
Expressive Declassification Policies and Modular Static Enforcement

Anindya Banerjee

Kansas State University and Microsoft Research

Manhattan, KS and Redmond, WA, USA

Email: ab@cis.ksu.edu

David A. Naumann Stan Rosenberg

Stevens Institute of Technology

Hoboken, NJ, USA

Email: {naumann, srosenbe}@cs.stevens.edu

Abstract

This paper provides a way to specify expressive

declassification policies, in particular, when, what, and

where policies that include conditions under which

downgrading is allowed. Secondly, an end-to-end se-

mantic property is introduced, based on a model that

allows observations of intermediate low states as well

as termination. An attacker’s knowledge only increases

at explicit declassification steps, and within limits

set by policy. Thirdly, static enforcement is provided

by combining type-checking with program verification

techniques applied to the small subprograms that carry

out declassifications. Enforcement is proved sound for

a simple programming language and the extension to

object-oriented programs is described.

1. Introduction

Protection of information confidentiality and in-

tegrity in computer systems has long been approached

in three ways. Cryptography provides mechanisms that

can be used to hide information in data that is openly

accessible and to authenticate information in data that

is susceptible to tampering. But it is usually impractical

to process data in encrypted form. Access controls

regulate actions by which data is manipulated. Access

control mechanisms can often be implemented effi-

ciently and access policies can express security goals

ranging from low level process separation to high level

application-specifics. But confidentiality and integrity

requirements often encompass indirect manipulation of

information in addition to direct access. Information

flow controls address the manipulation of information

once data has been accessed and resides in memory in

The first author was partially supported by NSF awards CNS-

0627748, CCR-0296182, ITR-0326577.

The second and third authors were partially supported by NSF
awards CNS-0627338, CRI-0708330, CCF-0429894.

plaintext form. Research on information flow attempts

to specify a full range of the confidentiality and in-

tegrity goals. It also seeks ways to check system de-

signs and implementations for conformance with flow

policies, to complement and complete the assurance

provided by access control and cryptography.

This paper advances the state of the art in infor-

mation flow control by specifying a confidentiality

property that gives a strong guarantee akin to non-

interference while allowing constrained downgrading

of secrets under conditions that are explicit in policy

specifications. It advances the state of the art in en-

forcement by combining type checking with localized

formal verification in a practical way that provably

enforces the security property.

Consider the canonical case where data channels

are labelled with one of the levels high (secret) or

low. Information flow control rests on the mandatory

access assumption: a principal has direct access to a

high channel only if the principal is authorized for high

channels. (All can read the code being executed, but

none can alter it, in this paper.) For confidentiality,

noninterference says low observations reveal nothing

about high inputs. But notions of observation range

from input-output behavior at the level of abstraction

of source code to covert channels like battery power

and real time. Absence of flows via covert channels is

difficult to achieve, much less to verify, and in many

scenarios weaker attack models are suitable. Our attack

model ignores covert channels.

Data and control dependencies can be tracked dy-

namically, by label passing, but there is cost in perfor-

mance, label creep, and risk of runtime security excep-

tions. Static verification of information flow properties

is attractive, especially for high assurance of system

infrastructure and for integrating components (e.g.,

web services) from disparate sources.

Though long studied, static verification is used only

rarely, in part due to high potential cost during software

development. Also, security goals must be precisely

formalized —and noninterference is too strong to ad-

mit certain intended flows, e.g., in password checking,

data aggregation, encryption, release of secrets upon

successful protocol completion or financial transaction,

etc. As discussed in a recent survey [29], it has

proved quite difficult to find adequate refinements of

noninterference, even to cater for very limited forms

of declassification.

The first contribution of this paper is a way to

specify a wide range of declassification policies, by

novel use of existing forms of security typing and

program specification, inspired by Chong and My-

ers [11] who proposed confidentiality policies that

include conditions under which declassification is al-

lowed. The second contribution is an end-to-end se-

mantic property extending the gradual release property

recently introduced by Askarov and Sabelfeld [4]. Ours

encompasses conditioned policies like those of Chong

and Myers [11] but with stronger security guarantees.1

Briefly, the security property pertains to attackers that

know the code, have unbounded deductive power, and

see intermediate low states. The property says that

low observers’ knowledge only increases at explicit

declassification steps, which reveal limited informa-

tion and happen only under specified conditions. The

third contribution is a practical means of enforce-

ment that combines the simple type-checking of [4]

with verification of program assertions and relational

program verification [1], [8]. Relational verification

is applied only to the small subprograms that carry

out declassifications. Type checking is compositional.

Static verification for assertions can be modular at the

granularity of procedures: a procedure body is checked

using only the specifications for procedures it calls

(e.g., [7]). We prove soundness of the enforcement

régime, relative to a sound verifier and typechecker.

It is not our intention to propose a concrete policy

language. The ideas are formalized here using only

a simple programming language, leaving aside issues

such as combining confidentiality with integrity, sepa-

rating policy from code (but see Sect. 4), and tradeoffs

between what is encoded in the lattice of security levels

versus what is encoded in state-dependent policy. The

exposition and technical development are designed to

support a rigorous soundness proof and to highlight

the following benefits of the approach:

(a) Policies are expressed using two commonplace

means: ordinary labeling of variables with security

levels, together with ordinary program assertions, ex-

1. Also stronger than [4] where the attacker learns nothing from
divergent computations —which is dubious, given that the attacker
can see intermediate steps.

tended with agreement predicates A(e) used to say

that some function e of the secrets may be released.

This should facilitate integration into existing system

development processes and tool chains, as well as

integration with existing access mechanisms.

(b) Policies can express a range of reasons for

declassification to be allowed, encompassing what may

be released, where in the system, when and under

whose authority. The connection with application re-

quirements can be clear because policies refer directly

to program data structures or auxiliary state that tracks

event history. State dependence caters for some forms

of dynamic policy updates, while admitting a cogent

semantics to support high assurance.

(c) Our security property constrains the flow of

information even after one or more release actions

(unlike [11] but like [4]). It is defined in terms of

a standard, un-instrumented program semantics. It re-

duces to termination-sensitive noninterference in the

absence of declassification and accords with the other

prudent principles of Sabelfeld and Sands [29].

(d) In many systems, sensitive data is manipulated in

pointer-based shared data structures rather than named

program variables; this poses challenges for security

labeling and for static analysis, due to aliasing etc. Our

use of program logic fits with the solution of Amtoft

et al [1], [2], which provides effective, modular veri-

fication for object-oriented programs. We can specify

and verify the secure release of an unbounded data

structure by a single pointer assignment, rather than

by cloning as in previous work [3].

Our enforcement régime integrates, in a straightfor-

ward way, three existing technologies: security typing

(e.g. [37]), relational verification (e.g. [1], [8]), and

ordinary program verification for assertions (imple-

mented in many tools). Our main theorem says that

the régime enforces the security property. It relies

on existing soundness results for the type system

and logics. For practical application, one needs logics

and security type system for a richer programming

language. For the sequential core of Java, suitable type

systems (e.g., [6]) and logics (e.g., [1], [22]) also exist

and have been proved sound.

Outline. Sect. 2 illustrates by examples the rich declas-

sification policies of interest. It informally introduces

our policy notation, security property, and enforcement

régime. Sect. 3 formalizes a simple programming

language with declass commands. Sect. 4 defines our

policies (dubbed flowspecs). Sect. 5 defines our end-to-

end security property in terms of the program seman-

tics. Sect. 6 addressess enforcement by type checking

together with verification conditions. Sect. 7 gives the

2

main technical result, that statically checked programs

are secure. Sect. 8 sketches the extension to programs

using shared, dynamically allocated objects. Sect. 9

covers related work and Sect. 10 discusses future

challenges.

