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Abstract

We propose a key-policy attribute-based encryption (KP-ABE) scheme with constant-
size ciphertexts, whose semi-adaptive security is proven under the decisional linear (DLIN)
assumption in the standard model. The access structure is expressive, that is given by
non-monotone span programs. It also has fast decryption, i.e., a decryption includes only
a constant number of pairing operations. As an application of our KP-ABE construction,
we also propose a fully secure attribute-based signatures with constant-size secret (signing)
keys from the DLIN. For achieving the above results, we extend the sparse matrix technique
on dual pairing vector spaces. In particular, several algebraic properties of an elaborately
chosen sparse matrix group are applied to the dual system security proofs.

∗An extended abstract of a preliminary version of this paper is presented at SCN 2014, the 9th Conference on
Security and Cryptography for Networks. This is the full version, and provides significant technical contributions
over the preliminary version, e.g., semi-adaptive security from DLIN with reduction factor O(n), where n is the
maximum number of attributes per ciphertext. Refer to Table 1 in Section 1.2 and Theorem 1 in Section 6.1.

1



Contents

1 Introduction 2
1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Key Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dual Pairing Vector Spaces and Decisional Linear (DLIN) Assumption 5

3 Definitions of Key-Policy Attribute-Based Encryption and
Attribute-Based Signatures 6
3.1 Span Programs and Non-Monotone Access Structures . . . . . . . . . . . . . . . 6
3.2 Key-Policy Attribute-Based Encryption (KP-ABE) . . . . . . . . . . . . . . . . . 7
3.3 Attribute-Based Signatures (ABS) . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Special Matrix Subgroups 9

5 Proposed KP-ABE Scheme with Constant Size Ciphertexts 10
5.1 Key Ideas in Constructing the Proposed KP-ABE Scheme . . . . . . . . . . . . . 10
5.2 Dual Orthonormal Basis Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Security of the Proposed KP-ABE 14
6.1 Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Key Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 An Alternative Modular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Proposed Fully Secure ABS Scheme with Constant-Size Secret Keys 25
7.1 Building Blocks for the Proposed ABS . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A Proofs of Lemmas 35
A.1 Proofs of Lemmas in Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Proofs of Lemmas in Section 6.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.3 Proofs of Lemmas in Section 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.4 Proofs of Lemmas in Section 7.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1 Introduction

1.1 Backgrounds

The notion of attribute-based encryption (ABE) introduced by Sahai and Waters [28] is an ad-
vanced class of encryption and provides more flexible and fine-grained functionalities in sharing
and distributing sensitive data than traditional symmetric and public-key encryption as well as
recent identity-based encryption. In ABE systems, either one of the parameters for encryption
and secret key is a set of attributes, and the other is an access policy (structure) over a universe
of attributes, e.g., a secret key for a user is associated with an access policy and a ciphertext is
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associated with a set of attributes. A secret key with a policy can decrypt a ciphertext associ-
ated with a set of attributes, iff the attribute set satisfies the policy. If the access policy is for
a secret key, it is called key-policy ABE (KP-ABE), and if the access policy is for encryption,
it is ciphertext-policy ABE (CP-ABE).

All the existing practical ABE schemes have been constructed by (bilinear) pairing groups,
and the largest class of relations supported by the ABE schemes is (non-monotone) span pro-
grams (or (non-monotone) span programs with inner-product relations [23]). While general
(polynomial size) circuits are supported [16, 18] recently, they are much less efficient than the
pairing-based ABE schemes and non-practical when the relations are limited to span programs.
Since our aim is to achieve constant-size ciphertexts in the sizes of attribute set or access pol-
icy in expressive ABE, hereafter, we focus on pairing-based ABE with span program access
structures. Here, “constant” is valid as long as the description of the attribute or policy is not
considered a part of the ciphertext, which is a common assumption in the ABE application.
Hence, we use “constant” in this sense hereafter.

While the expressive access control (span programs) is very attractive, it also requires addi-
tional cost in terms of ciphertext size and decryption time. Emura et al. [15], Herranz et al. [19],
and Chen et al. [10] constructed ABE schemes with constant-size ciphertexts, but their access
structures are very limited. Attrapadung, Libert and Panafieu [3] first constructed a KP-ABE
scheme for span programs with constant-size ciphertexts and fast decryption which needs only
a constant-number of pairing operations.

While Attrapadung et al.’s KP-ABE scheme (and subsequent works [33, 2]) show an interest-
ing approach to achieving constant-size ciphertexts with expressive access structures, the secu-
rity are proven only based on q-type assumptions (n-DBDHE assumption with n the maximum
number of attributes per ciphertext and more complex EDHE assumptions). Previously, since
the introduction by Mitsunari et al. [21] and Boneh et al. [6], various kinds of q-type assumptions
have been widely used in order to achieve efficient cryptographic primitives [5, 7, 17, 14, 19].
However, the assumptions (and also the associated schemes) suffered a special attack which
was presented by Cheon [12] at Eurocrypt 2006. More recently, Sakemi et al. [29] have shown
that the attack can be a real threat to q-type assumption-based cryptographic primitives by
executing a successful experiment. Consequently, it is very desirable that the above schemes
should be replaced by an efficiency-comparable alternative scheme based on a static (non-q type)
assumption instead of a q-type assumption. In concurrent and independent work, Chen and
Wee [11] introduced the notion of semi-adaptive security for ABE, where the adversary specifies
the challenge attribute set after it sees the public parameters but before it makes any secret
key queries, and they also constructed a small-universe KP-ABE scheme with constant-size
ciphertexts on composite-order groups.

Hence, to construct an expressive KP-ABE scheme with constant-size ciphertexts from a
static assumption on the prime-order groups remains an interesting open problem in terms of
practical and theoretical aspects on ABE. Also, since there exist no attribute-based signatures
(ABS) [20, 25] with constant-size secret keys, to construct ABS with constant-size secret keys
is open.

1.2 Our Results

• We propose a KP-ABE scheme with constant-size ciphertexts, whose semi-adaptive secu-
rity is proven from the DLIN assumption in the standard model (Section 5). The access
structure is expressive, that is given by non-monotone span programs. It also has fast
decryption: a decryption includes only a constant number of pairing operations, i.e., 17
pairings independently of the sizes of the used attribute set and access structure. For
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Table 1: Comparison of our scheme with KP-ABE for span programs with constant-size cipher-
texts in [3, 2, 11], where |G|, |GT |, n, �, r, and ν1 represent size of an element of a bilinear source
group G, that of a target group GT , the maximum number of attributes per ciphertext, and the
number of rows and columns in access structure matrix for the secret key, and the maximum
number of the adversary’s pre-challenge key queries, respectively. PK, SK, and CT stand for
public key, secret key, and ciphertext, respectively.

ALP11 [3] A14 [2] CW14 [11] Proposed

Universe large large small large
Security selective adaptive semi-adaptive semi-adaptive

Reduction
factor

O(n) O(ν1) O(n) O(n)

Order of G prime composite composite prime

Assumption n-DBDHE
EDHE3 & 4 para-
metrized by n, �, r

Static assump. on
composite order G

DLIN

Access
structures

Non-monotone
span program

Monotone
span program

Monotone
span program

Non-monotone
span program

PK size O(n) |G| O(n) |G| O(n) |G| O(n) |G|
SK size O(�n) |G| O(�n) |G| O(�n) |G| O(�n) |G|
CT size 3 |G|+ 1 |GT |∗ 6 |G|+ 1 |GT | 2 |G|+ 1 |GT | 17 |G|+ 1 |GT |

* In a subsequent work [33], CT size is reduced to 2 |G|+ 1 |GT |.

comparison of our scheme with previous KP-ABE for span programs with constant-size
ciphertexts, see Table 1.

• As an application of our KP-ABE construction, we also propose a fully secure ABS scheme
with constant-size secret (signing) key from the DLIN assumption (Section 7).

• For achieving the above results, we extend the sparse matrix technique on dual pairing
vector spaces (DPVS) [22, 23] developed in [24]. In particular, several algebraic properties
of an elaborately chosen sparse matrix group H�y(n,Fq) are applied to the dual system
security proofs. For the details, see Sections 1.3, 4 and 6.3.

1.3 Key Techniques

We extend the sparse matrix technique on DPVS developed in [24], in which constant-size
ciphertext zero/non-zero inner-product encryption are constructed from DLIN on a sparse ma-
trix master key pair. Using the basic construction [24], to achieve short ciphertexts in our
KP-ABE, attributes Γ := {xj}j=1,...,n′ are encoded in an n-dimensional (with n ≥ n′ +1) vector
�y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ∏n′
j=1(z − xj). Each (non-zero) attribute

value vi (for i = 1, . . . , �) associated with a row of access structure matrix M (in S) is encoded
as �vi := (vn−1

i , . . . , vi, 1), so �y · �vi = vn−1−n′
i

∏n′
j=1(vi − xj), and the value of inner product is

equal to zero if and only if vi = xj for some j, i.e., vi ∈ Γ. Here, the relation between S and Γ is
determined by the multiple inner product values �y ·�vi for one vector �y which is equivalent to Γ.
Hence, a ciphertext vector element c1 is encoded with ω�y (for random ω), which is represented
by twelve (constant in n) group elements (as well as �y), and key vector elements k∗

i are encoded
with �vi and shares si (i = 1, . . . , �) for a central secret s0, respectively (see Section 5.1 for the
key idea). A standard dual system encryption (DSE) approach considers each pair of vectors
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in the semi-functional space, (τ�y, ri�e1 + ψi�vi) or (τ�y, ri�vi) with secret shares ri of a secret r0
and random τ, ψi, and then the vector pair is randomized with preserving the inner product
values based on a pairwise independence argument. Since we must deal with a common τ�y in
all the above pairs, we should modify the original argument for our scheme, which is based on a
modified form of pairwise independence lemma (Lemma 3) for a specific matrix group H�y(n,Fq)
of size n× n .

The security of our scheme is reduced to that of DLIN through multiple reduction steps
(Theorem 1). A technical challenge for the security is to insert random (sparse) matrices
{Zh,i}h=1,...,ν; i=1,...,� in H�y(n,Fq)T to key components {k∗

h,i}h=1,...,ν; i=1,...,� for each key query
h = 1, . . . , ν even when the underlying matrix for the basis B1 is sparse. For the purpose,
first, only n randomness {Zκ}κ=1,...,n are sequentially inserted in a consistent manner with the
security condition on the challenge �y and key queries, and then, they are amplified to any
polynomial number of random matrices, {Zh,i}h=1,...,ν; i=1,...,�, by making linear combinations
of {Zκ}κ=1,...,n. The above steps are accomplished by applying computational (swap) game
changes and information-theoretical (or conceptual) changes alternatingly, and by applying four
nice algebraic properties of elaborately chosen sparse matrix group H�y(n,Fq) to the security
proof. The two key techniques are described in detail in Sections 6.3.1 and 6.3.2, respectively.

1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected from A

according to its distribution. When A is a set, y U← A denotes that y is uniformly selected from
A. We denote the finite field of order q by Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a

vector representation over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �x = (x1, . . . , xn)

and �v = (v1, . . . , vn), �x · �v denotes the inner-product
∑n

i=1 xivi. The vector �0 is abused as the
zero vector in F

n
q for any n. XT denotes the transpose of matrixX. A bold face letter denotes an

element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp.
span〈�x1, . . . , �xn〉) denotes the subspace generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases
B := (b1, . . . , bN ) and B

∗ := (b∗1, . . . , b∗N ), (x1, . . . , xN )B :=
∑N

i=1 xibi and (y1, . . . , yN )B∗ :=∑N
i=1 yib

∗
i . �ej denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

n−j︷ ︸︸ ︷
0 · · · 0) ∈ F

n
q . GL(n,Fq) denotes the

general linear group of degree n over Fq.

2 Dual Pairing Vector Spaces and Decisional Linear (DLIN)
Assumption

For simplicity of description, we will present the proposed schemes on the symmetric version
of dual pairing vector spaces (DPVS) [22] constructed using symmetric bilinear pairing groups.
For the asymmetric version of DPVS, see Appendix A.2 of the full version of [23].

Definition 1 “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q,
cyclic additive group G and multiplicative group GT of order q, G 	= 0 ∈ G, and a polynomial-
time computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and
e(G,G) 	= 1. Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear
pairing groups (q,G,GT , G, e) with security parameter λ.

“Dual pairing vector spaces (DPVS)” of dimension N by a direct product of symmetric pair-

ing groups (q,G,GT , G, e) are given by prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G

over Fq, cyclic group GT of order q, and pairing e : V × V → GT . The pairing is defined by
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e(x,y) :=
∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V.

This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0.

Definition 2 (DLIN: Decisional Linear Assumption [6]) The DLIN problem is to guess
β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)

R← GDLIN
β (1λ), where GDLIN

β (1λ) : paramG :=

(q,G,GT , G, e)
R← Gbpg(1λ), κ, δ, ξ, σ

U← Fq, Y0 := (δ + σ)G,Y1
U← G, return (paramG, G, ξG, κG,

δξG, σκG, Yβ), for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for

the DLIN problem as: AdvDLIN
E (λ) :=

∣∣∣Pr
[
E(1λ, �)→1

∣∣∣� R←GDLIN
0 (1λ)

]
−Pr

[
E(1λ, �)→1

∣∣∣� R←
GDLIN

1 (1λ)
]∣∣ . The DLIN assumption is: For any probabilistic polynomial-time adversary E, the

advantage AdvDLIN
E (λ) is negligible in λ.

3 Definitions of Key-Policy Attribute-Based Encryption and
Attribute-Based Signatures

3.1 Span Programs and Non-Monotone Access Structures

Definition 3 (Span Programs [4]) U (⊂ {0, 1}∗) is a universe, a set of attributes, which
is expressed by a value of attribute, i.e., v ∈ F

×
q (:= Fq \ {0}). A span program over Fq is

a labeled matrix S := (M,ρ) where M is a (� × r) matrix over Fq and ρ is a labeling of the
rows of M by literals from {v, v′, . . . ,¬v,¬v′, . . .} (every row is labeled by one literal), i.e.,
ρ : {1, . . . , �} → {v, v′, . . . ,¬v,¬v′, . . .}.

A span program accepts or rejects an input by the following criterion. Let Γ be a set of
attributes, i.e., Γ := {xj}1≤j≤n′. When Γ is given to access structure S, map γ : {1, . . . , �} →
{0, 1} for span program S := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if
[ρ(i) = vi] ∧ [vi ∈ Γ] or [ρ(i) = ¬vi] ∧ [vi 	∈ Γ]. Set γ(i) = 0 otherwise.

The span program S accepts Γ if and only if �1 ∈ span〈(Mi)γ(i)=1〉, i.e., some linear com-
bination of the rows (Mi)γ(i)=1 gives the all one vector �1. (The row vector has the value 1 in
eciphertextsach coordinate.)

A span program is called monotone if the labels of the rows are only the positive literals
{v, v′, . . .}. Monotone span programs compute monotone functions. (So, a span program in
general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is �0. We now construct a
secret-sharing scheme for a non-monotone span program.

Definition 4 A secret-sharing scheme for span program S := (M,ρ) is:

1. Let M be �× r matrix. Let column vector �fT := (f1, . . . , fr)T
U← F

r
q . Then, s0 := �1 · �fT =∑r

k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)T := M · �fT is the � shares of the
secret s0 and the share si belongs to ρ(i).

2. If span program S := (M,ρ) accepts Γ, i.e., �1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} →
{0, 1}, there exist constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and∑

i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time polynomial
in the size of the matrix M .
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3.2 Key-Policy Attribute-Based Encryption (KP-ABE)

In key-policy attribute-based encryption (KP-ABE), encryption (resp. a secret key) is associated
with attributes Γ (resp. access structure S). Relation R for KP-ABE is defined as R(S,Γ) = 1
iff access structure S accepts Γ.

Definition 5 (Key-Policy Attribute-Based Encryption: KP-ABE) A key-policy attribute-
based encryption scheme consists of probabilistic polynomial-time algorithms Setup,KeyGen,Enc
and Dec. They are given as follows:

Setup takes as input security parameter 1λ and a bound on the number of attributes per ci-
phertext n. It outputs public parameters pk and master secret key sk.

KeyGen takes as input public parameters pk, master secret key sk, and access structure S :=
(M,ρ). It outputs a corresponding secret key skS.

Enc takes as input public parameters pk, message m in some associated message space msg,
and a set of attributes, Γ := {xj}1≤j≤n′. It outputs a ciphertext ctΓ.

Dec takes as input public parameters pk, secret key skS for access structure S, and ciphertext
ctΓ that was encrypted under a set of attributes Γ. It outputs either m′ ∈ msg or the
distinguished symbol ⊥.

A KP-ABE scheme should have the following correctness property: for all (pk, sk) R←
Setup(1λ, n), all access structures S, all secret keys skS

R← KeyGen(pk, sk,S), all messages m,
all attribute sets Γ, all ciphertexts ctΓ

R← Enc(pk,m,Γ), it holds that m = Dec(pk, skS, ctΓ) if S

accepts Γ. Otherwise, it holds with negligible probability.

Definition 6 (Semi-Adaptive Security) The model for defining the semi-adaptively payload-
hiding security of KP-ABE under chosen plaintext attack is given by the following game:

Setup In the semi-adaptive security, the challenger runs the setup, (pk, sk) R← Setup(1λ, n),
and gives public parameters pk to the adversary, then the adversary output a challenge
attribute set, Γ.

Phase 1 The adversary is allowed to adaptively issue a polynomial number of key queries,
S, to the challenger provided that S does not accept Γ. The challenger gives skS

R←
KeyGen(pk, sk,S) to the adversary.

Challenge The adversary submits two messages m(0),m(1). The challenger flips a coin b
U←

{0, 1}, and computes ct
(b)
Γ

R← Enc(pk,m(b),Γ). It gives ct
(b)
Γ to the adversary.

Phase 2 Phase 1 is repeated with the restriction that no queried S accepts challenge Γ.

Guess The adversary outputs a guess b′ of b, and wins if b′ = b.

The advantage of adversary A in the semi-adaptive game is defined as AdvKP-ABE,SA
A (λ) :=

Pr[A wins ]−1/2 for any security parameter λ. A KP-ABE scheme is semi-adaptively payload-
hiding secure if all polynomial time adversaries have at most a negligible advantage in the
semi-adaptive game.
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3.3 Attribute-Based Signatures (ABS)

Definition 7 (Attribute-Based Signatures : ABS) An attribute-based signature scheme
consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and a bound on
the number of attributes per ciphertext n. It outputs public parameters pk and master key
sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes, Γ := {xj}1≤j≤n′,
pk and sk. It outputs signature generation key skΓ.

