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ABSTRACT

Motivation: Genome-wide mRNA profiling provides a snapshot

of the global state of cells under different conditions. However,

mRNA levels do not provide direct understanding of upstream

regulatory mechanisms. Here, we present a new approach

called Expression2Kinases (X2K) to identify upstream regulators

likely responsible for observed patterns in genome-wide gene

expression. By integrating chromatin immuno-precipitation (ChIP)-

seq/chip and position weight matrices (PWMs) data, protein–protein

interactions and kinase–substrate phosphorylation reactions, we can

better identify regulatory mechanisms upstream of genome-wide

differences in gene expression. We validated X2K by applying it to

recover drug targets of food and drug administration (FDA)-approved

drugs from drug perturbations followed by mRNA expression

profiling; to map the regulatory landscape of 44 stem cells and their

differentiating progeny; to profile upstream regulatory mechanisms

of 327 breast cancer tumors; and to detect pathways from profiled

hepatic stellate cells and hippocampal neurons. The X2K approach

can advance our understanding of cell signaling and unravel drugs

mechanisms of action.

Availability: The software and source code are freely available at:

http://www.maayanlab.net/X2K.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Although genome-wide proteomic approaches are rapidly

improving, the most widely available and cost-effective genome-

wide expression data is still collected at the mRNA level.

These experiments are carried out using either microarrays or

more recently RNA sequencing (RNA-seq) (Wang et al., 2009).

Commonly, studies examine cells under different experimental

conditions such as control versus drug treated, disease versus

normal states or as a time-series, for example, during cell

differentiation. Since quantitative changes in mRNA levels do

not directly explain how cell signaling mechanisms are altered to
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induce changes in gene expression, and in turn lead to changes

in cellular phenotype, identification of such upstream regulatory

mechanisms has been the focus of many computational systems

biology studies. Such understanding will enable us, among other

things, to better control cell behavior with small molecules, and in

turn translate such ability to therapeutics. Most popular approaches

for data interpretation of changes in genome-wide gene expression

include promoter analysis (Matys et al., 2006; Portales-Casamar

et al., 2010), gene ontology (The Gene Ontology Consortium)

or pathway enrichment analyses (Kanehisa et al., 2010), as well

as reverse engineering of networks from mRNA expression data

(Margolin et al., 2006). The ultimate goal of many of these

approaches is to identify and rank potential target genes/proteins

that if knocked down or overexpressed would explain the observed

changes by, for example, reversing them. Such proteins may

ultimately become drug targets. Here, we present a rational

approach called Expression2Kinases (X2K) to identify and rank

putative transcription factors, protein complexes and protein kinase

that are likely responsible for the observed changes in genome-wide

mRNA expression. By combining data from chromatin immuno-

precipitation (ChIP)-seq/chip experiments and/or position weight

matrices (PWMs), protein–protein interactions and kinase–substrate

protein phosphorylation reactions, we demonstrate how we can

better identify regulatory mechanisms responsible for genome-wide

differences in gene expression. The idea is to first infer the most

likely transcription factors that regulate the differences in gene

expression, then use protein–protein interactions to connect the

identified transcription factors using additional proteins to build

transcriptional regulatory subnetworks centered on these factors

and finally use kinase–substrate protein phosphorylation reactions

to identify and rank candidate protein kinases that most likely

regulate the formation of the identified transcriptional complexes

(Fig. 1).

We show how transcription factors, protein complexes and

protein kinase candidate identification and ranking are inferred

robustly by cross-validating the method with additional data such

as those from drug perturbations followed by genome-wide mRNA

expression profiling. Furthermore, we demonstrate the application

of the method to in several case studies, where we developed

several visualization methods that present a global view of cell-

fate trajectories at different layers of regulation. All together, X2K

can rapidly advance our understanding of cell signaling networks’

regulation of gene expression by utilizing different modalities of

prior knowledge. The X2K approach can assist in drug target

discovery and help in unraveling drug mechanisms of action.

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 105
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Fig. 1. The X2Ks workflow.