2. Synopsis

A number of works provide techniques for enforce-

ment of noninterference for imperative and object-

oriented programs. One approach treats security labels

as non-standard types [37]. By typing variable h as

secret (H) and l as low (L), an evident rule disallows

direct assignment of l := h and additional constraints

prevent implicit flows as in if h then l := true.

An alternative approach for enforcing noninterfer-

ence is to formulate security as a verification problem

and use program logic [13], [15]. A basic form of

noninterference says that if two initial states agree on

the non-secret variables (thereby representing uncer-

tainty about the secrets), and there are two runs of the

program from those states, the resulting pair of final

states agrees on low variables. The idea can be realized

in terms of a “relational Hoare logic” [8]. We focus

on the logic of Amtoft et al. [1] which addresses a

key challenge for reasoning: mutable data structures

in the heap. A triple {ϕ}C{ψ}, termed flowtriple

in the sequel, involves pre- and post-conditions ϕ, ψ

on pairs of program states. The interpretation is with

respect to two executions of C , one from each of

the initial pair of states. Pre- and postconditions can

include predicates of a special form, which we call an

agreement and write as A(e). The meaning is that the

two considered states agree on the value of expression

e. Agreements can also involve region expressions

which abstract the heap, as we discuss later. The prob-

lem of showing that a command C is noninterferent

for some low variables l0, . . . , ln reduces to showing

the validity of the triple {ϕ} C {ϕ} where ϕ is

A(l0)∧ . . .∧A(ln). Compositional proof rules provide

flow-sensitive reasoning and incorporate the usual no-

read-up and no-write-down constraints.

In a precondition, an agreement expresses what

is considered low-visible. So the logical formulation

of noninterference can be used in a natural way to

describe the delimited release policies of Sabelfeld and

Myers [28]. They consider this example, akin to an

electronic wallet scenario, with l , k : L and h : H:

if h ≥ k then h := h − k ; l := l + k(1)

To express the policy that it is fine to reveal whether

h ≥ k , but nothing more about h, our specification

takes the following form, which we call a flowspec:

flow pre P&ϕ mod l(2)

In general, the precondition combines the two-state

predicate ϕ with an ordinary state ordinary state pred-

icate P that is to hold in both initial states. For this

example, the state predicate P is simply true, and the

agreement ϕ is A(h ≥ k)∧A(l)∧A(k). The meaning

of the flowspec is this. A command C satisfies the

specification provided that if it is run twice, from

initial states that agree on l , on k , and on the value

of expression h ≥ k —but not necessarily on the

value of h— the final states agree on l . That is, the

flowtriple {ϕ} C {A(l)} is valid. Moreover, the only

low variable that is updated is l .

In the analysis by Sabelfeld and Sands [29], delim-

ited release specifies what is released. To specify where

in the system release is allowed, we follow previous

work in explicitly marking commands that are allowed

to declassify. To specify when release may happen, the

flowspecs attached to our declassification commands

include a state predicate P as in (2). We now proceed

to an example that clarifies the utility of P .

Release after multiple events. Our leading example

below has declassification conditioned upon multiple

events. Consider a patient’s medical record that con-

tains fields with mixed data, some secret and some

public. A bookkeeper needs to release the patient’s

information to an insurance representative subject to

the following policy.

• The patient’s diagnosis is released, but not the

doctor’s notes (both are normally secret).

• The version of the record to be released should

be the most recent one.

• The record should be in “committed” state. The

database contains some versions that just record

saved test info, whereas a committed record re-

flects a doctor’s firm diagnosis.

• Preceding release, an audit log entry is made,

including the patient ID and record version, as

well as the IDs of the bookkeeper and insurance

rep.

• At the time of release, both bookkeeper and rep-

resentative should be users with valid credentials

to act in their respective roles.

The example is illustrative; we ignore other issues such

as integrity (e.g. of the audit logs) or roles; nor do

we restrict to representatives of the patient’s insurance

company.

Let security level L be associated with information

for which at least the insurance company is permitted

3

access, and H be associated with private patient in-

formation and clinic-internal information. The clinic’s

database contains records of this form:

class PatientRecord {

int id; boolean committed; int vsn;

String{H} diag; String{H} notes; }

A similar record is provided to insurance representa-

tives. Note that L fields are unmarked.

class InsRecord {int id; String diag;}

Before formalizing the policy we give a conforming

implementation (in Java-like syntax).

Object release(Database db, int patID,

Bookkeeper b, InsRep r)

// precondition: sys.auth(b,"book") &&

// sys.auth(r,"rep")

{ InsRecord ir := new InsRecord();

PatientRecord pr := db.lookup(patID);

if (pr != null && pr.committed) {

log.append(b.id, r.id,

pr.id, pr.vsn, "release");

ir.id := pr.id;

ir.diag := pr.diag;

return ir;

} else return new Msg("unavailable");

}

Note that the parameters and local variables are all L

(unmarked). Only certain fields of patient records are

marked H. With this labeling, the program typechecks

except for the assignment to ir.diag. We desig-

nate the assignment as a declassification, exempt from

typechecking but subject to a flowspec of the form (2)

where the state predicate P in the precondition is:

pr .committed ∧ db.recent(pr)∧
sys .auth(b, ’book’) ∧ sys .auth(r , ’rep’)∧
log.contains(b.id , r .id , pr .id , pr .vsn, ’release’)

The agreement part of the precondition, i.e., ϕ in

(2), is A(pr .diag) —this expresses “what” is re-

leased. The presence of flowspecs indicate the program

points “where” release occurs. Predicate P expresses

“when” the release happens. The conditions repre-

sent a sequence of requisite events: db.recent(pr)
expresses that pr is the most recent patient record;

sys .auth(b, ’book’) says that b is authenticated by sys

as bookkeeper; etc.

Our enforcement régime accepts the program. One

ingredient of enforcement is that the rest of the pro-

gram typechecks, essentially by the rules in [4] which

disallow declassification inside a high conditional (in

addition to the usual rules that prevent direct and

implicit flows). Another ingredient is that the flowtriple

{P&ϕ} ir .diag := pr .diag {A(ir .diag)}

is valid; indeed, the stronger flowtriple {ϕ} ir .diag :=
pr .diag {A(ir .diag)} can be proved in the logic

of [1] or using self-composition with an off-the-

shelf automated verifier [26] (both deal with muta-

ble heap objects). The last ingredient is that P is

a valid pre-assertion, i.e., it holds on all paths to

the declassification, as we now argue in detail. The

conjunct pr .committed holds owing to the guard con-

dition of the if. The conjuncts sys .auth(b, ’book’) and

sys .auth(r , ’rep’) are preconditions to the method —

its calls must therefore be verified for these conditions.

Recency should be ensured by the specification of

lookup. (This would get more complicated if we con-

sidered concurrent access to the database; the policy is

perhaps too strong on this point.) Presence of the log

entry is ensured by the call to append .

Conditioned gradual release. By itself, checking of

security-labelled types should enforce noninterference.

(A practical checker of this kind is Jif [24]; others

have been formally validated [25], [32].) But we ex-

empt declassification commands from type checking!

Instead, each declassification is required to form a

valid flowtriple for its associated flowspec —and this

only says something about the declassification code

in isolation. To put the two together we propose an

enrichment of the gradual release property [4]. An

observer at level L sees each low action —assignment

to a low variable, declassification step, or termina-

tion. Gradual release says that the observer gains no

knowledge about the initial value of secret variables

except from declassifications. We require in addition

that what is learned about initial secrets is only what is

allowed by the associated flowspec precondition. That

is, they learn no more than they would know if told

the current value of each e for which A(e) is in the

precondition (together with what is known from any

previous releases). Moreover, a declassification step

must not be taken except from a state that satisfies the

state predicate part of the flowspec precondition. The

formal definition is in Sect. 5. In the absence of de-

classification, conditioned gradual release amounts to

noninterference: knowledge remains constant through

every step of a computation.