Sig This is a randomized algorithm that takes as input message m, access structure S := (M,ρ),
signature generation key skΓ, and public parameters pk such that S accepts Γ. It outputs
signature σ.

Ver This takes as input message m, access structure S, signature σ and public parameters pk.
It outputs boolean value accept := 1 or reject := 0.

An ABS scheme should have the following correctness property: for all (sk, pk) R← Setup(1λ, n),
all messagesm, all attribute sets Γ, all signing keys skΓ

R← KeyGen(pk, sk,Γ), all access structures
S such that S accepts Γ, and all signatures σ R← Sig(pk, skΓ,m,S), it holds that Ver(pk,m,S, σ) =
1 with probability 1.

Definition 8 (Perfect Privacy) An ABS scheme is perfectly private, if, for all (sk, pk) R←
Setup(1λ, n), all messages m, all attribute sets Γ1 and Γ2, all signing keys skΓ1

R← KeyGen(pk,

sk,Γ1) and skΓ2

R← KeyGen(pk, sk,Γ2), all access structures S such that S accepts Γ1 and S

accepts Γ2, distributions Sig(pk, skΓ1 ,m, S) and Sig(pk, skΓ2 ,m,S) are equal.

Since the correct distribution on signatures can be perfectly simulated without taking any
private information as input, signatures must not leak any such private information of the signer.

Definition 9 (Unforgeability) For an adversary, A, we define AdvABS,UF
A (λ) to be the suc-

cess probability in the following experiment for any security parameter λ. An ABS scheme is
existentially unforgeable if the success probability of any polynomial-time adversary is negligible:

1. Run (sk, pk) R← Setup(1λ, n) and give pk to the adversary.

2. A may adaptively makes a polynomial number of queries of the following type:

• [ Create key ] A asks the challenger to create a signing key for an attribute set Γ.
The challenger creates a key for Γ without giving it to A.

• [ Create signature ] A specifies a key for predicate Γ that has already been created,
and asks the challenger to perform a signing operation to create a signature for a
message m and an access structure S that accepts Γ. The challenger computes the
signature without giving it to the adversary.

• [ Reveal key or signature ] A asks the challenger to reveal an already-created key for
an attribute set Γ, or an already-created signature for an access structure S.

Note that when key or signature creation requests are made, A does not automatically see
the created key or signature. A sees it only when it makes a reveal query.
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3. At the end, the adversary outputs (m′,S′, σ′).

We say the adversary succeeds if a correctly-created signature for (m′,S′) was never revealed to
the adversary, S

′ does not accept any Γ queried to the create key and reveal (key) oracles, and
Ver(pk,m′,S′, σ′) = 1.

Remark 1 Since a signing query in the unforgeability definition in [20, 25] is made only with
an access structure S, the challenger should find an attribute set Γ that satisfies S, and generate
a key skΓ with Γ and a signature with S using (Γ, skΓ). In general, however, the challenger
may not always find a suitable Γ from S in a polynomial time since it includes the problem of
solving the satisfiability for any DNF and CNF formulas with polynomial sizes. In this sense,
the definition of unforgeability in [20, 25] is problematic.

To address this issue, as in [27], our definition of unforgeability introduces four types of
queries, create and reveal queries for keys and signatures, in a manner similar to the security
definition for key-delegation by Shi and Waters [30]. Here, to obtain a signature for S from the
challenger, the adversary is required to give an attribute set Γ that satisfies S to the challenger
in advance (i.e., the challenger has no need to find a suitable Γ by itself.)

4 Special Matrix Subgroups

Lemmas 1 and 4 are key lemmas for the security proof for our KP-ABE and ABS schemes. For
positive integers w, n and �y := (y1, .., yn) ∈ F

n
q \ span〈�en〉, let

H(n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

u u′1
. . .

...
u u′n−1

u′n

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
u, u′l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1)

H�y(n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

1 u′1
. . .

...
1 u′n−1

u′n

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
�u′ := (u′l)l=1,...,n ∈ F

n
q ,

u′n 	= 0, �y · �u′ = yn,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (2)

Lemma 1 H�y(n,Fq) ⊂ H(n,Fq). H(n,Fq)∩GL(n,Fq) and H�y(n,Fq) are subgroups of GL(n,Fq).
More specifically, H�y(n,Fq) is the isotropy group of �y in H(n,Fq)∩GL(n,Fq), that is, H�y(n,Fq) =
{U ∈ H(n,Fq) ∩ GL(n,Fq) | �yU = �y}.

Lemma 1 is directly verified from the definition of (isotropy) groups. ��

Lemma 2 H�y(n,Fq) has a linear structure as H�y(n,Fq) ∼= An−1 \Hn−2, where An−1 := {�u′ ∈
F
n
q | �y · �u′ = yn} is an (n − 1)-dimensional affine space and Hn−2 := An−1 ∩ {u′n = 0} is a

hyperplane section of An−1.
For all (Zκ ∈ H�y(n,Fq)T)κ=1,...,n such that (Z̃κ := Zκ − Z1)κ=2,...,n is a basis of linear

subspace Vn−1 := {�u′ ∈ F
n
q | �y · �u′ = 0} over Fq, the distribution of Z :=

∑n
κ=1 ξκZκ with

(ξκ)
U← {(ξκ)κ=1,...,n |

∑n
κ=1 ξκ = 1} is equivalent to uniform one, i.e., Z U← H�y(n,Fq)T except

with negligible probability 1/q.

Next is a key lemma for applying the proof techniques in [23] to our KP-ABE and ABS
schemes.

9



Lemma 3 For all �y ∈ F
n
q − span〈�en〉 and π ∈ Fq, let W�y,π := {�w ∈ F

n
q − span〈�en〉⊥ | �y · �w = π},

where span〈�en〉⊥ := {�w ∈ F
n
q | �w · �en = 0}.

For all (�y,�v) ∈ (
F
n
q − span〈�en〉

) × (
F
n
q − span〈�en〉⊥

)
, if U and Z are generated as U U←

H�y(n,Fq), Z := (U−1)T, then �vZ is uniformly distributed in W�y,(�y·�v).

Let

L(w, n,Fq) :=⎧⎪⎪⎪⎨⎪⎪⎪⎩X :=

⎛⎜⎝ X1,1 · · · X1,w
...

...
Xw,1 · · · Xw,w

⎞⎟⎠
∣∣∣∣∣∣∣Xi,j :=

⎛⎜⎜⎜⎝
μi,j μ′i,j,1

. . .
...

μi,j μ′i,j,n−1

μ′i,j,n

⎞⎟⎟⎟⎠
∈ H(n,Fq)
for i, j =
1, . . . , w

⎫⎪⎪⎪⎬⎪⎪⎪⎭⋂
GL(wn,Fq). (3)

Lemma 4 L(w, n,Fq) is a subgroup of GL(wn,Fq).

The proof of Lemma 4 is given in Appendix A in the full version of [24].

5 Proposed KP-ABE Scheme with Constant Size Ciphertexts

5.1 Key Ideas in Constructing the Proposed KP-ABE Scheme

In this section, we will explain key ideas of constructing and proving the security of the proposed
KP-ABE scheme.

First, we will show how short ciphertexts and efficient decryption can be achieved in our
scheme, where the IPE scheme given in [24] is used as a building block. Here, we will use a
simplified (or toy) version of the proposed KP-ABE scheme, for which the security is no more
ensured in the standard model under the DLIN assumption.

A ciphertext in the simplified KP-ABE scheme consists of two vector elements, (c0, c1) ∈
G

5×G
n, and cT ∈ GT . A secret key consists of �+1 vector elements, (k∗

0,k
∗
1, . . . ,k

∗
� ) ∈ G

5×(Gn)�

for access structure S := (M,ρ), where the number of rows of M is � and k∗
i with i ≥ 1

corresponds to the i-th row. Therefore, to achieve constant-size ciphertexts, we have to compress
c1 ∈ G

n to a constant size in n. We now employ a special form of basis generation matrix,

X :=

⎛⎜⎜⎜⎝
μ μ′1

. . .
...

μ μ′n−1

μ′n

⎞⎟⎟⎟⎠ ∈ H(n,Fq) of Eq. (1) in Section 4, where μ, μ′1, . . . , μ′n
U← Fq and

a blank in the matrix denotes 0 ∈ Fq. The public key (DPVS basis) is B :=

⎛⎜⎜⎜⎝
b1
...

bn

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
μG μ′1G

. . .
...

μG μ′n−1G
μ′nG

⎞⎟⎟⎟⎠. Let a ciphertext associated with Γ := {x1, . . . , xn′} be c1 :=

(ω�y)B = ω(y1b1 + · · · + ynbn) = (y1ωμG, . . . , yn−1ωμG, ω(
∑n

i=1 yiμ
′
i)G), where ω U← Fq and

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ·∏n

j=1(z− xj). Then, c1 can be compressed
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to only two group elements (C1 := ωμG, C2 := ω(
∑n

i=1 yiμ
′
i)G) as well as �y, since c1 can be

obtained by (y1C1, . . . , yn−1C1, C2) (note that yiC1 = yiωμG for i = 1, . . . , n − 1). That is, a
ciphertext (excluding �y) can be just two group elements, or the size is constant in n.

Let B
∗ := (b∗i ) be the dual orthonormal basis of B := (bi), and B

∗ be the master secret
key in the simplified KP-ABE scheme. We specify (c0,k

∗
0, cT ) such that e(c0,k

∗
0) = gζ−ωs0T

and cT := gζTm ∈ GT with s0 is a center secret of shares {si}i=1,...,� associated with access
structure S. Using {si}i=1,...,�, we also set a secret key for S as k∗

i := (si�e1 + θi�vi)B∗ if ρ(i) = vi

and k∗
i := (si�vi)B∗ if ρ(i) = ¬vi where �vi := (vn−1

i , . . . , vi, 1) and θi
U← Fq. From the dual

orthonormality of B and B
∗, if S accepts Γ, there exist a system of coefficients {αi}i∈I such

that e(c1, k̃
∗) = gωs0T , where k̃∗ :=

∑
i∈I ∧ ρ(i)=vi

αik
∗
i +

∑
i∈I ∧ ρ(i)=¬vi

αi(�y · �vi)−1k∗
i . Hence,

a decryptor can compute gωs0T if and only if S accepts Γ, i.e., can obtain plaintext m. Since
c1 is expressed as (y1C1, . . . , yn−1C1, C2) ∈ G

n and k̃∗ is parsed as a n-tuple (D∗
1, . . . , D

∗
n) ∈

G
n, the value of e(c1, k̃

∗) is
∏n−1
i=1 e(yiC1, D

∗
i ) · e(C2, D

∗
n) =

∏n−1
i=1 e(C1, yiD

∗
i ) · e(C2, D

∗
n) =

e(C1,
∑n−1

i=1 yiD
∗
i )·e(C2, D

∗
n). That is, n−1 scalar multiplications in G and two pairing operations

are enough for computing e(c1, k̃
∗). Therefore, only a small (constant) number of pairing

operations are required for decryption.
We then explain how our full KP-ABE scheme is constructed on the above-mentioned sim-

plified KP-ABE scheme. The target of designing the full KP-ABE scheme is to achieve the
selective (resp. semi-adaptive) security under the DLIN assumption. Here, we adopt and extend
a strategy initiated in [23], in which the dual system encryption methodology is employed in a
modular or hierarchical manner. That is, one top level assumption, the security of Problem 1,
is directly used in the dual system encryption methodology and the assumption is reduced to a
primitive assumption, the DLIN assumption.

To meet the requirements for applying to the dual system encryption methodology and
reducing to the DLIN assumption, the underlying vector space is six times greater than that
of the above-mentioned simplified scheme. For example, k∗

i := ( si�e1 + θi�vi, 02n, �ηi, 0n )B∗
1

if ρ(i) = vi, k∗
i := ( si�vi, 02n, �ηi, 0n )B∗

1
if ρ(i) = ¬vi, c1 = ( ω�y, 02n, 02n, ϕ1�y )B1 , and

X :=

⎛⎜⎝ X1,1 · · · X1,6
...

...
X6,1 · · · X6,6

⎞⎟⎠ ∈ L(6, n,Fq) of Eq. (3) in Section 4, where each Xi,j is of the

form of X ∈ H(n,Fq) in the simplified scheme. The vector space consists of four orthogonal
subspaces, i.e., real encoding part, hidden part, secret key randomness part, and ciphertext
randomness part. The simplified KP-ABE scheme corresponds to the first real encoding part.

A key fact in the security reduction is that L(6, n,Fq) is a subgroup of GL(6n,Fq) (Lemma 4),
which enables a random-self-reducibility argument for reducing the intractability of Problem 1 in
Definition 10 to the DLIN assumption. For the reduction, see [24]. The property that H�y(n,Fq)
is a subgroup of GL(n,Fq) is also crucial for a special form of pairwise independence lemma
in this paper (Lemma 3), where a super-group H(n,Fq) ∩ GL(n,Fq)(⊃ H�y(n,Fq)) is specified

in L(6, n,Fq) or X. Our Problem 1 employs the special form matrices {Uj U← H�y(n,Fq)}
and {Zj := (U−1

j )T}, and makes Lemma 3 applicable in our proof. Informally, our pairwise
independence lemma implies that, for all (�y,�v), a vector, �vZ, is uniformly distributed over
F
n
q \ span〈�en〉⊥ with preserving the inner-product value, �y ·�v, i.e., �vZ reveal no information but

(�y and) �y · �v.
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5.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GKP-ABE
ob using a sparse matrix given by

Eq. (3), which is used in the proposed KP-ABE scheme.

GKP-ABE
ob (1λ, 6, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N0 := 5, N1 := 6n,

ψ
U← F

×
q , gT := e(G,G)ψ, paramn := (paramG, {Nt}t=0,1, gT ),

X0 := (χ0,i,j)i,j=1,...,5
U← GL(N0,Fq), X1

U← L(6, n,Fq), hereafter,
{μi,j , μ′i,j,l}i,j=1,...,6;l=1,...,n denotes non-zero entries of X1 as in Eq. (3),

b0,i := (χ0,i,1G, .., χ0,i,5G) for i = 1, .., 5, B0 := (b0,1, .., b0,5),
Bi,j := μi,jG, B

′
i,j,l := μ′i,j,lG for i, j = 1, . . . , 6; l = 1, . . . , n,

for t = 0, 1, (ϑt,i,j)i,j=1,...,Nt := ψ · (XT
t )−1,

b∗t,i := (ϑt,i,1G, .., ϑt,i,NtG) for i = 1, .., Nt, B
∗
t := (b∗t,1, .., b∗t,Nt

),

return (paramn,B0,B
∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1).

Remark 2 Let

⎛⎜⎜⎝
b1,(i−1)n+1

...

b1,in

⎞⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎝
Bi,1 B′

i,1,1

. . .
...

Bi,1 B′
i,1,n−1

B′
i,1,n

· · ·

Bi,6 B′
i,6,1

. . .
...

Bi,6 B′
i,6,n−1

B′
i,6,n

⎞⎟⎟⎟⎟⎟⎠
for i = 1, . . . , 6,

and B1 := (b1,1, . . . , b1,6n),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

where a blank element in the matrix denotes 0 ∈ G. B1 is the dual orthonormal basis of B
∗
1,

i.e., e(b1,i, b
∗
1,i) = gT and e(b1,i, b

∗
1,j) = 1 for 1 ≤ i 	= j ≤ 6n.

5.3 Construction

We note that attributes xj , vi are in F
×
q , i.e., nonzero.

Setup(1λ, n) :

(paramn,B0,B
∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n)),

B̂0 := (b0,1, b0,3, b0,5),

B̂1 := (b1,1, . . . , b1,n, b1,5n+1, . . . , b1,6n) = {Bi,j , B′
i,j,l}i=1,6;j=1,...,6;l=1,...,n,

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
1,3n+1, . . . , b

∗
1,5n),

pk := (1λ, paramn, {B̂t}t=0,1), sk := {B̂∗
t }t=0,1, return pk, sk.

KeyGen(pk, sk, S := (M,ρ)) :

�f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, η0
U← Fq,

k∗
0 := (−s0, 0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �, �vi := (vn−1
i , . . . , vi, 1) for ρ(i) = vi or ¬vi, �ηi U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷
if ρ(i) = vi, θi

U← Fq, k∗
i := ( si�e1 + θi�vi, 02n, �ηi, 0n )B∗

1
,
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n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷
if ρ(i) = ¬vi, k∗

i := ( si�vi, 02n, �ηi, 0n )B∗
1
,

return skS := (S,k∗
0,k

∗
1, . . . ,k

∗
� ).

Enc(pk, m, Γ := {x1, . . . , xn′ | xj ∈ F
×
q , n

′ ≤ n− 1}) : ω, ϕ0, ϕ1, ζ
U← Fq,

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ·∏n′

j=1(z − xj),
c0 := (ω, 0, ζ, 0, ϕ0)B0 ,

C1,j := ωB1,j + ϕ1B6,j , C2,j :=
∑n

l=1 yl(ωB
′
1,j,l + ϕ1B

′
6,j,l) for j = 1, .., 6,

cT := gζTm, ctΓ := (Γ, c0, {C1,j , C2,j}j=1,...,6, cT ). return ctΓ.

Dec(pk, skS := (S,k∗
0,k

∗
1, . . . ,k

∗
� ), ctΓ := (Γ, c0, {C1,j , C2,j}j=1,...,6, cT )) :

If S := (M,ρ) accepts Γ := {x1, . . . , xn′}, then compute I and {αi}i∈I
such that �1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = vi ∧ vi ∈ Γ] ∨ [ρ(i) = ¬vi ∧ vi 	∈ Γ] },
�y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj),

(D∗
1, . . . , D

∗
6n) :=

∑
i∈I ∧ ρ(i)=vi

αik
∗
i +

∑
i∈I ∧ ρ(i)=¬vi

αi
�vi · �yk∗

i ,

E∗
j :=

∑n−1
l=1 ylD

∗
(j−1)n+l for j = 1, . . . , 6,

K := e(c0,k
∗
0) ·

∏6
j=1

(
e(C1,j , E

∗
j ) · e(C2,j , D

∗
jn)

)
, return m′ := cT /K.

