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Abstract

Introduction: MicroRNAs (miRNAs) are a group of small noncoding RNAs involved in the regulation of gene

expression. As such, they regulate a large number of cellular pathways, and deregulation or altered expression of

miRNAs is associated with tumorigenesis. In the current study, we evaluated the feasibility and clinical utility of

circulating miRNAs as biomarkers for the detection and staging of breast cancer.

Methods: miRNAs were extracted from a set of 84 tissue samples from patients with breast cancer and eight

normal tissue samples obtained after breast-reductive surgery. After reverse transcription and preamplification, 768

miRNAs were profiled by using the TaqMan low-density arrays. After data normalization, unsupervised hierarchical

cluster analysis (UHCA) was used to investigate global differences in miRNA expression between cancerous and

normal samples. With fold-change analysis, the most discriminating miRNAs between both tissue types were

selected, and their expression was analyzed on serum samples from 20 healthy volunteers and 75 patients with

breast cancer, including 16 patients with untreated metastatic breast cancer. miRNAs were extracted from 200 μl of

serum, reverse transcribed, and analyzed in duplicate by using polymerase chain reaction (qRT-PCR).

Results: UHCA showed major differences in miRNA expression between tissue samples from patients with breast

cancer and tissue samples from breast-reductive surgery (P < 0.0001). Generally, miRNA expression in cancerous

samples tends to be repressed when compared with miRNA expression in healthy controls (P = 0.0685). The four

most discriminating miRNAs by fold-change (miR-215, miR-299-5p, miR-411, and miR-452) were selected for further

analysis on serum samples. All miRNAs at least tended to be differentially expressed between serum samples from

patients with cancer and serum samples from healthy controls (miR-215, P = 0.094; miR-299-5P, P = 0.019; miR-411,

P = 0.002; and miR-452, P = 0.092). For all these miRNAs, except for miR-452, the greatest difference in expression

was observed between serum samples from healthy volunteers and serum samples from untreated patients with

metastatic breast cancer.

Conclusions: Our study provides a basis for the establishment of miRNAs as biomarkers for the detection and

eventually staging of breast cancer through blood-borne testing. We identified and tested a set of putative

biomarkers of breast cancer and demonstrated that altered levels of these miRNAs in serum from patients with

breast cancer are particularly associated with the presence of metastatic disease.

* Correspondence: eleni.vanschooneveld@gza.be

† Contributed equally
1Department of Oncology, University Hospitals Leuven and Catholic

University Leuven, Herestraat 49, Leuven, B3000 Belgium

Full list of author information is available at the end of the article

van Schooneveld et al. Breast Cancer Research 2012, 14:R34

http://breast-cancer-research.com/content/14/1/R34

© 2012 van Schooneveld et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:eleni.vanschooneveld@gza.be
http://creativecommons.org/licenses/by/2.0


Introduction
MicroRNAs (miRNAs) are a group of small (20 to 25

nt) noncoding RNAs able to regulate gene expression

posttranscriptionally by binding to the 3’-untranslated

region (UTR) of target mRNAs [1-3]. Since the initial

discovery in Caenorhabditis elegans, more than 1,000

human miRNAs have been described, each of them tar-

geting about 100 different mRNA molecules [4-6]. In

this way, approximately 30% of all human genes are

regulated by miRNAs [7,8], thereby influencing several

different pathways and processes in the cell, including

development, differentiation, apoptosis, and cell prolif-

eration [9-11].

As miRNAs are involved in fine-tuning gene expres-

sion in the cell [1,2], deregulation of miRNA expression

could lead to altered gene expression, which might con-

tribute to the development of cancer [12]. Several stu-

dies have shown a differential miRNA-expression profile

in cancer as compared with normal controls [13-15].

Although specific miRNAs can be upregulated in cancer

[16], global miRNA downregulation is a common trait

of human malignancies [13,17]. Furthermore, miRNAs

are involved in the metastatic cascade, which is the

most dismal feature of tumor biology with respect to

patient prognosis.

MiRNA-expression profiling of primary tumor sam-

ples and their associated metastases identified both pro-

metastatic and metastasis-suppressor miRNAs [15].

These miRNAs modulate the expression of metastasis-

associated genes [18,19], both directly and indirectly, by

influencing the epigenetic machinery [20].

Breast cancer is the most frequent carcinoma and the

second most common cause of cancer-related mortality

in women [21]. In the past decade, it has been repeat-

edly shown that breast cancer is a heterogeneous condi-

tion consisting of at least five [22] but possibly more

[23,24] molecular subtypes. These molecular subtypes

(Luminal A, Luminal B, Basal-like, ErbB2+, and Normal-

like) are characterized by specific mRNA-expression

profiles. Blenkiron and colleagues [14] showed that

these specific mRNA-expression profiles are at least par-

tially attributable to differential miRNA expression.

Also, Iorio and colleagues [25] identified a global pattern

of miRNA deregulation in breast cancer tissue when

compared with normal breast tissue, hinting at the

importance of miRNA deregulation in the development

of breast cancer in general.

As miRNAs appear to be critical regulators of tumor

biology, their potential as prognostic and predictive bio-

markers has recently been given attention. In addition,

their great stability when compared with mRNA mole-

cules, both in blood samples and in formalin-fixed, paraf-

fin-embedded tissue samples, offers a great advantage

[26,27]. Levels of miRNAs do not substantially change

when serum or plasma samples are subjected to freeze-

thaw cycles, boiling, or maintenance at room temperature

[28,29]. As the bloodstream is easily accessible, blood-

borne miRNAs or circulating miRNAs hold the potential

to serve as noninvasive biomarkers in oncology.

Recently, Heneghan and colleagues [30] showed that

miRNA expression is detectable in whole blood, plasma,

and the serum of cancer patients and healthy controls.

In addition, miRNA-195 was identified as a potential

biomarker for detecting noninvasive and early-stage

breast disease [30].

The goal of this study was twofold. First, we aimed to

identify patterns of miRNA deregulation in breast can-

cer. Therefore, we compare miRNA-expression patterns

between breast tumor samples classified according to

the molecular subtypes and between breast tumor sam-

ples and normal breast samples. We hypothesize that

such profiles can be informative for breast cancer detec-

tion and prognosis and might assist in defining specific

targets for future therapy.

Second, we investigated whether the expression levels

of miRNAs are measurable in blood samples from

patients with breast cancer and healthy volunteers and if

such expression profiles are potentially useful for the

detection and staging of breast cancer.

Materials and methods
Patients and samples collection

Tumor and blood samples were obtained from patients

with breast adenocarcinoma treated in the Breast Clinic

of the General Hospital Sint-Augustinus (Antwerp, Bel-

gium). Tissue and serum samples were derived from

two entirely independent populations. Each patient gave

written informed consent. This study was approved by

the Institutional Review Board. Clinicopathologic data

are stored in a database in accordance with hospital

privacy rules and are summarized in Table 1. All tissue

samples were stored in liquid nitrogen within 15 min-

utes after excision (median delay of 9 minutes). Healthy

control tissue was obtained from breast-reductive sur-

gery. None of the control samples showed pathologic

changes. In total, 84 tumor samples and eight healthy

control samples were included.