2 METHODS

2.1 Identifying differentially expressed genes

The first step of the X2K computational approach is a standard procedure

where differentially expressed genes (mRNAs) are identified. Such sets of

genes can originate from experiments that profiled cells under different

conditions, during different stages of differentiation, from tissues of different

patients or different cell-lines. The identified sets of differentially expressed

genes can then be grouped into up or down subgroups, clusters of genes

that behave similarly across different perturbations, or gene modules that

behave similarly over a time course. The outputs from such analyses produce

sets of unranked lists of genes. For microarray analysis we performed

here, MAS5.0-processed data from the gene expression omnibus (GEO)

database was used. Quantile normalization was then required for cross-assay

comparisons. Following normalization, differentially expressed genes were

identified via the R statistical package LIMMA (Smyth, 2004).

2.2 Identifying upstream transcription factors

Once sets of differentially expressed genes are identified, these gene lists

can be fed into the transcription factor inference module of X2K using the

tool and database ChIP-seq/chip Enrichment Analysis (ChEA) (Lachmann

et al., 2010) or PWMs to obtain a list of transcription factors that are

the likely upstream regulators of the identified differentially expressed

gene set. The ChEA database and software contains manually extracted

results of transcription factor/target-gene interactions from ChIP-seq/chip

experiments applied to human or mouse cells. This database currently

contains a network of 361 299 interactions, manually extracted from 157

publications, describing the binding of 159 transcription factors to their

putative targets covering almost all annotated human or mouse target genes.

On average, each transcription factor/experiment entry lists ∼1300 target

genes. Most interactions were extracted based on authors’ selection of target

genes for each factor, but in few cases, we directly processed the raw

fastq files from sources such as the National Center for Biotechnology

Information’s sequence read archive (SRA) database or processed the WIG

or BED files provided by the authors to identify the top peaks near genes,

while setting an arbitrary cut-off to obtain the top ∼1000–2000 target genes

for each experiment based on distance to the start site and peak height.

We used BowTie (Langmead et al., 2009) for reads alignment and MACS

(Zhang et al., 2008) for peak calling. With the ChEA database, we compute

enrichment for overlap between the input set of differentially expressed

genes and entries in the ChEA database using either the Fisher’s exact

test, an alternative method that computes the deviation from expected rank

for random input gene-set, or a combination of these two scoring schemes.

As an alternative to ChEA, we used TRANSFAC (Matys et al., 2006) and

JASPAR (Portales-Casamar et al., 2010), which are two state-of-art databases

for PWMs. From TRANSFAC and JASPAR, we generated a Gene Matrix

Transposed (GMT) file (Subramanian et al., 2007) listing putative target

genes for each transcription factor for human or mouse by scanning the

promoters (−2000 to +500 from the transcription factor start site) for all

annotated genes for these two organisms. The program Patch, provided by

TRANSFAC, was used to scan promoter sequences. We kept all individual

entries from both databases even though for some transcription factors there

are more than one PWM. For JASPAR we used the JASPAR Core.

The ChEA or the GMT file created from TRANSFAC and JASPAR were

used to analyze lists from mRNA expression profiling by performing gene-

list enrichment analysis with the Fisher’s exact test using the ChEA or the

PWMs dataset as the prior biological knowledge gene-list library. ChEA

and PWMs, each have their own advantages and disadvantages. ChEA is

created from empirical observations in different cell types and conditions.

On one hand, ChEA considers the chromatin state of the cell under a specific

condition, which is not done by PWMs and may produce more specific

overlapping genes with fewer false positives. However, the ChEA approach

may miss hits for transcription factors if the examined expression is derived

from completely different cell types or the transcription factor is missing

from ChEA. Another advantage of the PWM GMT library is that it provides

more coverage for factors. For example, TRANSFAC contains 830 mouse

and 1113 human matrices for about ∼300 transcription factors, whereas the

ChEA database currently only has 159 factors.

2.3 Connecting transcription factors with

protein–protein interactions

Most analyses that attempt to link gene expression changes to upstream

regulators stop at the step of promoter analysis, or attempt to infer

pathways directly from differentially expressed genes. However, X2K

further ‘connects’ the identified transcription factors using networks of

experimentally reported protein–protein interactions or protein complexes.

