue.

Here, we focus on distinctions between the miRNA

expression profiles of carcinoma tissue and those of adjacent

normal mucosa in individuals with CRC. Our aim is to identify

smaller groups of miRNAs with expression profiles that are

highly predictive of carcinoma vs. normal tissue. We use

random forest analysis to identify important miRNAs for

classifying tissue as either carcinoma or normal colonic

tissue. Random forests are competitive classifiers in a variety

of scenarios11,12 and have been proffered as microarray

analysis tools because of their ability to classify using many

input variables compared with the number of observations

while simultaneously providing a useful, cross-validation-

based, measure of input variable importance, the out-of-bag

(OOB) error rate.13–15 Our analysis centers around tissue
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collected from 1,953 individualswith CRC and considers colon

and rectal carcinomas separately. Independent verification

was performed using logistic modeling. For additional insight

into the cellular processes associated with our findings,

bioinformatics tools were used to identify target genes and

related biological pathways associated with specific miRNAs

identified.

METHODS

Study participants. Study participants came from two

population-based case–control studies that included all incident

colon and rectal cancers verified through tumor registries and

between 30 and 79 years of age who resided along the

Wasatch Front in Utah or were members of the Kaiser

Permanente Medical Care Program (KPMCP) in Northern

California as described previously.16,17 Cases were obtained via

a rapid-reporting system; for those cases who did not participate

in the interview portion of the study, deidentified tissue was

obtained via the tumor registry along with tumor characteristics.

Thus, this study includes tissue obtained from 97% of all Utah

cases diagnosed and for 85% of all Kaiser Permanente Medical

Care Program study participants.18 The study was approved by

the University of Utah Institutional Review Board Protocol

numbers IRB_00002335 and IRB_00055877. All study partici-

pants provided informed consent.

miRNA processing. After extracting RNA from formalin-fixed,

paraffin-embedded tissue, the Agilent Human miRNA Micro-

array V.19.0 (Agilent Technologies, Santa Clara, CA) was used

to obtain miRNA expression results for 2,006 unique human

miRNAs.10 Samples that failed initial quality control parameters

established by Agilent that included tests for excessive

background fluorescence, excessive variation among probe

sequence replicates on the array, and measures of the total

gene signal on the array to assess low signal were repeated a

second time. After quality control, there were 1,953 individuals

contributing carcinoma and/or normal mucosa tissue observa-

tions among whom 1,894 individuals contributed carcinoma

tissue and 1,599 contributed normal mucosa. Normal mucosa

was taken from the same site adjacent to the index carcinoma.

To minimize differences that could be attributed to the array,

amount of RNA, location on array, or other factors that could

erroneously influence expression, total gene signal was

normalized by multiplying expression values of each sample

by a scaling factor (median of the 75th percentiles of all the

samples divided by the individual 75th percentile of each

sample), stratified by carcinoma site. We refer to miRNAs

using standard nomenclature used in the miRBase

database.19

Statistical methods. After quality control, observations con-

sisted of 1,193 individuals with colon tissue (carcinoma, normal

mucosa, or both) and 760 with rectal tissue; the colon

observations were considered separately from the rectal

observations. Within these groups, we focused on miRNAs

that were expressed in most individuals, dropping any with zero

measured expression in more than 10% of individuals. This

amounted to considering expression values for 522 miRNAs

among colon observations and 545 miRNAs among rectal

observations for analysis. For the colon study, paired samples

of both carcinoma and normal mucosa tissues were available

for 955 individuals, whereas only one tissue type was available

for 238 individuals. Among the rectal study, these numbers

were 585 and 175, respectively. As our data contained both

paired and non-paired observations and because the models

used are not designed for paired observations, for each

individual with both carcinoma and normal mucosa tissue,

one of these tissue types was randomly kept for model fitting,

whereas the other was withheld for subsequent validation.

Within both the colon and rectal observations, 200 individuals

were randomly selected and set aside to form independent

secondary data sets. Table 1 contains a summary of the non-

withheld observations in the primary and secondary colon and

rectal data sets; a similar table for the withheld pairs is available

in the online Supplementary Table S1 online.