Fine points. To achieve modular enforcement using

off-the-shelf tools, we define our security property to

interpret flowspec preconditions in terms of the current

value of expressions e that occur in agreements A(e).
This poses a risk of laundering: If h0 and h1 are high

variables, a policy with precondition A(h0) would

appear to allow the release of h0, but declassification

of h0 subsequent to an assignment h0 := h1 would

4

actually release h1. The solution to this known prob-

lem is to disallow reassignment of high variables prior

to their use in declassifications [28].

It is not really practical to disallow all updates of

high variables prior to their use in declassifications.

For example, one would like to make multiple uses of

an electronic wallet, each time decreasing the balance,

though of course if the user allows many such trans-

actions the entire balance could be revealed. What is

needed is means to designate sessions or transactions,

so a declassification policy can refer to the initial value

of a high variable within a session, and disallow its

update prior to release. So too, the security property

would refer to secrets at session start, not the system’s

initial state. Our insistence to use ordinary assertions

rather than exotic syntax may pay off here, since

session boundaries are typically embodied in program

control and data state, and the notion of “session” may

be policy-specific. For example, a session for a login

password is bracketed by uses of the passwd program.

Thorough treatment of this issue is left to future work.

Another feature of our technique is that a flowspec

could allow modification of several low variables (or

heap locations) in a single declassification. However,

in order to adhere to the principle of non-occlusion,2 a

declassification step should be atomic as viewed by

the low observer (e.g., by use of locks). To avoid

distraction, our formalization achieves atomicity by

restricting declassification to single assignments.3

Finally, the semantic formalization of our secu-

rity property effectively treats a flowspec precondition

P&ϕ as licensing the release of not only what is

explicitly mentioned in ϕ but also any high information

in the control state. To ensure that the policy P&ϕ
is meaningful in isolation, we choose to disallow

any declassification in the context of a high branch

condition. This we do in the enforcement régime.4

3. Programming language

This section formalizes the simple imperative lan-

guage over integer variables, augmented with the so-

called declass command. To focus on the key ideas

in a comprehensible way, we refrain from considering

pointers, procedures, or other language features. But a

2. Adding declassification cannot make an insecure program se-
cure [29].

3. This is already quite expressive in conjunction with data
structures (Sect. 8) or encryption keys [4], but it precludes wrapping
example (1) inside a declassification.

4. As it happens the security condition is well-defined even for
programs, such as example (6), with declassification under high
guard. Little would be gained by complicating the security property
on this account.

C ,B ,M ::= declass ι 〈x := e〉 | x := e | skip

| C ;C | if e then C else C | while e do C

e ::= x | 0 | 1 | . . . | e + e | e ≤ e | . . .

Figure 1. Grammar of commands and expres-

sions; ι ranges over declass identifiers.

〈 stop, s 〉 → 〈 stop, X 〉 〈 skip, s 〉 → 〈 stop, s 〉

〈 x := e, s 〉 → 〈 stop, s[x := [[e]](s)] 〉

〈declass
ι 〈x := e〉, s 〉 → 〈 stop, s[x := [[e]](s)] 〉

〈C0, s 〉 → 〈C ′

0, s
′ 〉 C

′

0 6= stop

〈C0;C1, s 〉 → 〈C ′

0;C1, s
′ 〉

〈C0, s 〉 → 〈 stop, s
′ 〉

〈C0; C1, s 〉 → 〈C1, s
′ 〉

[[e]](s) 6= 0

〈 if e then C0 else C1, s 〉 → 〈C0, s 〉

[[e]](s) = 0

〈 if e then C0 else C1, s 〉 → 〈C1, s 〉

[[e]](s) = 0

〈while e do C , s 〉 → 〈 stop, s 〉

[[e]](s) 6= 0

〈while e do C , s 〉 → 〈C ;while e do C , s 〉

Figure 2. Semantics; s , s ′ range over non-X

states.

number of technicalities are needed to formalize the

security property (Sect. 5).

The command “declass ι 〈x := e〉” behaves as x :=
e. Its syntax includes an identifier, ι, used later to refer

to an associated flowspec. A well-formed program has

a different identifier ι for each declassification.

Figure 2 defines the semantics. We write [[e]](s) for

the value of expression e in state s . A state s is a map-

ping from variables to values, and we write s [x := n]
for updates. The semantics is given as a deterministic

transition relation, →, over configurations of the form

〈C , s 〉 where s is a state and C is either a command

or stop. The latter triggers an observable step to the

improper state, X, for termination.

Every command can be written in the form C0;C1

or else C0, where C0 is not a sequence, and then we

call C0 the active command. The active command is

the one that gets replaced in a transition step (Fig. 2).

Define actc(〈C , s 〉) to be the active command of

C , and define actc(〈 stop, t 〉) = stop. Define

5

code(〈C , t 〉) = C and state(〈C , t 〉) = t .

An initial configuration 〈C , s 〉 determines a unique

finite or infinite run, that is, the maximal sequence of

configurations given by the transition relation, starting

with 〈C , s 〉. We use the term pre-run for a finite,

non-empty prefix of a run.

An action is a transition step for an assignment,

declassification, or termination (i.e., the step to X). The

other transitions, e.g., those for if and while, never

change the state. It is convenient to work with a notion

of trace which extracts from a pre-run the series of

states resulting from actions.

Let M be a fixed command, the main program. We

define several notions based on runs of M , leaving

M implicit in the notation. For any pre-run S of

M , let trace(S) be the sequence of states starting

with state(S0) and thereafter including every state

that results from an action. For any state s , let

Traces(s) = {trace(S) | S is a pre-run from s}.

Define TRACES = ∪s · Traces(s). Note that

declassification steps are not marked as such in traces.

We say S is a generating pre-run for σ, if

trace(S) = σ. A trace σ can have more than one

generating pre-run. The minimal generating pre-run

for σ is just the shortest one, i.e., with no unnecessary

steps at its tail. It is unique since the run is determined

by the initial state, σ0.

We do not distinguish between a state s and the

singleton trace consisting of s . Juxtaposition is used

to express catenation, e.g., σ s is the trace consisting

of σ followed by s . Also σi is the i th element,

counting from zero. We write last(σ) for len(σ) − 1
and abbreviate σlast(σ) as σlast .

4. Policy specification

In this section we formalize our notion of policy

specification. This is intended as a foundation for

concrete policy languages, so we begin with some

discussion of desiderata for policy specifications.

A “where” policy [29] designates where in the code

declassification is allowed. This goes against common

wisdom that policies should be separate from imple-

mentations. If the intention of a “where” policy is to

restrict declassification to some program components

that have been subject to security audits, or the code

is in high-integrity storage, then “where in the code”

is at the granularity of, say, a load module. Arguably

that is somewhat separate from the implementation. On

the other hand, extant “where” policy formulations are

fine grained, e.g., individual assignments are marked

as declassifiers (e.g., [4], [24]). This is fragile, as im-

plementations often change, and it raises the question

of an independent meaning for the policy.

Judging by the examples in the literature, the ratio-

nale for fine-grained “where” policies is pragmatic: the

specifier may choose as declassifiers some assignments

that appear to conform to some (informal) “what” or

“when” policy, based on the specifier’s understanding

of the code. In this paper we provide direct means to

specify “what” and “when” policies. So we formulate

policy in a way that caters for separating it from the

code, yet still enables fine-grained “where” specifica-

tion if desired.

Definition 4.1 (policy): A baseline security policy

for a program M is a mapping, Γ, from the variables

of M to the security levels {L, H}. A declassifica-

tion policy is a set, Φ, of flowspecs, of the form

flow pre P&ϕ mod x where

• ϕ is a conjunction of agreements, A(e0)∧A(e1)∧
. . .A(ek) where the ei are expressions;

• P is a formula over the program variables;

• the “modifiable” variable x is L according to the

baseline policy Γ.