Remark 3 A part of the output of Setup(1λ, n), {Bi,j , B′
i,j,l}i=1,6;j=1,..,6;l=1,..,n, can be identified

with B̂1 := (b1,1, . . . , b1,n, b1,5n+1, .., b1,6n) through the form of Eq. (4), while B1 := (b1,1, . . . ,
b1,6n) is identified with {Bi,j , B′

i,j,l}i,j=1,..,6; l=1,..,n by Eq. (4). Decryption Dec can be alterna-
tively described as:

Dec′(pk, skS := (S,k∗
0,k

∗
1, . . . ,k

∗
� ), ctΓ := (Γ, c0, {C1,j , C2,j}j=1,...,6, cT )) :

If S := (M,ρ) accepts Γ := {x1, . . . , xn′}, then compute I and {αi}i∈I
such that �1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = vi ∧ vi ∈ Γ] ∨ [ρ(i) = ¬vi ∧ vi 	∈ Γ] },
�y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj),

n︷ ︸︸ ︷ n︷ ︸︸ ︷
c1 := ( y1C1,1, .., yn−1C1,1, C2,1, y1C1,2, .., yn−1C1,2, C2,2, · · ·

y1C1,5, .., yn−1C1,5, C2,5, y1C1,6, .., yn−1C1,6, C2,6 ),
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

that is, c1 = ( ω�y, 02n, 02n, ϕ1�y )B1 ,

K := e(c0,k
∗
0) · e

⎛⎝c1,
∑

i∈I ∧ ρ(i)=vi

αik
∗
i +

∑
i∈I ∧ ρ(i)=¬vi

αi
�vi · �yk∗

i

⎞⎠ ,

return m′ := cT /K.

[Correctness] If S accepts Γ, e(c0,k
∗
0)e(c1,

∑
i∈I∧ρ(i)=vi

αik
∗
i ) · e(c1,

∑
i∈I∧ρ(i)=¬vi

αi
�vi·�yk

∗
i )

= g−ωs0+ζ
T

∏
i∈I∧ρ(i)=vi

gωαisi
T

∏
i∈I∧ρ(i)=¬vi

g
ωαisi(�vi·�y)/(�vi·�y)
T = g

ω(−s0+
P

i∈I αisi)+ζ

T = gζT .
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6 Security of the Proposed KP-ABE

6.1 Theorem 1

Theorem 1 The proposed KP-ABE scheme is semi-adaptively payload-hiding against chosen
plaintext attacks under the DLIN assumption.

For any adversary A, there is probabilistic machines F1,F2, whose running times are es-
sentially the same as that of A, such that for any security parameter λ,

AdvKP-ABE,SA
A (λ) ≤ AdvDLIN

F1-1
(λ) + AdvDLIN

F1-2
(λ) +

n∑
j=1

(
AdvDLIN

F2-j-1
(λ) + AdvDLIN

F2-j-2
(λ)

)
+ ε,

where F1-ι(·) := F1(ι, ·) and F2-j-ι(·) := F2(j, ι, ·) for j = 1, . . . , n; ι = 1, 2, ε := (3ν�̂ + 10n +
10)/q, and ν is the maximum number of A’s key queries, �̂ is the maximum number of rows in
access matrices of key queries.

6.2 Proof of Theorem 1

Outline : At the top level strategy of the security proof, the dual system encryption by
Waters [32] is employed, where ciphertexts and secret keys have two forms, normal and semi-
functional. The real system uses only normal ciphertexts and normal secret keys, and semi-
functional ciphertexts and keys are used only in subsequent security games for the security
proof. Additionally, several temporary forms for keys are introduced as defined below.

To prove this theorem, we employ Game 0 (original semi-adaptive security game) through
Game 4. In Game 1, the challenge ciphertext are changed to semi-functional form, and and
all queried keys are changed to temporary-0 form. In Game 2-j-ι (j = 1, . . . , n; ι = 1, 2), all
queried keys are changed to temporary-j-ι form, then, in In Game 3, they are all changed to
semi-functional form. In Game 4, the challenge ciphertext is changed to non-functional form.
In the final game, the advantage of the adversary is zero. As usual, we prove that the advantage
gaps between neighboring games are negligible.

We have shown that the intractability of (complicated) Problems 1 and 2 is reduced to that
of the DLIN Problem through several intermediate steps, or intermediate problems, as in [23].
The vertical reductions are also indicated in Figure 1. The reduction steps indicated by dotted
arrows can be shown in the same manner as those in the full version of [23].

A normal secret key (with access structure S), is the correct form of the secret key of the
proposed KP-ABE scheme, and is expressed by Eq. (5). Similarly, a normal ciphertext (with
attributes Γ) is expressed by Eq. (6). A semi-functional ciphertext is expressed by Eq. (9). A
temporary-0 key is expressed by Eqs. (7) and (8). A temporary-j-1 (resp. j-2) key is expressed
by Eqs. (7) and (10) (resp. Eqs. (7) and (11)) as well as Eq. (8) for matching attributes vh,i.
A semi-functional key is expressed by Eq. (12) and Eq. (8) for matching attributes vh,i. A
non-functional ciphertext is expressed by Eq. (13) (with c1 in Eq. (9)).

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of
Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0 (or 1)
(against an adversary A) by using an instance with β

U← {0, 1} of Problem 1. We then show
that the distribution of the secret keys and challenge ciphertext replied by the simulator is
equivalent to those of Game 0 when β = 0 and those of Game 1 when β = 1. That is, the
advantage of Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma 7).
The advantage of Problem 1 is proven to be equivalent to twice of that of the DLIN assumption
(Lemma 5). Game 2-0-2 is Game 1. Similarly, we show that the advantage gap between Games
2-(j − 1)-2 and 2-j-1 for j = 1, . . . , n is equivalent to the advantage of Problem 2 (Lemma 8),
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Figure 1: Structure of Reductions for the Proof of Theorem 1.

and then twice of that of the DLIN assumption (Lemma 6). We then show that Game 2-j-1
can be conceptually changed to Game 2-j-2 (Lemma 9), by using the fact that parts of bases,
b1,2n+1, . . . , b1,3n and b∗1,2n+1, . . . , b

∗
1,3n, are unknown to the adversary.

We then show that Game 2-n-2 can be conceptually changed to Game 3 (Lemma 10), by
using our modified pairwise independence lemma (Lemma 3) and the information-theoretical
security property of secret sharing. Finally, Game 3 can be conceptually changed to Game 4
(Lemma 11) by using the fact that parts of bases, b0,2 and b∗0,3, are unknown to the adversary.
In the conceptual change, we use the fact that the challenge ciphertext and all queried keys are
semi-functional, i.e., respective coefficients of b0,2 and b∗0,2 are random.

6.2.1 Proof of Theorem 1

To prove Theorem 1, we consider the following 2n + 4 games. In Game 0, a part framed by
a box indicates coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients which were changed in a game from the previous game.

For notational simplicity, we use � (:= �h) for the number of rows of any key queries below.

Game 0 : Original game. That is, the reply to the h-th key query for Sh := (Mh, ρh)
(h = 1, . . . , ν) is:

k∗
h,0 := (−sh,0, 0 , 1, ηh,0, 0)B∗

0
,

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷

if ρh(i) = vh,i, k∗
h,i := ( sh,i�e1 + θh,i�vh,i, 02n , �ηh,i, 0n )B∗

1
,

if ρh(i) = ¬vh,i, k∗
h,i := ( sh,i�vh,i, 02n , �ηh,i, 0n )B∗

1
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5)

where �fh
U← F

r
q , �s

T
h := (sh,1, . . . , sh,�)T := Mh · �fT

h , sh,0 := �1 · �fT
h , θh,i, ηh,0

U← Fq, �ηh,i
U←

F
2n
q , �e1 := (1, 0, . . . , 0) ∈ F

n
q , and �vh,i := (vn−1

h,i , . . . , vh,i, 1) ∈ (F×
q )n. The challenge ciphertext
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for challenge plaintexts (m(0),m(1)) and Γ := {xj} is:

c0 := (ω, 0 , ζ , 0, ϕ0)B0 ,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

c1 := ( ω�y, 02n , 02n, ϕ1�y )B1 ,

cT := gζTm
(b),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6)

where b U← {0, 1}, ω, ζ, ϕ0, ϕ1
U← Fq and �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj).

Game 1 : Same as Game 0 except that the reply to the h-th key query for Sh := (Mh, ρh) is:

k∗
h,0 := (−sh,0, −rh,0 , 1, ηh,0, 0)B∗

0
, (7)

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷︸︸︷ n︷︸︸︷

if ρh(i) = vh,i, k∗
h,i := ( sh,i�e1 + θh,i�vh,i, rh,i�e1 + θ̃h,i�vh,i , 0n, �ηh,i, 0n )B∗

1
,

if ρh(i) = ¬vh,i, k∗
h,i := ( sh,i�vh,i, rh,i�vh,i , 0n, �ηh,i, 0n )B∗

1
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8)

where �gh
U← F

r
q , �r

T
h := (rh,1, . . . , rh,�)T := Mh · �gT

h , rh,0 := �1 · �gT
h , θ̃h,i

U← Fq. The challenge
ciphertext is:

c0 := (ω, τ , ζ, 0, ϕ0)B0 ,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

c1 := ( ω�y, τ�y, τ�y, 02n, ϕ1�y )B1 ,

cT := gζTm,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (9)

where τ U← Fq, and all the other variables are generated as in Game 0.
Game 2-j-1 (j = 1, . . . , n) : Game 2-0-2 is Game 1. Game 2-j-1 is the same as Game
2-(j − 1)-2 except the reply to the h-th key query for Sh := (Mh, ρh) are: for i = 1, . . . , �,

if ρh(i) = vh,i ∧ vh,i 	∈ Γ,
n︷ ︸︸ ︷

k∗
h,i := ( sh,i�e1 + θh,i�vh,i,

2n︷ ︸︸ ︷ 2n︷︸︸︷ n︷︸︸︷
ξh,i,j+1 (rh,i�e1 + θ̃h,i�vh,i), (rh,i�e1 + θ̃h,i�vh,i) · (

∑j−1
κ=1 ξh,i,κZκ + ξh,i,jIn) , �ηh,i, 0n )B∗

1
,

if ρh(i) = ¬vh,i ∧ vh,i ∈ Γ,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷︸︸︷ n︷︸︸︷

k∗
h,i := ( sh,i�vh,i, ξh,i,j+1 rh,i�vh,i, rh,i�vh,i · (

∑j−1
κ=1 ξh,i,κZκ + ξh,i,jIn) , �ηh,i, 0n )B∗

1
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

where (ξh,i,κ)κ=1,...,j+1
U← {(ξκ)κ=1,...,j+1 ∈ F

j+1
q | ∑j+1

i=1 ξi = 1 ∧ ξn+1 = 0 if j = n} for
j = 0, . . . , n and all the other variables are generated as in Game 2-(j − 1)-2. Note that since
ξh,1 = 1 (and other ξh,κ = 0) when j = 0, the above distribution is equivalent to that in Game
1 (= Game 2-0-2).
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Game 2-j-2 (j = 1, . . . , n) : Game 2-j-2 is the same as Game 2-j-1 except the reply to the
h-th key query for Sh := (Mh, ρh) are: for i = 1, . . . , �,

if ρh(i) = vh,i ∧ vh,i 	∈ Γ,
n︷ ︸︸ ︷

k∗
h,i := ( sh,i�e1 + θh,i�vh,i,

2n︷ ︸︸ ︷ 2n︷︸︸︷ n︷︸︸︷
ξh,i,j+1(rh,i�e1 + θ̃h,i�vh,i), (rh,i�e1 + θ̃h,i�vh,i) · (

∑j
κ=1 ξh,i,κZκ) , �ηh,i, 0n )B∗

1
,

if ρh(i) = ¬vh,i ∧ vh,i ∈ Γ,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷︸︸︷ n︷︸︸︷

k∗
h,i := ( sh,i�vh,i, ξh,i,j+1 rh,i�vh,i, rh,i�vh,i · (

∑j
κ=1 ξh,i,κZκ) , �ηh,i, 0n )B∗

1
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

where all the variables are generated as in Game 2-j-1.
Game 3 : Game 3 is the same as Game 2-n-2 except the i-th component of the reply to the
h-th key query for Sh := (Mh, ρh) are:

k∗
0 := (−sh,0, wh,0 , 1, ηh,0, 0)B∗

0
,

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷︸︸︷ n︷︸︸︷

if ρh(i) = vh,i ∧ vh,i 	∈ Γ, k∗
h,i := ( sh,i�e1 + θh,i�vh,i, 0n, �wh,i , �ηh,i, 0n )B∗

1
,

if ρh(i) = ¬vh,i ∧ vh,i ∈ Γ, k∗
h,i := ( sh,i�vh,i, 0n, �wh,i , �ηh,i, 0n )B∗

1
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(12)

where wh,0
U← Fq, �wh,i

U← F
n
q , �wh,i

U← span〈�y〉⊥, and all the other variables are generated as in
Game 2-n-2.
Game 4 : Same as Game 3 except that c0 and cT of the challenge ciphertext are

c0 := (ω, τ, ζ ′ , 0, ϕ0)B0 , cT := gζTm
(b),

where ζ ′ U← Fq (i.e., independent from ζ
U← Fq), and all the other variables are generated as in

Game 3.

Let Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-j-ι)
A (λ),Adv

(3)
A (λ) and Adv

(4)
A (λ) be the advantage of A in

Game 0, 1, 2-j-ι, 3 and 4, respectively. Adv
(0)
A (λ) is equivalent to AdvKP-ABE,SA

A (λ) and it is
clear that Adv

(4)
A (λ) = 0 by Lemma 12.

We will show five lemmas (Lemmas 7-11) that evaluate the gaps between pairs of the
advantages in Game 0, . . ., Game 4. From these lemmas and Lemmas 5–3, we obtain
AdvKP-ABE,SA

A (λ) ≤ AdvDLIN
E1-1

(λ) + AdvDLIN
E1-2

(λ) +
∑n

j=1

(
AdvDLIN

E2-j-1
(λ) + AdvDLIN

E2-j-2
(λ)

)
+ ε, where

ε := (3ν�̂+ 10n+ 10)/q. This completes the proof of Theorem 1. ��

6.2.2 Lemmas

Definition 10 (Problem 1) Problem 1 is to guess β, given (paramn, {Bι, B̂∗
ι }ι=0,1, {h∗

β,i, eβ,i}i=0,...,n)
R← GP1

β (1λ, n), where

GP1
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B1 := (b1,1, . . . , b
∗
1,6n) is calculated from {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,
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B̂
∗
0 := (b∗0,1, b

∗
0,3, . . . , b

∗
0,5), B̂

∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
1,3n+1, . . . , b

∗
1,6n),

δ, δ0, ω, ϕι
U← Fq, τ, ρ

U← F
×
q for ι = 0, 1,

h∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, ρ, 0, δ0, 0)B∗
0
, e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 ,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δi
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( δ�ei, 02n, �δi, 0n )B∗
1

h∗
1,i := ( δ�ei, ρ�ei, 0n, �δi, 0n )B∗

1

e0,i := ( ω�ei, 02n, 02n, ϕ1�ei )B1 ,
e1,i := ( ω�ei, τ�ei, τ�ei, 02n, ϕ1�ei )B1 ,

return (paramn, {Bι, B̂∗
ι }ι=0,1, {h∗

β,i, eβ,i}i=0,...,n),

for β U← {0, 1}. For a probabilistic adversary C, we define the advantage of C as the quantity
AdvP1

C (λ) :=
∣∣∣Pr

[
C(1λ, �)→ 1

∣∣∣� R← GP1
0 (1λ, n)

]
− Pr

[
C(1λ, �)→ 1

∣∣∣� R← GP1
1 (1λ, n)

]∣∣∣ .
Lemma 5 For any adversary C, there exist probabilistic machines F1 and F2, whose running
time are essentially the same as that of C, such that for any security parameter λ, AdvP1

C (λ) ≤
AdvDLIN

F1
(λ) + AdvDLIN

F2
(λ) + 10/q.

Lemma 5 is proven in a similar manner to Lemmas 1 and 2 in [23]. ��

Definition 11 (Problem 2) Problem 2 is to guess β, given (paramn,B0,B
∗
0,f

∗
0 , e0, B̂1,B

∗
1,

{f∗
i }i=1,...,2n, {h∗

β,i, ei}i=1,...,n)
R← GP2

β (1λ, n), where

GP2
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated from {Bi,j , B′
i,j,l}i,j=1,...,6;l=1,...,n,

τ, ρ
U← F

×
q , f∗

0 := ρb∗0,2, e0 := τb0,2, f∗
i := ρb∗1,n+i for i = 1, . . . , 2n,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δi
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( 0n, ρ�ei, 0n, �δi, 0n )B∗
1

h∗
1,i := ( 0n, 0n, ρ�ei, �δi, 0n )B∗

1

ei := ( 0n, τ�ei, τ�ei, 02n, 0n )B1 ,

return (paramn,B0,B
∗
0,f

∗
0 , e0, B̂1,B

∗
1, {f∗

i }i=1,...,2n, {h∗
β,i, ei}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of C for Problem 2, AdvP2
C (λ), is

similarly defined as in Definition 10.

Lemma 6 For any adversary C, there exist probabilistic machines F1 and F2, whose running
times are essentially the same as that of C, such that for any security parameter λ, AdvP2

C (λ) ≤
AdvDLIN

F1
(λ) + AdvDLIN

F2
(λ) + 10/q.

Lemma 7 For any adversary A, there exists a probabilistic machine C1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

C1
(λ).
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Lemma 8 For any adversary A, there exists a probabilistic machine C2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(j−1)-2)
A (λ)−

Adv
(2-j-1)
A (λ)| ≤ AdvP2

C2-j
(λ), where C2-j(·) := C2(j, ·).

Lemma 9 For any adversary A, for any security parameter λ, Adv
(2-j-1)
A (λ) = Adv

(2-j-2)
A (λ).

Lemma 10 For any adversary A, for any security parameter λ, |Adv
(2-n-2)
A (λ) − Adv

(3)
A (λ)| ≤

3ν�̂/q, where ν is the maximum number of A’s key queries, and �̂ is the maximum number of
rows in access matrices of key queries.

Lemma 11 For any adversary A, for any security parameter λ, Adv
(3)
A (λ) = Adv

(4)
A (λ).

Lemma 12 For any adversary A, for any security parameter λ, Adv
(4)
A (λ) = 0.

6.3 Key Techniques

One of the aims of the above game changes is that values of shares rh,i for non-matching
indices (h, i) (i.e., (ρh(i) = vh,i ∧ vh,i 	∈ Γ) ∨ (ρh(i) = ¬vh,i ∧ vh,i ∈ Γ)) are made hidden
from the adversary as in previous security proofs of ABE. For achieving it, random matrices
Zh,i ∈ H�y(n,Fq)T are inserted in the hidden (or semi-functional) part of k∗

h,i for non-matching
(h, i).