All statistical analysis was performed in R.20 To identify

miRNAs of particular importance in distinguishing normal

mucosa from carcinoma tissue, random forests were fit to the

primary colon and rectal data sets using the R package

“randomForest”.21,22 These models were fit to classify tissue

type, i.e., normal mucosa vs. carcinoma tissue, using miRNA

expression values, sex, and age category as explanatory

variables. Age categories were ⩽ 50, 51–60, 61–70, and 71 or

more years of age at diagnosis. Proximal vs. distal subsite also

was included as an explanatory variable in the random forest

modeling associated with the colon data set. Classification

Table 1 Samples after pair selection

Primary data set Secondary data set

Tissue Tissue

Normal mucosa Carcinoma Total Normal mucosa Carcinoma Total

Colon
Male 220 304 524 Male 47 62 109
Female 193 276 469 Female 43 48 91
Total 413 580 993 Total 90 110 200

Rectal
Male 126 191 317 Male 48 68 116
Female 93 150 243 Female 42 42 84
Total 219 341 560 Total 90 110 200
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error rates and the rankings of variable importance scores did

not meaningfully change when adjusting various model

parameters beyond the default settings of the “randomForest”

package. Aside from setting the number of trees equal to

10,000, the default settings were used. K-means clustering

with k= 2 was applied to the resulting importance scores

associated with the explanatory variables; this was performed

on importance scores resulting from the colon and rectal

models separately. Those explanatory variables that clustered

toward the greatest mean importance measure, all of which

were miRNAs, were selected as being of particular

importance. Supplementary 1 (S1 Text) provides additional

information on the Random Forest procedure used.

Random forests lack some of the parametric structure and

related statistical tests associated with more traditional

modeling techniques. To verify our findings, we fit logistic

models to the secondary colon and rectal data sets (N= 200 in

each). Normal mucosa vs. carcinoma tissue was the outcome

modeled and only the miRNAs identified in the respective

primary data sets as important were considered for modeling.

For each model, rather than including all miRNAs designated

as important as explanatory variables, dimension was

reduced via principal component analysis (PCA) performed

separately for both the secondary colon and rectal data sets

on the mean centered and sample standard deviation scaled

miRNA expressions. The first five principal component scores

were considered as potential explanatory variables for

inclusion in the logistic models. The Akaike information

criterion (AIC) was used to select which components were

included in the final models. The logistic models yielded

P-values associated with the coefficients attached to the

included principal components (alternative hypothesis: coeffi-

cient is non-zero). The logistic modelswere considered further

as classification models. Tissue was classified according to

which type the model estimated to be of greater probability;

leave-one-out cross-validation was used to measure the

associated classification accuracy of the logistic models.

To further assess the accuracy of the random forest and

logistic models, we considered the withheld pairs. Among the

primary and secondary data sets for both colon and rectal

tissue, the models fit to the non-withheld pairs were used to

predict the tissue types of the withheld observations and

misclassification rates were observed. In the secondary data

sets where logistic models were applied, the PCA loadings

computed from the non-withheld secondary data sets were

used to compute PCA scores for the withheld observations so

that no further model fitting was applied to the withheld

observations.

Bioinformatics analysis. To determine target genes

and related biological pathways associated with the

identified miRNAs that classified tissue type, miRNA targets

were generated using DIANA-TarBase V.7.0 (http://diana.

imis.athena-innovation.gr/DianaTools/index.php?r= tarbase/

index),23 a repository of validated miRNA targets. Target

genes were then used as input to the Database for

Annotation, Visualization, and Integrated Discovery (DAVID)

V.6.724,25 (Enriched Gene Ontology (GO))26 terms for

biological processes were then pulled using DAVID’s

Functional Annotation Tool. Biological process terms were

selected as significant using the criterion false discovery rate

o0.05. DAVID uses the Kyoto Encyclopedia of Genes and

Genomes (KEGG).27

Quantitative PCR for validation of Agilent platform

expression measurements. We compared expression

measurements from the Agilent platform with quantitative

PCR (qPCR) measurements to validate data characteristics

across platforms for several miRNAs identified as important.

One hundred and eighty samples, representing 45 normal

mucosa/carcinoma pairs from individuals with colon tumors

and 45 paired samples from individuals with rectal tumors,

were selected for qPCR measurement. cDNA was generated

for 11 specific miRNAs using 10 ng of total RNA in a multiplex

reaction using the TaqMan MicroRNA Reverse Transcription

Kit (Life Technologies, Carlsbad, CA) and TaqMan assay-

specific primers (all assays were purchased from Life

Technologies, Carlsbad, CA). A multiplexed 12-cycle pre-

amplification step was performed according to the manufac-

turer’s recommendation. The preamplified material was then

diluted 1:16 and individual TaqMan assays were performed

using 40 cycles and collecting real-time data on an ABI

7900HT. Data were evaluated using Life Technologies Quant

Studio Flex 12K software (Thermo Fisher Scientific, Waltham,

MA) to determine the number of cycles required for each

sample to cross a common threshold. Ten of these miRNAs

selected for comparison were identified as important among

colon observations, eight of which also were identified as

important among rectal observations. One miRNA, miR-

-1183, not identified as important in the random forest

analysis was selected for inclusion to serve as a house-

keeping gene to control for individual-specific variation. This

specific miRNA was not differentially expressed between

carcinoma and normal mucosa in our data and had high

levels of expression in both tissues in almost all samples.