For the language of Sect. 3, P can be a first-order

formula with atomic predicates for integer arithmetic.

Technically, all we need is that the semantics is two-

valued, i.e., the satisfaction relation s |= P means

that P is true in state s and otherwise P is false. For

the richer programming language discussed in Sect. 8,

formulas would be as in JML and similar specification

languages [7], [19], and the “modifies” clause could

designate a heap location or region.

Agreement formulas P&ϕ are interpreted in a pair

of (non-X) states. For ϕ of the form A(e0)∧. . .A(ek),
define (s , t) |= P&ϕ iff

{

s |= P and t |= P and

[[ei]](s) = [[ei]](t) for 0 ≤ i ≤ k
(3)

As explained in Sect. 2 and formalized in Sect. 5,

we interpret the policy to mean that information flows

in accord with the baseline policy Γ, except that

each declass may have additional flows if justified by

some flowspec in Φ. One might say that the declass

commands in the code are expressing the “where” part

of the policy. To see why we choose not to refer to

them as part of the policy, let us reconsider the issue

of separating code from policy.

Labeling of variables is somewhat separate from

the code that acts on them. (Only external interfaces

need be labelled; the rest, e.g., local variables, fields,

methods, can be inferred [18], [24], [31], [33].) One

can imagine “what” policies being expressed using an

augmented labeling that designates levels for certain

6

“escape hatch” expressions, overriding the level given

by usual typing rules; e.g., h ≥ k could be declared

low despite the join of its variable levels being high.

This is explored by Hicks et al [17]. Several works

explore type labeling for declassification (e.g., [10],

[11], [20]).

So long as P and ϕ refer only to global variables

and to x , one can read flow pre P&ϕ mod x as a

schematic specification of “what” and “when” policy,

taking x to be a placeholder for any variable. Instead of

assuming that the code has marked declass commands,

we could let the type-checker add a declass for each

assignment that violates the baseline policy and is not

in the scope of a high branch. (The latter is needed

in order to maintain the interpretation of a flowspec

precondition as completely specifying what is released

—recall the last “fine point” in Sect. 2.)

Many interesting policies can be expressed using

schematic flowspecs. For the example in Sect. 2, we

can take ir and pr to be schematic variables so

that the policy is applicable to any assignment of

a PatientRecord’s diagnosis to an InsRecord.

The preconditions refer to fields of these objects and

to global data structures (the log and the authentication

system).

To cater for schematic use of flowspecs, our formal-

ization of policy (Def. 4.1) does not map declass iden-

tifiers to flowspecs in Φ. Instead, the security property

(Def. 5.5) and the enforcement régime (Def. 6.2) both

require that such mappings exist. In practical use of

the schematic approach, the mapping would be created

when the type-checker marks the code with declass

commands.

However, it is straightforward to adapt our formu-

lations (Defs. 5.5 and 6.2) to consider the mapping to

be part of policy, in order to fully capture fine-grained

“where” policies with associated “what” and “when”

policies.5

5. The end-to-end security property

In this section, let M be a fixed program, with policy

Γ,Φ as in the previous section. To lighten various

notations we suppress their dependence on M , Γ, and

Φ; for example, σ and τ range over the set TRACES

of M . This section defines the semantics of the policy.

5. In fact this can be encoded in the present formalulation.
Suppose we wish to associate the flowspec flow pre P&ϕ mod x

with a single declass, say declass ι 〈x := e〉. Add to the program
a fresh variable v initialized to 0. Replace the declass by the
sequence v := 1;declass ι 〈x := e〉; v := 0. Revise the flowspec
precondition to be (P ∧ v = 1)&ϕ. The revised flowspec licenses
no declassifications other than the one labelled ι.

Low observations. The gradual release paper [4] de-

fines knowledge directly in terms of low observations,

i.e., sequences of the low-visible parts of states. Our

definition is formulated in terms of traces of complete

states, since these are needed to interpret flowspec

preconditions.

What a low observer knows about the initial state

after observing the visible part of some trace σ is

that it could be any state that yields a trace τ low-

indistinguishable from σ. The precise definitions of

indistinguishability and observed knowledge are some-

what involved and are carefully designed to facilitate

proof of the soundness theorem, in a way that can be

extended to richer languages.

As in other works [27], [35], our notion of indistin-

guishability is defined in terms of a purging function to

eliminate timing channels from the model. Assignment

to a high variable is called a high action; the other

actions —termination and low assignments including

declassifications— are low actions. For any pre-run S ,

let p-trace(S) be the same as trace(S) except omitting

states that result from high actions, i.e., assignments

to variables x with Γ(x) = H. Define purge(σ) to be

the p-trace determined by a generating pre-run for σ.

Note that all generating pre-runs for σ yield the same

p-trace.

Define lowvis(s) be the restriction of a (proper)

state s to its low variables (according to Γ), and

define lowvis(X) = X. Two traces are considered

indistinguishable if there is a one-to-one correspon-

dence between the states resulting from low actions

and moreover corresponding states are low-equivalent.

Definition 5.1 (indistinguishable (∼)): Define

σ ∼ τ if and only if lowvis(purge(σ)) =
lowvis(purge(τ)), where we map lowvis over

each state in the sequence.

Indistinguishability for singleton traces is the same

as low equivalence, i.e., s ∼ t iff lowvis(s) =
lowvis(t), because there is no stuttering to remove.

Note that if σ ∼ τ then σlast(σ) = X iff τlast(τ) = X.

Definition 5.2 (observed knowledge): Define K(σ)
by K(σ) = {s | ∃τ ∈ Traces(s) · σ ∼ τ}.

An observer, seeing the low part of σ, knows that

the initial state is one of the elements of K(σ) but is

ignorant of which it is. The condition τ ∈ Traces(s)
reflects a feature of the attacker model, namely that

the low observer knows the complete text of program

M and its semantics.

Proposition 5.3: Knowledge is monotonic:

K(σ t) ⊆ K(σ) for any σ and t such that

σ t ∈ TRACES . Here t may be either X or a

proper state.

7

Revelation. The connection between flowspecs and

traces rests on the following notion of revealed knowl-

edge, which is used to express a bound on the knowl-

edge that can be gained by observing a declassification

step. The bound is expressed in terms of a precondition

P&ϕ, using a special notion of knowledge, written

R(σ, P&ϕ, ι), which will be used only when σ is

a trace leading up to an execution of declass ι 〈B〉.
Informally, R(σ, P&ϕ, ι) represents the set of initial

states s from which there is a trace τ ∈ Traces(s)
with σ ∼ τ and moreover (σlast , τlast) |= P&ϕ. The

idea is that τ is also poised to do a declassification,

from a state that matches σlast in terms of the flowspec

precondition. But formalizing R in these exact terms

would be unwise, because it would admit the possibil-

ity that τ does not reflect the full run up to the point

of declassification, and subsequent high steps could

falsify P or the relation ϕ before the declassification.

Definition 5.4 (revealed knowledge, R): For state

predicate P , agreement formula ϕ, declass identifier

ι, and σ ∈ TRACES , define R(σ,P&ϕ, ι) to be the

set

{s | ∃S · S is a pre-run from s with σ ∼ trace(S)
and actc(Slast) is declass ι 〈B〉
and (σlast , state(Slast)) |= P&ϕ }

Because each declass has a unique identifier, ι deter-

mines the body B of declass ι 〈B〉. The condition

“S is a pre-run” reflects that the attacker knows the

program text.