The collection of serum samples was described pre-

viously [31]. In brief, samples were prospectively obtained

from 75 patients with breast cancer and 20 healthy volun-

teers. Patients were divided into three groups: four patients

with localized breast cancer (group A), 55 patients with

metastatic breast cancer receiving treatment (group B), and

16 patients with untreated metastatic breast cancer (group

C). The blood samples of patients with metastatic disease

were taken during the course of treatment. For all these
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samples, circulating tumor cells (CTCs) were enumerated

by using the CellSearch system (Veridex, Warren, NJ,

USA), CK19, and mammaglobin mRNA expression was

recorded, the ADNAgen test for detection of CTCs was

performed, and levels of total plasma DNA and serum

methylated DNA for ESR1, RASSF1A, or APC1 were mea-

sured in earlier studies [31,32]. Disease status was assessed

by using the RECIST (Response Evaluation Criteria in

Solid Tumors) criteria without knowledge of the patient’s

CTC or circulating DNA results [33]. Stable disease was

measured up to 8 weeks after the initiation of therapy. In

addition, we collected blood samples from an additional

series of 18 unselected patients to evaluate which blood

medium (that is, serum, plasma, platelet-rich plasma,

whole blood, or peripheral blood mononuclear cells

(PBMCs)) was best suited for extraction of small RNAs

(sRNAs).

RNA extraction, cDNA synthesis, and miRNA

quantification for tissue samples

After tissue disruption, total RNA was extracted by

using the mirVana miRNA Isolation Kit (Ambion, Aus-

tin, TX, USA) according to the manufacturer’s

instructions for total RNA isolation. In brief, the sample

was homogenized in a denaturing lysis solution, fol-

lowed by an acid-phenol:chloroform extraction. There-

after, the sample was purified on a glass-fiber filter and

quantified by using the Nanodrop ND1000 (NanoDrop

Technologies, Waltham, MA, USA). Total RNA (100

ng) was converted to cDNA by priming with two pools

of stem-looped RT primers (Megaplex RT Primers,

Human Pool A & B; Applied Biosystems, Foster City,

CA, USA) in combination with the TaqMan MicroRNA

Reverse Transcription Kit (Applied Biosystems), allowing

the simultaneous transcription of 377 unique miRNAs

and six endogenous controls per primer pool. In brief, 3

μl of total RNA was supplemented with RT primer mix

(×10), dNTPs with dTTP (100 mM), Multiscribe Reverse

Transcriptase (50 U/μl), RT buffer (×10), MgCl2 (25

mM), and RNase inhibitor (20U/μl) in a total reaction

volume of 7.5 μl.

Thermal-cycling conditions were as follows: 40 cycles

at 16°C for 2 minutes, 42°C for 1 minute, and 50°C for

1 second, followed by reverse transcriptase inactivation

at 85°C for 5 minutes. The Megaplex RT product (2.5

μl) was preamplified by using the TaqMan PreAmp

Master Mix (Applied Biosystems) and preamplification

primers in a 25-μl PCR reaction. For each pool of stem-

looped RT primers in the cDNA reaction, a different

pool of PreAmp Primers (Human Pool A & B; Applied

Biosystems) was used. Thermal-cycling conditions were

as follows: 95°C for 10 minutes, 55°C for 2 minutes, and

75°C for 2 minutes, followed by 12 cycles of 95°C for 15

seconds and 60°C for 4 minutes. MiRNA quantification

was performed with the TaqMan Human MicroRNA

Array sets A & B (Applied Biosystems), each containing

384 TaqMan miRNA assays. The PreAmp product was

diluted fourfold. Each of the eight wells was loaded with

100 μl of PCR reaction mix, containing 50 μl of Taq-

Man Universal PCR Master Mix, no AmpErase uracil

N-glycosylase (UNG) (Applied Biosystems), 1 μl of

diluted PreAmp product, and 49 μl of nuclease-free

water. Thermal-cycling conditions were as follows: 94.5°

C for 10 minutes, followed by 40 cycles at 97°C for 30

seconds and 59.7°C for 1 minute. All PCR reactions

were performed on a 7900HT Fast Real-Time PCR Sys-

tem (Applied Biosystems).

To test the efficiency of the miRNA assays, we com-

pared the Ct-values of an undiluted sample with those

of a 10-fold diluted sample. To evaluate the linearity of

the preamplification, we compared the Ct-values of all

miRNAs on both array cards for one sample before and

after preamplification. The reproducibility of the arrays

was tested by analyzing four samples in duplicate. The

robustness of the TaqMan RT-PCR method was investi-

gated by comparing the qRT-PCR miRNA expression

profile of 12 samples with their miRNA expression

Table 1 Clinicopathologic data

Parameter Group Tissue (n = 84) Serum (n = 75)

T status 1 27 (32%) 31 (41%)

2 27 (32%) 22 (29%)

3 6 (7%) 4 (5%)

4 24 (29%) 18 (25%)

N status 0 35 (42%) 28 (37%)

1 21 (25%) 15 (20%)

2 14 (17%) 10 (13%)

3 13 (15%) 9 (12%)

4 1 (1%) 13 (18%)

M status 0 70 (83%) 4 (5%)

1 14 (17%) 71 (95%)

ER status Negative 25 (30%) 23 (31%)

Positive 59 (70%) 52 (69%)

PR status Negative 45 (54%) 36 (48%)

Positive 39 (46%) 39 (52%)

ErbB2 status Negative 62 (74%) 49 (65%)

Positive 22 (26%) 26 (35%)

Grade 1 9 (11%) 14 (19%)

2 32 (38%) 29 (39%)

3 43 (51%) 32 (42%)

Stage I 24 (29%) 19 (25%)

II 20 (24%) 14 (19%)

III 27 (32%) 22 (29%)

IV 13 (15%) 20 (27%)

Disease status Progressive 29 (35%) 47 (63%)

Nonprogressive 55 (65%) 28 (37%)

ErbB2 status is determined by using the Hercep test with confirmation by

FISH. Disease status is determined by using the RECIST criteria.
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profile obtained by using the nCounter Analysis System

(Nanostring Technologies, Seattle, WA, USA). This sys-

tem is a medium-high throughput gene-expression

quantification system with PCR sensitivity that uses a

novel digital technology based on direct multiplexed

measurement of miRNA expression. Besides a direct

quantification, the workflow incorporates only one enzy-

matic step (ligase step to enable tagging of the miRNAs)

instead of three enzymatic steps in the qRT-PCR work-

flow, thereby substantially reducing the possibility for

technical bias. The nCounter experiment was performed

in collaboration with the VIB MicroArray Facility

(O&N, UZ Gasthuisberg, Leuven, Belgium).