Genes2Networks (G2N) is command-line and web-based software that we

developed in the past to connect lists of mammalian genes/proteins in

the context of background mammalian signalome and interactome protein

networks (Berger et al., 2007). The background protein–protein interactions

network we use in X2K is made of experimentally determined mammalian

interactions collected from 18 databases/datasets and currently contains

24 036 proteins connected through 389 959 interactions. The input to the

program is a list of human Entrez gene symbols and background protein

interaction networks, while the output is a subnetwork made of ‘intermediate’

proteins that ‘connect’ the ‘seed’ list of genes/proteins. This is achieved

by finding all shortest paths between all pairs of seed nodes with a

specified maximum path length and then adding additional interactions

between intermediates. Different settings allow for filtering interactions from

background networks by limiting the number of interactions from a specific

paper, limiting the selection of background databases or only including

interactions that are reported more than once. Once transcription factor-

centered complexes upstream of differentially expressed gene modules are

identified, using the G2N module of X2K, we identify the protein kinases that

are most likely responsible for the transcription factor complexes’ formation

and functional regulation.

2.4 Identifying protein kinases upstream of

transcriptional complexes

Once we build a subnetwork/protein complex that connects the identified

transcription factors to each other, we convert this subnetwork to a list of

proteins and feed it as input to the Kinase Enrichment Analysis (KEA)

(Lachmann and Ma’ayan, 2009) module of X2K. KEA is web-based and

command-line software with an underlying database that provides users

with the ability to link lists of mammalian proteins with the protein kinases

that likely phosphorylate them. The system draws from several available

kinase–substrate databases to compute kinase enrichment probability based

on the distribution of kinase–substrate proportions in the background

kinase–substrate database compared with the protein kinases found to be

associated with an input list of proteins using the Fisher’s exact test. Using

information available in the public domain, we reconstructed a mammalian

kinase–substrate network. The kinase–substrate interactions are from the
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human protein reference database (HPRD) (Keshava Prasad et al., 2009),

PhosphoSite (Hornbeck et al., 2004), phospho.ELM (Diella et al., 2004),

NetworKIN (Linding et al., 2008) and Kinexus (www.kinexus.ca). In total,

the consolidated dataset contains 14 374 interactions from 3469 publications

involving 436 kinases.

2.5 The X2K software

All together, starting from a set of differentially expressed genes, we end

up with protein kinases, transcription factors and protein complexes that

are putative regulators of the inputted differentially expressed genes. The

X2K system was developed as an open source Java desktop application

and is available at http://www.maayanlab.net/X2K with documentation. The

underlying code for X2K was developed using the Java 6 SDK under the

Eclipse IDE. Using an Apache Maven build process, command-line and

Swing GUI versions are packed into an executable JAR with all the necessary

background files included. User can unpack the JAR to access the background

databases used. Since the code does not use any operating-system-specific

methods, the application is inherently multiplatform. After entering a list of

differentially expressed genes, the program outputs Excel spreadsheets, text

files and network files in different formats, including networks that can be

visualized with Cytoscape (Shannon et al., 2003), SNAVI (Ma’ayan et al.,

2009), Pajek, or yEd. User manual is available as supporting materials.

3 RESULTS

3.1 Application of X2K to recover drug-targeted

pathways from gene expression signatures

To demonstrate how X2K can be used to infer upstream regulators

given gene expression changes, we first applied the tool to analyze

expression data from the Connectivity Map (CMAP) (Lamb et al.,

2006). The CMAP database developed by the Broad Institute is a

large dataset of mRNA microarray gene expression profiles made

from experiments where four different types of human cancer cell

lines were treated with many single FDA-approved drugs and

then gene expression was measured after 6 hours. CMAP contains

6100 perturbations with 1309 single drugs, where compounds were

applied in different concentrations, to different cell types, or other

variable experimental conditions. Using CMAP, we examine if the

known drug target proteins fall within the subnetworks created

by the intermediate steps of X2K. We omitted G-protein coupled

receptors (GPCR) targeting drugs because X2K is not designed to

recover those. First, we extracted the top 500 upregulated and bottom

500 downregulated genes from CMAP for each drug perturbation

experiment based on the ranked gene lists provided for download

from the CMAP website. We then entered these lists as input into the

X2K pipeline. Once we collected all the transcription factors, protein

complexes and protein kinases based on gene expression changes

induced by the different drug perturbations, using the default settings

of X2K, we asked whether the genes/proteins appearing in these

pathways are enriched in known drug targets reported in DrugBank

(Wishart et al., 2008) (Fig. 2).

We show that ∼15–17% of the time we can recover the drug target

in pathways created by X2K using ChEA or TRANSFAC/JASPAR.