A straightforward consequence of the definitions is

that R(σ,P&ϕ, ι) ⊆ K(σ) for any σ,P , ϕ, ι. Our

security property says that in a step that extends trace

σ to σ u , if there is a gain of knowledge, i.e., a strict

inclusion K(σ u) ⊂ K(σ), then K(σ u) is no smaller

than R(σ,P&ϕ, ι).

Definition 5.5 (CGR, conditioned gradual release):

The program M under consideration satisfies

conditioned gradual release for policy (Γ,Φ), iff the

following holds for all commands C ,D , traces σ, and

states s , t , u: For any pre-run that generates σ and

ends with 〈C , t 〉, if 〈C , t 〉 → 〈D , u 〉 then

1) if the active command in C is stop or an

assignment to some variable x with Γ(x) = L

then K(σ u) ⊇ K(σ)
2) if the active command in C is declass ι 〈x := e〉

then there is some (flow pre P&ϕ mod x) in

Φ such that (a) t |= P and

(b) R(σ,P&ϕ, ι) ⊆ K(σ u)

Note that conditions are only imposed on termination

steps, low assignments, and declassifications. In a

declassification step (item 2), u and t are identical

on all low variables except possibly x (by semantics).

Item 2(a) expresses that release only happens under

designated conditions. Item 2(b) captures the delimited

release constraint. (A minor variant, for which we miss

practical motivation, would also allow a declass step

under item 1.)

Owing to monotonicity of knowledge, the condition

in item 1 is equivalent to K(σ u) = K(σ). On the

other hand, the inclusion in item 2(b) bounds the

knowledge K(σ u) and is not an equality in general:

Whereas R(σ,P&ϕ, ι) is what would be known if all

information allowed by ϕ was revealed, K(σ u) is what

is known upon observing σ u .

Examples. For brevity, let us write

“declass ϕ 〈C 〉 A(x)” to abbreviate declass ι 〈C 〉
tied to an evident flowspec, flow pre true&ϕmod x .

Let variables l , l0, . . . be low and h, h0, . . . high.

The first example (from [4]) shows how knowledge

increases over time. The program satisfies CGR. (We

have worked out the other programs in [4, Sect. 2]

and our results conform to theirs).

declass A(h 6= 0) 〈l := (h 6= 0)〉 A(l);
if l then declass A(h1) 〈l1 := h1〉 A(l1)

The next example also satisfies CGR.

declass A(h ≥ 0) 〈l0 := (h ≥ 0)〉 A(l0);
declass A(h ≤ 0) 〈l1 := (h ≤ 0)〉 A(l1)

(4)

Next, we consider a program without declassification

but with looping. This program violates CGR but is

secure according to gradual release [4] which is said

to be termination-insensitive.

l := true;
if h then l := false else C

(5)

where C is while true do skip.

Upon observing termination, the attacker learns that

h is true, but this is already known initially according

to [4] in which divergent runs are discarded by fiat.

(See their Def. 2 and their k↓.)

Our enforcement régime disallows declass in high

contexts, e.g., this version of the wallet example.

if h ≥ k then h := h − k ;declass 〈l := l + k〉(6)

It satisfies CGR for the intended flowspec

flow pre A(h ≥ k) mod l

but it also satisfies CGR for flow pre true mod l —

recall the “fine points” in Sect. 2. An improved version

uses t : H as follows:

if h ≥ k then t := k else t := 0 fi;
declass 〈l := l + t〉; h := h − t

(7)

8

This satisfies CGR for flow pre A(h ≥ k) mod l

but does not satisfy it for the trivial policy,

flow pre true mod l , that we would like to read

as allowing nothing about h to be released.

The state predicate part of a flowspec precon-

dition is treated as an ordinary program asser-

tion but also affects the relational (agreement) part

of the specification, e.g., declass 〈l := l + h〉
satisfies flow pre h=0 &A(l) mod l but not

flow pre A(l) mod l .

Noninterference. One of the prudent principles [29]

is that the security property should reduce to nonin-

terference in the absence of declassifications. The pro-

gram M under consideration is called noninterferent

iff K(σ) = K(σ0) for all σ ∈ TRACES . That is,

knowledge after σ is the same as knowledge after the

singleton trace σ0 consisting of the initial state.

Lemma 5.6 (characterization of noninterference):

M is noninterferent iff the following holds for all

s , t , σ,C ′: If s ∼ t and σ ∈ Traces(s) then there is

some τ ∈ Traces(t) such that σ ∼ τ .

Proposition 5.7: If C has no declassifications, then

it is noninterferent iff it satisfies CGR.

6. Enforcement régime

This section formalizes the static security checks, for

a fixed main command M together with policy Γ,Φ.

One part of enforcement is checking validity of

flowtriples (using the semantics of formulas, see (3)).

Definition 6.1 (valid): Say {P&ϕ} C {ϕ′} is valid

iff for all states s , t , if (s , t) |= P&ϕ and 〈C , s 〉 →∗

〈 stop, s ′ 〉 and 〈C , t 〉 →∗ 〈 stop, t ′ 〉 where s ′, t ′

are non-X states, then (s ′, t ′) |= ϕ′.

Validity is defined in the sense of partial correct-

ness, but for our purposes we are only concerned

with flowtriples for assignments, which always ter-

minate. A provably sound logic for checking validity

of flowtriples, for the simple language here, is that

of Benton [8]. In fact our only triples are simple

assignments, for which self-composition provides au-

tomatic verification [34] (in fact it provides automatic

verification in the case of assignments of fresh objects,

or field updates, as well [26]).

Another part of enforcement is type checking. Fig-

ure 3 gives straightforward typing rules to enforce the

baseline policy Γ. These enforce the usual no-read-up

and no-write-down conditions [37] but also disallow

declassification under high branching conditions and

disallow assignments to high variables mentioned in

policies. We write Pvars for the set of x such that

Γ ` stop : L Γ ` skip : H

Γ ` e : λ λ ≤ Γ(x) x /∈ Pvars

Γ ` x := e : Γ(x)

Γ(x) = L

Γ ` declass
ι 〈x := e〉 : L

Γ ` C0 : λ0 Γ ` C1 : λ1

Γ ` C0;C1 : λ0 u λ1

Γ ` e : L Γ ` C : L

Γ ` while e do C : L

Γ ` C0 : λ0 Γ ` C1 : λ1 Γ ` e : λ λ ≤ λ0 u λ1

Γ ` if e then C0 else C1 : λ0 u λ1

Figure 3. Security typing rules; λ ranges over H, L.

Γ(x) = H and x occurs in the precondition of some

flowspec in Φ. (We could as well adopt the effect sys-

tem of [28] to prevent prior updates of high variables

mentioned in flowspecs, which would give the minor

satisfaction of allowing example (7). But we prefer the

more complete approach advocated under “fine points”

in Sect. 2.) For expressions, the notation Γ ` e : λ just

means the highest level of a variable in e is λ. The

rules define a judgement Γ ` C : λ that says command

C is secure and writes no variable of level below

λ. We must also prevent unbounded computations

with no observable steps (recall example (5)). We

choose a simple but restrictive way [36] for simplicity:

high loops are not allowed. Boudol [9] investigates

more sophisticated type systems for termination and

current program verification technology can automate

termination checking in many cases [14].

Definition 6.2 (statically secure): We say M is stat-

ically secure provided there exists some mapping,

fspecs , from declass identifiers to sets of flowspecs,

such that fspecs(ι) ⊆ Φ for all ι and moreover the

following three conditions hold:

1) (typechecking) Γ ` M : λ for some level λ.

2) (valid pre-assertion) For each declass ι 〈x := e〉
in M , suppose the elements of fspecs(ι) are

flow pre Pi&ϕi mod yi for i from 0 to

k . Then it is valid to assert P0 ∨ . . . ∨ Pk

immediately before declass ι 〈x := e〉 in M .