RNA extraction, cDNA synthesis, and miRNA

quantification for blood samples

First, we evaluated which blood medium was best suited

for the extraction of sRNA molecules. Therefore,

plasma, platelet-rich plasma, serum, whole blood, and

PBMCs were obtained from 18 patients with breast can-

cer. Peripheral blood was collected in a 9-ml EDTA

tube, from which 3 ml of whole blood was transferred

into a cryovial while the remaining blood was centri-

fuged slowly (150 g, 20 minutes) at 4°C to generate pla-

telet-rich plasma. Plasma and PBMCs were obtained in

an 8-ml CPT tube, which was centrifuged (1,650 g, 20

minutes) at room temperature. Plasma and PBMC ali-

quots were transferred into separate cryovials. Finally, 8

ml blood was collected in serum separator tubes (Becton

Dickinson, Franklin Lakes, NJ, USA) and centrifuged

(2,000 g, 10 minutes) at room temperature. All samples

were stored at -80°C until use.

sRNA was isolated from 200 μl of each medium by

using the microRNA Isolation Kit (BioChain Institute

Inc, Hayward, CA, USA) according to the manufac-

turer’s instruction for sRNA purification. In brief, after

adding lysis buffer to the sample for homogenization, 20

μl of Proteinase K solution (Qiagen, Valencia, CA, USA)

was added and incubated for 10 minutes at 75°C to

digest the excess of proteins released after addition of

the lysis buffer. This was followed by an acid-phenol:

chloroform extraction. Small and large RNAs were sepa-

rated by using a centrifugation step, after which the

large RNAs were retained on a glass-fiber filter. The

sRNA molecules were recovered from the flow-through

by purifying them on a second glass-fiber filter, and

their concentration and purity (A260/A280 and A260/

A230) was recorded by using the NanoDrop ND1000

(NanoDrop Technologies, Waltham, MA, USA). The

concentrations were compared by using a Kruskal-

Wallis test with Tukey HSD post hoc testing.

To evaluate circulating miRNA expression in blood

samples from 20 healthy volunteers and 75 patients with

breast cancer, we isolated total RNA, as described

before. Isolated total RNA was reverse transcribed to

produce cDNA by using the TaqMan MicroRNA

Reverse Transcription Kit (Applied Biosystems) by prim-

ing with TaqMan MicroRNA Assays (Applied Biosys-

tems) directed at 4 miRNAs identified by comparing

tumor tissue with normal breast tissue (vide supra). In

addition, miR-16 expression was determined as a nor-

malization factor. In brief, each 15-μl reaction contained

0.15 μl 100 mM dNTPs with dTTP, 1.0 μl Multiscribe

Reverse Transcriptase (50 U/μl), 1.50 μl RT Buffer

(×10), 0.19 μl RNase Inhibitor (20 U/μl), 4.16 μl nucle-

ase-free water, 5.0 μl total RNA, and 3.0 μl RT primer.

Thermal-cycling conditions were 30 minutes at 16°C, 30

minutes at 42°C, and 5 minutes at 85°C. Each 20-μl

reaction for the real-time quantitative PCR contained

1.0 μl real-time primer, 1.33 μl product from RT reac-

tion, 10.0 μl TaqMan Universal PCR Master Mix, no

AmpErase UNG (Applied Biosystems), and 7.67 μl

nuclease-free water. The reactions were performed in

duplicate on a 7900HT Fast Real-Time PCR System in

the 9600 emulation mode, with conditions of 10 min-

utes at 95°C, followed by 40 cycles of 15 seconds at 95°

C and 1 minute at 60°C. The mirVana miRNA Refer-

ence Panel (Ambion, Austin, TX, USA) was included in

each PCR plate in a 2,000-fold dilution to correct for

between-plate differences.

Statistics and bioinformatics

All subsequent analyses were performed by using Bio-

Conductor in R. To reduce technical variation, the

miRNA assays with a PCR efficiency outside the range

of 2log(10) or 3.32 ± 25% [34] and those with Ct values

above 35 in at least 25% of the cases were filtered out.

By using efficient and informative miRNA assays only,

we calculated the mean difference between the Ct values

of one sample before and after preamplification. To

avoid technical bias, we excluded miRNA assays with a

difference in Ct values before and after preamplification

outside the range of the mean value ± 25%. For the final

set of miRNAs, we calculated the mean expression level

per sample and used this value as a normalization factor

to account for differences in input material [35]. Relative

miRNA expression levels were calculated by using the

∆Ct-method [36] and log2-transformed to obtain a nor-

mal distribution. To investigate assay reproducibility, we

correlated the expression profiles of the duplicate sam-

ples by using the Spearman correlation coefficient.

An additional technical validation was done by per-

forming a pairwise correlation analysis between the

miRNA profiles obtained by qRT-PCR and the nCounter

Analysis System for the 12 samples analyzed on both

platforms. Both correlation analyses were done by using

the normalized expression profiles of the 327 common

miRNAs only.
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Unsupervised hierarchical cluster analysis (UHCA),

with the Manhattan distance as similarity metric and

Ward clustering as the dendrogram drawing method,

was performed to visualize global themes in the expres-

sion data. We classified samples according to the

miRNA-centroids for molecular subtypes published by

Blenkiron et al. [14]. Therefore, we correlated the mole-

cular subtype-specific miRNA-expression profiles of

each sample with each of the five miRNA-based expres-

sion centroids by using the Spearman correlation

coefficient.

The resulting classification was compared with the

UHCA result. For 66 samples with available Affymetrix-

profiles, we compared the correlation coefficients

between the samples grouped according to the SSP (sin-

gle-sample predictor)-defined molecular subtype classifi-

cation [37] obtained through mRNA-expression

profiling reported in earlier studies [38,39]. Significance

was assessed by using the Mann-Whitney U tests.

Next, we aimed to identify molecular subtype-specific

miRNAs. Therefore, we performed a pairwise compari-

son of the different molecular subtypes, defined through

mRNA-expression profiling, by using regression analysis

with the limma-package. False Discovery Rate (FDR)

correction was performed by using the Benjamini and

Hochberg step-up procedure. For each subtype, we

crossed the lists of differentially expressed miRNAs

resulting from the pairwise comparisons involving the

desired subtype in search for common miRNAs.

By using regression analysis, we identified differentially

expressed miRNAs between normal and tumor samples.

Resulting P values were corrected for false discovery, as

described earlier. To investigate global over- or underex-

pression in normal samples, we calculated the median

expression level of the differentially expressed miRNAs

per sample. These median expression values were com-

pared by using Mann-Whitney U testing. The top four

differentially expressed miRNAs by fold-change were

selected for further analysis. For these miRNAs, we

identified target mRNAs in at least two of three public

databases (PicTar, TargetScan, and Miranda) by using

the RmiR-package. These target-gene lists were sub-

jected to Ingenuity Pathway Analysis (IPA) to study the

implications of the identified miRNAs in cancer biology.

Expression levels of circulating miRNAs were calcu-

lated with miR-16 as normalization factor. Raw Ct

values measured in the miRNA Reference Panel were

subtracted from the Ct values measured in the samples,

yielding a between-plate corrected expression value for

each miRNA per 200 μl of serum. The miR-16 normal-

ized expression value was calculated by subtracting the

between-plate corrected expression value for miR-16

from the between-plate corrected expression values for

the remaining miRNAs (∆∆Ct-method). Relative

expression values were calculated by using the 2-∆∆Ct

method [36]. To compare the expression data with cate-

goric variables, the Mann-Whitney U test was per-

formed. To compare expression data with continuous

variables, Spearman correlation coefficients were

calculated.

