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Expressions of content-parametrized Schur multiple
zeta-functions via the Giambelli formula

Kohji Matsumoto and Maki Nakasuji ∗

Abstract

In this article, we consider the expressions for content-parametrized Schur multi-

ple zeta-functions in terms of multiple zeta-functions of Euler-Zagier type and their

star-variants, or in terms of modified zeta-functions of root systems. First of all, we

focus on the Schur multiple zeta-function of hook type. And then, applying the Gi-

ambelli formula and induction argument, we obtain the expressions for general content-

parametrized Schur multiple zeta-functions.

Keywords: Schur multiple zeta-functions, zeta-functions of root systems, Euler-Zagier multiple

zeta-functions, Giambelli formula
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1 Introduction

The multiple zeta-function of Euler-Zagier type and its star-variant are defined by the series

ζ(s1, . . . , sr) =
∑

0<m1<···<mr

1

m1
s1 · · ·msr

r
, ζ⋆(s1, . . . , sr) =

∑

0<m1≤···≤mr

1

m1
s1 · · ·msr

r
,

respectively, where (s1, . . . , sr) ∈ C
r with Re(s1), . . . ,Re(sr−1) ≥ 1 and Re(sr) > 1 for convergence.

More precisely, both ζ(s1, . . . , sr) and ζ⋆(s1, . . . , sr) converge in
∑r

j=r−i+1Re(sj) > i for 1 ≤ i ≤ r

(see [M]). Recently, some representation-theoretic generalizations of them have been studied. One

of them is the multiple zeta-functions attached to semisimple Lie algebras, called the zeta-functions

of root systems introduced by K. Matsumoto, Y. Komori and H. Tsumura ([KMT1]). It is well

known that semisimple Lie algebras over C are classified by root systems coming from their Dynkin

∗The first author is supported by Grants-in-Aid for Scientific Research (B) 18H01111, and the second
author is supported by Grants-in-Aid for Scientific Research (C) 22K03274.
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diagrams, and the exact formula for this kind of multiple zeta-function is different for each root

system. For example, the zeta-function of the root system of type Ar is of the following simple

form;

ζr(s, Ar) =

∞∑

m1

· · ·

∞∑

mr=1

∏

1≤i<j≤r+1

(mi + · · ·+mj−1)
−s(i,j),

where s(i, j) is the variable corresponding to the root parametrized by (i, j) (1 ≤ i, j ≤ r+1, i 6= j)

and

s =(s(1, 2), s(2, 3), . . . , s(r, r + 1), s(1, 3), s(2, 4), . . . ,

s(r − 1, r + 1), . . . , s(1, r), s(2, r + 1), s(1, r + 1)).

In their papers ([KMT1] and [KMT2]), we can see that various relations among multiple zeta values

can be regarded as special cases of functional relations among zeta-functions of root systems.

The other generalization of multiple zeta-functions of Euler-Zagier type is that associated with

combinatorial objects called semi-standard Young tableaux. It is called the Schur multiple zeta-

functions, which was introduced by M. Nakasuji, O. Phuksuwan and Y. Yamasaki ([NPY]). As

details are given in the next section, this function has the form of

ζλ(sss) =
∑

M∈SSYT(λ)

1

Msss
,

where λ is a partition and SSYT(λ) is a set of semi-standard Young tableaux of shape λ. In their

paper ([NPY]), after they studied basic properties of this function, they obtained some determinant

formulas such as Jacobi-Trudi, Giambelli and dual Cauchy formulas under the assumption that ζλ(sss)

is content-parametrized (in the sense defined in Section 2). Furthermore, they investigated skew

Schur multiple zeta-functions which is associated with the set difference λ/µ of two partitions λ

and µ, and quasi-symmetric functions as extensions.

In our previous research([MN]), the relation between zeta-functions of root systems and Schur

multiple zeta-functions was discussed. There, we obtained various expressions of Schur multiple

zeta-functions of anti-hook type which are special cases of skew Schur multiple zeta-functions. One

of them is as follows.

Theorem 1.1 ([MN, Theorem 3.2]) For k, ℓ ∈ N, if λ = (k + 1, · · · , k + 1
︸ ︷︷ ︸

ℓ+1 times

), µ = (k, · · · , k
︸ ︷︷ ︸

ℓ times

) and

sss =
skℓ
...

sk1

s00 s10 · · · sk0
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(note that the way of indexing the variables here is not standard), then

ζλ/µ(sss) =

k∑

i=0

(−1)k−iζ⋆(s00, s10, . . . , si−1,0)ζ(skℓ, sk,ℓ−1, . . . , sk0, sk−1,0, . . . , si0) (1.1)

holds in the whole space C
k+ℓ+1, where ζ⋆ = 1 for i = 0.