3) (relational correctness) For each declass ι 〈x :=
e〉 and each (flow pre Pi&ϕi mod yi) in

fspecs(ι), we have that yi is x and moreover

{Pi&ϕi} x := e {A(x)} is valid.

Here is a more precise statement of item 2. Let

PP = P0 ∨ . . . ∨ Pk . Let C[−] be the context in

which declass ι 〈x := e〉 occurs. That is, the main

9

program M has the form C[declass ι 〈x := e〉]. Then

C[assert PP ;declass ι 〈x := e〉] is a valid program

annotation in the sense of partial correctness.

In many examples, item 2 holds trivially, but in

general it may involve arbitrary assertions, e.g., iso-

lation of a data structure, the state of an authentication

system, etc. But any verification system or method that

applies to Floyd-Hoare partial-correctness assertions

may be used. For our main result, we simply assume

that valid pre-assertion and relational correctness are

checked soundly.

What we need about typing is the following.

Lemma 6.3 (typing): (a) If 〈C , s 〉 → 〈C ′, s ′ 〉
and C is typable then C ′ is typable, indeed, the assign-

ment of types to constituent commands is maintained.

(b) If the active command in C is low and is not a

declassification, and 〈C , s 〉 → 〈C ′, s ′ 〉, and t ∼ s ,

then there exists t ′ with 〈C , t 〉 → 〈C ′, t ′ 〉 and

t ′ ∼ s ′. (c) If the active command of C is high and

〈C , s 〉 → 〈C ′, s ′ 〉 then s ∼ s ′. (d) If Γ ` C : H then

C always terminates and every constituent command

of C is also typed high.

Type checking and assertion checking potentially

involve the whole program, but in both cases each

subprogram can be checked separately, using types or

specifications for other program units. The relational

correctness checks are modular in a stronger sense:

they apply only to declass commands.

7. Soundness

This section is devoted to proving the following.

Theorem 7.1: Suppose M is statically secure

(Def. 6.2). Then it has the conditioned gradual release

property (Def. 5.5).

To connect the static analysis with CGR we need a

simulation-style characterization of the situation where

an additional observed state does not increase knowl-

edge. The main definitions (Section 5) work at the level

of traces and low-observable distinctions on traces. But

to show soundness of the enforcement régime we need

a finer analysis in terms of pre-runs.

For traces σ, τ with generating pre-runs S and T ,

indistinguishability can be characterized using a notion

which resembles the instantiation of a simulation,

matching up the low parts of S and T .

First, a supporting definition. If the active command

of C is typed high then the L-continuation of C , writ-

ten Lcont(C), is the command D such that C = B ;D
where B : H and D : L. (The active command may be

all or part of B .) Here we allow that D may be empty.

Definition 7.2 (correspondence): Suppose S and T

are pre-runs and let dom(S) be the set of indices,

{0, . . . , last(S)}, of S . A correspondence from S to T

is a relation Q ⊆ dom(S) × dom(T) such that 0 Q 0
and for all i , j with i Q j the following hold:

1) (state agreement) state(Si) ∼ state(Tj)
2) (level agreement) actc(Si) : L iff actc(Tj) : L

3) (code agreement L) code(Si) = code(Tj) if

actc(Si) : L

4) (code agreement H) Lcont(code(Si)) =
Lcont(code(Tj)) if actc(Si) : H

5) (monotonicity) if i Q j , i < i ′, and i ′ Q j ′ then

j ≤ j ′; and symmetrically: if i Q j , j < j ′, and

i ′ Q j ′ then i ≤ i ′

6) (completeness) for every i ∈ dom(S) there is

some j with i Q j , and symmetrically

Lemma 7.3 (correspondence for ∼): Suppose the

main program M typechecks. If σ, τ are generated by

S ,T and there is a correspondence from S to T then

σ ∼ τ .

The converse is more difficult and holds less gen-

erally. Unlike the soundness Theorem, the correspon-

dence Lemma 7.5 below does not involve liveness and

the proof would go through for a type system that

allows high loops.

Definition 7.4 (trim traces): Define trim(σ) to be

the shortest prefix of σ such that trim(σ) ∼ σ. (In

other words, remove the longest suffix consisting only

of states from high assignments.) Say σ is trim if

trim(σ) = σ.

Note that σ ∼ τ iff trim(σ) ∼ trim(τ).
Lemma 7.5 (correspondence): Suppose the main

program M typechecks. Suppose σ and τ are trim and

σ ∼ τ . Let S (resp. T) be the minimal generating pre-

run for σ (resp. τ). Then there is a correspondence

from S to T .

The CGR definition (and R predicate) only ap-

pear to constrain the most recent declassification. But

the previous ones are taken into account: they affect

visible variables, so an assumption σ ∼ τ already

expresses that we are considering initial states that

agree on the released parts of the secrets. This is

evident in the proof of Lemma 7.5: though similar to

a proof of noninterference, it is really quite different:

it says an indistinguishable pair of traces looks like

a “noninterferent pair of traces”, rather than saying

every indistinguishable initial pair of states generates a

noninterferent pair of traces. At declassification steps,

indistinguishability is given rather than proved. On the

other hand, the proof of Theorem 7.1 has to construct

the extension of a noninterferent pair of traces.

To prove the Theorem, suppose that M is statically

secure, trace σ is generated by a pre-run S , and Slast =
〈C , t 〉. And suppose 〈C , t 〉 → 〈D , u 〉. Items 1

10

and 2 in Def. 5.5 give two cases to check; in any other

case there is nothing to prove. The proof for item 1 is

intricate so we do item 2 first.

Case 2: actc(〈C , t 〉) is declass ι 〈B〉, where

B is x := e. We must show there is some

(flow pre P&ϕ mod x) in fspecs(ι) such that

t |= P and K(σ u) ⊇ R(σ,P&ϕ, ι). By valid pre-

assertion (Def. 6.2(2) there is at least one flowspec

in fspecs(ι), and the disjunction of the state predi-

cates of the flowspecs for ι is a valid pre-assertion

for the statement, i.e., it holds in t . Choose any

(flow pre P&ϕ mod x) in fspecs(ι) such that

t |= P . Consider any r ∈ R(σ,P&ϕ, ι). We must

show r ∈ K(σ u). By definition of R there is

some pre-run T from r such that σ ∼ trace(T)
and (σlast , state(Tlast)) |= P&ϕ and actc(Tlast) is

declass ι 〈B〉. Because it is an assignment, B termi-

nates from state(Tlast) in some state, say q . By rela-

tional correctness for B with respect to this flowspec

(Def 6.2(3)), from (σlast , state(Tlast)) |= P&ϕ we

get that (u, q) |= A(x) and hence from σlast ∼ Tlast

and the fact that the modified variables agree we get

that u ∼ q . For brevity, let τ = trace(T). Because

declassifications get included in traces, τ q is a trace,

indeed τ q ∈ Traces(r). From above we have σ ∼ τ

and u ∼ q , whence σ u ∼ τ q . Thus r is in K(σ u).

Case 1: actc(〈C , t 〉) is an assignment to a low

variable or C = stop. Then CGR requires K(σ u) ⊇
K(σ). Consider any r ∈ K(σ), to show r ∈ K(σ u).

By r ∈ K(σ) there is some τ ∈ Traces(r); choose

one that is trim. Let ii be the unique integer such that

trim(σ) = σ[0..ii]. Note that σ[0..ii] ∼ σ ∼ τ . For

the given pre-run S that generates σ, let i be such that

S [0..i] is the minimal pre-run that generates σ[0..ii].
Let T be the minimal pre-run that generates τ . Now

we have a situation to which Lemma 7.5 is applicable;

it yields correspondence Q from S [0..i] to T . Let j :=
last(T).