Results
Technical validation of miRNA profiling in tissue samples

First, we excluded 292 miRNA assays (A panel, 83; B

panel, 209) with a Ct value above 35 in at least 25% of

the samples, leading to 462 informative miRNAs (A

panel, 294; B panel, 168). Before performing the data

normalization, we checked the PCR efficiencies of all

miRNA assays on the array cards by performing a 10-

fold dilution series and subtracting the Ct values of the

undiluted sample from the Ct values of the diluted sam-

ple. Theoretically, for an efficient PCR reaction, this dif-

ference should equal 2log(10) or 3.32. We excluded 23

(A panel, 14; B panel, 9) miRNA assays with PCR-effi-

ciencies outside the range of 3.32 ± 25%. The distribu-

tion of the PCR efficiencies and the cut-off values for

exclusion are shown in Figure 1A.

Next we evaluated the linearity of the preamplification

by comparing the miRNA-expression profiles of a sam-

ple before and after preamplification. This analysis was

done for 439 miRNAs that remained after exclusion of

noninformative and inefficient miRNA assays. The mean

difference between the Ct values before and after pre-

amplification was 8, and miRNA assays with a difference

in Ct value outside the range of 8 ± 25% were excluded

from further analysis (A panel, 30; B panel, 36). As

such, the final data set consisted of 373 miRNAs that

were normalized by using the ∆Ct method with the

median Ct value per sample as normalization factor.

The scatterplot comparing the Ct values for those 373

miRNAs before and after preamplification is shown in

Figure 1B, and regression analysis demonstrated a signif-

icant and linear relation (R2 = 0.927; P < 0.001).

Next, we investigated the effect of profiling miRNA

expression by using two different array cards (A and B)

per sample. Therefore, UHCA was performed on the

normalized miRNA expression data, and the result is

shown in Figure 2. The cluster pattern of the miRNAs,

represented by the dendrogram in the Y-axis, reveals

that the assays allocated at different array cards are not

segregated. In addition, miRNA assays directed at differ-

ent isoforms of the same miRNA and represented on

different array cards cluster on terminal branches in

approximately 80% of the cases. These data indicate that

variation in miRNA expression related to the incorpora-

tion of two separate assays per sample is minor.

Finally, we evaluated the reproducibility of the miRNA

assays. Therefore, we analyzed four samples in duplicate
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and compared their normalized miRNA expression pro-

files. A representative scatterplot is show in Figure 1C,

and all scatterplots are shown in Additional file 1.

Spearman correlation coefficients ranged from 0.98 to

0.99 (all P values < 0.001), indicating good assay

reproducibility.

Next, we analyzed the miRNA expression profiles of

12 samples by using the nCounter Analysis System and

compared them with the normalized expression data

obtained through qRT-PCR. The Spearman correlation

coefficients ranged from 0.63 to 0.75 with a median

value of 0.72 (all P values < 0.001). Scatterplots for all

comparisons are shown in Additional file 2, and a repre-

sentative scatterplot is provided in Figure 1D.

Overall, our data indicate that technical variation in

expression for the panel of 373 miRNAs is minor.

miRNA expression profiling of breast tumor and normal

breast samples

With the miRNA centroids for molecular-subtype classi-

fication [14], we classified the 84 breast cancer tissue

samples and eight normal tissue samples in our data set.

18, 15, 15, 19, and 25 samples were classified as Basal-

like, ErbB2+, Luminal A, Luminal B, and Normal-like,

respectively. The classification result is shown under the

dendrogram in Figure 2. We observed a significant (P <

0.001) agreement between the miRNA-based molecular

subtype classification and the clustering pattern of the

Figure 1 The distribution of polymerase chain reaction (PCR) efficiencies, calculated as the differences between the Ct values of

undiluted sample and the Ct values of a 10-fold diluted sample. (A) Theoretically, this difference should equal 3.32 or 2log(10). All miRNA

assays with a difference in Ct value between 3.32% and 25% were included for further analysis. A blue dashed line indicates the boundaries of

the interval; a blue solid line indicates the theoretical expected value of 3.32. To account for differences in preamplification, we compared the Ct

values of a sample before and after preamplification. The median difference in Ct value was 8, and all miRNA assays with a difference of 8% ±

25% were included for further analysis. The scatterplot in (B) demonstrates an almost perfect linear relation for those selected miRNAs before

and after preamplification. The blue line represents the regression line, for which the equation is given on top of the scatterplot. To evaluate

assay reproducibility, we tested four samples in duplicate. The scatterplot in (C) demonstrates the result for one of these samples. The blue line

represents the regression line, and the correlation coefficient resulting from the comparison of both profiles is given on top of the scatterplot.

Further technical validation of our miRNA-expression data was performed for 12 samples by analyzing their miRNA-expression profile with the

nCounter Analysis System and comparing this result with the qRT-PCR-based miRNA-expression profile. The scatterplot in (D) demonstrates the

result for one of these samples. The blue line represents the regression line, and the correlation coefficient resulting from the comparison of

both profiles is given on top of the scatterplot.

van Schooneveld et al. Breast Cancer Research 2012, 14:R34

http://breast-cancer-research.com/content/14/1/R34

Page 6 of 16



tissue samples after UHCA. Downstream of the first

bifurcation, we observe a cluster composed of 76% of

Normal-like samples, which was further divided into

two clusters separating the Normal-like tumor samples

from the normal breast samples. Further division of the

dendrogram yielded a cluster composed of 77% of

Basal-like samples and a cluster enriched for Luminal

samples (that is, 89% of the samples classify as Luminal

A or Luminal B). In addition, 60% of the ErbB2+ sam-

ples fell into one sample cluster. Interestingly, down-

stream of the third bifurcation, we observed a sample

cluster not enriched for any of the molecular subtypes

(Luminal A, 3; Luminal B, 4; ErbB2+, 3; and Normal-

like, 1). Given the hierarchy of the dendrogram, this

Figure 2 Heatmap showing the result of an UHCA (Manhattan distance, Ward linkage) for all 373 miRNAs in all 92 samples. The

miRNA-expression data are represented in matrix format, with rows indicating miRNAs and columns indicating samples. Overexpressed miRNAs

are color-coded red, and repressed miRNAs are color-coded green. Color saturation indicates the level of overexpression. Six samples clusters

could be discerned based on miRNA-expression differences, indicated by alternating blue and grey colors in the dendrogram. Underneath the

sample dendrogram, the molecular-subtype classification is indicated (red, Basal-like; orange, ErbB2+; green, Luminal A; blue, Luminal B; gray,

Normal-like). The true-normal breast samples are indicated by a darker shade of gray. The colored bar to the side of the heatmap indicates the

array card to which the corresponding assay is allocated (red, A; blue, B).
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sample cluster may well represent a novel miRNA-based

breast cancer subtype. Overexpressed miRNAs in this

sample group are known for their tumor-suppressive

roles in (breast) cancer: the miR-200 family (miR-200a,

miR-200b, miR-200c, and miR-141), the let-7 family

(let-7a, let-7f, and let-7g), and NF�B-regulating miRNAs

(miR-146a and miR-155).