The TRANSFAC/JASPAR option is slightly better in recovering

targets as compared with ChEA. Interestingly, targets can be

recovered directly within the differentially expressed genes better

than by chance but with much less recall and specificity as compared

with X2K. Having targets appearing in differentially expressed

genes more than by chance was previously reported by Iskar

et al. (2010), which is consistent with our findings. In addition,

Fig. 2. Validation of X2K with CMAP and DrugBank. X2K recovered ∼15–

17% of the times at least one known non-GPCR primary drug target in

pathways created upstream from gene expression profiles from CMAP using

the 500 up and down lists from individual experiments in CMAP (first two

sets of bar graphs from right). The X2K software was used with the default

settings: 10 top transcription factors based on ChEAor TRANSFAC/JASPAR

(ChEA is used as default, otherwise TRANSFAC is labeled), G2N to expand

the initial list with all protein–protein interactions datasets, and 10 top kinases

from KEA. These results were compared with the percent of recovered drug

targets in randomly generated gene lists, randomly generated lists piped into

X2K, shuffled lists from CMAP, targets recovered directly from the top 500

up and down lists from CMAP or targets found in protein–protein interaction

networks created from the top 500 up and down lists from CMAP (left to

right bar graphs).

targets can be found in pathways constructed directly from the

differentially expressed genes, but this procedure too has less recall

and specificity as compared with X2K. Other statistical controls

show that targets can be found in randomly generated gene lists of

500 human genes ∼2–3% of the time, and in pathways created from

randomly generated lists of genes ∼7% of the time. Hence, X2K is

capable of recovering drug targets from gene expression better than

other methods. More parameter tuning, as well as expansion and

improvement of the databases quality and coverage used by X2K

are expected to improve performance. This is reserved to future

studies.

3.2 Application of X2K to obtain a global view of

cellular differentiation

The X2K method can be applied globally to map the putative

upstream ‘regulatory state’ of mammalian cells by comparing

and contrasting the subnetworks generated by the program across

different cell types and cell states. Our hypothesis is that given a

set of samples from genome-wide expression data across many cell

types and experimental conditions, we can correctly infer the activity

patterns of the upstream transcription factors and protein kinases

across samples to obtain a global picture of cell regulation across

multiple regulatory layers (Supplementary Fig. S1). Such activity

patterns can be approximated by enrichment analyses applied to the

weighted expression of differentially expressed gene modules. This

approach can also be used to validate whether X2K is identifying

a set of transcription factors and protein kinases that are unique

to specific cell types and experimental conditions. Developing an

initial approach to achieve this goal, we first analyzed 44 samples
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from genome-wide expression data collected from embryonic stem

cells induced to differentiate toward different lineages as well

as several other terminal cell types all collected and previously

analyzed by other studies (Aiba et al., 2009). The gene expression

data matrix was subjected to an iterative consensus agglomerative

clustering algorithm with within-module-coherence threshold of 0.7

and merging threshold set to 0.8 (Qiu et al., 2011). As a result,

300 expression modules were identified, but only 49 modules had

a hundred or more genes, and these modules were retained for

further analysis. Upstream transcription factors enriched for each

module were computed using ChEA. An enrichment significance

matrix M was then generated with entries mjk representing the -

log(p-value) of the enriched transcription factor j for module k. A

pseudo activity matrix P was then generated with pij representing

pseudo activity for transcription factor j in sample i calculated as

follows: pij =max(mjk) × akj × eij × iij where akj is the mean

expression of module k in sample i, eij is the expression level of the

transcription factor and iijis a Boolean indicator function that checks

if the transcription factor is expressed above average in the sample.

Hence, the pseudo activity pij is composed of the binding score

for the transcription factor, the average mRNA expression of the

regulated module and the expression level of the transcription factor

in the sample (Supplementary Fig. S1). To visualize the preservation

of ordering of the samples across regulatory layers for the 44

cell types and conditions, we implemented four data visualization

methods: (i) Principle Component Analysis (PCA) (Supplementary

Fig. S2); (ii) Minimum Spanning Trees (MST), implemented with a

modified script based on the recently published sample progression

discovery (SPD) package (Qiu et al., 2011) (Supplementary Fig. S3);

(iii) hierarchical clustering (Supplementary Figs S4 and S5);

and (iv) our Grid Analysis of Time-series Expression (GATE)

software (MacArthur et al., 2010), repurposed to have each hexagon

representing a cell type (Fig. 3).