To complete the proof, we need to extend τ with a

state that corresponds to u . This will be constructed

using a program working on variables i , j , ii ,Q ,T ,

initialized in the previous paragraph. Note that S is

given whereas T needs to be extended far enough

to reach a configuration that corresponds to 〈C , t 〉,
from which a step can be taken to match 〈C , t 〉 →
〈D , u 〉.

The main loop maintains the following invariants:

J0: 0 ≤ i ≤ last(S) and 0 ≤ ii ≤ last(σ) and

0 ≤ j = last(T)
J1: i Q j

J2: S [0..i] is a generating pre-run for σ[0..ii] and

T is a generating pre-run for τ

J3: Q is a correspondence from S [0..i] to T

Because σ u is a trace and is generated by S , the

steps from Si to Slast(S), i.e., to 〈C , t 〉, are not low

actions; the next low action is the step 〈C , t 〉 →
〈D , u 〉. The main loop extends T to match S ;

following the loop we match the step to 〈D , u 〉.

while i < last(S) do

• if actc(Si) : L (by the preceding, it is not an action)
then code(Tj) = code(Si) and we let A, p be given
by Tj → 〈A, p 〉 in
T ,Q , i , j := T 〈A, p 〉, Q∪{(i+1, j+1)}, i+1, j+1
Note that code(Sj) 6= stop since we are given
〈C , t 〉 → 〈D , u 〉, so the successor to Tj exists.

• else if actc(Si) : H and actc(Sj+1) : H then by J1 and
J3 we have Lcont(code(Si)) = Lcont(code(Tj)) and
being typed high the step from Si does not write low.
If actc(Si) is an assignment then do ii := ii+1, and
in any case do Q , i := Q ∪ {(i+1, j)}, i+1

• else if actc(Si) : H and actc(Sj+1) : L then we have to
extend T to catch up, i.e., do its next high steps. First
set A, p according to Tj → 〈A, p 〉 and set T :=
T 〈A, p 〉, following which we have last(T) = j+1.
Then do
while actc(Tj+1) : H do

if actc(Tj+1) is an assignment (necessarily high)
then τ := τ state(Tj+1) fi;

T ,Q , j := T 〈A, p 〉,Q ∪ {(i , j+1)}, j+1
where Tj → 〈A, p 〉 od;

Q , i , j := Q ∪ {(i+1, j+1)}, i+1, j+1
Following this code the invariants J0–J3 are re-
stored. This inner loop terminates because, by typing
Lemma 6.3(d), high code never diverges (see Sec-
tion 6).

The outer loop terminates because every iteration in-

creases i . Upon termination, i = last(S). Because the

step from 〈C , t 〉 assigns low or terminates, we have

actc(C) : L by typing. Since iQ j , the invariants yield

that Tj = 〈C , t ′ 〉 for some t ′ such that t ∼ t ′.

The next step is 〈C , t ′ 〉 → 〈D , u ′ 〉 for some

u ′ with u ∼ u ′ (because by typing Lemma 6.3 the

active command in C sends indistinguishable t , t ′ to

indistinguishable u, u ′). Hence σ u ∼ τ u ′ and thus

τ u ′ witnesses that r is in K(σ u).

8. Object-oriented programs

The formal results are given for a rudimentary

programming language but a key feature of both the

security property and the enforcement régime is that

they scale to richer languages. We sketch here the

extension to dynamically allocated mutable objects, as

found in Java-like languages such as Jif [24] in which

security labels are associated with object fields as in

our leading example (Sect. 2). Owing to the memory

safety provided by strong typing and the absence of

pointer arithmetic, it has been possible to develop

11

security type systems that provably enforce noninter-

ference despite subtleties such as low and high aliases

to objects with mutable fields and encompassing other

language features such as inheritance and dynamically

dispatched method calls [6], [33].

The relational Hoare logic of Amtoft et al [1] also

pertains to object-oriented programs. It can express

finer-grained policies in which a certain field may be

treated as high for objects in one region of the heap

while low in another. This presents something of a

mismatch when it comes to combining typing with

logic for declassification, but this can be overcome and

in fact an important benefit achieved: declassification

of an entire data structure in constant time and space.

Consider first an assignment l := h where l , h have

type Node, and class Node has low fields item : int

and nxt : Node. Following the assignment, the low

observer may see not only the value of l but also all

the items reached from l , which may have been previ-

ously unreachable. Thus naı̈ve use of our enforcement

régime would be unsound for declass 〈l := h〉 and

a flowspec precondition A(h). Following Amtoft et al

(but using our notation), a valid flowspec precondition

would look like R = h.nxt∗&A(h) ∧ A(R.nxt) ∧
A(R.item). The state predicate R = h.nxt∗ says that

R is the region containing all the nodes of the list. The

agreements say that in the two compared states, the nxt

and item fields agree (modulo a suitable renaming of

object addresses, since allocations may differ in two

program runs).

Because the underlying notion of low-

indistinguishability for heaps is the same in the

cited logic and type system, it is not difficult to adapt

CGR to the richer language. Object allocation is

treated as a form of assignment, and field update is

also treated as an observable action. The enforcement

régime can be carried over as well, but with an

added requirement on flowspecs that they cover the

reachable locations as illustrated above.

Declassifying a data structure. Suppose as a result of

a disaster relief plan we would like to release all patient

records together with their respective diagnoses, but

not the doctors’ notes. We use an alternate version of

PatientRecord given by:

class PatientRecord<alpha,beta> {

int id; boolean committed; int vsn;

String{alpha} diag;

String{beta} notes;

PatientRecord<alpha,beta>{L} next; }

Note that now the levels of diag and notes are type

parameters (level polymorphism like this is available in

Jif and similar security type systems [31], [33]). Patient

records are linked by the next field, which itself is low

—for clarity we have made that label explicit. (Recall

from Sect. 2 that the unmarked default is L.) We are

assuming that diag and notes contain secret values, so

a sensible declaration and (noninterferent) assignment

to obtain the list of records is

root := db.lookupAll();

where root: PatientRecord<H,H>{L}. To ob-

tain a list of records in which the diagnoses have

been declassified, it would be possible to clone the

list, iteratively performing a declassification like that

in Sect. 2. In fact, such cloning is done extensively in

Jif case studies [3], in order to avoid laundering attacks

whereby fields are updated with high info subsequent

to their declassification, via high aliases into the data

structure.

If in fact there are no exploitable aliases, cloning is

costly and unnecessary. We would like to release the

entire list of patient records by a single assignment:

newRoot := root;

where newRoot: PatientRecord<L, H>{L}.

This will be rejected by the typechecker owing to the

types of root versus newRoot . But it can be made a

declassification, subject to a flowspec like this:

flow pre ISOL(root) &
A(root) ∧A(root .next∗.diag)
mod newRoot , newRoot .next∗.diag

The agreement precondition says that what is released

is the diag field of all the records. The state predicate

ISOL(root) is intended to say that the records are

reachable only via root . This property is well studied in

the literature on ownership for heap encapsulation [12].

For present purposes, we need transferrable ownership,

which can be expressed and enforced by certain type

systems and program verifiers [7], [23].

The modifies clause reflects that giving type

PatientRecord<L, H>{L} to newRoot effec-

tively changes the type of all the records (owing to the

declared type of next). Thus the relational correctness

condition for static security, Def. 6.2(3), will specify

agreement on all the reachable diag fields —and this

will follow from the agreement precondition.

In summary, the extension of our enforcement

régime to declassification of data structures adds a

requirement on flowspecs, namely the isolation pre-

condition which must then be proved as a valid pre-

assertion.