Expression measurements were normalized using the 2�DCT

method.28,29 To evaluate similarity between the measure-

ments of the two platforms, Agilent expression measure-

ments were contrasted with qPCR expression measurements

among the individuals with colon tumors separately from

those with rectal tumors. For each group, among individuals

for whom both qPCR and Agilent expressions were available

(N= 45), each miRNA identified as important for which qPCR

data was available was considered individually. For each

such miRNA, correlation between Agilent and qPCR expres-

sions was computed among both carcinoma and normal

mucosa samples. Agilent platform fold changes between

carcinoma tissue and normal colonic mucosa also were

compared with fold change measurements from qPCR.

RESULTS

The primary colon and rectal data sets consisted of 52.8% and

56.6% men, respectively, whereas 54.5% and 58.0% of

individuals among the secondary colon and rectal data sets

were men. Of the individuals in the primary colon data set,

50.5% had proximal tumors, whereas 49.5% had distal tumors

and the same percentages were observed among the

secondary colon data set. Considering age at diagnosis,

among individuals in the primary colon data set 9.3% were
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50 years of age or less, 19.6% were between 51 and 60 years,

36.5% were between 61 and 70 years, and 34.6% were 71

years or older; in the secondary colon data set, these

percentages were 11.0%, 12.5%, 39.5%, and 37.0%, respec-

tively. Among individuals in the primary rectal data set, 16.8%

were 50 years of age or less, 22.3% were between 51 and 60

years, 33.8% were between 61 and 70 years, and 27.1% were

71 years or older; these percentages among individuals in the

secondary rectal data set were 16.5%, 22%, 38%, and 23.5%,

respectively.

The random forest models’ importance measurements

paired with k-means analysis (k=2) identified 16 miRNAs as

most important in discriminating between carcinoma and

normal mucosa for colon cancer; 17 miRNAs were identified

for rectal cancer. Of these miRNAs, 12, hsa-miR-663b,

hsa-miR-4539, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-21-5p,

hsa-miR-4506, hsa-miR-92a-3p, hsa-miR-93-5p, hsa-miR-145-

5p, hsa-miR-3651, hsa-miR-378a-3p, and hsa-miR-378i, were

identified as important discriminators for both colon and rectal

cancer.We identified hsa-miR-663a, hsa-miR4538, hsa-miR-215,

and hsa-miR-192-5p uniquely in association with colon cancer;

hsa-miR-4323, hsa-miR-150-5p, hsa-miR-4749-3p, hsa-miR-424-

3p, and hsa-miR-6073 were identified uniquely in association with

rectal cancer. Figure 1 displays the 25 miRNAs with the highest

variable importance scores in both the colon and rectal data sets.

Green text indicates those groupedby k-means clustering asmost

important, whereas red text indicatesmembership in the cluster of

miRNAswith lower importance scores, not all of which are shown.

Sex, age category, and colonic site (i.e., proximal vs. distal colon)

received variable importance scores among the closest to zero; as

such, the random forest analysis does not provide evidence of

their interaction with the identified miRNAs in terms of classifying

tissue type. Summary information regarding expression values

from the Agilent platform for miRNAs among the clusters of the

greatest mean importance in the colon and rectal data sets are

presented in Table 2.

The OOB error (misclassification) estimate for the random

forest model fit to the primary colon data set waso5% as was

the misclassification rate among the associated paired

observations withheld from the random forest modeling.

Among the primary rectal data set, the estimated error rates

were lower, with an OOB error estimate of 2.50% associated

with the random forest model fit to the primary data set and an

error rate of 3.51% among the pairs withheld from modeling.

Figure 2 illustrates some findings of the random forest models.

It contrasts the expression values of the top three miRNAs, as

determined by importance score rank, against one another

among individuals in the primary colon and rectal data sets

and is color-coded by tissue type.

In the secondary colon data set, the logistic model included

the first three principal components as explanatory variables.

These accounted for 76.41% of the sample variance among

the important miRNAs. For each of these components, the

P-value associated with the model coefficient was o0.001.