Other results in [MN] (Theorem 4.1 in [MN], for example) are expressions in terms of modified

zeta-functions of root systems of type A defined by (3.5), (3.7) and (3.8) in Section 3.

Remark 1 One expression among them gives us an analogue of Weyl group multiple Dirichlet

series in the sense of Bump, Goldfeld and others (see [B]) and so, this may mean a first link for

some undiscovered connections between the theory of Weyl group multiple Dirichlet series and the

theory of zeta-functions of root systems which Bump questioned in [B, p.19].

Our aim in this article is to obtain the expressions, analogous to the results proved in [MN],

for Schur multiple zeta-functions of shape λ. First of all, we will focus on the Schur multiple zeta-

function of hook type. In Section 3, we will prove the expressions similar to (1.1) in Theorem 1.1

and those in terms of modified zeta-functions of root systems of type A in [MN] for hook types.

The aforementioned Giambelli formula for the content-parametrized Schur multiple zeta-functions

is a determinant formula, in which the elements in the matrix in the determinant expression are

Schur multiple zeta-functions of hook type. Therefore, by using this formula, the results in Section

3 can be used to obtain the expressions of more general content-parametrized Schur multiple zeta-

functions. In Section 4, applying the Giambelli formula with more discussions, we will obtain the

expressions for the content-parametrized Schur multiple zeta-function of shape λ.

Acknowledgements. The contents of this article were presented at the ELAZ Conference

2022 in Poznań. The authors are grateful to the organizers of this conference.

2 Schur multiple zeta-functions and their Giambelli

formula

Let λ = (λ1, . . . , λm) be a partition that is a non-increasing sequence of a positive integer n, i.e.

λ1 ≥ λ2 ≥ · · ·λm > 0 with
∑

i λi = n. Then a Young diagram of shape λ is obtained by drawing

λi boxes in the i-th row. The conjugate λ′ = (λ′
1, . . . , λ

′
s) of λ is defined by λ′

i = #{j|λj ≥ i}. In

other words, λ′ is the partition whose Young diagram is the transpose of that of λ. Let T (λ,X)

be the set of all Young tableaux of shape λ over a set X and, in particular, SSYT(λ) ⊂ T (λ,N)

the set of all semi-standard Young tableaux of shape λ. Recall that M = (mij) ∈ SSYT(λ) if and

only if mi1 ≤ mi2 ≤ · · · for all i and m1j < m2j < · · · for all j. For sss = (sij) ∈ T (λ,C), the Schur
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multiple zeta-function associated with λ is defined as in [NPY] by the series

ζλ(sss) =
∑

M∈SSYT(λ)

1

Msss
,

where Msss =
∏

(i,j)∈λ

m
sij
ij for M = (mij) ∈ SSYT(λ) as in Section 1. This series converges absolutely

if sss ∈ Wλ where

Wλ =

{

sss = (sij) ∈ T (λ,C)

∣
∣
∣
∣
∣

Re(sij) ≥ 1 for all (i, j) ∈ λ \ C(λ)

Re(sij) > 1 for all (i, j) ∈ C(λ)

}

with C(λ) being the set of all corners of λ.

For a partition λ, we define two sequences of indices p1, . . . , pN and q1, . . . , qN by pi = λi−i and

qi = λ′
i− i for 1 ≤ i ≤ N where N is the number of the main diagonal entries of the Young diagram

of λ. We sometimes write λ = (p1, . . . , pN |q1, . . . , qN ), which is called the Frobenius notation of λ

(see [Mac, Section 1.1]).

Let

W diag
λ = {sss = (sij) ∈ Wλ | sij = slm if j − i = m− l}.

When sss ∈ W diag
λ , we can introduce new variables {zk}k∈Z by the condition sij = zj−i (for all

i, j), and we may regard ζλ(sss) as a function in variables {zk}k∈Z. We call the Schur multiple

zeta-function associated with {zk} content-parametrized Schur multiple zeta-function, since j − i is

named “content” (cf. Hamel ([H])).