The GATE software takes as input a data table, where rows

are variables and columns are measurements. The software uses

simulated annealing to arrange variables on a hexagonal grid based

on correlations between variables across all measurements. In our

case, the variables are cell types or tumor samples, and the columns,

representing measurements, are inferred pseudo-activity levels of

transcription factors and protein kinases. Similar to the way we

compute pseudo-activity for transcription factors, we can identify

the upstream protein kinases enriched for each module using the

command-line version of X2K and the same steps performed for

the transcription factors. Consequently, by using the upstream

regulatory transcription factors and protein kinases activity patterns,

the landscape of samples can be correctly time-ordered and samples

of the same subtype are closer to each other than to other subtypes.

To test whether the preserved ordering of samples across regulatory

layers arises by chance, we applied the same procedure to shuffled

data (Supplementary Fig. S6). We quantified the preservation of the

ordering by an objective error function, counting the times neighbors

of each node are preserved, and clearly saw that the ordering

is far from random (P-value <10−10, two-tailed t-test for both

transcription factors and protein kinases). Enriched transcription

factors with relatively high predicted activity in the pluripotent

stem cells are generally known factors such as Oct4/Pou5f1, Nanog

and Sox2. In comparison, enriched lineage commitment regulators

are predicted to be active in more differentiated cell types. For

example, Gata4 is a known master regulator for the endoderm

Fig. 3. GATE visualization of transcription factor and protein kinase pseudo-

activity scores applied to 44 cell types. Each hexagon represents a different

cell type, color-coded based on the different lineage groups, but ordered

based on pseudo-activity scores correlation with other cell types. Next to

each hexagonal heatmap there are representative (left) transcription factors

and (right) protein kinases, pseudo-activity score profiles for all transcription

factors and kinases for selected samples. Red represents up-regulation and

green represents down-regulation of the transcription factors or kinases

regulating co-expressed modules across the 44 samples for a specific sample.

Specific transcription factors and protein kinases are highlighted with straight

vertical lines and are annotated at the bottom. Transcription factors and

kinases are ordered along the line corresponding to the order determined

by hierarchical clustering. The hexagonal grid folds on itself to form a torus

such that hexagons at the edges are close to hexagons from the opposite side.

lineage and correspondingly displays high pseudo activity scores in

late-stage endoderm cells. These results can be used to characterize

the upstream regulatory profile of the 44 different cell types. This

approach can be used to tune the parameters and datasets used by

X2K to validate the approach by setting the thresholds that best

preserve the ordering of samples and recovering the already known

transcription factors and protein kinases for cell types.

3.3 Application of X2K to unravel regulatory

mechanisms of subtypes of breast cancer

The inherent inter-patient heterogeneity of breast cancer motivates

the identification of unique molecular signatures of the disease

at the individual patient level. The ability to identify molecular

regulatory differences at the genome, transcriptome, gene-regulome

and kinome levels for particular cancer subtypes may enable us to

better tailor and optimize therapeutics for individual patients. To

achieve this, we illustrate the utility of X2K to uncover putative

upstream regulatory mechanisms from previously published gene

expression data collected from a large cohort of breast cancer

tumors. We show that subtype similarities in gene expression can

be grouped and visualized based on the pseudo-activity scores

of upstream transcription factors and protein kinases that likely

regulate differentially expressed genes in the breast cancer subtypes.

Specifically, X2K was applied to analyze a publicly available breast

cancer gene expression dataset from fresh frozen tissues of 327

patients that were randomly selected from a group of diagnosed

individuals between 1991 and 2004 at the Koo Foundation Sun-Yat-

Sen Cancer Center (Kao et al., 2011). In the original study, the cancer

tissues were categorized into six subtypes based on differential gene

expression signatures. Based on OncotypeDX (Paik et al., 2004)

and MammaPrint (van ‘t Veer et al., 2002) signatures, the risk for
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BA

Fig. 4. GATE visualization of transcription factor and protein kinase

pseudo-activity scores applied to 327 breast cancer tumor samples. Each

hexagon represents a different profiled tumor from an individual patient.