The estimated misclassification rate was 6.50% among the

secondary colon observations and 5.10% among the asso-

ciated pairs withheld from modeling. Considering the second-

ary rectal data set, the first, third, and four principal

Figure 1 Greatest importance scores. Green indicates those microRNAs (miRNAs) selected as most important via k-means clustering. 1Mean decrease in tree accuracy
from permutation.
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components were included in the logistic model. These

accounted for 59.88% of the sample variance among

important rectal miRNAs. The P-values corresponding to the

coefficients associated with these componentswithin the fitted

logistic model were all o0.05. The misclassification rate

among the secondary rectal data set was 3.50%; the

corresponding misclassification rate among the associated

withheld pairswas 3.16%. Confusionmatrices associated with

the random forest and logistic models for both the colon and

rectal data sets are presented in Table 3. Summary informa-

tion regarding the PCA and logistic modeling results is found in

Table 4. Additionally, among the secondary data sets we

tested for differences in PCA score profiles across sex, tumor

site, and tumor stage categories, considering tumor observa-

tions separately from non-tumor observations. We did not

observe evidence of interactions between the PCA scores and

these categorical variables; a summary of these results is

included in the Supplementary Table S2.

Regarding the miRNAs identified as most important in

distinguishing between tissue type among the colon and rectal

data sets, Table 5 contains bioinformatics analysis results

including the number of target mRNAs identified, and

associated enriched biological processes and pathways.

Fairly conservative identification methods were used (i.e.,

verified mRNA targets only combined with false discovery rate

o0.05); important miRNAs for which target mRNAs were not

identified were excluded from presentation in Table 5. Of the

miRNAs associated with colon tissue only, hsa-miR-663a was

associated with four enriched biological processes, and hsa-

miR-92-5p was associated with nine enriched biological

processes and eight enriched KEGG pathways. Three

miRNAs associated with both colon and rectal tissue targeted

mRNAs enriched for multiple processes and KEGG pathways.

Hsa-miR-17-5p was associated with six enriched biological

processes and seven enriched KEGG pathways, and hsa-

miR-20a-5p and hsa-miR-21-5p were both associated with the

same nine enriched processes and eight enriched KEGG

pathways. Hsa-miR-378a-3p was identified among both the

colon and rectal data sets and was associated with just one

significantly enriched KEGG pathway, “pathways in cancer”,

whereas hsa-miR-145-5p, also identified among both data

sets, targeted genes that were not significantly enriched for

any pathways but were enriched for five biological processes.

None of themiRNAs associated with rectal tissue only had any

targeted genes enriched for either biological processes or

KEGG pathways. Of the gene (mRNA) targets identified in

association with the important miRNAs, 26 contributed to the

identification of significantly enriched KEGG pathways, five of

which were targeted by multiple miRNAs. Regarding the

enriched biological processes, 100 target genes contributed to

the identification of these processes, 11 of which were

targeted by multiple miRNAs identified as important. The

genes associated with KEGG pathways and biological

processes as well as the miRNAs for which they are verified

targets are included in the Supplementary Table S3.

Table 6 contains results comparing the Agilent platform

measurements with those from qPCR among several miRNA

identified as important. qPCR miRNA expression was

measured for hsa-miR-663b, hsa-miR-17-5p, hsa-miR-20a-

5p, hsa-miR-93-5p, hsa-miR-21-5p, hsa-miR-92a-3p, hsa-

miR-3651, hsa-miR-4506, hsa-miR-4538, hsa-miR-215, and

hsa-miR-1183. All fold changes between carcinoma tissue

and normal colonic mucosa followed the same pattern among

qPCR measurements and Agilent measurements, i.e., each

miRNA with a fold change of o1 when measured by the

Agilent platform also had a fold change ofo1 whenmeasured

via qPCR and vice versa for miRNA with fold changes 41.

Additionally, most of the miRNA expressions displayed a high

level of correlation between Agilent and qPCRmeasurements;