The following theorem is the Giambelli formula for Schur multiple zeta-functions.

Theorem 2.1 ([NPY, Theorem 4.5]) Let λ be a partition such that λ = (p1, · · · , pN |q1, · · · , qN )

in the Frobenius notation. Assume sss ∈ W diag
λ . Then we have

ζλ(s) = det(ζi,j)1≤i,j≤N , (2.1)

where ζi,j = ζ(pi+1,1qj )(s
F
ij) with sFij =

z0 z1 z2 · · · zpi

z−1
...

z−qj

∈ W(pi,1
qj ).

Remark 2 The original Giambelli formula is for Schur functions, and the above is its zeta-

analogue. In [NPY], they use the notation {ak} as a variable in W diag
λ , but we here use the

notation {zk}, instead.

Example 2.2 When λ = (6, 4, 4, 2, 2) then λ = (5, 2, 1|4, 3, 0) is the Frobenius notation, and in
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this example we write T shortly for ζλ(T ) (T ∈ T (λ,C)). Then for sss ∈ W diag
λ , Theorem 2.1 gives

z0 z1 z2 z3 z4 z5

z−1 z0 z1 z2

z−2z−1 z0 z1

z−3z−2

z−4z−3

=

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

z0 z1 z2 z3 z4 z5

z−1

z−2

z−3

z−4

z0 z1 z2 z3 z4 z5

z−1

z−2

z−3

z0 z1 z2 z3 z4 z5

z0 z1 z2

z−1

z−2

z−3

z−4

z0 z1 z2

z−1

z−2

z−3

z0 z1 z2

z0 z1

z−1

z−2

z−3

z−4

z0 z1

z−1

z−2

z−3

z0 z1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

3 Expressions of Schur multiple zeta-functions of hook

type

For λ = (p + 1, 1q), let

sss =

s11 s12 · · · s1,p+1

s21
...

sq+1,1

=

z0 z1 · · · zp

z−1
...

z−q

∈ W diag
λ , (3.1)

using the notation in the previous section. The Schur multiple zeta-function of this type is called

the Schur multiple zeta-function of hook type, and we obtain the following expression for it in terms

of multiple zeta-functions of Euler-Zagier type and their star-variants.
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Theorem 3.1 For λ = (p + 1, 1q), we have

ζλ(sss) =

q
∑

j=0

(−1)jζ⋆(z−j , . . . , z−1, z0, z1, . . . , zp)ζ(z−j−1, . . . , z−q), (3.2)

where we put ζ(z−j−1, . . . , z−q) = 1 when j = q, and also

ζλ(sss) =

p
∑

j=0

(−1)jζ(zj, . . . , z1, z0, z−1, . . . , z−q)ζ
⋆(zj+1, . . . , zp), (3.3)

where we put ζ⋆(zj+1, . . . , zp) = 1 when j = p.

Proof. For the first assertion (3.2), we carry out the induction for q. In the case q = 0, it is trivial

that the assertion holds. Assume that the assertion is true for q − 1, and consider the case of q:

ζλ(sss) =
∑

m11≤m12≤...≤m1,p+1
m11<m21<...<mq+1,1

m−z0
11 m−z1

12 . . . m
−zp
1,p+1m

−z−1

21 m
−z−2

31 . . . m
−z−q

q+1,1. (3.4)

The summation on the right-hand side can be divided into two parts:

∑

m11≤m12≤...≤m1,p+1
m21<...<mq+1,1

−
∑

m11≤m12≤...≤m1,p+1

m11≥m21<...<mq+1,1

=
∑

1
−
∑

2
,

say. Then obviously

∑

1
= ζ⋆(z0, . . . , zp)ζ(z−1, . . . , z−q),

while

∑

2
=

∑

m21≤m11≤m12≤...≤m1,p+1
m21<m31<...<m1,q+1,1

= ζλ−
(sss♭),

where λ− = (p+ 2, 1q−1) and sss♭ =

s21 s11 s12 · · · s1,p+1

s31
...

sq+1,1

=

z−1 z0 z1 · · · zp

z−2
...

z−q

.
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By the assumption for induction, we obtain

∑

2
=

q−1
∑

i=0

(−1)iζ⋆(z−(i+1), . . . , z−2, z−1, z0, . . . , zp)ζ(z−(i+2), . . . , z−q)

=

q
∑

j=1

(−1)j−1ζ⋆(z−j , . . . , z−2, z−1, z0, . . . , zp)ζ(z−(j+1), . . . , z−q).