In high-level description, it is accomplished by the sequence of swaps and information-
theoretical (conceptual) changes, similar techniques were used in [26]. Moreover, to generate
random Zh,i, we use both of additive and multiplicative structures of H�y(n,Fq). For the former
(resp. latter), see Section 6.3.1 (resp. 6.3.2).

6.3.1 Iteration of Swaps and Conceptual Changes for Theorem 1

Theorem 1 is proven by the hybrid argument through 2n+ 4 games (given in Section 6.2).
First, in Game 0, coefficients of the hidden parts of c1 and k∗

h,i (h = 1, . . . , ν; i = 1, . . . , �)
are all zero. Then, in the next Game 1, that of c1 is filled with (τ�y, τ�y) ∈ F

2n
q and the first

n-dim. coefficient (block) of the hidden parts of k∗
h,i (h = 1, . . . , ν) are changed to �ph,i ∈ F

n
q such

that �ph,i := rh,i�e1 + ψ̃h,i�vh,i if ρh(i) = vh,i, �ph,i := rh,i�vh,i if ρh(i) = ¬vh,i, as: (Hereafter, we
describe coefficients of the hidden part, i.e., span〈b1,n+1, . . . , b1,3n〉 (resp. span〈b∗1,n+1, . . . , b

∗
1,3n〉)

of c1 (resp. k∗
h,i for non-matching (h, i)) and a blank indicates zero coefficients)

Coefficients of the hidden part of c1 in Game 0

Coefficients of the hidden part of c1 in Game 1
−→ τ�y τ�y

Coefficients of the hidden part of k∗
h,i in Game 0

h = 1
...

...
ν

Coefficients of the hidden part of k∗
h,i in Game 1
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−→

h = 1 �p1,i
...

...

...
...

ν �pν,i

=

h = 1 �p1,i · (
∑n

κ=1 ξ1,i,κIn)
...

...

...
...

ν �pν,i · (
∑n

κ=1 ξν,i,κIn)

Coefficients �ph,i in k∗
h,i is conceptually changed to �ph,i ·(

∑n
κ=1 ξh,i,κIn) using random coefficients

(ξh,i,κ)κ=1,...,n with
∑n

κ=1 ξh,i,κ = 1
After that, in turn for j = 1, . . . , n, the coefficient vector �ph,i · ξh,i,jIn ∈ F

n
q is swapped

to the second block of the hidden parts of k∗
h,i (for h = 1, . . . , ν; i = 1, . . . , �) in Game 2-j-1

and the coefficient vector is conceptually (information-theoretically) changed to �ph,i · ξh,i,jZj in
Game 2-j-2 by a conceptual basis change. The swap can be securely executed under the DLIN
assumption (through Problem 2). In Game 2-n-2, each �ph,i · ξh,i,κZκ (κ = 1, . . . , n) is added in
the second block of hidden parts in k∗

h,i.

Coefficients of the hidden part of k∗
h,i in Game 2-(j − 1)-2

→ ·· →

h = 1 �p1,i · (
∑n

κ=j ξ1,i,κIn) �p1,i · (
∑j−1

κ=1 ξ1,i,κZκ)
...

...
...

...
...

...
ν �pν,i · (

∑n
κ=j ξν,i,κIn) �pν,i · (

∑j−1
κ=1 ξν,i,κZκ)

Coefficients of the hidden part of k∗
h,i in Game 2-j-1

swap
�ph,i · ξh,i,jIn−−−−−−−−−−→

h = 1 �p1,i · (
∑n

κ=j+1 ξ1,i,κIn) �p1,i · (
∑j−1

κ=1 ξ1,i,κZκ + ξ1,i,jIn)
...

...
...

...
...

...
ν �pν,i · (

∑n
κ=j+1 ξν,i,κIn) �pν,i · (

∑j−1
κ=1 ξν,i,κZκ + ξν,i,jIn)

Coefficients of the hidden part of k∗
h,i in Game 2-j-2

change ξh,i,jIn
to ξh,i,jZj−−−−−−−−−−−−→

h = 1 �p1,i · (
∑n

κ=j+1 ξ1,i,κIn) �p1,i · (
∑j−1

κ=1 ξ1,i,κZκ + ξ1,i,jZj)
...

...
...

...
...

...
ν �pν,i · (

∑n
κ=j+1 ξν,i,κIn) �pν,i · (

∑j−1
κ=1 ξν,i,κZκ + ξν,i,jZj)
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=

h = 1 �p1,i · (
∑n

κ=j+1 ξ1,i,κIn) �p1,i · (
∑j

κ=1 ξ1,i,κZκ)
...

...
...

...
...

...
ν �pν,i · (

∑n
κ=j+1 ξν,i,κIn) �pν,i · (

∑j
κ=1 ξν,i,κZκ)

Coefficients of the hidden part of k∗
h,i in Game 2-n-2

→ ·· →

h = 1 �p1,i · (
∑n

κ=1 ξ1,i,κZκ)
...

...

...
...

ν �pν,i · (
∑n

κ=1 ξν,i,κZκ)

=

h = 1 �p1,i · Z1,i
...

...

...
...

ν �pν,i · Zν,i
Insertion of Zj is realized by a conceptual basis change determined by Zj and the multiplicative
group structure of H�y(n,Fq) (see item 2 in Section 6.3.2). Moreover, the obtained distribution

of vectors �ph,i ·(
∑n

κ=1 ξh,i,κZκ) is equivalent to �ph,i ·Zh,i with Zh,i
U← H�y(n,Fq)T, which is shown

by using the affine space (i.e., additive) structure of H�y(n,Fq) (see item 3 in Section 6.3.2).

Hence, in Game 3, the coefficient vector is changed to �wh,i
U← F

n
q if ρh(i) = vh,i ∧ vh,i 	∈ Γ,

�wh,i
U← span〈�y〉⊥ if ρh(i) = ¬vh,i ∧ vh,i ∈ Γ, and then the secret value rh,0 for decryption are

information-theoretically hidden from the adversary for h = 1, . . . , ν. In Game 4, the value of
challenge bit b is independent from the adversary’s view, and the proof is complete.

6.3.2 Key Properties of H�y(n,Fq)
In order to achieve the game transformations given above, in particular, change into Game
2-j-2, the transformation (�y,�v) �→ (�yU,�vZ) by (U,Z) with U

U← H�y(n,Fq) and Z := (U−1)T is
required to satisfy the following conditions.

1. It fixes the target �y, i.e., �yU = �y, since H�y(n,Fq) is the isotropy group of �y (Lemma 1). If
�yU was uniformly distributed in a large subspace outside of span〈�y〉, the challenger would
fail the simulation for the above game changes.

2. The fact thatH�y(n,Fq) is a subgroup ofGL(n,Fq) (Lemma 1) realizes (iterated) information-
theoretical changes into Game 2-j-2 since (Z1, . . . , Zj−1, In)Zj = (Z1Zj , . . . , Zj−1Zj , Zj)

is uniformly distributed in
(H�y(n,Fq)T)j if Zi

U← H�y(n,Fq)T for i = 1, . . . , j.

3. H�y(n,Fq) is described as An−1 \ Hn−2, where An−1 := {�u′ ∈ F
n
q | �y · �u′ = yn} is an

(n− 1)-dimensional affine space and Hn−2 := An−1 ∩ {u′n = 0} is a hyperplane section of
An−1. This additive structure generates a freshly random element by a linear combination∑n

κ=1 ξκZκ with freshly random ξκ such that
∑n

κ=1 ξκ = 1 and Zκ
U← H�y(n,Fq)T (Lemma

2).
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Figure 2: Three dimensional cases of Lemma 13 on the left and Lemma 3 on the right when
�y · �v 	= 0 and is uniformly random and independent from other variables. The vectors �yU and
�vZ are uniformly distributed in the shadowed subspaces, respectively.

4. �vZ distributes uniformly in W�y,(�y·�v) := {�w ∈ F
n
q \ span〈�en〉⊥ | �y · �w = �y · �v} (Lemma 3).

That is, if �y · �v 	= 0 and is uniformly random (resp. �y · �v = 0), �vZ distributes uniformly in
F
n
q (resp. in the hyperplane that is perpendicular to �y) except for negligible probability.

Lemma 3 is considered to be a pairwise independence lemma specific to H�y(n,Fq). For
comparison, we describe the lemma for H(n,Fq) in [24] below. Fig. 2 compares the two lemmas
when �y·�v (	= 0) is uniformly random and independent from other variables, which is an important
case for the security proof of the proposed KP-ABE.

Lemma 13 (Pairwise Independence Lemma for H(n,Fq) [24]) Let �en := (0, . . . , 0, 1) ∈
F
n
q . For all �y ∈ F

n
q \ span〈�en〉 and π ∈ Fq, let W ′

�y,π := {(�r, �w) ∈ (span〈�y,�en〉 \ span〈�en〉)× (Fn
q \

span〈�en〉⊥) | �r · �w = π}.
For all (�y,�v) ∈ (Fn

q \ span〈�en〉
)×(Fn

q \ span〈�en〉⊥
)

and (�r, �w) ∈W ′
�y,(�y·�v), Pr [�yU = �r ∧ �vZ = �w] =

1
/
�W ′

�y,(�y·�v), where U U←H(n,Fq) ∩GL(n,Fq) and Z :=(U−1)T.

The left hand side of Fig. 2 presents the transformation (�y,�v) �→ (�yU,�vZ) which is given in
Lemma 13 using a pair of matrices (U,Z) with U U← H(n,Fq)∩GL(n,Fq) in a three-dimensional
space when �y·�v (	= 0) is uniformly random. The image (�yU,�vZ) is spreading over span〈�y,�en〉×F

n
q

except for negligible probability since (�yU) ·(�vZ) = �y ·�v is random. The right hand side of Fig. 2
presents the transformation which is given in Lemma 3 using (U,Z) with U

U← H�y(n,Fq) in a
three-dimensional space when �y · �v (	= 0) is uniformly random. Then, �y is fixed, i.e., �yU = �y.
Only �vZ is spreading over F

n
q except for negligible probability since �y · (�vZ) = �y · �v is random.

Since �y is fixed in this conceptual change, i.e., change to Game 2-j-2, we can execute the next
computational change, i.e., swap in Game 2-(j+1)-1, in the sequence of changes given in Section
6.3.1.
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6.4 An Alternative Modular Approach

We describe an alternative proof of Theorem 1 using interactive Problem 3, which is defined
below. Lemma 14 shows that the advantage of Problem 3 is bounded by 2n-times the advantages
of the DLIN problem. In addition, Lemma 15 shows that the advantage gap between Games 0
and 3 (defined in Section 6.2) is bounded by the advantage of Problem 3.

6.4.1 High-Level Problem (Problem 3)

In Problem 3, the adversary declares the challenge �y in step 2 of the definition. While ciphertext
elements (eβ,0 and) eβ,1 are generated depending on �y, key elements h∗

β,0 and {h∗
β,j,i} do not

depend any key query S, but can be used for simulation of any key query. Hence, Problem 3
is considered as a “no key query” version semi-adaptive security game that can be used for the
scheme’s semi-adaptive security. By using the high-level problem, i.e., Problem 3, we improve
modularity for the proof of Theorem 1. As an example, Problem 5 in Section 7.3.3, a variant of
Problem 3, can be seamlessly used for full security proof of the proposed ABS with constant-size
secret keys.

Definition 12 (Problem 3) Problem 3 is to guess β, after running the following 2-step game:

1. The challenger generates

(paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n)

R← GKP-ABE
ob (1λ, 6, n),

B̂0 := (b0,1, b0,3, . . . , b0,5), B̂
∗
0 := (b∗0,1, b

∗
0,3, . . . , b

∗
0,5),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (2)
from {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,

B̂
∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,3n+1, .., b

∗
1,6n),

and gives �1 := (paramn, {B̂ι, B̂∗
ι }ι=0,1) to the adversary.

2. The adversary gives the target vector �y to the challenger. The challenger then generates

δ, δ0, ω, ϕ0, ϕ1
U← Fq, τ, ρ

U← F
×
q ,

h∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, ρ, 0, δ0, 0)B∗
0
,

e0,0 := (ω, 0, 0, 0, ϕ0)B0 , e1,0 := (ω, τ, 0, 0, ϕ0)B0 ,

for j = 1, .., n; i = 1, .., n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

Uj
U← H�y(n,Fq), Zj := (U−1

j )T,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

h∗
0,j,i := ( δ�ei, 02n, �δj,i, 0n )B∗

1

h∗
1,j,i := ( δ�ei, 0n, ρ�ei · Zj , �δj,i, 0n )B∗

1

e0,1 := ( ω�y, 02n, 02n, ϕ1�y )B1 ,
e1,1 := ( ω�y, τ�y, τ�y, 02n, ϕ1�y )B1 ,

for β U← {0, 1}, and return �2 := (h∗
β,0, eβ,0, {h∗

β,j,i}j=1,...,n; i=1,...,n, eβ,1) to the adversary.

For a probabilistic adversary B, we define the advantage of B as the quantity
AdvP3

B (λ) := |Pr [B outputs 1 |�1 and �2 with β = 0 are given to B ]−
Pr[B outputs 1 |�1 and �2 with β = 1 are given to B ]| .
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Lemma 14 Problem 3 is computationally intractable under the DLIN assumption.
For any adversary B, there are probabilistic machines Fj,ι (j = 0, . . . , n; ι = 1, 2), whose

running times are essentially the same as that of B, such that for any security parameter λ,
AdvP3

B (λ) ≤∑n
j=0

∑2
ι=1 AdvDLIN

Fj,ι
(λ) + (10n+ 10)/q.

The proof of Lemma 14 is given in Appendix A.3.

6.4.2 Proof of Theorem 1 using Problem 3

To prove Theorem 1 using Problem 3, we only consider 3 games, Game 0 (original semi-adaptive
security game), Game 3 and Game 4, which are given in Section 6.2.

We will show Lemma 15 that evaluate the gap between Adv
(0)
A (λ) and Adv

(3)
A (λ). From the

lemma and Lemmas 11 and 14, we obtain AdvKP-ABE
A (λ) = Adv

(0)
A (λ) ≤

∣∣∣Adv
(0)
A (λ) −Adv

(3)
A (λ)

∣∣∣+∣∣∣Adv
(3)
A (λ)− Adv

(4)
A (λ)

∣∣∣ ≤ AdvP3
B (λ)+3ν�̂/q ≤∑n

j=0

∑2
ι=1 AdvDLIN

Fj,ι
(λ)+(3ν�̂+10n+10)/q. This

completes the proof of Theorem 1 using Problem 3. ��

Lemma 15 For any adversary A, there exists a probabilistic machine B, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(3)
A (λ) −

Adv
(0)
A (λ)| ≤ AdvP3

B (λ) + 3ν�̂/q, where ν is the maximum number of A’s key queries, �̂ is the
maximum number of rows in access matrices of key queries.

The proof of Lemma 15 is given in Appendix A.3.

6.4.3 Iteration of Swaps and Conceptual Changes for Lemma 14

For comparison of the proofs in Sections 6.2 and 6.4, we describe the (simple) iteration of swaps
and conceptual changes for the proof of Lemma 14 here. Refer to Section 6.3.1 for comparison.

Lemma 14 is proven by the hybrid argument through 2n+2 experiments (given in Appendix
A.3.1): Experiment 0 ⇒ Experiment 1 ⇒ for j = 1, . . . , n; Experiment 2-j-1 ⇒ Experiment
2-j-2

First, in a β = 0 instance of Problem 3 (Experiment 0), coefficients of the hidden parts of
e1 and h∗

κ,i (κ = 1, . . . , n) are all zero. Then, in the next Experiment 1, that of e1 is filled with
(τ�y, τ�y) ∈ F

2n
q and the first n-dim. coefficient (block) of the hidden parts of h∗

κ,i (κ = 1, . . . , n)
are changed to ρ�ei ∈ F

n
q as: (Hereafter, a blank indicates zero coefficients)

Coefficients of the hidden part
of e1 in Experiment 0

Coefficients of the hidden part
of e1 in Experiment 1

−→ τ�y τ�y

Coefficients of the hidden part
of h∗

κ,i in Experiment 0
Coefficients of the hidden part
of h∗

κ,i in Experiment 1

κ = 1
...
j
...
n

−→

κ = 1 ρ�ei
...

...
j
...
n ρ�ei

After that, in turn for j = 1, . . . , n, the coefficient vector ρ�ei ∈ F
n
q is swapped to the second

block of the hidden parts of h∗
j,i in Experiment 2-j-1 and the coefficient vector is conceptually
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(information-theoretically) changed to ρ�eiZj in Experiment 2-j-2 by a conceptual basis change.
The swap can be securely executed under the DLIN assumption. At the final Experiment 2-
n-2, each ρ�eiZj (j = 1, . . . , n) is embedded in the second block of hidden parts in h∗

j,i, i.e., an
instance of Experiment 2-n-2 is equivalent to a β = 1 instance of Problem 3.

Coefficients of the hidden part
of h∗

κ,i in Experiment 2-(j − 1)-2
Coefficients of the hidden part
of h∗

κ,i in Experiment 2-j-1

→ ·· →

κ = 1 ρ�eiZ1
...

...
j ρ�ei
...

...
n ρ�ei

swap−→

κ = 1 ρ�eiZ1
...

...
j ρ�ei
...

...
n ρ�ei

Coefficients of the hidden part
of h∗

κ,i in Experiment 2-j-2
Coefficients of the hidden part
of h∗

κ,i in Experiment 2-n-2

insert
Zj−→

κ = 1 ρ�eiZ1
...

...
j ρ�eiZj
...

...
n ρ�ei

→ ·· →

κ = 1 ρ�eiZ1
...

...
j ρ�eiZj
...

...
n ρ�eiZn

Insertion of Zj is realized by a conceptual basis change determined by Zj (see item 2 in Section
6.3.2).

7 Proposed Fully Secure ABS Scheme with Constant-Size Se-
cret Keys

We propose a fully secure (adaptive-predicate unforgeable and private) ABS scheme with constant-
size secret keys. This is because the adaptive-predicate unforgeability of the ABS can be guar-
anteed by the non-adaptive payload-hiding security of the underlying CP-ABE under the Naor
transform1.

7.1 Building Blocks for the Proposed ABS

7.1.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GABS
ob below, which is used as a subroutine

in the proposed ABS scheme.