75% of the correlations computed were40.5. We believe this

demonstrates a high level of agreement between the Agilent

platform expressionmeasurements and those from qPCR and

Table 2 Important miRNA summary statistics

Mean-adjusted counts Mean-adjusted counts

miRNA Normal
mucosa

Carcinoma
tissue

Fold changea miRNA Normal
mucosa

Carcinoma
tissue

Fold change

Colon data set Rectal data set
Hsa-miR-663b 34.40 68.54 1.99 Hsa-miR-663b 30.79 61.96 2.01
Hsa-miR-4539 83.22 53.67 0.64 Hsa-miR-17-5p 14.18 53.07 3.74
Hsa-miR-17-5p 15.07 49.57 3.29 Hsa-miR-4323 14.39 8.51 0.59
Hsa-miR-20a-5p 16.32 57.34 3.51 Hsa-miR-20a-5p 15.07 60.65 4.02
Hsa-miR-663a 276.96 416.95 1.51 Hsa-miR-378a-3p 152.32 113.25 0.74
Hsa-miR-4538 188.66 138.38 0.73 Hsa-miR-93-5p 13.18 35.72 2.71
Hsa-miR-21-5p 145.44 389.67 2.68 Hsa-miR-4539 67.90 44.73 0.66
Hsa-miR-215 66.77 39.18 0.59 Hsa-miR-378i 75.13 57.02 0.76
Hsa-miR-4506 6.62 10.06 1.52 Hsa-miR-21-5p 127.02 381.56 3.00
Hsa-miR-92a-3p 39.52 99.46 2.52 Hsa-miR-92a-3p 44.28 115.80 2.61
Hsa-miR-93-5p 13.39 34.34 2.56 Hsa-miR-145-5p 270.28 131.80 0.49
Hsa-miR-192-5p 128.10 81.90 0.64 Hsa-miR-150-5p 38.50 12.87 0.33
Hsa-miR-145-5p 210.80 125.59 0.60 Hsa-miR-3651 27.47 59.73 2.17
Hsa-miR-3651 23.57 52.27 2.22 Hsa-miR-4749-3p 14.90 8.83 0.59
Hsa-miR-378a-3p 152.31 113.77 0.75 Hsa-miR-4506 5.42 8.88 1.64
Hsa-miR-378i 75.85 57.65 0.76 Hsa-miR-424-3p 23.45 36.87 1.57

— — — — Hsa-miR-6073 7.14 4.43 0.62

miRNA, microRNA.
aCalculated as mean normal mucosa/mean carcinoma.
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provides a degree of validation with regard to the platform

used in generating our data, the Agilent platform.

DISCUSSION

The miRNAs identified appear viable for distinguishing

between carcinoma and normal colonic mucosa at the

molecular level. Estimated misclassification rates were low

and we identified 16 miRNAs of particular importance in

discriminating between colon carcinoma tissue and normal

mucosa; similarly, 17 miRNAs were identified as particularly

important with regard to rectal carcinoma classification.

Among independent observations, logistic modeling coupled

with PCA verified findings via parsimonious predictive models

of carcinoma vs. normal mucosa using only the miRNAs

identified via random forest analysis and similar classification

accuracy was observed. This study helps describe the

landscape of miRNAs as they relate to CRC. It is hoped that

the ability to narrow focus to key molecular differences

between carcinoma and adjacent normal mucosa will aid

future clinical research, from screening tools to targeted

therapeutic modalities.

Bioinformatics tools identified several miRNA targets,

enriched biological processes, and pathways associated with

miRNAs identified as important among the colon and rectal

data sets. One of the most common threads in the pathways

identified with these miRNAs was angiogenesis. This sug-

gests that these miRNAs have the potential to contribute to

the metastatic potential of tumors. Additionally, several of the

miRNAs identified as important have been identified in the

previous research. Hsa-miR-21 identified in this study as

important for both colon and rectal study has been studied

extensively with colon cancer.9,30–34 Hsa-miR-663b was

shown to be upregulated in bladder cancer plasma, as such

has been proposed as a biomarker in clinical bladder cancer

detection,35 and it has also been seen to be involved in cell

proliferation, migration, apoptosis, and regulation of MAP/ERK

(mitogen-activated protein/extracellular signal-regulated

kinase) signaling in a study of CRC cell lines.36 Both hsa-

miR-21-5p and hsa-miR-17-5p were seen to be significantly

dysregulated in a CRC study by Kara et al.37 Additionally,

higher hsa-miR-17-5p expression was correlated with drug

resistance and metastasis in CRC patients in a 2014 study by

Fang et al.38 MiRNA hsa-miR-4323 was correlated with tumor

relapse in patients with small-cell esophageal carcinoma.39

Other miRNAs identified as important, which have

been previously reported as associated with CRC, include

miR-20a,31,32,40 miR-92a,41 miR-192-5p,42 miR-145,40,43–45

miR-93,46 and miR-150.47

Previous analysis of our data indicated that a large

percentage of miRNAs exhibit dysregulation between carci-

noma tissue and normal mucosa.10 To consider if we could

achieve similar misclassification rates with alternative subsets

of miRNAs, we removed those identified as important from

consideration and repeated our analysis. Obtaining new

subsets of important miRNAs for colon and rectal in the same

manner as before, we again removed these secondary

findings from consideration and repeated the analysis a third

time. Considering the colon data set, the second round of

analysis identified 27 miRNAs as most important and resulted

in an OOB estimated error rate for the new random forest

model among the primary data set of 7.78% and a leave-one-

out estimated error rate for the newly fitted logistic model of

10.50% among the secondary data set. The third round of

analysis using the colon data set identified 48 miRNAs as

most important, whereas the OOB error estimate among the

primary data set using random forest modeling was 11.48%

and the leave-one-out estimate associated with logistic

modeling in the secondary data set was 12.66%. Considering

the rectal data set, the second round of analysis identified 20

miRNAs as most important; the OOB error estimate asso-

ciated with random forest modeling was 4.29%, whereas the

Figure 2 Scatterplots of microRNA (miRNA) expression values among primary
colon and rectal data sets. Axes measure log 2(1+expression value). Observations
were randomly ordered to avoid any data-order artifacts in this visualization.
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Table 3 Confusion matrices associated with random forest and logistic classification models