This leads to

∑

1
−
∑

2

= ζ⋆(z0, . . . , zp)ζ(z−1, . . . , z−q)−

q
∑

j=1

(−1)j−1ζ⋆(z−j , . . . , z−2, z−1, z0, . . . , zp)ζ(z−(j+1), . . . , z−q)

=

q
∑

j=0

(−1)jζ⋆(z−j , . . . , z−2, z−1, z0, . . . , zp)ζ(z−(j+1), . . . , z−q),

which completes the proof of (3.2). The second assertion (3.3) can be similarly proved by using

the induction for p. �

Theorem 3.1 is a kind of analogue of Theorem 1.1 in the case of hook-type. As mentioned in

Section 1, in [MN], another expression of ζλ(sss) in terms of modified zeta-functions of root systems

has been shown. An analogue of such an expression for the case of hook-type also exists.

First we have to define the modified zeta-function of root system. For r > 0 and 0 ≤ d ≤ r, we

define the modified zeta-function of the root system of type Ar by

ζ•r,d(s, Ar) =





∞∑

m1=0

· · ·
∞∑

md=0





′

︸ ︷︷ ︸

d times

∞∑

md+1=1

· · ·
∞∑

mr=1
︸ ︷︷ ︸

r−d times

∏

1≤i<j≤r+1

(mi + · · · +mj−1)
−s(i,j), (3.5)

where

s = (s(1, 2), s(2, 3), . . . , s(r, r + 1), s(1, 3), s(2, 4), . . . , s(r − 1, r + 1), . . . ,

s(1, r), s(2, r + 1), s(1, r + 1)). (3.6)

with s(i, j) being the variable corresponding to the root parametrized by (i, j), and the prime means

that the terms (mi + · · · + mj−1)
−s(i,j), where 1 ≤ i < j ≤ d + 1 and mi = · · · = mj−1 = 0, are

7



omitted. We also introduce

ζHr (s, x,Ar) =

∞∑

m1=1

· · ·

∞∑

mr=1

∏

1≤i<j≤r+1

(x+mi + · · · +mj−1)
−s(i,j), (3.7)

and

ζ•,Hr,d (s, x,Ar) =





∞∑

m1=0

· · ·

∞∑

md=0





︸ ︷︷ ︸

d times

∞∑

md+1=1

· · ·

∞∑

mr=1
︸ ︷︷ ︸

r−d times

∏

1≤i<j≤r+1

(x+mi + · · ·+mj−1)
−s(i,j), (3.8)

where x > 0.

From the definition of semi-standard Young tableaux, the runnning indices for the Schur mul-

tiple zeta-function of hook type (3.4) satisfy 1 ≤ m11 ≤ m12 ≤ · · · ≤ m1,p+1 and 1 ≤ m11 < m21 <

· · · < m1,q+1,1. Therefore, setting m12 = m11 + a1 (a1 ≥ 0), m13 = m11 + a1 + a2 (a1, a2 ≥ 0), · · · ,

m1,p+1 = m11 + a1 + a2 + · · ·+ ap (ai ≥ 0), (3.9)

and m21 = m11 + b1 (b1 ≥ 1), m31 = m11 + b1 + b2 (b1, b2 ≥ 1), · · · ,

m1,q+1,1 = m11 + b1 + b2 + · · · + bq (bj ≥ 1),

we can write the Schur multiple zeta-function of hook type as

ζλ(sss) =
∑

m11≥1
ai≥0(1≤i≤p)
bj≥1(0≤j≤q)

m−z0
11 (m11 + a1)

−z1 · · · (m11 + a1 + · · · + ap)
−zp

×(m11 + b1)
−z−1(m11 + b1 + b2)

−z−2 · · · (m11 + b1 + b2 + · · ·+ bq)
−z−q

=
∑

m11≥1

m−z0
11 ζ•,Hp,p (sss+,m11, Ap)ζ

H
q (sss−,m11, Aq), (3.10)

where sss+ = (z1, z2, · · · , zp) and sss− = (z−1, z−2, · · · , z−q). We note that this equation is the first

step in Theorem 4.2 in the next section.