GABS
ob (1λ, 6, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N0 := 4, N1 := 6n, N2 := 7,
paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG) for t = 0, 1, 2,

ψ
U← F

×
q , gT := e(G,G)ψ, paramn := ({paramVt

}t=0,1,2, gT ),

Xt := (χt,i,j)i,j=1,...,Nt

U← GL(Nt,Fq) for t = 0, 2, X1
U← L(6, n,Fq), hereafter,

{μi,j , μ′i,j,l}i,j=1,...,6;l=1,...,n denotes non-zero entries of X1 as in Eq. (3),

1Non-adaptive security of CP-ABE means that the adversary’s key queries may not depend on the challenge
ciphertext [1].
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b∗t,i := (χt,i,1, .., χt,i,Nt)At =
∑Nt

j=1 χt,i,jaj for i = 1, .., Nt, B
∗
t := (b∗t,1, .., b∗t,Nt

) for t = 0, 2,

B∗
i,j := μi,jG, B

′ ∗
i,j,l := μ′i,j,lG for i, j = 1, . . . , 6; l = 1, . . . , n,

for t = 0, 1, 2, (ϑt,i,j)i,j=1,...,Nt := ψ · (XT
t )−1,

bt,i := (ϑt,i,1, .., ϑt,i,Nt)A =
∑Nt

j=1 ϑt,i,jaj for i = 1, .., Nt, Bt := (bt,1, .., bt,Nt),

return (paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2).

Remark 4 From Remark 2, {B∗
i,j , B

′ ∗
i,j,l}i,j=1,...,6;l=1,...,n is identified with basis B

∗
1 := (b∗1,1, . . . ,

b∗1,6n) dual to B1.

7.1.2 Collision Resistant (CR) Hash Functions

Let λ ∈ N be a security parameter. A collision resistant (CR) hash function family, H, associated
with Gbpg and a polynomial, poly(·), specifies two items:

• A family of key spaces indexed by λ. Each such key space is a probability space on
bit strings denoted by KHλ. There must exist a probabilistic polynomial-time algorithm
whose output distribution on input 1λ is equal to KHλ.

• A family of hash functions indexed by λ, hk
R← KHλ and D := {0, 1}poly(λ). Each such

hash function Hλ,Dhk maps an element of D to an element of F
×
q with q that is the first

element of output paramG of Gbpg(1λ). There must exist a deterministic polynomial-time
algorithm that on input 1λ, hk and � ∈ D, outputs Hλ,Dhk (�).

Let F be a probabilistic polynomial-time machine. For all λ, we define
AdvH,CR

F (λ) := Pr[(�1, �2) ∈ D2 ∧ �1 	= �2 ∧Hλ,Dhk (�1) = Hλ,Dhk (�2)], where D := {0, 1}poly(λ), hk
R←

KHλ, and (�1, �2)
R← F(1λ, hk,D). H is a collision resistant (CR) hash function family if for any

probabilistic polynomial-time adversary F , AdvH,CR
F (λ) is negligible in λ.

7.2 Construction

Setup(1λ, n) : hk
R← KHλ,

(paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2)

R← GABS
ob (1λ, 6, n),

B̂0 := (b0,1, b0,4), B̂1 := (b1,1, . . . , b1,n, b1,4n+1, . . . , b1,6n), B̂2 := (b2,1, b2,2, b2,7),

B̂
∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
1,3n+1, . . . , b

∗
1,4n) = {B∗

i,j , B
′ ∗
i,j,l}i=1,4;j=1,...,6;l=1,...,n,

B̂
∗
2 := (b∗2,1, b

∗
2,2, b

∗
2,5, b

∗
2,6),

return sk := b∗0,1, pk := (1λ, hk, param�n, {B̂t}t=0,1,2, {B̂∗
t }t=1,2, b

∗
0,3).

KeyGen(pk, sk, Γ := {x1, . . . , xn′ | xj ∈ F
×
q }) :

ω, ϕ0, ϕ1
U← Fq, �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj),

k∗
0 := (ω, 0, ϕ0, 0)B∗

0
,

L∗
1,j := ωB∗

1,j + ϕ1B
∗
4,j , L∗

2,j :=
∑n

l=1 yl(ωB
′ ∗
1,j,l + ϕ1B

′ ∗
4,j,l) for j = 1, . . . , 6,

k∗
2,1 := (ω(1, 0), 0, 0, ϕ2,1,1, ϕ2,1,2, 0)B∗

2
, k∗

2,2 := (ω(0, 1), 0, 0, ϕ2,2,1, ϕ2,2,2, 0)B∗
2
,

return skΓ := (Γ,k∗
0, {L∗

1,j , L
∗
2,j}j=1,...,6, {k∗

2,ι}ι=1,2).
Remark From {L∗

1,j , L
∗
2,j}j=1,...,6 and �y, k∗

1 is defined as
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n︷ ︸︸ ︷ n︷ ︸︸ ︷
k∗

1 := ( y1L
∗
1,1, .., yn−1L

∗
1,1, L

∗
2,1, y1L

∗
1,2, .., yn−1L

∗
1,2, L

∗
2,2, · · ·

y1L
∗
1,5, .., yn−1L

∗
1,5, L

∗
2,5, y1L

∗
1,6, .., yn−1L

∗
1,6, L

∗
2,6 ),

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
that is, k∗

1 = ( ω�y, 02n, ϕ1�y, 02n )B∗
1
,

Sig(pk, skΓ, m, S := (M,ρ)) : If S := (M,ρ) accepts Γ := {xj}j=1,...,n′ ,

then compute �y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ·∏n′

j=1(z − xj),
I and {αi}i∈I such that

∑
i∈I αiMi = �1, and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = vi ∧ vi ∈ Γ] ∨ [ρ(i) = ¬vi ∧ vi 	∈ Γ] },
ξ

U← F
×
q , (βi)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi = �0},
s∗0 := ξk∗

0 + r∗
0, where r∗

0
U← span〈b∗0,3〉,

s∗i := γi · ξk∗
1 +

∑n
ι=1 μi,ι · b∗t,ι + r∗

i , �vi := (vn−1
i , . . . , vi, 1) for i = 1, . . . , �,

where r∗
i

U← span〈b∗1,3n+1, . . . , b
∗
1,4n〉, and γi, �μi := (μi,1, . . . , μi,n) are defined as

if i ∈ I ∧ ρ(i) = vi, γi := αi, �μi
U← {�μi | �μi · �vi = 0 ∧ μi,1 = βi},

if i ∈ I ∧ ρ(i) = ¬vi, γi := αi/(�vi · �y), �μi
U← {�μi | �μi · �μi = βi},

if i 	∈ I ∧ ρ(i) = vi, γi := 0, �μi
U← {�μi | �μi · �vi = 0 ∧ μi,1 = βi},

if i 	∈ I ∧ ρ(i) = ¬vi, γi := 0, �μi
U← {�μi | �μi · �vi = βi},

s∗�+1 := ξ(k∗
2,1 + Hλ,Dhk (m ||S) · k∗

2,2) + r∗
�+1, where r∗

�+1
U← span〈b∗2,5, b∗2,6〉,

return �s∗ := (s∗0, . . . , s
∗
�+1).

Ver(pk, m, S := (M,ρ), �s∗) : �f
R← F

r
q, �s

T := (s1, . . . , s�)T := M · �fT,

s0 := �1 · �fT, η0, η�+1, θ�+1, s�+1
U← Fq, c0 := (−s0 − s�+1, 0, 0, η0)B0 ,

for i = 1, . . . , �, �vi := (vn−1
i , . . . , vi, 1), �e1 := (1, 0, . . . , 0),

if ρ(i) = vi, return 0 if s∗i 	∈ V1, else θi
U← Fq, �ηi

U← F
2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
ci := ( si�e1 + θi�vi, 02n, 0n, �ηi )B1 ,

if ρ(i) = ¬vi, return 0 if s∗i 	∈ Vt, else �ηi
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
ci := ( si�vi, 02n, 0n, �ηi )B1 ,

c�+1 := (s�+1 − θ�+1 · Hλ,Dhk (m ||S), θ�+1, 0, 0, 0, 0, η�+1)B2 ,

return 0 if e(b0,1, s
∗
0) = 1,

return 1 if
∏�+1
i=0 e(ci, s

∗
i ) = 1, return 0 otherwise.

[Correctness] If �s∗ is a correctly generated signature,∏�+1
i=0 e(ci, s

∗
i ) = e(c0,k

∗
0)
ξ ·∏i∈I e(ci,k

∗
1)
γiξ ·∏�

i=1

∏2
ι=1 e(ci, b

∗
t,ι)

μi,ι · e(c�+1, s
∗
�+1)

= g
ξδ(−s0−s�+1)
T ·∏i∈I g

ξδαisi

T ·∏�
i=1 g

βisi

T · gξδs�+1

T = g
ξδ(−s0−s�+1)
T · gξδs0T · gξδs�+1

T = 1.
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7.3 Security

7.3.1 Theorems

Theorem 2 The proposed ABS scheme is perfectly private.

Theorem 2 is proven in a similar manner to Theorem 1 in the full version of [27] (privacy of
the ABS scheme in [27]).

Theorem 3 The proposed ABS scheme is unforgeable (adaptive-predicate unforgeable) under
the DLIN assumption and the existence of collision resistant hash functions.

For any adversary A, there exist probabilistic machines F0, . . . ,F4, whose running times are
essentially the same as that of A, such that for any security parameter λ,

AdvABS,UF
A (λ) ≤ AdvDLIN

F0
(λ) +

∑2
l=1

∑νK
h=1(AdvDLIN

Fl-h-0
(λ) +

∑n
j=1

∑2
ι=1 AdvDLIN

Fl-h-j-ι
(λ))

+
∑νS

h=1(AdvDLIN
F3-h

(λ) + AdvH,CR
F4-h

(λ)) + ε,

where Fl-h-0(·) := Fl(h, 0, ·),Fl-h-j-ι(·) := Fl(h, j, ι, ·) for l = 1, 2, Fl-h(·) := Fl(h, ·) for l =
3, 4, νK (resp. νS) is the maximum number of A’s reveal key (resp. signature) queries, �̂ is the
maximum number of rows in access matrices M of key queries, and ε := (6νK �̂ + 20νKn +
10νK + 10νS + 5)/q.

7.3.2 Proof of Theorem 3

To prove Theorem 3, we consider the following 2νK + νS + 3 games. In Game 0, a part framed
by a box indicates positions of coefficients to be changed in a subsequent game. In the other
games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

For notational simplicity, we use � (:= �h) for the number of rows of any key queries below.

Game 0 : Original game. That is, the reply to a reveal key query for Γ := {xj}j=1,...,n′ is:

k∗
0 := (ω, 0 , ϕ0, 0)B∗

0
, (13)

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
k∗

1 := ( ω�y, 02n , ϕ1�y, 02n )B∗
1
,

k∗
2,1 := (ω(1, 0), 0, 0, ϕ2,1,1, ϕ2,1,2, 0)B∗

2
, k∗

2,2 := (ω(0, 1), 0, 0, ϕ2,2,1, ϕ2,2,2, 0)B∗
2
,

⎫⎪⎪⎬⎪⎪⎭(14)

where ω, ϕ0, ϕ1, ϕ2,1,1, . . . , ϕ2,2,2
U← Fq, and �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z − xj). The reply to a reveal signature query for (m,S) with S := (M,ρ) are:

s∗0 := ( δ̃, 0 , σ0, 0 )B∗
0
, s∗i := ( �ti, 02n, �σi, 02n )B∗

1
for i = 1, . . . , �,

s∗�+1 := ( δ̃(1,Hλ,Dhk (m ||S)), 02 , �σ�+1, 0 )B∗
2
,

}
(15)

where, δ̃ U← F
×
q , σ0

U← Fq, �σi
U← F

n
q , �σ�+1

U← F
2
q , (ζi)

U← {(ζi) | ∑�
i=1 ζiMi = �1}, and

for i = 1, . . . , �, if ρ(i) = vi, then �ti
U← {�ti | �ti · �vi = 0, ti,1 = δ̃ζi}, if ρ(i) = ¬vi, then

�ti
U← {�ti | �ti · �vi = δ̃ζi} with �vi := (vn−1

i , . . . , vi, 1) ∈ F
n
q . The verification text for (m′,S′) with
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S
′ := (M,ρ) is:

c0 := ( −s0 − s�+1 , 0 , 0, η0 )B0 ,

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷ 2n︷ ︸︸ ︷

if ρ(i) = vi, ci := ( si�e1 + θi�vi, 02n , 0n, �ηi )B1 ,

if ρ(i) = ¬vi, ci := ( si�vi, 02n , 0n, �ηi )B1 ,

c�+1 := ( s�+1�e1 + θ�+1(−Hλ,Dhk (m′ ||S′), 1), 02 , 02, η�+1 )B2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

where �f U← F
r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1· �fT, θi, s�+1, η0, η�+1
U← Fq, �ηi

U← F
2n
q , �e1 =

(1, 0, . . . , 0) ∈ F
n
q , and �vi := (vn−1

i , . . . , vi, 1) ∈ F
n
q .

Game 1 : Same as Game 0 except that the verification text for (m′,S′) with S
′ := (M,ρ) is:

c0 := (−s0 − s�+1, −r0 − r�+1 , 0, η0)B0 ,

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷ 2n︷ ︸︸ ︷

if ρ(i) = vi, ci := ( si�e1 + θi�vi, ri�e1 + ψi�vi , 0n, 0n, �ηi )B1 ,

if ρ(i) = ¬vi, ci := ( si�vi, ri�vi , 0n, 0n, �ηi )B1 ,

⎫⎪⎪⎬⎪⎪⎭(17)

c�+1 := ( s�+1�e1 + θ�+1(−Hλ,Dhk (m′ ||S′), 1), �ψ�+1 , 02, η�+1 )B2 ,

where �g U← F
r
q , �r

T := (r1, . . . , r�)T := M · �gT, r0 := �1 · �gT, r�+1, ψi
U← Fq, �ψ�+1

U← F
2
q , and all

the other variables are generated as in Game 0.
Game 2-h-1 (h = 1, . . . , νK) : Game 2-0-2 is Game 1. Game 2-h-1 is the same as Game
2-(h− 1)-2 except the reply to the h-th key query for Γ are:

k∗
0 := (ω, τ ′ , ϕ0, 0)B∗

0
, (18)

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
k∗

1 := ( ω�y, τ�y, τ�y , ϕ1�y, 02n )B∗
1
,

where τ, τ ′ U← Fq, and the i-th component (i = 1, . . . , �) of the verification text for (m′,S′) with
S
′ := (M,ρ) is:

for i = 1, . . . , �,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷︸︸︷ 2n︷ ︸︸ ︷

if ρ(i) = vi ∧ vi 	∈ Γ, ci := ( si�e1 + θi�vi, 0n, �wi , 0n, �ηi )B1 ,

if ρ(i) = ¬vi ∧ vi ∈ Γ, ci := ( si�vi, 0n, �wi , 0n, �ηi )B1 ,

where �wi
U← F

n
q , �wi

U← span〈�y〉⊥, all the other variables are generated as in Game 2-(h− 1)-2.
Game 2-h-2 (h = 1, . . . , νK) : Game 2-h-2 is the same as Game 2-h-1 except the i-th
component ci of the verification text for (m′,S′) with S

′ := (M,ρ) are given by Eq. (17), and
the components k∗

1, k∗
2,1 and k∗

2,2 of the reply to the h-th key query for Γ is given by Eq. (14)
(and k∗

0 is given by Eq. (18)). all the other variables are generated as in Game 2-h-1.
Game 3-h (h = 1, . . . , νS) : Game 3-0 is Game 2-νK-2. Game 3-h is the same as Game
3-(h− 1) except that s∗0, s∗�+1 of the reply to the h-th reveal signature query for (m,S) are:

s∗0 := ( δ̃, π0 , σ0, 0 )B∗
0
, s∗�+1 := ( δ̃(1,Hλ,Dhk (m ||S)), �π�+1 , �σ�+1, 0 )B∗

2
,
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where π0
U← Fq, �π�+1

U← F
2
q , and all the other variables are generated as in Game 3-(h− 1).

Game 4 : Same as Game 3-νS except that c0 generated in Ver for verifying the output of the
adversary is:

c0 := ( s̃0 , −r0 − r�+1, 0, η0 )B0 ,

where s̃0
U← Fq (i.e., independent from all the other variables) and all the other variables are

generated as in Game 3-νS .
Let Adv

(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h-ι)
A (λ),Adv

(3-h)
A (λ), and Adv

(4)
A (λ) be the advantage of A in

Game 0,1,2-h-ι,3-h and 4, respectively. Adv
(0)
A (λ) is equivalent to AdvABS,UF

A (λ) and it is obtained
that Adv

(4)
A (λ) = 1/q by Lemma 24.

We will show five lemmas (Lemmas 19–23) that evaluate the gaps between pairs of subse-
quent games. From these lemmas and Lemmas 6–16, we obtain AdvABS,UF

A (λ) = Adv
(0)
A (λ) ≤∣∣∣Adv

(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣+∑νK
h=1(

∣∣∣Adv
(2-(h−1)-2)
A (λ)− Adv

(2-h-1)
A (λ)

∣∣∣+∣∣∣Adv
(2-h-1)
A (λ)− Adv

(2-h-2)
A (λ)

∣∣∣)+∑νS
h=1

∣∣∣Adv
(3-(h−1))
A (λ)− Adv

(3-h)
A (λ)

∣∣∣+ ∣∣∣Adv
(3-νS)
A (λ)− Adv

(4)
A (λ)

∣∣∣+ Adv
(4)
A (λ) ≤ AdvDLIN

F0
(λ)+∑2

l=1

∑νK
h=1(AdvDLIN

Fl-h-0
(λ)+

∑n
j=1

∑2
ι=1 AdvDLIN

Fl-h-j-ι
(λ))+

∑νS
h=1(AdvDLIN

F3-h
(λ)+AdvH,CR

F4-h
(λ))+(6νK �̂+

20νKn+ 10νK + 10νS + 5)/q. This completes the proof of Theorem 3. ��

7.3.3 Lemmas

We will show Lemmas 16–18 for the proof of Theorem 3.

Definition 13 (Problem 4) Problem 4 is to guess β, given (paramn, {Bι, B̂∗
ι }ι=0,1,2, {eβ,i}i=0,...,n+1,

f) R← GP4
β (1λ, n), where

GP4
β (1λ, n) : (paramn,B0,B

∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2)

R← GABS
ob (1λ, 6, n),

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4),

B̂
∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,3n+1, .., b

∗
1,6n) is calculated as in Eq. (2) from {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,

B̂
∗
2 := (b∗2,1, b

∗
2,2, b

∗
2,5, .., b

∗
2,7), δ, δ0

U← Fq, ρ
U← F

×
q ,

�ψ
U← F

2
q ,

e0,0 := (δ, 0, 0, δ0)B0 , e1,0 := (δ, ρ, 0, δ0)B0 ,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷
e0,i := ( δ�ei, 02n, 0n, �δj,i )B1 ,

e1,i := ( δ�ei, ρ�ei, 0n, 0n, �δj,i )B1 ,

e0,n+1 := (δ, 0, 02, 02, δ0)B2 , e1,n+1 := (δ, 0, �ψ, 02, δ0)B2 , f := δb2,2,

return (paramn, {Bι, B̂∗
ι }ι=0,1,2, {eβ,i}i=0,...,n+1,f),

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 4, AdvP4
B (λ), is

similarly defined as in Definition 10.