Random forest model Error
ratea

Logistic model Error
ratea

Colon data set
Primary data set Secondary data set

Predicted Predicted
Normal mucosa Carcinoma Normal mucosa Carcinoma

Actual Normal
mucosa

384 29 Actual Normal
mucosa

83 7

Carcinoma 19 561 Carcinoma 6 104
4.83% 6.50%

Pairs withheld from model fitting Pairs withheld from model fitting
Predicted Predicted

Normal mucosa Carcinoma Normal mucosa Carcinoma
Actual Normal

mucosa
389 27 Actual Normal

mucosa
73 5

Carcinoma 10 372 Carcinoma 3 76
4.64% 5.10%

Rectal data set
Primary data set Secondary data set

Predicted Predicted
Normal mucosa Carcinoma Normal mucosa Carcinoma

Actual Normal
mucosa

213 6 Actual Normal
mucosa

87 3

Carcinoma 8 333 Carcinoma 4 106
2.50% 3.50%

Pairs withheld from model fitting Pairs withheld from model fitting
Predicted Predicted

Normal mucosa Carcinoma Normal mucosa Carcinoma
Actual Normal

mucosa
211 11 Actual Normal

mucosa
69 2

Carcinoma 4 201 Carcinoma 3 84
3.51% 3.16%

OOB, out-of-bag.
aError rates for primary data sets are OOB estimates; error rates for secondary data sets are leave-one-out estimates.

Table 4 Logistic models and related PCA results

Intercept Colon Intercept Rectal

Comp. 1a Comp. 2 Comp. 3 Comp. 1a Comp. 3 Comp. 4

Logistic model
Est. coefficient 1.19 −1.40 −1.09 −1.95 Est. coefficient 3.07 −2.90 − 1.32 0.95
S.e. 0.46 0.27 0.28 0.48 S.e. 0.83 0.54 0.46 0.43
P-value 0.01 o0.001 o0.001 o0.001 P-value o0.001 o0.001 o0.01 0.03

Corresponding PCA resultsb

% of sample var. 38.24 24.86 13.30 % of Sample var. 44.66 8.67 6.56

Included miRNA Loadings Included miRNA Loadings

Hsa-miR-663b −0.08 −0.07 −0.62 Hsa-miR-663b −0.23 − 0.36 −0.30
Hsa-miR-4539 0.26 0.25 −0.23 Hsa-miR-17-5p −0.31 − 0.08 0.07
Hsa-miR-17-5p −0.38 0.09 −0.09 Hsa-miR-4323 0.24 − 0.40 0.30
Hsa-miR-20a-5p −0.37 0.10 −0.08 Hsa-miR-20a-5p −0.30 − 0.08 0.10
Hsa-miR-663a 0.04 0.01 −0.62 Hsa-miR-378a-3p 0.20 − 0.12 −0.39
Hsa-miR-4538 0.26 0.26 −0.16 Hsa-miR-93-5p −0.30 − 0.04 −0.01
Hsa-miR-21-5p −0.33 0.14 0.00 Hsa-miR-4539 0.28 − 0.30 −0.01
Hsa-miR-215 −0.08 0.42 0.18 Hsa-miR-378i 0.19 − 0.12 −0.39
Hsa-miR-4506 −0.20 −0.22 0.04 Hsa-miR-21-5p −0.26 0.12 0.35
Hsa-miR-92a-3p −0.33 0.13 −0.12 Hsa-miR-92a-3p −0.29 − 0.12 0.13
Hsa-miR-93-5p −0.36 0.11 −0.02 Hsa-miR-145-5p 0.10 0.29 0.07
Hsa-miR-192-5p −0.10 0.42 0.17 Hsa-miR-150-5p 0.15 0.21 −0.14
Hsa-miR-145-5p −0.02 0.26 0.18 Hsa-miR-3651 −0.26 − 0.15 0.09
Hsa-miR-3651 −0.33 0.11 −0.12 Hsa-miR-4749-3p 0.25 − 0.30 0.31
Hsa-miR-378a-3p 0.17 0.41 −0.08 Hsa-miR-4506 −0.24 0.27 −0.39
Hsa-miR-378i 0.17 0.39 −0.09 Hsa-miR-424-3p −0.24 − 0.22 −0.05
— — — — Hsa-miR-6073 0.15 0.42 0.27