For 66 of 92 samples, Affymetrix mRNA expression

profiles were obtained in previous studies [38,39]. Clas-

sification of these samples according to the SSP-algo-

rithm yielded an agreement of 66% with the

classification according to the miRNA centroids. Sub-

type-specific correlation coefficients were compared

between the SSP-defined molecular subtypes, and results

are shown in Figure 3. For all comparisons, the subtype-

specific correlation coefficients obtained by using the

miRNA-centroids were significantly elevated in the

group of samples classified in the corresponding subtype

by using mRNA data (all P values < 0.05). When dichot-

omizing the Spearman correlation coefficients per sub-

type relative to 0, we observed an average classification

error rate of 36%, with the highest and lowest classifica-

tion error rates observed for the Luminal B and ErbB2+

samples (44% and 27%), respectively.

To identify subtype-specific miRNAs, we performed

pairwise comparisons between tumor samples grouped

by the SSP-defined molecular subtypes. The results are

summarized in Table 2. At a P-value cut-off level of

0.01 (maximal FDR of 15%), we identified 16, 0, 2, 3,

and 40 miRNAs specific for the Basal-like, ErbB2+,

Luminal A, Luminal B, and Normal-like subtypes,

respectively. Comparison of these results with the

expression data published by Blenkiron and colleagues

[14] revealed remarkably similar expression patterns for

several key miRNAs. For example, miR-135b and miR-

106a are upregulated in Basal-like breast cancers in both

studies. Also, miR-100 and miR-145 show comparable

expression patterns in both studies, with elevated

expression in the Normal-like and Luminal samples.

Detailed results are provided in Additional file 3.

Finally, we compared the miRNA expression profiles

of tumor samples with the normal breast samples

obtained after breast-reductive surgery. As reported ear-

lier, the clustering pattern of the tissue samples (Figure

2) suggests major differences in miRNA expression

between the tumor samples and normal breast samples.

We identified 59 differentially expressed miRNAs at an

FDR less than 1%. The median expression value of these

miRNA per sample was significantly higher in normal

breast samples (Normal, 1.542; Tumor, 0.024; P <

0.001). Data are presented in boxplot format in Figure

4A. The top four miRNAs by fold-change (miR-299-5p,

miR-215, miR-411, and miR-452) were selected as

potential biomarkers for breast cancer detection (Figure

4B through 4E). With the RmiR-package, we identified

611, 715, 575, and 1,863 mRNA targets for the set of

Figure 3 Comparison of the mRNA-based molecular subtype classification by using the SSP method with the miRNA-based

classification by using the expression centroids reported by Blenkiron and colleagues. This analysis was performed only for those samples

for which Affymetrix mRNA-expression profiles are available (N = 66). The SSP-classification is provided in the X-axis (B, Basal; E, ErbB2+; LA,

Luminal A; LB, Luminal B; N, Normal-like; and R, Rest). The Spearman correlation coefficients resulting from the miRNA-based molecular subtype

classification are indicated in the Y-axis. For each miRNA-based molecular subtype-specific centroid and each sample in our data set, the

Spearman correlation coefficients were determined. The molecular subtype-specific correlation coefficients were statistically compared between

samples belonging to and not belonging to the SSP-defined molecular subtype of interest. P values are indicated under the corresponding

boxplots.
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Table 2 Identification of subtype-specific miRNAs

Subtype Comparator Number Common

Basal-like ErbB2+ 26 hsa-miR-135b#, hsa-miR-135b, hsa-miR-934, hsa-miR-577, hsa-miR-501-5p, hsa-miR18a#, hsa-miR-92a, hsa-miR-
106a, hsa-miR-17, hsa-miR-18b, hsa-miR-18a, hsa-miR-20a, hsa-miR-17#, hsa-miR-15b#, hsa-miR-19a, hsa-miR-500

Luminal A 53

Luminal B 33

Normal-like 90

ErbB2+ Basal-like 26 -

Luminal A 25

Luminal B 14

Normal-like 107

Luminal
A

Basal-like 53 hsa-miR-148a, hsa-miR-219-5p

ErbB2+ 25

Luminal B 15

Normal-like 106

Luminal
B

Basal-like 33 hsa-miR-30d#, hsa-miR-30d, hsa-miR-342-3p

ErbB2+ 14

Luminal A 15

Normal-like 109

Normal-
like

Basal-like 90 hsa-miR-136#, hsa-miR-497, hsa-miR-139-5p, hsa-miR-99a#, hsa-miR-145#, hsa-miR-195, hsa-miR-143, hsa-miR-145,
hsa-miR-335, hsa-miR-125b-2#, hsa-miR-139-3p, hsa-miR-7-2#, hsa-miR-216b, hsa-miR-487b, hsa-miR-100, hsa-miR-
410, hsa-miR-204, hsa-miR-376a, hsa-miR-99a, hsa-miR-337-3p, hsa-miR-27a#, hsa-miR-411, hsa-miR-656, hsa-miR-
495, hsa-miR-551b#, hsa-miR-770-5p, hsa-let-7b#, hsa-miR-378, hsa-miR-215, hsa-miR-127-3p, hsa-let-7c#, hsa-miR-
379, hsa-miR-422a, hsa-miR432, hsa-miR-299-5p, hsa-miR-494, hsa-miR-378, hsa-miR-511, hsa-miR-23a#, hsa-miR-
452

ErbB2+ 107

Luminal A 106

Luminal B 109

P values, < 0.01; maximal false discovery rate, 15%.

Figure 4 Comparison of normal breast samples with tumor samples. We identified 59 differentially expressed miRNAs between tumor

samples and normal breast samples. The median expression of these miRNAs is significantly elevated in normal breast samples, as illustrated by

the boxplot (A). The top four miRNAs (miR-215, miR-299-5p, miR-411, and miR-452) with the greatest difference between normal breast samples

and breast tumor samples by fold change are depicted in panels B through E. The corresponding false discovery rate is provided in top of each

boxplot. All miRNAs are significantly overexpressed in normal breast samples.
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selected miRNAs, respectively, which were analyzed by

using Ingenuity Pathway Analysis. For each miRNA, the

five most relevant networks with their most strongly

enriched molecular and cellular functions (P < 0.001)

are listed in Table 3. Comparative analysis of enrich-

ment patterns demonstrated that all miRNAs were

involved in the regulation of global oncogenic processes

like cell proliferation, cell death, and cellular movement.

Circulating miRNA expression

To evaluate which blood medium was best suited for

investigating miRNA expression, we extracted sRNA

molecules from serum, plasma, platelet-rich plasma,

whole blood, and PBMCs. A significant increase in

sRNA concentration was observed only when comparing

the results obtained in whole blood with the results

obtained in other media (Kruskal-Wallis, P < 0.001;

Tukey HSD post hoc, all P values < 0.001). Results are

shown in Additional file 4. As our aim was to measure

circulating, tumor-specific miRNA expression, we

decided not to perform subsequent analyses on platelet-

rich plasma, whole blood, or PBMCs because of the pos-

sible contamination of host-specific miRNA expression.

Given a slight, not significant, increase in sRNA concen-

tration in serum when compared with plasma (5.3 μg/

ml versus 4.2 μg/ml), in addition to a more-consistent

sRNA yield in serum (CVserum, 50.4%; CVplasma, 94.5%),

we decided to use serum to evaluate circulating miRNA

expression.