Lemma 16 For any adversary B, there is a probabilistic machine F , whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP4

B (λ) ≤
AdvDLIN

F (λ) + 5/q.

Lemma 16 is proven similarly to Lemma 1 in [23]. ��
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Definition 14 (Problem 5) Problem 5 is to guess β, after running the following 2-step game:

1. The challenger generates

(paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2)

R← GABS
ob (1λ, 6, n),

B̂0 := (b0,1, b0,3, b0,4), B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n),

B̂
∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,3n+1, .., b

∗
1,6n) is calculated as in Eq. (2) from {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,

and gives �1 := (paramn, B̂0,B
∗
0, B̂1, B̂

∗
1,B2,B

∗
2) to the adversary.

2. The adversary gives the target vector �y to the challenger. The challenger then generates

δ, δ0, ω, ϕ0, ϕ1
U← Fq, τ, ρ

U← F
×
q ,

h∗
0,0 := (ω, 0, ϕ0, 0)B∗

0
, h∗

1,0 := (ω, τ, ϕ0, 0)B∗
0
, e0 := (δ, ρ, 0, δ0)B0 ,

for j = 1, . . . , n; i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

Uj
U← H�y(n,Fq), Zj := (U−1

j )T,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷

h∗
0,1 := ( ω�y, 02n, ϕ1�y, 02n )B∗

1
,

h∗
1,1 := ( ω�y, τ�y, τ�y, ϕ1�y, 02n )B∗

1
,

e0,j,i := ( δ�ei, ρ�ei, 0n, 0n, �δj,i )B1 ,

e1,j,i := ( δ�ei, 0n, ρ�ei · Zj , 0n, �δj,i )B1 ,

for i = 1, 2, h∗
2,i := ωb∗2,i,

for β U← {0, 1}, and returns �2 := (h∗
β,0, e0,h

∗
β,1, {eβ,j,i}j=1,...,n; i=1,...,n, {h∗

2,i}i=1,2) to the
adversary.

For a probabilistic adversary B, we define the advantage of B as the quantity
AdvP5

B (λ) := |Pr [B outputs 1 |�1 and �2 with β = 0 are given to B ]−
Pr[B outputs 1 |�1 and �2 with β = 1 are given to B ]| .

Lemma 17 For any adversary B, there are probabilistic machines F0,F , whose running times
are essentially the same as that of B, such that for any security parameter λ, AdvP5

B (λ) ≤
AdvDLIN

F0
(λ) +

∑n
j=1

∑2
ι=1 AdvDLIN

Fj-ι
(λ) + (10n+ 5)/q, where Fj-ι(·) := F(j, ι, ·).

Lemma 17 is proven in a similar manner to Lemma 14.

Definition 15 (Problem 6) Problem 6 is to guess β ∈ {0, 1}, given (paramn, {B̂t,B∗
t }t=0,2,B1,

B
∗
1,h

∗
β,0, e0, {h∗

1,i}i=1,..,n, {h∗
β,2,i, e2,i}i=1,2)

R← GP6
β (1λ, n), where

GP6
β (1λ, n) : (paramn,B0,B

∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,B2,B

∗
2)

R← GABS
ob (1λ, 6, n),

B̂0 := (b0,1, b0,3, b0,4), B̂2 := (b2,1, b2,2, b2,5, . . . , b2,7),
B
∗
1 := (b∗1,1, .., b

∗
1,6n) is calculated as in Eq. (2) from {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,6;l=1,...,n,

σ, τ
U← F

×
q , ω, δ, δ0

U← Fq, h∗
0,0 := (δ, 0, δ0, 0)B∗

0
, h∗

1,0 := (δ, σ, δ0, 0)B∗
0
, e0 := (ω, τ, 0, 0)B0 ,

h∗
1,i := δb∗1,i for i = 1, . . . , n, U

U← GL(2,Fq), Z := (U−1)T,

for i = 1, 2; �ei := (0i−1, 1, 02−i), �δi
U← F

2
q ,
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h∗
0,2,i := ( δ�ei, 02 �δi, 0 )B∗

2
,

h∗
1,2,i := ( δ�ei, σ�eiU, �δi, 0 )B∗

2
,

e2,i := ( ω�ei, τ�eiZ, 02, 0 )B2 ,

return (paramn, {B̂t,B∗
t }t=0,2,B1,B

∗
1,h

∗
β,0, e0, {h∗

1,i}i=1,..,n, {h∗
β,2,i, e2,i}i=1,2),

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 6, AdvP6
B (λ), is

similarly defined as in Definition 10.

Lemma 18 For any adversary B, there is a probabilistic machine F , whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP6

B (λ) ≤
AdvDLIN

F (λ) + 5/q.

Lemma 18 is proven in a manner similar to Lemma 2 in the full version of [23].

Lemma 19 For any adversary A, there exists a probabilistic machine B0, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP4

B0
(λ).

Lemma 19 is proven in a manner similar to Lemma 9 in the full version of [23].

Lemma 20 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-2)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP5

B1-h
(λ) + 3�̂/q, where B1-h(·) := B1(h, ·) and �̂ is the maximum number of

rows in access matrices of key queries.

The proof of Lemma 20 is given in Appendix A.4.

Lemma 21 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-1)
A (λ) −

Adv
(2-h-2)
A (λ)| ≤ AdvP5

B2-h
(λ) + 3�̂/q, where B2-h(·) := B2(h, ·) and �̂ is the maximum number of

rows in access matrices of key queries.

The proof of Lemma 21 is given in Appendix A.4.

Lemma 22 For any adversary A, there exist probabilistic machines B3 and F4, whose run-
ning times are essentially the same as that of A, such that for any security parameter λ,
|Adv

(3-(h−1))
A (λ) − Adv

(3-h)
A (λ)| ≤ AdvP6

B3-h
(λ) + AdvH,CR

F4-h
(λ) + 3/q, where B3-h(·) := B3(h, ·) and

F4-h(·) := F4(h, ·).

Lemma 22 is proven in a manner similar to Lemma 16 in the full version of [27].

Lemma 23 For any adversary A, for any security parameter λ, |Adv
(3-νS)
A (λ) − Adv

(4)
A (λ)| ≤

1/q.

Lemma 23 is proven in a manner similar to Lemma 17 in the full version of [27].

Lemma 24 For any adversary A, for any security parameter λ, Adv
(4)
A (λ) = 1/q.

Lemma 24 is proven in a manner similar to Lemma 18 in the full version of [27].
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A Proofs of Lemmas

A.1 Proofs of Lemmas in Section 4

A.1.1 Proof of Lemma 2

Lemma 2 H�y(n,Fq) has a linear structure as H�y(n,Fq) ∼= An−1 \Hn−2, where An−1 := {�u′ ∈
F
n
q | �y · �u′ = yn} is an (n − 1)-dimensional affine space and Hn−2 := An−1 ∩ {u′n = 0} is a

hyperplane section of An−1.
For all (Zκ ∈ H�y(n,Fq)T)κ=1,...,n such that (Z̃κ := Zκ − Z1)κ=2,...,n is a basis of linear

subspace Vn−1 := {�u′ ∈ F
n
q | �y · �u′ = 0} over Fq, the distribution of Z :=

∑n
κ=1 ξκZκ with

(ξκ)
U← {(ξκ)κ=1,...,n :

∑n
κ=1 ξκ = 1} is equivalent to uniform one, i.e., Z U← H�y(n,Fq)T except

with negligible probability 1/q.

Proof. It is directly verified that H�y(n,Fq) has a linear structure as H�y(n,Fq) ∼= An−1 \Hn−2.

For (ξκ)
U← {(ξκ)κ=1,...,n :

∑n
κ=1 ξκ = 1},

Z :=
n∑
κ=1

ξκZκ =
n∑
κ=1

ξκZ1 +
n∑
κ=1

ξκ(Zκ − Z1) = Z1 +
n∑
κ=2

ξκZ̃κ, (19)

where Z̃κ := Zκ − Z1. Since (Z̃κ)κ=2,...,n is a basis of Vn−1 and ξκ for κ = 2, . . . , n are indepen-
dently and uniformly distributed in Fq, Z given by Eq. (19) is uniformly distributed in affine
space An−1. Moreover, Z is outside of Hn−2 except with probability 1/q, hence, uniformly
distributed in H�y(n,Fq)T except with negligible probability 1/q. ��
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A.1.2 Proof of Lemma 3

Lemma 3 For all �y ∈ F
n
q − span〈�en〉 and π ∈ Fq, let W�y,π := {�w ∈ F

n
q − span〈�en〉⊥ | �y · �w = π},

where span〈�en〉⊥ := {�w ∈ F
n
q | �w · �en = 0}.

For all (�y,�v) ∈ (
F
n
q − span〈�en〉

) × (
F
n
q − span〈�en〉⊥

)
, if U and Z are generated as U U←

H�y(n,Fq), Z := (U−1)T, then �vZ is uniformly distributed in W�y,(�y·�v).

Proof. Let

⎛⎜⎜⎜⎝
1 u′1

. . .
...

1 u′n−1

u′n

⎞⎟⎟⎟⎠ := U,

⎛⎜⎜⎜⎝
1

. . .
1

−(u′n)−1u′1 . . . −(u′n)−1u′n−1 (u′n)−1

⎞⎟⎟⎟⎠ :=

(U−1)T := Z, and �u′ := (u′1, . . . , u′n). Note that �u′ · �y = yn. For �y := (y1, . . . , yn) and
�v := (v1, . . . , vn) with vn 	= 0, let

�w := �vZ = (v1 − u′1(u′n)−1vn, . . . , vn−1 − u′n−1(u
′
n)

−1vn, (u′n)
−1vn)

= (u′n)
−1vn ·

((
u′n(v1v

−1
n )− u′1

)
, . . . ,

(
u′n(vn−1v

−1
n )− u′n−1

)
, 1

)
= (u′n)

−1vn · (ũ1, . . . , ũn−1, 1),

where ũj := u′n(vjv−1
n )− u′j for j = 1, . . . , n− 1 and yn := �y · �u′. Then,

�y · �v = (u′n)
−1 vn

(∑n−1
j=1 yj ũj + yn

)
= �y · �w. (20)

Case that �y · �v �= 0 : Since �y·�v 	= 0, �u′ can be generated as: (ũ1, . . . , ũn−1)
U← {(ũj)j=1,...,n−1 ∈

F
n−1
q | ∑n−1

j=1 yj ũj + yn 	= 0}, u′n := vn(
∑n−1

j=1 yj ũj + yn)/(�y · �v), and u′j := u′n(vjv−1
n ) − ũj for

j = 1, . . . , n− 1. We note that the condition
∑n−1

j=1 yj ũj + yn 	= 0 among ũj (j = 1, . . . , n− 1)
is equivalent to the condition u′n 	= 0.

Since (ũ1, . . . , ũn−1)
U← {(ũj)j=1,...,n−1 ∈ F

n−1
q | ∑n−1

j=1 yj ũj+yn 	= 0} and u′n := vn(
∑n−1

j=1 yj ũj+
yn)/(�y · �v), �w := (u′n)

−1 vn · (ũ1, . . . , ũn−1, 1) is uniformly distributed in W�y,(�y·�v).
Case that �y · �v = 0 : Since �y · �v = 0, Eq. (20) is given as

∑n−1
j=1 yj ũj + yn = 0. Since �y 	∈

span〈�en〉, there exists an index j0 ∈ {1, . . . , n−1} such that yj0 	= 0. Using the index j0, �u′ can be

generated as: ũj
U← Fq (j = 1, . . . , j0−1, j0 +1, . . . , n−1), u′j0 := (−∑j=1,...,j0−1,j0+1,n−1 yju

′
j−

yn)/yj0 , u
′
n

U← F
×
q and u′j := u′n(vjv−1

n )− ũj for j = 1, . . . , n− 1.

Since (ũ1, . . . , ũn−1)
U← {(ũj)j=1,...,n−1 ∈ F

n−1
q | ∑n−1

j=1 yj ũj + yn = 0} and u′n
U← F

×
q ,

�w := (u′n)
−1 vn · (ũ1, . . . , ũn−1, 1) is uniformly distributed in W�y,0. ��

A.2 Proofs of Lemmas in Section 6.2.2

A.2.1 Proof of Lemma 5

Lemma 5 For any adversary C, there exist probabilistic machines F1 and F2, whose running
time are essentially the same as that of C, such that for any security parameter λ, AdvP1

C (λ) ≤
AdvDLIN

F1
(λ) + AdvDLIN

F2
(λ) + 10/q.

Lemma 5 is proven in a similar manner to Lemmas 1 and 2 in [23]. ��

A.2.2 Proof of Lemma 6

Lemma 6 For any adversary C, there are probabilistic machines F1,F2, whose running times
are essentially the same as that of C, such that for any security parameter λ, AdvP2

C (λ) ≤
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AdvDLIN
F1

(λ) + AdvDLIN
F2

(λ) + 10/q.

Proof. To prove Lemma 6, we use an intermediate problem, Basic Problems 1, as indicated
below.

Definition 16 (Basic Problem 1) Basic Problem 1 is to guess β, given (paramn,B0,B
∗
0, e0, B̂1,B

∗
1,

{h∗
β,i, ei}i=1,...,n)

R← GBP1
β (1λ, n), where

GBP1
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (2) from {Bi,j , B′
i,j,l}i,j=1,...,6;l=1,...,n,

τ
U← F

×
q , θ, ψ

U← Fq, e0 := τb0,2,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δi
U← F

n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( 0n, 02n, ψ�ei, �δi, 0n )B∗
1

h∗
1,i := ( 0n, θ�ei, −θ�ei, ψ�ei, �δi, 0n )B∗

1

ei := ( 0n, τ�ei, τ�ei, 02n, 0n )B1 ,

return (paramn,B0,B
∗
0, e0, B̂1,B

∗
1, {h∗

β,i, ei}i=1,...,n),

for β U← {0, 1}. For a probabilistic adversary D, the advantage of D for Basic Problem 1,
AdvBP1

D (λ), is similarly defined as in Definition 10.

Lemma 25 For any adversary C, there are probabilistic machine D1 and D2, whose running
times are essentially the same as that of C, such that for any security parameter λ, AdvP2

C (λ) ≤
AdvBP1

D1
(λ) + AdvBP1

D2
(λ).

Lemma 26 For any adversary D, there is a probabilistic machine F , whose running time
is essentially the same as that of D, such that for any security parameter λ, AdvBP1

D (λ) ≤
AdvDLIN

F (λ) + 5/q.

From Lemmas 25 and 26, we obtain Lemma 6. ��
Below, we give proofs of Lemmas 25 and 26 in turn.

Proof of Lemma 25 To prove Lemma 25, we consider the following experiments. Problem 3 is
the hybrid of the following Experiments 0, . . . , 3, i.e., AdvP2

C (λ) =
∣∣Pr

[
Exp0

C(λ)→ 1
]− Pr

[
Exp3

C(λ)→ 1
]∣∣.

Therefore, from Lemmas 27–29, we obtain Lemma 25.
For a probabilistic adversary C, we define Experiment 0, Exp0

C , using Problem P2 generator
GP2

0 (1λ, n) in Definition 11 as follows:

1. C is given � R← GP2
0 (1λ, n).

2. Output β′ R← C(1λ, �).
Based on Experiment 0, we define Experiments 0–3 below.

Experiment 0 (Exp0
C) : β = 0 case of Basic Problem 3. That is,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n, h∗

i := ( 0n, ρ�ei, 0n, �δi, 0n )B∗
1

37



where all variables are generated as in Basic Problem 3.

Experiment 1 (Exp1
C) : Same as Experiment 0 except that

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n, h∗

i := ( 0n, (ρ+ θ)�ei, −θ�ei, �δi, 0n )B∗
1
,

where θ U← Fq, and all the other variables are generated as in Experiment 0.

Experiment 2 (Exp2
C) : Same as Experiment 1 except that

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n, h∗

i := ( 0n, θ�ei, (ρ− θ)�ei, �δi, 0n )B∗
1
,

where θ U← Fq, and all the other variables are generated as in Experiment 1.

Experiment 3 (Exp3
C) : Same as Experiment 2 except that

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n, h∗

i := ( 0n, 0n, ρ�ei, �δi, 0n )B∗
1
,

where all variables are generated as in Experiment 2.

Lemma 27 For any adversary C, there exists a probabilistic machine D1, whose running time
is essentially the same as that of C, such that for any security parameter λ, |Pr[Exp1

C(λ) →
1]− Pr[Exp0

C(λ)→ 1]| ≤ AdvBP1
D1

(λ).

Proof. Given a BP1 instance (paramn,B0,B
∗
0, e0, B̂1,B

∗
1, {h∗

β,i, ei}i=1,...,n), D1 calculates ρ U←
Fq,f

∗
0 := ρb∗0,2, h̃∗

i := h∗
β,i+ρb

∗
1,n+i+r∗

i for i = 1, . . . , n, where r∗
i

U← span〈b∗1,3n+1, . . . , b
∗
1,5n〉 and

f∗
i := ρb∗1,n+i for i = 1, . . . , 2n. D1 then gives � := (paramn,B0,B

∗
0,f

∗
0 , e0, B̂1,B

∗
1, {f∗

i }i=1,...,2n,

{h̃∗
β,i, ei}i=1,...,n) to C, and outputs β′ ∈ {0, 1} if C outputs β′. When β = 0 (resp.β = 1), the

distribution of � is exactly same as that of instances in Experiment 0 (resp. Experiment 1). This
completes the proof of Lemma 27. ��

Lemma 28 For any adversary C, for any security parameter λ, Pr[Exp2
C(λ)→ 1] = Pr[Exp1

C(λ)→
1].

Proof. Because the distributions ( ρ, ρ + θ, −θ ) and ( ρ, θ, ρ − θ ) with ρ, θ
U← Fq are

equivalent. ��

Lemma 29 For any adversary C, there exists a probabilistic machine D2, whose running time
is essentially the same as that of C, such that for any security parameter λ, |Pr[Exp3

C(λ) →
1]− Pr[Exp2

C(λ)→ 1]| ≤ AdvBP1
D2

(λ).