AIC, Akaike information criterion; miRNA, microRNA; PCA, principal component analysis.
aThe components listed are those included in the model; model selection was based on AIC statistics.
bLoadings and % of sample variance refer to the component listed in the corresponding column.
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leave-one-out estimated error rate associated with the logistic

model was 4.68%. The third round of analysis considering

rectal observations identified 35 miRNAs as important and the

random forest model had an OOB error estimate of 6.25%,

whereas the leave-one-out estimated error associated with the

logistic model was 8.43%. That is, we found several disjoint

subsets of important miRNAs from which decent misclassifi-

cation rates could be achieved. However, we found that as

miRNAs previously identified as important were removed from

consideration, model classification suffered and the differ-

ences in the importance rank between miRNAs ranked

highest and those ranked lower diminished. In general, several

subsets of miRNAs were capable of discriminating between

carcinoma tissue and normal mucosa based on expression;

however, as those miRNAs initially identified as most

important were discarded from analysis, a greater number of

miRNAs were required and lower model accuracy was

observed. The miRNAs identified for the colon and rectal data

sets during the secondary and tertiary analysis runs as well as

the associated confusion matrices are included in the online

Supplementary Tables S4–S7.

Our study has several strengths including a large sample size

that enabled us to reproduce findings using alternative models

and methods among observations independent of those

considered in the primary analysis. Additionally, qPCR allowed

us to validate data characteristicswith an alternative expression

measurement platform for several miRNAs identified as

important. However, all of our analysis restricted attention to

frequently expressed miRNAs, and other less frequently

expressed miRNAs could also be important for subsets of the

population. Although we used an Agilent microarray platform

and validated data characteristics among several key miRNAs

using qPCR, other platforms andmethods of assessment could

have produced additional and/or alternative results in terms of

which miRNA expressions are deemed important, as con-

cordance between results from different expression measure-

ment platforms can vary.48Weused normalmucosa adjacent to

the tumor. While this was the only option to obtain non-tumor

colonic tissue, it has been shown that adjacent tissue may also

have genetic alterations.49 However, we were able to identify

unique miRNA patterns between the normal colonic mucosa

and carcinoma tissue.

Table 5 miRNA contribution to enriched biological processes and pathwaysa

miRNA No. of
targetsb

Enriched biological processesc Enriched pathwaysc

Rectal and colon tissue
Hsa-miR-17-5p 5 Phosphate metabolic process, angiogenesis, intracellular

signaling cascade, blood vessel and vasculature devel-
opment, interphase of mitotic cell cycle, blood vessel
morphogenesis

Melanoma, chronic myeloid leukemia, small-cell
lung cancer, glioma, prostate cancer, pathways
in cancer, p53 signaling pathway

Hsa-miR-20a-5p 8 Phosphate metabolic process, angiogenesis, intracellular
signaling cascade, blood vessel and vasculature devel-
opment, positive regulation of angiogenesis, negative
regulation of cell differentiation, interphase of mitotic cell
cycle, blood vessel morphogenesis, positive regulation of
transcription from RNA polymerase II promoter

Melanoma, pancreatic cancer, chronic myeloid
leukemia, small-cell lung cancer, glioma, pros-
tate cancer, pathways in cancer, p53 signaling
pathway

Hsa-miR-378a-3p 1 Pathways in cancer
Hsa-miR-21-5p 289 Phosphate metabolic process, angiogenesis, intracellular

signaling cascade, blood vessel and vasculature devel-
opment, positive regulation of angiogenesis, negative
regulation of cell differentiation, interphase of mitotic cell
cycle, blood vessel morphogenesis, positive regulation of
transcription from RNA polymerase II promoter

Melanoma, pancreatic cancer, chronic myeloid
leukemia, small-cell lung cancer, glioma, pros-
tate cancer, pathways in cancer, p53 signaling
pathway

Hsa-miR-92a-3p 3
Hsa-miR-145-5p 10 Phosphate metabolic process, intracellular signaling

cascade, interphase of mitotic cell cycle, negative
regulation of cell differentiation, positive regulation of
transcription from RNA polymerase II promoter

Hsa-miR-3651 24

Colon tissue only
Hsa-miR-663a 1 Blood vessel and vasculature development, blood vessel

morphogenesis, positive regulation of transcription from
RNA polymerase II promoter

Hsa-miR-92-5p 346 Phosphate metabolic process, angiogenesis, intracellular
signaling cascade, blood vessel and vasculature devel-
opment, positive regulation of angiogenesis, negative
regulation of cell differentiation, interphase of mitotic cell
cycle, blood vessel morphogenesis, positive regulation of
transcription from RNA polymerase II promoter

Melanoma, pancreatic cancer, chronic myeloid
leukemia, small-cell lung cancer, glioma, pros-
tate cancer, pathways in cancer

Rectal tissue only
Hsa-miR-150-5p 1

FDR, false discovery rate; miRNA, microRNA.
aAll enriched processes and pathways were identified using DAVID (https://david.ncifcrf.gov/home.jsp).
bTargets are from TarBase, using filters “Homo sapiens”.
cProcesses and pathways selected using o0.05 FDR.
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Results from this study are an important step to under-

standing the clinical relevance of miRNAs and their potential

use for screening, early detection, and therapeutic modalities.