The expression of four miRNAs (miR-299-5p, miR-

215, miR-411, and miR-452) with the greatest fold-

change, when comparing normal breast tissue with

breast tumor samples, was analyzed in serum samples

from 75 patients with breast cancer and 20 healthy

volunteers. We observed higher expression values for all

investigated miRNAs, except for miR-452, in serum

from healthy volunteers. Significant (P < 0.05) values

were obtained for miR-299-5p and miR-411, whereas

trends (P < 0.10) were observed for miR-215 and miR-

452. Results are shown in Figure 5.

We next compared the expression levels of miR-215,

miR-299-5p, miR-411, and miR-452 in serum from

patients with metastatic breast cancer receiving treat-

ment (group B), patients with untreated metastatic

breast cancer (group C), and healthy volunteers. The

group of patients with localized breast cancer was not

included in this analysis because of low sample size (n =

4). Results are shown in Figure 5. Kruskal-Wallis testing

revealed significant (P < 0.05) between-group differences

for all miRNAs, except miR-452. Tukey HSD post hoc

testing revealed that the lowest expression values were

observed in patients with metastatic breast cancer,

Table 3 Biologic and cellular functions of miR-215, miR-299-5p, miR-411, and miR-452

miRNA Network
ID

Score Number of
genes

Top associated functions

miR-215 1 37 28 Tissue morphology, cell death, drug metabolism

2 20 19 Developmental disorder, gene expression, genetic disorder

3 20 19 Cellular movement, immune cell trafficking, skeletal and muscular system development and
function

4 14 15 RNA damage and repair, cell death, molecular transport

5 13 14 Genetic disorder, cellular assembly and organization, cellular function and maintenance

miR-299-
5p

1 35 29 Cell-to-cell signaling and interaction, cellular growth and proliferation, tumor morphology

2 24 23 Gene expression, cellular movement, lipid metabolism

3 13 16 Cellular assembly and organization, DNA replication, recombination, and repair, gene expression

4 13 16 Cell morphology, cellular development, protein synthesis

5 11 14 Cell death, renal necrosis/cell death, cellular compromise

miR-411 1 33 26 Cell death, cell-to-cell signaling and interaction, cell-mediated immune response

2 27 23 Cardiovascular system development and function, organ development, organismal
development

3 17 17 Gene expression, protein synthesis, antimicrobial response

4 14 15 Cell death, cellular growth and proliferation, cellular assembly and organization

5 11 13 Inflammatory response, dermatologic diseases and conditions, inflammatory disease

miR-452 1 31 32 Gene expression, cellular movement, cell death

2 27 30 Cell-to-cell signaling and interaction, connective tissue development and function, cell
morphology

3 25 29 Cellular growth and proliferation, inflammatory response, cell death

4 25 29 Cellular development, gene expression, nervous system development and function

5 25 29 Cellular growth and proliferation, cardiovascular disease, tissue morphology
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whereas expression levels returned to normal with

treatment.

Finally, we compared the expression levels of the cir-

culating miRNAs with clinicopathologic variables,

response to treatment evaluated by the RECIST-criteria,

presence of circulating tumor markers, and the presence

of circulating methylated markers. These analyses were

done for all samples except those derived from healthy

volunteers. Results are shown in Table 4. Overall, few

significant associations were observed. The expression

levels for three of four miRNAs (miR-215, miR-299-5p,

and miR-411) show a negative association with patient

age at diagnosis (all P values < 0.100). Interestingly, all

miRNAs have higher expression levels in serum from

patients with progressive disease under treatment and

for two of four miRNAs (miR-215 and miR-411); these

differences were significant (P < 0.050). No associations

between circulating miRNA expression and the presence

of CTCs were observed. For miR-215 and miR-452, we

observed positive associations (P < 0.05) between their

expression levels in serum and the number of methy-

lated genes (any combination of ESR1, APC, and

RASSF1A) detected in plasma.

Discussion
We attempted to identify a panel of deregulated miR-

NAs in breast cancer and investigated their potential as

biomarkers for the detection and staging of breast can-

cer by using blood-based testing. Before analyzing the

miRNA-expression data, we first evaluated the perfor-

mance of the PCR technology used throughout this

study. To reduce the technical variation in our data set,

we included only informative miRNAs assays (Ct values

smaller than 35 in at least 25% of the cases) with similar

PCR efficiencies and similar differences in Ct values

before and after preamplification. The boundaries for

PCR efficiency were defined as described in earlier stu-

dies [34], and the boundaries for preamplification

Figure 5 Comparison of the expression profiles of miR-215, miR-299-5p, miR-411, and miR-452 between serum samples from patients

with breast cancer and serum samples from healthy volunteers (A through D). The boxplots on panels E through H represent the

comparison of the expression profiles of the same miRNAs between serum samples from healthy volunteers and from patients with metastatic

breast cancer receiving and not receiving treatment. The P values indicating the significance of the difference are indicated on top of the

boxplots.
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efficiency were set alike. The expression data recorded

by the final set of 373 selected miRNAs proved to be

reproducible, and no between-array card difference was

observed. Moreover, we noticed an above-moderate

agreement between the qRT-PCR-based miRNA profiles

of 12 samples with the miRNA profiles measured by

using the nCounter Analysis System.

This is important for two reasons. First, the nCounter

Analysis System incorporates only one enzymatic step

(that is, a ligase treatment for attachment of the reporter

tags) in its workflow and is therefore less prone to tech-

nical bias than is the PCR-based protocol that incorpo-

rates three enzymatic steps.

A second reason for comparing the miRNA expression

profiles by using alternative profiling techniques is

related to the fact that good normalization procedures

for miRNA expression data are currently still lacking.

The qRT-PCR-based miRNA-expression data in this

study were normalized relative to the mean expression

value of all miRNAs per sample, as proposed by Mest-

dagh et al. [35]. However, we think that this normaliza-

tion procedure might have a major drawback because of

the role of DICER1, a miRNA-preprocessing enzyme, in

breast cancer. Recent reports have shown that the

expression of DICER1 is different across the different

molecular subtypes [14,40-42]. As DICER1 is involved

in cleaving the precursor miRNAs into mature miRNAs,

variation in DICER1 expression might result in altered

turnover rates of the precursor miRNAs and, hence,

higher concentrations of mature miRNAs in those

tumor samples with higher DICER1 expression. There-

fore, we reason that the mean miRNA-expression levels

Table 4 Associations between circulating miRNA expression and clinicopathologic variables