Proof. Lemma 29 is proven in a similar manner to Lemma 27. ��
Proof of Lemma 26 To prove Lemma 26, we use an intermediate problem, Basic Problems
2, as indicated below.
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Definition 17 (Basic Problem 2) Basic Problem 2 is to guess β, given (paramn,B0,B
∗
0, B̂1,B

∗
1,

{h∗
β,i}i=1,...,n)

R← GBP2
β (1λ, n), where

GBP2
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,6;l=1,...,n,B
∗
1)

R← GKP-ABE
ob (1λ, 6, n),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,6n) is calculated as in Eq. (2) from {Bi,j , B′
i,j,l}i,j=1,...,6;l=1,...,n,

θ, ψ
U← Fq,

for i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δi
U← F

n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,i := ( 0n, 02n, ψ�ei, �δi, 0n )B∗
1

h∗
1,i := ( 0n, θ�ei, 0n, ψ�ei, �δi, 0n )B∗

1

return (paramn,B0,B
∗
0, B̂1,B

∗
1, {h∗

β,i}i=1,...,n),

for β
U← {0, 1}. For a probabilistic adversary E, the advantage of E for Basic Problem 2,

AdvBP2
E (λ), is similarly defined as in Definition 10.

Lemma 30 For any adversary D, there is a probabilistic machine E, whose running time is es-
sentially the same as that of D, such that for any security parameter λ, AdvBP1

D (λ) ≤ AdvBP2
E (λ).

Proof. Given a BP2 instance (paramn,B0,B
∗
0, B̂1,B

∗
1, {h∗

β,i}i=1,...,n), E calculates τ U← Fq, e0 :=
τb0,2, ei := τb1,2n+i for i = 1, . . . , n and B̂

′
1 := (b1,1, . . . , b1,n, b1,3n+1, . . . , b1,6n).

E defines new dual orthonormal bases D1 := (b1,1, . . . , b1,2n,d1,2n+1, . . . ,d1,3n, b1,3n+1, . . . ,
b1,6n) and D

∗
1 := (b∗1,1, . . . , b∗1,n,d∗

1,n+1, . . . ,d
∗
1,2n, b

∗
1,2n+1, . . . , b

∗
1,6n), where d1,2n+i := b1,2n+i −

b1,n+i and d∗
1,n+i := b∗1,n+i + b∗1,2n+i for i = 1, . . . , n. We note that D1 is compatible with

subbasis B̂
′
1.

E then gives � := (paramn,B0,B
∗
0, e0, B̂

′
1,D

∗
1, {h∗

β,i, ei}i=1,...,n) to D, and outputs β′ ∈ {0, 1}
if D outputs β′.

(h∗
0,i,h

∗
1,i, ei) are expressed over bases (B1,B

∗
1) and (D1,D

∗
1) as

h∗
0,i = ( 0n, 02n, ψ�ei, �δi, 0n )B∗

1
= ( 0n, 02n, ψ�ei, �δi, 0n )D∗

1

h∗
1,i = ( 0n, θ�ei, 0n, ψ�ei, �δi, 0n )B∗

1
= ( 0n, θ�ei, −θ�ei, ψ�ei, �δi, 0n )D∗

1

ei = ( 0n, 0n, τ�ei, 02n, 0n )B1 , = ( 0n, τ�ei, τ�ei, 02n, 0n )D1 .

Therefore, when β = 0 (resp.β = 1), the distribution of � is exactly same as that of instances
from GBP1

0 (resp.GBP1
1 ). This completes the proof of Lemma 30. ��

Lemma 31 For any adversary E, there is a probabilistic machine F , whose running time
is essentially the same as that of E, such that for any security parameter λ, AdvBP2

E (λ) ≤
AdvDLIN

F (λ) + 5/q.

Lemma 31 is proven in a similar manner to Lemma 4 in the full version of [24]. ��

A.2.3 Proofs of Lemmas 7–12

Lemma 7 For any adversary A, there exists a probabilistic machine C1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

39



Adv
(1)
A (λ)| ≤ AdvP1

C1
(λ).

Lemma 7 is proven in a similar manner to Lemma 4 in [23]. Note that the simula-
tor (challenger) provides A a part of the given Problem 1 instance as a public key pk :=
(1λ, paramn, {B̂′

t}t=0,1), which is independent from the target �y. ��
Lemma 8 For any adversary A, there exists a probabilistic machine C2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(j−1)-2)
A (λ)−

Adv
(2-j-1)
A (λ)| ≤ AdvP2

C2-j
(λ), where C2-j(·) := C2(j, ·).

Proof. In order to prove Lemma 8, we construct a probabilistic machine C2 against Problem 2
using an adversary A in a security game (Game 2-(j − 1)-2 or 2-j-1) as a black box as follows:

1. C2 is given an index j and a Problem 2 instance, (paramn,B0,B
∗
0,f

∗
0 , e0, B̂1,B

∗
1, {f∗

i }i=1,...,2n,
{h∗

β,i, ei}i=1,...,n).

2. C2 plays a role of the challenger in the security game against adversary A.

3. C2 provides A a public key pk := (1λ, paramn, {B̂′
t}t=0,1) of Game 2-(j − 1)-2 (and 2-j-1),

where B̂
′
0 := (b0,1, b0,3, b0,5) and B̂

′
1 := (b1,1, . . . , b1,n, b1,5n+1, . . . , b1,6n), that are obtained

from the Problem 2 instance.

4. Then, C2 (or challenger) obtains challenge attributes Γ with Γ := {x1, . . . , xn′}, and C2
calculates �y := (y1, . . . , yn) such that

∑n−1
i=0 yn−iz

i = zn−1−n′ ·∏n′
i=1(z − xi). C2 generates

Zκ := (χκ,ι,l)ι,l
U← H�y(n,Fq)T for κ = 1, . . . , j − 1.

5. When the h-th key query is issued for access structure Sh := (Mh, ρh), C2 generates
�fh, �gh

U← F
r
q , (sh,1, . . . , sh,�)

T := Mh · �fT
h , (rh,1, . . . , rh,�)

T := Mh · �gT
h , sh,0 := �1 · �fT

h , rh,0 :=
�1 · �gT

h , and answers as follows:

C2 calculates k∗
0 as given in Eq. (7) using B

∗
0 of the Problem 2 instance and sh,0, rh,0 above,

and the i-th component,

k∗
h,i := k∗ norm

h,i +
n∑
ι=1

ph,i,ι

(
ξh,i,j+1f

∗
ι +

j−1∑
κ=1

ξh,i,κ

n∑
l=1

χκ,ι,lf
∗
n+l + ξh,i,jh

∗
β,ι

)
,

where k∗ norm
h,i is a normal form given in Eq. (5) that is computed using B

∗
1 of the Problem

2 instance and sh,i above, �ph,i := (ph,i,1, . . . , ph,i,n) are given as �ph,i := rh,i�e1 + ψ̃h,i�vh,i

if ρh(i) = vh,i, �ph,i := rh,i�vh,i if ρh(i) = ¬vh,i, and (ξh,i,κ)κ=1,...,j+1
U← {(ξκ)κ=1,...,j+1 ∈

F
j+1
q | ∑j+1

κ=1 ξκ = 1 ∧ ξn+1 = 0 if j = n}. C2 sends key skSh
:= (Sh, {k∗

h,i}i=0,...,�) to A.

6. When C2 receives an encryption query with challenge plaintexts (m(0),m(1)) from A, C2
selects (challenge) bit b U← {0, 1}. C2 computes the challenge ciphertext (c0, c1, cT ) such
that

c0 := ωb0,1 + e0 + ζb0,3 + ϕ0b0,5, c1 :=
∑n

ι=1 yι(ωb1,ι + eι + ϕ1b1,5n+ι), cT := gζTm
(b),

where ω, ζ, ϕ0, ϕ1
U← Fq, and (e0, {eι}ι=1,...,n), B0, B̂1 are a part of the Problem 2 instance.

7. When a key query is issued by A after the encryption query, C2 executes the same proce-
dure as that of step 5.
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8. A finally outputs bit b′. If b = b′, C2 outputs β′ := 1. Otherwise, C2 outputs β′ := 0.

When β = 0 (resp.β = 1), the view of A is equivalent to that in Game 2-(j − 1)-2 (resp. 2-j-1).
This completes the proof of Lemma 8. ��
Lemma 9 For any adversary A, for any security parameter λ, Adv

(2-j-1)
A (λ) = Adv

(2-j-2)
A (λ).

Proof. To prove Lemma 9, we will show distribution (paramn, {B̂t}t=0,1, {sk(j)∗
S
}j=1,...,ν , ctΓ) in

Games 2-j-1 and 2-j-2 are equivalent. For that purpose, we define new subbases d1,2n+1, . . . ,d1,3n

and d∗
1,2n+1, . . . ,d

∗
1,3n of V1 as follows:

For the target vector �y, we generate U U← H�y(n,Fq). Then, let Z := (U−1)T. We note
that �y · U = �y. Then we set (d1,2n+1, . . . ,d1,3n)T := Z · (b1,2n+1, . . . , b1,3n)T and (d∗

1,2n+1, . . . ,

d∗
1,3n)

T := U · (b∗1,2n+1, . . . , b
∗
1,3n)

T and

D1 := (b1,1, . . . , b1,2n,d1,2n+1, . . . ,d1,3n, b1,3n+1, . . . , b1,6n),
D
∗
1 := (b∗1,1, . . . , b

∗
1,2n,d

∗
1,2n+1, . . . ,d

∗
1,3n, b

∗
1,3n+1, . . . , b

∗
1,6n).

We then easily verify that D1 and D
∗
1 are dual orthonormal, and are distributed the same as the

original bases, B1 and B
∗
1. The i-th component of the h-th queried keys {k∗

h,i} in Game 2-j-1
are expressed over bases B

∗
1 and D

∗
1 as follows.

if ( ρh(i) = vh,i ∧ vh,i 	∈ Γ ) ∨ ( ρh(i) = ¬vh,i ∧ vh,i ∈ Γ ),
2n︷︸︸︷ n︷ ︸︸ ︷ 3n︷︸︸︷

k∗
h,i = ( · · · �ph,i · (

∑j−1
κ=1 ξh,i,κZκ + ξh,i,jIn), · · · )B∗

1

= ( · · · �ph,i · (
∑j−1

κ=1 ξh,i,κZκ + ξh,i,jIn) · Z, · · · )D∗
1
,

= ( · · · �ph,i · (
∑j

κ=1 ξh,i,κZ̃κ), · · · )D∗
1
,

otherwise,
2n︷︸︸︷ n︷ ︸︸ ︷ 3n︷︸︸︷ 2n︷︸︸︷ n︷ ︸︸ ︷ 3n︷︸︸︷

k∗
h,i = ( · · · 0n, · · · )B∗

1
= ( · · · 0n, · · · )D∗

1
,

where �ph,i are given as �ph,i := rh,i�e1 + ψ̃h,i�vh,i if ρh(i) = vh,i, �ph,i := rh,i�vh,i if ρh(i) = ¬vh,i,
(ξh,i,κ)κ=1,...,j+1

U← {(ξκ)κ=1,...,j+1 ∈ F
j+1
q | ∑j+1

κ=1 ξκ = 1 ∧ ξn+1 = 0 if j = n}, and Z̃κ := ZκZ

for κ = 1, . . . , j − 1, Z̃j := Z are independently and uniformly distributed in H�y(n,Fq)T since

Zκ, Z
U← H�y(n,Fq)T.

Therefore, the distribution (paramn, {D̂t}t=0,1, {sk(j)∗
S
}j=1,...,ν , ctΓ) is equivalent to that in

Game 2-j-2. This completes the proof of Lemma 9. ��
Lemma 10 For any adversary A, for any security parameter λ, |Adv

(2-n-2)
A (λ)− Adv

(3)
A (λ)| ≤

3ν�̂/q, where ν is the maximum number of A’s key queries, and �̂ is the maximum number of
rows in access matrices of key queries.

Proof. The i-th component of the h-th queried key {k∗
h,i} in Game 2-n-2 is expressed over

basis B
∗
1 as follows.

if ( ρh(i) = vh,i ∧ vh,i 	∈ Γ ) ∨ ( ρh(i) = ¬vh,i ∧ vh,i ∈ Γ ),
2n︷︸︸︷ n︷ ︸︸ ︷ 3n︷︸︸︷

k∗
h,i = ( · · · �ph,i · (

∑n
κ=1 ξh,i,κZκ), · · · )B∗

1
,

2n︷︸︸︷ n︷ ︸︸ ︷ 3n︷︸︸︷
otherwise, k∗

h,i = ( · · · 0n, · · · )B∗
1
,
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where �ph,i are given as �ph,i := rh,i�e1 + ψ̃h,i�vh,i if ρh(i) = vh,i, �ph,i := rh,i�vh,i if ρh(i) = ¬vh,i,
(ξh,i,κ)κ=1,...,n

U← {(ξκ)κ=1,...,n ∈ F
n
q |

∑n
κ=1 ξκ = 1}, and Zκ

U← H�y(n,Fq)T for κ = 1, . . . , n.
We note that {Z̃κ := Zκ − Z1}κ=2,...,n (given by {�u′κ := (u′κ,1, . . . , u′κ,n) ∈ F

n
q }κ=2,...,n) are

linearly independent except that the matrix (�u′κ)κ=2,...,n ∈ F
(n−1)×n
q does not have maximal

rank n − 1, i.e., except for probability 1/q. Therefore, from Lemma 2, since (ξh,i,κ)κ=1,...,n are
freshly random for each key component indexed by (h, i) and

∑n
κ=1 ξh,i,κ = 1, each Zh,i :=∑n

κ=1 ξh,i,κZκ in the hidden subspace is freshly random except with negligible probability 1/q.
Therefore, k∗

h,i are distributed as

if ( ρh(i) = vh,i ∧ vh,i 	∈ Γ ) ∨ ( ρh(i) = ¬vh,i ∧ vh,i ∈ Γ ),
n︷︸︸︷ 2n︷ ︸︸ ︷ 3n︷︸︸︷

k∗
h,i = ( · · · 0n, �ph,i · Zh,i, · · · )B∗

1
,

n︷︸︸︷ 2n︷ ︸︸ ︷ 3n︷︸︸︷
otherwise, k∗

h,i = ( · · · �ph,i, 0n, · · · )B∗
1
,

where Zh,i are freshly random (except with negligible probability).

From Lemma 3, �wh,i := �ph,i ·Zh,i are distributed as �wh,i
U← {�w | �w · �y = (rh,i�e1 + ψ̃h,i�vh,i) · �y}

if ρh(i) = vh,i, �wh,i
U← {�w | �w · �y = rh,i�vh,i · �y} if ρ(i) = ¬vi. Hence, �wh,i are distributed as

�wh,i
U← F

n
q if ρh(i) = vh,i ∧ vh,i 	∈ Γ and �wh,i

U← span〈�y〉⊥ if ρh(i) = ¬vh,i ∧ vh,i ∈ Γ except with
negligible probability 1/q, i.e., k∗

h,i are distributed as in Eq. (12). The corresponding shares rh,i
are information-theoretically hidden from the adversary A. Also, rh,i obtained from the other
indexes i for the h-th query are independent from a central secret rh,0. From this independence,
Game 2-n-2 can be conceptually changed to Game 3, i.e., k∗

h,0 are distributed as in Eq. (12).
This completes the proof of Lemma 10. ��
Lemma 11 For any adversary A, for any security parameter λ, Adv

(3)
A (λ) = Adv

(4)
A (λ).

Proof. Lemma 11 is proven in a similar manner to Lemma 7 in [23]. ��

Lemma 12 For any adversary A, for any security parameter λ, Adv
(4)
A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 4. Hence, Adv
(4)
A (λ) =

0. ��

A.3 Proofs of Lemmas in Section 6.4

A.3.1 Proof of Lemma 14

Lemma 14 Problem 3 is computationally intractable under the DLIN assumption.
For any adversary B, there exists a probabilistic machine F , whose running time is essen-

tially the same as that of B, such that for any security parameter λ,
AdvP3

B (λ) ≤∑n
j=0

∑2
ι=1 AdvDLIN

Fj-ι
(λ) + (10n+ 10)/q, where Fj-ι(·) := F(j, ι, ·).

To prove Lemma 14, we consider the following 2n+3 experiments. For a probabilistic adver-
sary B, we define Experiment 0, Exp0

B, using Problem 3 generator (or challenger) in Definition
12 as follows:

1. B is given the first part of a P3 instance �1 given in step 1 in Definition 12.
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2. B outputs the target �y to the challenger, and is given the second part of a P3 instance �2

given in step 2 in Definition 12.

3. B outputs β′ ∈ {0, 1}.
Based on Experiment 0, we define the other experiments below.

In Experiment 0, a part framed by a box indicates positions of coefficients to be changed
in a subsequent game. In the other games, a part framed by a box indicates coefficients which
were changed in a game from the previous game.
Experiment 0 (Exp0

B) : Experiment 0 is defined by using β = 0 instance of Problem 3 as
above. That is, δ, δ0, ω, ϕ0, ϕ1

U← Fq, τ, ρ
U← F

×
q , and

h∗
0 := (δ, 0 , 0, δ0, 0)B∗

0
, e0 := (ω, 0 , 0, 0, ϕ0)B0 ,

for j = 1, . . . , n; i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗
j,i := ( δ�ei, 02n , �δj,i, 0n )B∗

1

e1 := ( ω�y, 02n , 02n, ϕ1�y )B1 ,

Below, we describe coefficients of the hidden part, i.e., span〈b1,n+1, . . . , b1,3n〉 (resp. span〈b∗1,n+1,
. . . , b∗1,3n〉) of e1 (resp. h∗

κ,i) w.r.t. these bases vectors for κ = 1, . . . , n. Non-zero coefficients are
colored by light gray, and those which were changed from the previous experiment are colored
by dark gray.

Coefficients of the hidden part of e1

in Experiment 0
Coefficients of the hidden part of h∗

κ,i

in Experiment 0

κ = 1
...
j
...
n

Experiment 1 (Exp1
B) : Same as Experiment 0 except that h∗

0,h
∗
j,i and e0, e1 are:

h∗
0 := (δ, ρ , 0, δ0, 0)B∗

0
, e0 := (ω, τ , 0, 0, ϕ0)B0 ,

for j = 1, . . . , n; i = 1, . . . , n; �ei := (0i−1, 1, 0n−i) ∈ F
n
q ,

�δj,i
U← F

2n
q ,

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗
j,i := ( δ�ei, ρ�ei , 0n, �δj,i, 0n )B∗

1

e1 := ( ω�y, τ�y, τ�y , 02n, ϕ1�y )B1 ,

where ρ, τ U← Fq, and all the other variables are generated as in Experiment 0.