Each hexagon is color-coded based on previous classification of tumor

invasiveness and recurrence. Next to each hexagonal heatmap there are

representative (left) transcription factor and (right) protein kinase, pseudo

activity score profiles for all transcription factors and kinases for selected

samples. Red represents up-regulation and green represents down-regulation

for a specific sample. Specific transcription factors and protein kinases

are highlighted with straight vertical lines and are annotated at the

bottom. Transcription factors and kinases are ordered along the line profile

that corresponds to ordering determined by hierarchical clustering. The

hexagonal grid folds on itself to form a torus such that hexagons at the

edges are close to hexagons from the opposite side.

distant cancer recurrence and metastasis was assessed such that

subtypes 1 and 2 had high risk, subtypes 3 and 4 had intermediate risk

and subtypes 5 and 6 had low risk. The normalized gene expression

data and corresponding patient subtype designations were obtained

from Gene Expression Omnibus (accession GSE20685), subjected

to probe-set consolidation, hierarchical clustering, and gene co-

expression module identification. X2K was applied to co-expressed

modules, where each module consisted of a list of genes whose

expression profiles correlated across all patients. The detailed

procedure and parameters are similar to those applied above for

analyzing the 44 stem cells and their differentiated progeny. The

correlation of pseudo activity contribution scores of the transcription

factors and protein kinases that were enriched in the maximum-

score gene modules were used to cluster and visualize the 327

patients using GATE (MacArthur et al., 2010) (Fig. 4). As shown

by the list of identified key transcription factors in the subtypes’

representative profiles, our analysis confirmed the downregulation

of the nuclear receptors ESR1, ESR2 and AR in the high risk tumors.

This is consistent with the original expression-based analysis that

reported that subtypes 1 and 2 (high risk group) were estrogen

receptor (ESR) negative. On the other hand, the high risk subtypes

display upregulation of target genes regulated by members of the

Polycomb group (EZH2, RNF2, PHC1, SUZ12), which are known

to be downregulated in many cancers (Raaphorst, 2005). Together

with identified enrichment for NANOG and SOX2, the high risk

tumors suggest a stem cell-like regulatory signature. Moreover, the

tumor suppressor TP53, as well as the receptor-mediated SMADs

(SMAD1, SMAD2, SMAD3) and their associated common mediator

(SMAD4), are predicted to be upregulated in the high-risk subtypes.

Indeed, the TGF-β pathway is commonly implicated in distant

metastasis of breast cancer (Kang et al., 2005), and reduction of

SMAD2/3 signaling in breast cancer has been shown to suppress

distant metastasis (Tian et al., 2003). Furthermore, we assessed the

differential pseudo activity of the putative protein kinases predicted

by X2K for the different breast cancer subtypes. We predict that

MAPK14, RPS6KA2, GSK3B and MAPK3 are downregulated in

the high- and intermediate metastasis-risk subtypes relative to the

low-risk subtypes, while other isoforms of the same kinases, namely

MAPK8, RPS6KA5, GSK3A and MAP11, exhibit the opposite

pattern. Furthermore, we predict that the protein kinase HIPK1

and the TGF-β receptor TGFBR2 are more active in the high-

risk group relative to the low-risk group. These predictions mostly

agree with already known pathways, for example, HIPKs were

reported to phosphorylate p53 (Arai et al., 2007), while the SMAD

family members and TGF-β signaling are connected to TGFBR2.

However, many novel candidates were also identified. Subsequent

experimental verification of these is necessary but is beyond our

expertise.

3.4 Application of X2K for reanalyzing expression data

collected from hippocampal neurons and activated

hepatic stellate cells in liver fibrosis

Lastly, in two additional case studies, we applied the X2K approach

to analyze data from prior studies that applied microarray genome-

wide gene expression analyses to investigate two commonly studied

mammalian systems: (i) investigating differences in genome-wide

expression profiles collected from hepatic stellate cells (HSCs) in

liver fibrosis; and (ii) detecting upstream regulatory pathways by

reanalyzing microarray data collected from hippocampal neurons

treated with bicuculline during development. For the HSCs case

study, we reanalyzed gene expression profiles to investigate

regulatory mechanisms of hepatic fibrosis. Hepatic fibrosis is a

scarring response to liver damage often due to chronic liver disease.