Group Variable Test MIR-215 MIR-299-5p MIR-411 MIR-452

Result P-value Result P-value Result P-value Result P-value

Clinicopathologic Age Spearman
correlation

R =
-0.184

P =
0.113

R =
-0.455

P <
0.001

R =
-0.362

P =
0.001

R =
-0.052

P =
0.657

ERa Mann-Whitney U
test

T =
-1.059

P =
0.295

T =
0.658

P =
0.516

T =
0.305

P =
0.763

T =
1.194

P =
0.244

PRa Mann-Whitney U
test

T =
-0.672

P =
0.504

T =
-0.193

P =
0.848

T =
-0.645

P =
0.521

T =
1.519

P =
0.136

HRa Mann-Whitney U
test

T =
-1.233

P =
0.225

T =
0.632

P =
0.534

T =
0.299

P =
0.767

T =
1.015

P =
0.321

ERBB2a Mann-Whitney U
test

T =
0.051

P =
0.960

T =
-1.237

P =
0.222

T =
-1.594

P =
0.120

T =
-0.841

P =
0.406

TNBCa Mann-Whitney U
test

T =
-0.399

P =
0.699

T =
-0.310

P =
0.765

T =
-0.365

P =
0.725

T =
0.281

P =
0.785

P53a Mann-Whitney U
test

T =
0.256

P =
0.800

T =
1.041

P =
0.304

T =
1.617

P =
0.113

T =
-0.953

P =
0.347

RECIST Progressive diseasea Mann-Whitney U
test

T =
-2.404

P =
0.019

T =
-0.998

P =
0.322

T =
-2.488

P =
0.016

T =
-0.399

P =
0.691

Circulating
markers

Number CTCs Spearman
correlation

R =
0.056

P =
0.635

R =
-0.026

P =
0.826

R =
0.053

P =
0.655

R =
-0.094

P =
0.424

ADNAGena Mann-Whitney U
test

T =
-0.534

P =
0.596

T =
1.789

P =
0.078

T =
0.782

P =
0.437

T =
-2.144

P =
0.041

Mammaglobin
expression

Spearman
correlation

R =
0.047

P =
0.697

R =
0.005

P =
0.969

R =
0.086

P =
0.474

R =
-0.107

P =
0.374

Cytokeratin 19
expression

Spearman
correlation

R =
0.191

P =
0.110

R =
-0.099

P =
0.409

R =
-0.010

P =
0.933

R =
0.004

P =
0.968

Plasma DNA
concentration

Spearman
correlation

R =
0.200

P =
0.085

R =
-0.100

P =
0.392

R =
-0.043

P =
0.712

R =
0.085

P =
0.467

Methylated
markers

RASSF1A Spearman
correlation

R =
-0.129

P =
0.271

R =
-0.198

P =
0.089

R =
-0.189

P =
0.104

R =
0.025

P =
0.829

APC Spearman
correlation

R =
-0.144

P =
0.217

R =
-0.134

P =
0.253

R =
-0.114

P =
0.332

R =
-0.010

P =
0.930

ESR1 Spearman
correlation

R =
0.148

P =
0.205

R =
0.001

P =
0.997

R =
0.086

P =
0.461

R =
0.252

P =
0.029

Number methylated
genes

Spearman
correlation

R =
0.250

P =
0.031

R =
-0.159

P =
0.172

R =
-0.039

P =
0.740

R =
0.262

P =
0.023

Methylation statusa Mann-Whitney U
test

T =
-1.583

P =
0.118

T =
1.456

P =
0.152

T =
0.538

P =
0.593

T =
-1.270

P =
0.208

aA negative T-value indicates a higher expression in the “positive” group.
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can vary depending on DICER1 expression and that

normalization relative to the mean miRNA-expression

level might obscure between-sample differences, particu-

larly in breast cancer. The alternative approach would

be to use the reference miRNAs provided on the array

cards or miR-16, which is often suggested as reference

miRNA. However, the CVs for these reference miRNAs

were about threefold higher than the CV of the mean

miRNA expression level per sample. In addition, about

20% of the miRNA assays on both array cards yielded

more-robust expression data (data not shown).

Therefore, in spite of our previously raised concerns,

we decided to normalize our expression data relative to

the mean Ct value per sample and compare the results

with the data obtained by using nCounter Analysis Sys-

tem, which uses a panel of five mRNA assays (RPLPO,

RPL19, ACTB, B2M, and GAPDH) for data normaliza-

tion. The above-moderate agreement between the

miRNA-expression data obtained by using both profiling

techniques lends credit to the biologic validity of our

qRT-PCR-based miRNA-expression profiles.

Further evidence that the applied normalization proce-

dure did not obscure molecular subtype-specific differ-

ences is derived from the UHCA, which showed that

the molecular subtypes govern global themes in our

miRNA expression data set. Also, the miRNA-based

molecular subtype classification is in agreement with the

classification resulting from the application of a more-

validated algorithm on mRNA data (SSP) [37]. For

example, the comparison of the miRNA-based expres-

sion profile of SSP-defined Basal-like breast tumors with

the miRNA-based expression centroid for Basal-like

breast cancer results in more-elevated Spearman corre-

lation coefficients than when compared with the results

obtained for non-Basal-like breast tumor samples.

Although the classification error rate was substantial, we

must keep in mind that the miRNA-based expression

centroids reported by Blenkiron and colleagues [14] are

based on a limited series of samples. Therefore, it is

arguable that the expression centroids are not very

stable, which affects the classification accuracy. When

performing a supervised analysis, we were able to iden-

tify sets of specific miRNAs for each molecular subtype,

except for the ErbB2+ breast tumor samples. Overall,

our results are in line with previously reported data

[14,43-45], except for the results with respect to the

ErbB2+ subtype, for which an miRNA signature has

been defined in the past [45]. Of note is the concordant

overexpression of miRNAs belonging to the polycistro-

nic miR-17-92 cluster (miR-17, miR-18a, miR-19a, miR-

20a, and miR-92) and its paralogs (miR-18b and miR-

106a) in Basal-like breast tumors. The miR-17-92 cluster

is known to downregulate ERa in a MYC-dependent

manner and inhibits the protein translation of AIB1, an

ERa transcriptional coactivator [46]. Also, the miR-17-

92 cluster is known to regulate cell migration, invasion,

and metastasis in breast cancer by regulating ROCK

[47] and the HBP1/b-catenin pathway [48].

Although the sample-clustering pattern based on the

expression of 373 miRNAs demonstrated that the global

themes in our expression data set are related to the pre-

sence of the classic molecular subtypes in breast cancer,

we did identify one sample cluster without any connec-

tion to the classic molecular subtypes. This sample clus-

ter originated early in the dendrogram, indicative of a

specific miRNA-expression profile. Indeed, the heatmap

did reveal an miRNA cluster, including members of the

miR-200 family, members of the let-7 family, and

NF�B-regulating miRNAs [49], that is overexpressed in

this group of tumor samples, at a level exceeding the

expression level observed in the Luminal-like sample

cluster. The latter observation is at least remarkable, as

all these miRNA families are known to inhibit stem cell-

specific pathways, epithelial-to-mesenchymal transition,

cell proliferation, and other global oncogenic processes

[16,50-53]. Hence, their overexpression would induce a

more-differentiated, less-proliferative, less-mesenchymal,

and less-migratory/invasive cell phenotype. The pre-

sence of this tumor sample cluster with its particular

molecular characteristics warrants further investigation.

When focusing on the Normal-like samples, a clear and

distinct miRNA profile was observed. In addition, the

true normal breast samples constituted a coherent

group inside the cluster of the Normal-like samples,

suggesting vast differences in miRNA expression

between tumor samples and normal breast samples.