In our previous work, we identified over 500 miRNAs that were

differentially expressed between carcinoma and normal

mucosa.10 However, given the number of dysregulated

miRNAs, our aim in this study was to determine if a smaller

subset of miRNAs could be identified that could then be

explored for their clinical relevance. Based on the analysis of

all known miRNAs, we identified a small group that could

accurately distinguish between normal colonic mucosa and

carcinoma tissue. This group of miRNAs represents a group of

miRNAs that when considered together helps to define

colorectal carcinoma. Although some of these miRNAs have

been studied extensively, we know little about the pathways

and functions of other miRNAs in this group. Having a well-

defined subset of miRNAs associated with colorectal carci-

noma tissue allows for more focused studies regarding

specific gene targets and subsequent pathways. While we

examined KEGG pathways to help identify relevant pathways

for these miRNAs, there are limitations in the current knowl-

edgebase. Some of the miRNAs that have been studied

extensively, such as miR21, have been linked to many genes

and disease pathways. It is unclear which of these genes and

pathways are most relevant for CRC. Other miRNAs that have

not been studied extensively have been linked only to a few

genes and a few pathways. Having a group of miRNAs

specifically associated with CRC will guide research to better

defined important pathways that will hopefully provide the

basis for developing CRC-specific therapeutics.

Using a set of miRNAs to delineate a CRC-specific pathway

may be especially important as new screening methods

emerge, including the use of liquid biopsies. Nonspecificity

of few well-studied miRNAs presents a problem for such

screening test, whereas a set of miRNAs specific to CRC

could prove to be useful for that purpose. The metastatic

potential associated with this set of miRNAs is currently not

known. However, further evaluation of the ability of this set of

miRNAs to predict adenomas that have a greater potential for

carcinoma development could enhance our ability to identify

individuals who may require different screening guidelines.

The clinical relevance of this subset of miRNAs, although

promising, has yet to be fully understood. This study helps

describe the landscape of miRNAs as they relate to CRC.
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Table 6 Agilent platform measurements compared with qPCR measurements

Important miRNA Fold changea Correlation between platforms

Agilent platform qPCR Normal obs. Tumor obs.

Colon
Hsa-miR-663b 2.16 2.23 0.58 0.57
Hsa-miR-17-5p 2.75 3.05 0.88 0.83
Hsa-miR-20a-5p 2.91 3.15 0.87 0.83
Hsa-miR-4538 0.77 0.14 0.01 0.34
Hsa-miR-21-5p 2.70 3.15 0.71 0.65
Hsa-miR-215 0.55 0.29 0.59 0.39
Hsa-miR-4506 1.34 1.22 0.06 0.38
Hsa-miR-92a-3p 2.56 2.59 0.82 0.72
Hsa-miR-93-5p 2.09 2.17 0.85 0.73
Hsa-miR-3651 2.37 2.25 0.70 0.65

Rectal
Hsa-miR-663b 2.09 2.78 -0.08 0.39
Hsa-miR-17-5p 3.13 4.22 0.78 0.91
Hsa-miR-20a-5p 3.34 4.45 0.82 0.93
Hsa-miR-93-5p 2.25 2.79 0.87 0.70
Hsa-miR-21-5p 3.09 4.07 0.55 0.95
Hsa-miR-92a-3p 2.33 2.85 0.87 0.76
Hsa-miR-3651 2.24 2.56 0.67 0.80
Hsa-miR-4506 1.46 1.11 -0.14 0.07

qPCR, quantitative PCR.
aCalculated as mean tumor/mean normal.
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Study Highlights

WHAT IS CURRENT KNOWLEDGE

✓ MiRNA are noncoding RNA molecules that alter gene

activity.

✓ Many miRNAs are dysregulated in CRC tissue.

WHAT IS NEW HERE

✓ 16 miRNAs for colon and 17 miRNAs for rectal carcinoma

differentiated between carcinoma and normal mucosa.

✓ 12miRNAswere important discriminators of carcinoma and

normal mucosa for colon and rectal carcinoma.

✓ MiRNA expression levels were validated with qPCR.
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