In fibrogenesis, HSCs become activated and differentiate into extra-

cellular-matrix-producing myofibroblasts. To better understand the

gene expression changes that occur during such a process, De

Minicis et al. (2007) conducted a microarray study to examine

differences in gene expression profiles between cultured and in

vivo-activated HSCs. Using the study as a source of microarray

data for X2K, we identified the putative upstream transcription

factors, intermediate proteins and protein kinases that may regulate

the fibrosis response of HSCs. The transcription factor Tcf3 was

predicted as a top candidate and this is supported by studies

investigating the anti-adipogenic role of Wnt signaling in the

pro-fibrogenic response, as a loss of adipogenic transcriptional

regulation has been shown to be important for HSC activation

(She et al., 2005). Among the predicted kinases are members of

the ribosomal s6 kinase (RSK) family of serine/threonine kinases

that can phosphorylate C/EBPbeta, an adipogenic transcription

factor known to regulate collagen type I expression. RSK-mediated

phosphorylation of C/EBPbeta at Thr217 appears to be crucial

for the progression of fibrosis; Rsk inhibition led to regression of

fibrosis in CCl4-treated mice, and increased activation of RSK and

phosphorylated C/EBPbeta both were found in activated HSCs of

liver fibrosis patients (Buck and Chojkier, 2007). Hence, it appears

that X2K was able to correctly identify known upstream regulators

based on the differentially expressed gene alone.
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For the next case study, we reanalyze data relevant to long-term

potentiation (LTP). Zhang et al. (2007) examined gene expression

changes in neonatal mouse hippocampal neurons undergoing

induction of rhythmic network activity. Reanalysis of this data

using X2K has recaptured the transcription factor CREB and the

protein CaMK4 as important upstream regulators. Activation of

CREB is heavily implicated in the literature (Hardingham et al.,

1999). In addition, the calmodulin-dependent kinase (CamK4)

was also recovered from the X2K analysis. The link between

CamK4 and CREB dependent transcription is well established

(Matthews et al., 1994; Sun et al., 1994). Following this link to

N-Methyl-D-aspartic acid (NMDA) receptor activation is clearly

through calcium signaling. It was shown that CamK4 activation is

important for different forms of LTP that depend on NMDA receptor

activation (Kang et al., 2001). Activity-dependent increases in

intracellular calcium, likely through voltage-gated calcium channels,

affect increases in nuclear calcium where CamK4 is preferentially

localized. Hence, the X2K pipeline is capable of recovering known

pathways and likely predicting pathways not known to be involved

before. More details about the two case studies from this section are

available as Supplementary Material and as part of the X2K online

documentation.

4 DISCUSSION

The X2K pipeline presents a new rational approach to identify

and rank upstream regulators that are responsible for observed

changes in gene expression collected at the genome-wide scale from

mammalian cells. The approach, applied to datasets such as CMAP,

has the potential to rapidly advance drug target discovery and help in

unraveling drug mechanisms of action. The application to mapping

transcription factor profiles and kinome profiles of many individual

cell types, i.e. different cells during lineage commitment or tumors

from patients, can be useful to obtain a global view of the axis of cell

signaling networks across many cell types or to compare individual

patients for suggesting appropriate pharmacological interventions.

In addition, specific applications to common studies that examine

genome-wide gene expression under two conditions, such as the

two case studies we presented for HSCs and hippocampal neurons,

can benefit from X2K analysis for generating hypotheses for further

functional experiments following the global expression profiling.

While currently the X2K method uses only protein/DNA

interactions, protein–protein interactions and kinase–substrate

reactions, other types of data could be added. For example, histone

modifications, microRNAs and other types of post-translational

modifications could be incorporated into the pipeline. While more

sophisticated enrichment analyses tests could be implemented, i.e.

gene set enrichment analysis (GSEA) (Subramanian et al., 2005),

and better parameter tuning can be achieved by cross-validation, the

initial application of the approach shows great promise. The X2K

approach is useful for data integration across layers and the reuse of

prior knowledge within newly acquired expression datasets linking

expression changes to upstream regulation. Another limitation of the

method is the assumption of independence between regulators and

targets when applying the ChEA or KEA steps. It is known that the

kinome and transcriptional regulome networks are made of tightly

coupled protein kinases regulating other kinases and transcription

factors regulating other transcription factors. Several recent studies

considered such interactions for transcription factors (Asif and

Sanguinetti, 2011; Novershtern et al., 2011). Such interdependencies

could be added to the X2K analysis where these two regulatory

networks could be dynamically modeled. Regardless of these

limitations and future directions, the current application of X2K

presents an advancement toward our ultimate goal of understanding

mammalian cell signaling networks from a global perspective at a

molecular level of resolution.
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