Indeed, supervised analysis revealed high numbers of

differentially expressed miRNAs with nominal (uncor-

rected) P values less than 0.05.

The huge difference in miRNA expression between

normal and tumor samples underlines the important

role of miRNA deregulation in the development of

breast cancer. After correction for false discovery, we

observed that the majority of the differentially expressed

miRNAs have attenuated expression levels in the tumor

samples. The global repression of miRNAs in cancerous

tissue relative to normal tissue has been reported pre-

viously and suggests that most miRNAs have a tumor-

suppressive function [13]. This view is corroborated by

reports on the cellular functions of the top four (miR-

215, miR-299-5p, miR-411, and miR-452) differentially

expressed miRNAs by fold-change. Song et al. [54]

demonstrated that miR-215 overexpression in a colon

cancer cell line reduced the proliferation rate and led to

improved cell-cycle control, probably due to an

increased expression of the cell-cycle control genes p53

and p21. Duan et al. [55] showed that miR-299-5p

expression increased downstream of the tumor
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suppressor PRDM5 in HEK293 cells. In contrast, Fang et

al. [56] showed that SOX2, a gene with tumor-promot-

ing activity involved in cell proliferation and colony for-

mation of LN229 glioblastoma multiforme cells,

represses miR-452. The evidence for a role of miR-411

as tumor suppressor is less clear, but this miRNA is

located at the 14q32.31 locus, which is known to harbor

many tumor-suppressive miRNAs [57]. The biologic

processes regulated by miR-215, miR-299-5p, miR-411,

and miR-452, identified through the analysis of their

respective target-gene lists, are in line with their role in

maintaining cellular homeostasis.

Because of the marked overexpression of miR-215,

miR-299-5p, miR-411, and miR-452 in normal breast

samples, in addition to the fact that miRNAs have a

proven stability in blood samples [29], we hypothesized

that this panel of miRNAs might be suitable for the

detection of breast cancer by using blood-borne testing.

The reason for using serum samples for this purpose is

twofold. First, we argued that miRNA-expression pro-

files in whole blood, platelet-rich plasma, and PBMCs

would be dominated by host miRNA expression, and

therefore would be less suitable for the detection of

tumor-specific miRNA expression. Conversely, reports

have shown that miRNA expression is also detectable in

serum and plasma samples from healthy donors [58].

Second, we noticed a slightly higher and more consis-

tent sRNA yield in serum as compared with plasma.

When evaluating the relative expression profiles of miR-

215, miR-299-5p, miR-411, and miR-452 in serum sam-

ples from patients with breast cancer and healthy volun-

teers, we recorded comparable expression profiles in

tissue and blood samples, except for miR-452. Of note,

when comparing absolute CT values, the expression dif-

ferences between samples from patients with breast can-

cer and healthy volunteers were maintained, however, at

a higher fold-change level. In addition, we observed that

the reduction of miRNA expression was particularly

obvious in serum samples from patients with untreated

metastatic breast cancer, whereas the expression profiles

“normalized” with treatment.

No associations between blood-borne miRNA expres-

sion in serum samples from patients with breast cancer

and the classical clinicopathologic variables were

observed, except for the patient’s age at diagnosis. How-

ever, this should not be surprising, as our miRNA panel

was not selected to make this distinction. Of note is the

lack of associations between circulating miRNA expres-

sion and the presence of CTCs, measured by three alter-

native techniques. This observation suggests that

recorded serum miRNA profiles are not CTC derived

and that the mechanisms responsible for the release of

miRNAs in the circulation are unrelated to the extrava-

sation of tumor cells. Indeed, several reports have

suggested that miRNAs are selectively released in the

bloodstream by tumor cells either via exosomes or

attached to lipoprotein complexes or within a functional

RISC complex [59-63]. These mechanisms of secretion

offer an explanation for the marked stability of miRNAs

in the blood stream, due to shielding of the associated

miRNAs from RNAse-activity. In addition, miRNAs

secreted as such are functionally active and have been

found to regulate gene expression in target cells, thereby

providing alternative ways of cell-cell communication.

This opens the possibility that miRNAs, secreted by

tumor cells, evoke a response in host cells altering their

expression profile, which explains how subtle differences

in tumor-specific expression are measurable in a back-

ground of nontumorigenic expression. More specific in

the context of our results, one could envision that

tumor-driving miRNAs, secreted by tumor cells, affect

the expression profile of host cells, which is reflected in

the serum profile of breast cancer patients and explains

the observed decrease in miRNA expression.

Conclusions
The present data provide a technologically validated fra-

mework to elaborate on the study of miRNA-deregula-

tion in the development of breast cancer. We potentially

identified a novel subgroup of breast tumors with ele-

vated expression of tumor-suppressive miRNAs, and we

showed that miRNAs can be used as blood-borne bio-

markers for detection and staging of breast cancer. The

identification of several molecular subtype-specific miR-

NAs in this study also suggests that blood tests directed

at the molecular subtypes can be developed in the

future. However, to do so, a larger repository of molecu-

lar subtype-specific miRNA expression is required.

Additional material

Additional file 1: To evaluate assay reproducibility, we tested four

samples in duplicate. The scatterplots demonstrate the result for these

samples. The blue line represents the regression line and the correlation

coefficients, and corresponding P values are given on top of the

scatterplot.

Additional file 2: To perform a technical validation of our miRNA-

expression data, we analyzed 12 samples by using the nCounter

Analysis System and compared these results with the qRT-PCR-

based miRNA expression profiles. The scatterplots illustrate the result

of this comparison. The correlation coefficients for each comparison are

reported on top of the scatterplots.

Additional file 3: Boxplots showing the comparison of the miRNA-

expression profiles of four selected miRNAs (miR-135b, miR-106a,

miR-100, and miR-145) between tumor samples grouped by their

SSP-defined molecular subtype. The top row represents two miRNAs

overexpressed in the Basal-like samples; the bottom row represents two

miRNAs overexpressed in Normal-like samples. The color scheme under

each boxplot is adopted from the article by Blenkiron and colleagues

and depicts the expression of the corresponding miRNAs according to

the SSP-defined molecular subtypes, as reported in their study. Red

indicates overexpression, and grey indicates repression. As can be
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observed, the variation in miRNA expression across the SSP-defined

molecular subtypes is in good agreement in both studies.

Additional file 4: Boxplot illustrating the sRNA yields extracted from

five different peripheral blood media. The X-axis depicts the different

analyzed media (from left to right: serum, plasma, platelet-rich plasma,

peripheral blood mononuclear cells (PBMCs), and whole blood); the Y-

axis depicts the sRNA concentration. The sRNA yields are most

pronounced in whole blood followed by the PBMC fraction. For serum,

plasma, and platelet-rich plasma, the results are comparable, although

the sRNA yield is slightly higher in serum.

Abbreviations

CTC: circulating tumor cell; FDR: false discovery rate; miRNA: microRNA;

PBMC: peripheral blood mononuclear cell; RECIST: response-evaluation

criteria in solid tumors; RISC: RNA-induced silencing complex; sRNA: small

RNA; SSP: single sample predictor; UHCA: unsupervised hierarchical cluster

analysis.
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