4 Expressions of content-parametrized Schur multiple

zeta-functions

Now we are ready to prove the main results in the present paper. Our aim is to generalize the

results in Section 3 to more general content-parametrized Schur multiple zeta-functions ζλ(sss) which

can be written in terms of {zk} with content k. The results which we will prove in this section are

8



Theorem 4.1 and Theorem 4.2, which are analogues of [MN, Theorem 3.2] and of [MN, Theorem

4.1], respectively.

First, as a generalization of Theorem 3.1, we prove the following theorem.

Theorem 4.1 For the symmetric group SN , we have

ζλ(sss) =
∑

σ∈SN

sgn(σ)

q1∑

j1=0

· · ·

qN∑

jN=0

(−1)j1+···+jN

× ζ⋆(z−j1 , . . . , z0, . . . , zpσ(1)
)ζ⋆(z−j2 , . . . , z0, . . . , zpσ(2)

) . . . ζ⋆(z−jN , . . . , z0, . . . , zpσ(N)
)

× ζ(z−j1−1, . . . , z−q1)ζ(z−j2−1, . . . , z−q2) . . . ζ(z−jN−1, . . . , z−qN ).

Proof. We use the induction for N . When N = 1, it holds from (3.2) in Theorem 3.1. Assume that

the assertion is true for N − 1, and consider the case of N . The Giambelli formula for the Schur

multiple zeta-function (2.1) can be written as

ζλ(sss) =

N∑

h=1

(−1)h+Nζh,N ·∆hN , (4.1)

where ζi,j is the same notation as in (2.1) and

∆hN = det















ζ1,1 ζ1,2 · · · ζ1,N−1

...
...

ζh−1,1 ζh−1,2 · · · ζh−1,N−1

ζh+1,1 ζh+1,2 · · · ζh+1,N−1

...
...

ζN,1 ζN,2 · · · ζN,N−1















is of size (N − 1)× (N − 1). Introducing the notation

ζ◦i,j =







ζi,j i ≤ h− 1

ζi+1,j i ≥ h
,

we have

∆hN = det







ζ◦1,1 ζ◦1,2 · · · ζ◦1,N−1
...

...

ζ◦N−1,1 ζ◦N−1,2 · · · ζ◦N−1,N−1







. (4.2)

9



Note that ζ◦i,j = ζ◦i,j(sss
◦
ij) where

sss◦ij = sssFi+1,j =

z0 z1 z2 · · · zpi+1

z−1

...

z−qj

∈ W(pi+1+1,1qj )

for h ≤ i ≤ N − 1. We can apply the assumption for the induction to ∆hN (compare (2.1) and

(4.2)). We have

∆hN =
∑

τ∈SN−1

sgn(τ)

q1∑

j1=0

· · ·

qN−1∑

jN−1=0

(−1)j1+···+jN−1

× ζ⋆(z−j1 , . . . , z0, . . . , zpτ ′(1))ζ
⋆(z−j2 , . . . , z0, . . . , zpτ ′(2)) . . . ζ

⋆(z−jN−1
, . . . , z0, . . . , zpτ ′(N−1)

)

× ζ(z−j1−1, . . . , z−q1)ζ(z−j2−1, . . . , z−q2) . . . ζ(z−jN−1−1, . . . , z−qN−1
), (4.3)

where

τ ′ =

(

1 · · · h− 1 h h+ 1 · · · N − 1 N

1 · · · h− 1 h+ 1 h+ 2 · · · N h

)

◦ τ ∈ SN .

On the other hand, Theorem 3.1 implies

ζh,N =

qN∑

jN=0

(−1)jN ζ⋆(z−jN , . . . , z−1, z0, z1, . . . , zph)ζ(z−jN−1, . . . , z−qN ). (4.4)

Substituting (4.3) and (4.4) into (4.1), we have

ζλ(sss) =
N∑

h=1

(−1)h+N
qN∑

jN=0

(−1)jN ζ⋆(z−jN , . . . , z−1, z0, z1, . . . , zph)ζ(z−jN−1, . . . , z−qN )

×
∑

τ∈SN−1

sgn(τ)

q1∑

j1=0

· · ·

qN−1∑

jN−1=0

(−1)j1+···+jN−1

× ζ⋆(z−j1 , . . . , z0, . . . , zpτ ′(1))ζ
⋆(z−j2 , . . . , z0, . . . , zpτ ′(2)) . . . ζ

⋆(z−jN−1
, . . . , z0, . . . , zpτ ′(N−1)

)