Coefficients of the hidden part of e1

in Experiment 1
Coefficients of the hidden part of h∗

κ,i

in Experiment 1

τ�y τ�y

κ = 1 ρ�ei
...

...
j
...
n ρ�ei
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Coefficients of the hidden part of e1

in Experiment 2-(j − 1)-2
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-(j − 1)-2

τ�y τ�y

κ = 1 ρ�eiZ1
...

...
j ρ�ei
...

...
n ρ�ei

Experiment 2-j-1 (Exp2-j-1
B , j = 1, . . . , n) : Experiment 2-0-2 is Experiment 2-0. Experi-

ment 2-j-1 is the same as Experiment 2-(j − 1)-2 except the j-th component h∗
j,i are:

n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷
for i = 1, . . . , n; h∗

j,i := ( δ�ei, 0n, ρ�ei , �δj,i, 0n )B∗
1

where all the variables are generated as in Game 2-(j − 1)-2.

Coefficients of the hidden part of e1

in Experiment 2-j-1
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-j-1

τ�y τ�y

κ = 1 ρ�eiZ1
...

...
j ρ�ei
...

...
n ρ�ei

Experiment 2-j-2 (Exp2-j-2
B , j = 1, . . . , n) : Experiment 2-j-2 is the same as Experiment

2-j-1 except the j-th component h∗
j,i are:

for i = 1, . . . , n; Uj
U← H�y(n,Fq), Zj := (U−1

j )T,
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

h∗
j,i := ( δ�ei, 0n, ρ�ei · Zj , �δj,i, 0n )B∗

1

where all the other variables are generated as in Game 2-j-1.

Coefficients of the hidden part of e1

in Experiment 2-j-2
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-j-2

τ�y τ�y

κ = 1 ρ�eiZ1
...

...
j ρ�eiZj
...

...
n ρ�ei

44



We note that an instance of Experiment 2-n-2 is equivalent of a β = 1 instance of Problem 1.

Coefficients of the hidden part of e1

in Experiment 2-n-2
Coefficients of the hidden part of h∗

κ,i

in Experiment 2-n-2

τ�y τ�y

κ = 1 ρ�eiZ1
...

...
j ρ�eiZj
...

...
n ρ�eiZn

We will show three lemmas (Lemmas 32-34) that evaluate the gaps between pairs of Pr[Exp0
B(λ)→

1],Pr[Exp1
B(λ) → 1] and Pr[Exp2-j-ι

B (λ) → 1] for j = 1, . . . , n; ι = 1, 2. From these lemmas
and Lemmas 5 and 6, we obtain AdvP3

B (λ) = |Pr[Exp0
B(λ) → 1] − Pr[Exp2-n-2

B (λ) → 1]| ≤
AdvP1

C0
(λ) +

∑n
j=1 AdvP2

Cj
(λ) ≤∑n

j=0

∑2
ι=1 AdvDLIN

Fj,ι
(λ) + (10n+ 10)/q. This completes the proof

of Lemma 14. ��

Lemma 32 For any adversary B, there exists a probabilistic machine C0, whose running time
is essentially the same as that of B, such that for any security parameter λ, |Pr[Exp1

B(λ) →
1]− Pr[Exp0

B(λ)→ 1]| ≤ AdvP1
C0

(λ).

Proof. C0 is given a P1 instance (paramn, {Bι, B̂∗
ι }ι=0,1, {h∗

β,i, eβ,i}i=0,...,n) and a target vector
�y. C0 then calculates (paramn, {B̂ι, B̂∗

ι }ι=0,1) in Experiment 0, and calculates e′
0 := eβ,0, e

′
1 :=∑n

ι=1 yιeβ,ι,h
′ ∗
0 := h∗

β,0, {h ′ ∗
j,i := h∗

β,i +
∑n

ι=1 δj,i,ιb1,3n+ι}j=1,...,n; i=1,...,n with δj,i,ι
U← Fq, sends

� := (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

′ ∗
0 , e′

0, {h ′ ∗
j,i}j=1,...,n; i=1,...,n, e

′
1) to B. C0 outputs β′ ∈ {0, 1} if B

outputs β′. The distribution of � is equivalent to that in Experiment 0 (resp. 1) when β is 0
(resp. 1). This completes the proof of Lemma 32. ��

Lemma 33 For any adversary B, there exists a probabilistic machine C, whose running time is
essentially the same as that of B, such that for any security parameter λ, |Pr[Exp

2-(j−1)-2
B (λ)→

1]− Pr[Exp2-j-1
B (λ)→ 1]| ≤ AdvP2

Cj
(λ), where Cj(·) := C(j, ·) (j ≥ 1).

Proof. C is given a P2 instance (paramn,B0,B
∗
0,f

∗
0 , e0, B̂1,B

∗
1, {f∗

i }i=1,...,2n, {h∗
β,i, ei}i=1,...,n), a

target vector �y and an index j. C then calculates (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

′ ∗
0 := δb∗0,1 + f∗

0 +
δ0b

∗
0,5, e

′
0 := ωb0,1 +e0 +ϕ0b0,5, e

′
1 :=

∑n
ι=1 yι(ωb1,ι+eι+ϕ1b1,5n+ι)) in Experiment 2-(j−1)-2

with δ, δ0, ω, ϕ0, ϕ1
U← Fq, and calculates

if κ < j; for i = 1, . . . , n, h ′ ∗
κ,i := δb∗1,i +

∑n
ι=1(χκ,i,ιf

∗
n+ι + δκ,i,ιb

∗
1,3n+ι)

where Zκ
U← H�y(n,Fq)T, (χκ,i,1, . . . , χκ,i,n) := �ei · Zκ, δκ,i,ι U← Fq,

if κ = j; for i = 1, . . . , n, h ′ ∗
j,i := δb∗1,i + h∗

β,i +
∑n

ι=1 δj,i,ιb
∗
1,3n+ι where δj,i,ι

U← Fq,

if κ > j; for i = 1, . . . , n, h ′ ∗
κ,i := δb∗1,i + f∗

i +
∑n

ι=1 δκ,i,ιb
∗
1,3n+ι where δκ,i,ι

U← Fq,

and sends � := (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

′ ∗
0 , e′

0, {h ′ ∗
j,i}j=1,...,n; i=1,...,n, e

′
1) to B. C outputs β′ ∈

{0, 1} if B outputs β′. The distribution of � is equivalent to that in Experiment 2-(j − 1)-2
(resp. 2-j-1) when β is 0 (resp. 1). This completes the proof of Lemma 33. ��

Lemma 34 For any adversary B, for any security parameter λ,
Pr[Exp2-j-1

B (λ)→ 1] = Pr[Exp2-j-2
B (λ)→ 1].
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Proof. To prove Lemma 34, we will show distribution (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

∗
0, e0, {h∗

j,i}j=1,...,n; i=1,...,n,
e1) in Experiments 2-j-1 and 2-j-2 are equivalent. For that purpose, we define new subbases
d1,2n+1, . . . ,d1,3n and d∗

1,2n+1, . . . ,d
∗
1,3n of V1 as follows:

For the target vector �y := (y1, . . . , yn), we generate U
U← H�y(n,Fq) and Z := (U−1)T.

We note that �y · U = �y. Then we set (d1,2n+1, . . . ,d1,3n)T := Z · (b1,2n+1, . . . , b1,3n)T and
(d∗

1,2n+1, . . . , d∗
1,3n)

T := U · (b∗1,2n+1, . . . , b
∗
1,3n)

T and

D1 := (b1,1, . . . , b1,2n,d1,2n+1, . . . ,d1,3n, b1,3n+1, . . . , b1,6n),
D
∗
1 := (b∗1,1, . . . , b

∗
1,2n,d

∗
1,2n+1, . . . ,d

∗
1,3n, b

∗
1,3n+1, . . . , b

∗
1,6n).

We then easily verify that D1 and D
∗
1 are dual orthonormal, and are distributed the same as the

original bases, B1 and B
∗
1. Keys {h∗

j,i} in Experiment 2-j-1 are expressed over bases B
∗
1 and D

∗
1

as follows.
n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷

if κ < j; for i = 1, . . . , n; h∗
κ,i = ( δ�ei, 0n, ρ�ei · Zκ, �δκ,i, 0n )B∗

1

= ( δ�ei, 0n, ρ�ei · Zκ · Z, �δκ,i, 0n )D∗
1
,

if κ = j; for i = 1, . . . , n; h∗
j,i = ( δ�ei, 0n, ρ�ei, �δj,i, 0n )B∗

1

= ( δ�ei, 0n, ρ�ei · Z, �δj,i, 0n )D∗
1
,

if κ > j; for i = 1, . . . , n; h∗
κ,i = ( δ�ei, ρ�ei, 0n, �δκ,i, 0n )B∗

1

= ( δ�ei, ρ�ei, 0n, �δκ,i, 0n )D∗
1
,

where Zj := Z and {Z ′
κ := Zκ ·Z}κ<j are independently and uniformly distributed inH�y(n,Fq)T

since H�y(n,Fq) is a subgroup of GL(n,Fq) (Lemma 1). Since �y · U = �y, e1 has the same
representations over both B1 and D1.

Therefore, the distribution of (paramn, {B̂ι, B̂∗
ι }ι=0,1,h

∗
0, e0, {h∗

j,i}j=1,...,n; i=1,...,n, e1) in Ex-
periments 2-j-1 and 2-j-2 are equivalent. This completes the proof of Lemma 34. ��

A.3.2 Proof of Lemma 15

Lemma 15 For any adversary A, there exists a probabilistic machine B, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(3)
A (λ)| ≤ AdvP3

B (λ) + 3ν�̂/q, where ν is the maximum number of A’s key queries, �̂ is the
maximum number of rows in access matrices of key queries.

Proof. In order to prove Lemma 15, we construct a probabilistic machine B against Problem
3 using an adversary A in a security game (Game 0 or 3) as a black box as follows:

1. B is given the first part of a Problem 3 instance, which is given in step 1 in Definition 12,
(paramn, {B̂ι, B̂∗

ι }ι=0,1).

2. B plays a role of the challenger in the security game against adversary A.

3. B provides A a public key pk := (1λ, paramn, {B̂′
t}t=0,1) of Game 2-(j − 1)-2 (and 2-j-1),

where B̂
′
0 := (b0,1, b0,3, b0,5) and B̂

′
1 := (b1,1, . . . , b1,n, b1,5n+1, . . . , b1,6n), that are obtained

from the Problem 3 instance.

4. When B (or challenger) obtains challenge attributes Γ with Γ := {x1, . . . , xn′} in the first
step of the game, B calculates �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ·∏n′
j=1(z−

xj), and gives �y to the challenger of Problem 3. Then, B is given the second part of the
Problem 3 instance, which is given in step 2 in Definition 12, (h∗

β,0, eβ,0, {h∗
β,j,i}j=1,...,n; i=1,...,n,

eβ,1).
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5. When the h-th key query is issued for access structure Sh := (Mh, ρh), B generates �fh, �gh
U←

F
r
q , (sh,1, . . . , sh,�)

T := Mh · �fT
h , (rh,1, . . . , rh,�)

T := Mh · �gT
h , sh,0 := �1 · �fT

h , rh,0 := �1 · �gT
h ,

and answers as follows: B calculates

k∗
0 := h∗

0 + b∗0,3, k∗
h,i := k∗ norm

h,i +
n∑

j,ι=1

ξh,i,jph,i,ιh
∗
β,j,ι for i = 1, . . . , �,

where k∗ norm
h,i is a normal form given in Eq. (5) that is computed using B

∗
1 of the Problem

3 instance and sh,i above, �ph,i := (ph,i,1, . . . , ph,i,n) are given as �ph,i := rh,i�e1 + ψ̃h,i�vh,i

if ρh(i) = vh,i, �ph,i := rh,i�vh,i if ρh(i) = ¬vh,i, and (ξh,i,j)j=1,...,n
U← {(ξj)j=1,...,n ∈

F
n
q |

∑n
j=1 ξj = 1}.

6. When B receives an encryption query with challenge plaintexts (m(0),m(1)) from A, B
selects (challenge) bit b U← {0, 1}. B computes the challenge ciphertext (c0, c1, cT ) such
that

c0 := eβ,0 + ζb0,3, c1 := eβ,1, cT := gζTm
(b),

where ζ U← Fq, and (eβ,0, b0,3, eβ,1) is a part of the Problem 3 instance.

7. When a key query is issued byA after the encryption query, B executes the same procedure
as that of step 5.

8. A finally outputs bit b′. If b = b′, B outputs β′ := 1. Otherwise, B outputs β′ := 0.

When β = 0 (resp.β = 1), the view of A is equivalent to that in Game 0 (resp. 3) except with
negligible probability 3ν�̂/q (see the proof of Lemma 10). This completes the proof of Lemma
15. ��

A.4 Proofs of Lemmas in Section 7.3.3

Lemma 20 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-2)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP5

B1-h
(λ) + 3�̂/q, where B1-h(·) := B1(h, ·) and �̂ is the maximum number of

rows in access matrices of key queries.

Proof. In order to prove Lemma 20, we construct a probabilistic machine B1 against Problem
5 using an adversary A in a security game (Game 2-(h−1)-2 or 2-h-1) as a black box as follows:

1. B1 is given an index h and the first part of a Problem 5 instance, which is given in step 1
in Definition 14, (paramn, B̂0,B

∗
0, B̂1, B̂

∗
1,B2,B

∗
2).

2. B1 plays a role of the challenger in the security game against adversary A.

3. B1 provides A a public key pk := (1λ, hk, paramn, {B̂′
t}t=0,1,2) of Game 2-(h − 1)-2 (and

2-h-1), where hk
R← KHλ, B̂

′
0 := (b0,1, b0,4), B̂′

1 := (b1,1, . . . , b1,n, b1,4n+1, . . . , b1,6n) and
B̂
′
2 := (b2,1, b2,2, b2,7), that are obtained from the Problem 5 instance.

4. When B1 (or challenger) obtains the κ-th key reveal query for attributes Γ with Γ :=
{x1, . . . , xn′}, B1 calculates �y := (y1, . . . , yn) such that

∑n−1
i=0 yn−iz

i = zn−1−n′ ·∏n′
i=1(z −

xi), and generates key components as follows:
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(a) if κ < h, k∗
0 is calculated as in Eq. (18) and k∗

1, k∗
2,1 and k∗

2,2 are calculated as in

Eq. (14) using fresh ω, τ ′, ϕ0, ϕ1, ϕ2,1,1, . . . , ϕ2,2,2
U← Fq.

(b) if κ = h, B1 gives �y to the challenger of Problem 5. Then, B1 is given the sec-
ond part of the Problem 5 instance, which is given in step 2 in Definition 17,
(h∗

β,0, e0,h
∗
β,1, {eβ,j,ι}j=1,...,n; ι=1,...,n, {h∗

2,i}i=1,2). B1 calculates k∗
0 := h∗

β,0, k∗
1 :=

h∗
β,1, and k∗

2,i := h∗
2,i + r∗

i with r∗
i

U← span〈b∗2,5, b∗2,6〉.
(c) if κ > h, k∗

0 is calculated as in Eq. (13) and k∗
1, k∗

2,1 and k∗
2,2 are calculated as in

Eq. (14) using fresh ω, ϕ0, ϕ1, ϕ2,1,1, . . . , ϕ2,2,2
U← Fq.

B1 sends (constant-size) key skΓ := (Γ,k∗
0,k

∗
1,k

∗
2,1,k

∗
2,2) to A.

5. When B1 obtains a signature reveal query for S := (M,ρ), B1 generates a normal form
signature as in Eq. (15), and sends it to A

6. When B1 receives an output (m′,S′, �s′) fromA, B1 calculates verification text (c0, . . . , c�+1)
as follows: B1 generates �f,�g

U← F
r
q , (s1, . . . , s�)

T := M · �fT, (r1, . . . , r�)T := M · �gT,

s0 := �1 · �fT, r0 := �1 · �gT, s�+1, r�+1, ψi
U← Fq and B1 calculates

c0 := cnorm
0 + r0e0 − r�+1b0,2, ci := cnorm

i +
n∑

j,ι=1

ξi,jpi,ιeβ,j,ι for i = 1, . . . , �,

c�+1 := cnorm
�+1 + p′�+1,1b2,3 + p′�+1,2b2,4,

where cnorm
i is a normal form given in Eq. (16) that is computed using B̂0, B̂1,B2 of the

Problem 5 instance and si above, �pi := (pi,1, . . . , pi,n) are given as �pi := ri�e1 + ψi�vi if

ρ(i) = vi, �pi := ri�vi if ρ(i) = ¬vi, and (ξi,j)j=1,...,n
U← {(ξj)j=1,...,n ∈ F

n
q |

∑n
j=1 ξj = 1}

and �p′�+1 := (p′�+1,1, p
′
�+1,2) is given as �p′�+1 := r�+1�e1+ψ�+1(−Hλ,Dhk (m′ ||S′), 1). B1 verifies

the signature (m′,S′, �s′) using Ver with the above (c0, . . . , c�+1), and outputs β′ := 0 if
the verification succeeds, β′ := 1 otherwise.

When β = 0 (resp.β = 1), the view of A is equivalent to that in Game 2-(h− 1)-2 (resp. 2-h-1)
except with negligible probability 3�̂/q (see the proof of Lemma 10). This completes the proof
of Lemma 20. ��
Lemma 21 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-1)
A (λ) −

Adv
(2-h-2)
A (λ)| ≤ AdvP5

B2-h
(λ) + 3�̂/q. where B2-h(·) := B2(h, ·) and �̂ is the maximum number of

rows in access matrices of key queries.

Proof. In order to prove Lemma 21, we construct a probabilistic machine B2 against Problem
5 using an adversary A in a security game (Game 2-h-1 or 2-h-2) as a black box. B2 acts in the
same way as B1 in the proof of Lemma 20 except the following two points:

1. In case (b) of step 4; k∗
0 is calculated as k∗

0 := h∗
β,0 + τ ′0b∗0,2, where τ ′0

U← Fq, and h∗
β,0, b

∗
0,2

are in the Problem 5 instance.

2. In the last step; if the verification succeeds, B2 outputs β′ := 1. Otherwise, B2 outputs
β′ := 0.

When β = 0 (resp.β = 1), the view of A is equivalent to that in Game 2-h-2 (resp. 2-h-1)
except with negligible probability 3�̂/q (see the proof of Lemma 10). This completes the proof
of Lemma 21. ��
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