× ζ(z−j1−1, . . . , z−q1)ζ(z−j2−1, . . . , z−q2) . . . ζ(z−jN−1−1, . . . , z−qN−1
)

=

N∑

h=1

(−1)h+N
∑

τ∈SN−1

sgn(τ)

q1∑

j1=0

· · ·

qN∑

jN=0

(−1)j1+···+jN

× ζ⋆(z−j1 , . . . , z0, . . . , zpτ ′(1))ζ
⋆(z−j2 , . . . , z0, . . . , zpτ ′(2)) . . . ζ

⋆(z−jN−1
, . . . , z0, . . . , zpτ ′(N−1)

)

× ζ⋆(z−jN , . . . , z0, . . . , zph)

× ζ(z−j1−1, . . . , z−q1)ζ(z−j2−1, . . . , z−q2) . . . ζ(z−jN−1, . . . , z−qN ).
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Since {τ ′ ∈ SN | τ ∈ SN−1} = {σ ∈ SN | σ(N) = h}, summing over h we have

N∑

h=1

(−1)h+N
∑

τ∈SN−1

sgn(τ) =
∑

σ∈SN

sgn(σ). (4.5)

This leads to the theorem. �

Remark 3 If we use (3.3) in Theorem 3.1 instead of (3.2), we obtain an alternative expression of

ζλ(sss), where the roles of ζ and of ζ⋆ are reversed.

Next, as a generalization of (3.10), we prove the following theorem, which is an expression in

terms of modified zeta-functions of root systems.

Theorem 4.2 For the symmetric group SN , we have

ζλ(sss) =
∑

m11,m22,...,mNN≥1

(m11 . . . mNN )−z0

×
∑

σ∈SN

sgn(σ)

N∏

k=1

ζ•,Hpk,pk
(sss+(k),mσ(k)σ(k), Apk)

N∏

j=1

ζHqj (sss−(j),mjj, Aqj ),

where sss+(k) = (z1, z2, · · · , zpk) and sss−(j) = (z−1, z−2, · · · , z−qj).

Proof. We use the induction for N . For N = 1, the assertion is true from (3.10). Assume that it

is true for N − 1 and apply it to (4.2). Then

∆hN =
∑

m11,m22,...,m(N−1)(N−1)≥1

(m11 . . . m(N−1)(N−1))
−z0

×
∑

τ∈SN−1

sgn(τ)

N−1∏

k=1

ζ•,Hp′
k
,p′

k

(sss+(k′),mτ(k)τ(k), Ap′
k
)

N−1∏

j=1

ζHqj (sss−(j),mjj, Aqj ), (4.6)

where

k′ =







k k ≤ h− 1

k + 1 k ≥ h,
p′k =







pk k ≤ h− 1

pk+1 k ≥ h.
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Dividing the first product in the right-hand side into two parts, we have

∆hN =
∑

m11,m22,...,m(N−1)(N−1)≥1

(m11 . . . m(N−1)(N−1))
−z0

×
∑

τ∈SN−1

sgn(τ)
h−1∏

k=1

ζ•,Hpk,pk
(sss+(k),mτ(k)τ(k), Apk)

N∏

k=h+1

ζ•,Hpk,pk
(sss+(k),mτ(k−1)τ(k−1), Apk)

×

N−1∏

j=1

ζHqj (sss−(j),mjj, Aqj ). (4.7)

Substituting (4.7) and

ζh,N =
∑

mNN≥1

m−z0
NNζ•,Hph,ph

(sss+(h),mNN , Aph)ζ
H
qN

(sss−(N),mNN , AqN )

(which follows from (3.10)) into (4.1), we have

ζλ(sss) =

N∑

h=1

(−1)h+N
∑

m11,m22,...,mNN≥1

(m11 . . . mNN )−z0

N∏

j=1

ζHqj (sss−(j),mjj, Aqj )

×
∑

τ∈SN−1

sgn(τ)
h−1∏

k=1

ζ•,Hpk,pk
(sss+(k),mτ(k)τ(k), Apk)ζ

•,H
ph,ph

(sss+(h),mNN , Aph)

×

N∏

k=h+1

ζ•,Hpk,pk
(sss+(k),mτ(k−1)τ(k−1), Apk).

Again noting (4.5), we obtain the theorem.

Remark 4 The right-hand side of (4.6) also gives an analogue of Weyl group multiple Dirichlet

series in the sense of Bump ([B]); compare with Remark 1.
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