12

9. Related work

Sabelfeld and Sands [29] systematically analyze

many recent proposals for declassification, noting

shortcomings and anomalies which motivate the “pru-

dent principles” we address in Sect. 10. Another no-

table work is by van der Meyden [35]; it improves

on Rushby’s influential analysis of declassification

policy that requires interfering flows to go via channels

labelled at some level intended to represent trusted

sanitization code [27]. Like ours, these works also

distinguish low from high events and purge the latter as

a way to remove timing leaks from consideration. But

we address finer-grained policies and also enforcement

for a concrete programming language.

Our work builds very directly on the gradual release

paper [4], more specifically on the semantic property

introduced in the first part of the paper. Our formal-

ization is quite different, in part because we correct

an evident weakness in the attacker model: by fiat,

their attacker observes no steps if the computation

is not going to terminate. (Of course for terminating

computations their low events include termination as

well as low writes.) Askarov and Sabelfeld [4] ex-

tend gradual release to programs using cryptographic

primitives; in particular, declassification is an atomic

action achieved by releasing a previously secret key

—the data of interest having already been released

but encrypted under that key. In Sect. 2 of [4] there

are brief comments on combining gradual release with

delimited release [28] but no hints as to how this would

be done. Gradual release is proved to be enforced

by a standard type system including the constraint

that declass commands are low [4]. This is in accord

with our result, since we use essentially the same

type system and one can take every flowspec to have

agreements for all secrets read by the declass.

Any logic or verification system can be used to

discharge the “valid pre-assertion” proof obligation,

Def. 6.2(2), —e.g., tools like ESC/Java and Spec# [7]

which can reason about pointer isolation (see Sect. 8).

To verify relational correctness, Def. 6.2(3), Ben-

ton’s [8] relational logic suffices for the simple imper-

ative language of Sect. 3 and is implementable by self-

composition [26]. Motivated by the less conservative

analysis provided by logics, as opposed to usual type

systems, Amtoft et al [1] develop a relational logic

for object-based programs, using regions to express

agreements (there called “independences”) for anony-

mous objects. Besides the ability to prevent illegal

flows while allowing standard programming idioms

including low/high aliases to objects with both low and

high fields, the other benefit is the ability to express

fine-grained flow policies as we have proposed here.

Our use of state predicates in release policy is

inspired by Chong and Myers [11], who formulate the

idea in an elegant way, relative to an abstract notion

of “conditions” and means for verifying them. Policy

is expressed by fancy types that label variables and

designate a series of “conditions” following which the

secret may be released. They do not give examples

where it is a temporal series of events, though the

security property caters for that. Our proposal is more

definite (and so less general) in tying conditions to

state predicates, which can express past events using

specification-only history variables (indeed, relevant

history is often already available in the program state).

Their security property is rather weak, as pointed

out in [29]: the program is noninterferent until the

conditions have been true, after which there is no

constraint on what might leak. Another proposal for

state-dependent labels [10] conditions the level on a

boolean ghost variable subject to updates in program

annotations which thereby express where in the code

declassification is allowed. This is subsumed by our

proposal.

As discussed in more detail elsewhere [4], [21],

[29], several interesting proposals treat “where” declas-

sification policies using notions of bisimulation that

“reset” the program state at each release, in a way

that for sequential code does not correspond to feasible

attacks. Pre-assertions can sensibly be combined with

any means to specify where in the code declassification

is permitted, perhaps even achieving an end-to-end

property like CGR.

Askarov and Sabelfeld [5] give a combination of

“what” and “where” policies, dubbed localized de-

limited release, different from ours. The idea is to

instrument the semantics to track expressions that have

been declassified. The security property is defined as a

kind of bisimulation where indistinguishability is with

respect to the expressions that have been declassified

“up to now”. The property is termination insensitive

and differs from gradual release in that, although

release cannot happen unless a declass command ex-

ecutes, the actual change in knowledge may come

later, as illustrated by the example h′ := h; h :=
0; l := declassify(h); h := h′; l := h, where nothing is

learned at the declass step, but h is learned in the last

step. Allowing such tardy release might be difficult to

reconcile with “when” policies like the accurate audit

log in our Sect. 2. Localized delimited release is said

to adhere to the prudent principles and is shown to be

enforced by the type system for delimited release [28],

with the additional restriction against declassification

under high branch conditions. It could be interesting

13

to adapt the work to use more semantic reasoning

about equivalence of expressions, and to incorporate

assertions in policies. It does not seem obvious how to

adapt the instrumented semantics to features of richer

languages, such as heap objects.

10. Discussion

We extend the gradual release security property [4],

which uses knowledge to describe information flow,

with state conditions and agreements. Conditioned

gradual release is able to capture conditions under

which secrets are released, the extent to which they are

released, and the absence of flows except by explicit

downgrading actions. Our policy specifications make

simple use of static security labels and program as-

sertions so that information policy can be tied directly

with application requirements and access mechanisms.

Our enforcement régime combines simple type-based

rules with program verification. To prove soundness,

we devised an apparently novel technique: Owing to

declassification it does not seem possible to define a

notion of simulation (or unwinding conditions) of the

usual sort; in some sense our proof constructs a simula-

tion instance for a given pair of runs. Working out the

details led to revision of several obvious but wrong

definitions. We believe that our proofs address the

main complications and that the technique will extend

to the more complicated notion of low-equivalence

used for heaps in both [1] and [33] for Jif-style level-

polymorphic typing. Heap data structures are essential

for many applications.

Zdancewic [38] poses three “challenges for

information-flow security”. The first is integration

with existing infrastructure. Our results suggest

the use of typechecking (for simple security-

labeled types) together with modest use of program

specification for subprograms that must be exempt

because of declassification or because typechecking

is too conservative. Our approach fits well with

access control. For example, the currently-enabled

permissions in Java stack inspection can be tracked in

a ghost variable [30] so flowspecs can express what

is released given various privileges (cf. [6]). (Perhaps

schematic flowspecs as in Sect. 4.) Zdancewic’s

second challenge is to “escape the confines of pure

noninterference”; he mentions both declassification

and conservativity of flow-insensitive static analysis.

The third challenge is to manage complex policies.

We conjecture that such policies should mostly be

expressed using ordinary program specifications

including state-based descriptions of sophisticated

access controls.

Sabelfeld and Sands [29] suggest informal princi-

ples, with which our proposal seems to be in accord.

Semantic consistency says that replacement of a “de-

class free” subprogram by a semantically equivalent

one does not affect security. For an attacker model

in which intermediate states are visible, the relevant

notion of equivalence is trace equivalence; for this,

our proposal is semantically consistent. Of course

such fine-grained observations disallow many standard

compiler optimizations, even skip for l := l , so

one must take the principle, and theoretical models

like ours, with a grain of salt. The principle of con-

servativity amounts to our Proposition 5.7. This is

problematic for [11] because their notion of security

is not purely semantic. The principle of monotonicity

of release says that adding a declassification cannot

make a secure program insecure. This presupposes

a treatment of declassification in which there is an

explicit construct that can be “added” to a program.

Unlike Jif and similar notations, our declass construct

is distinct from policy specifications; if we wrap l := l

in a declass, we had better also add a baseline flowspec,

flow pre A(l) mod l , or CGR is violated. The

principle of non-occlusion says that adding declassi-

fication cannot make an insecure program secure. Our

proposal satisfies the principle, since the semantics

of an assignment is not altered by marking it as a

declass. A natural extension of our work is to add

atomic blocks to the language (c.f. [16]) which would

embody a more realistic attacker model for many

purposes. Declassification of atomic blocks would not

risk occlusion.

Acknowledgements. The exposition in this version

of the paper is improved thanks to feedback from

Aslan Askarov, Paul Karger, Andrei Sabelfeld, and

anonymous referees. We also thank the organizers

and participants of the Dagstuhl Seminar on Mobility,

Ubiquity and Security, held in February 2007.

References

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic
for information flow in object-oriented programs. In
POPL, pages 91–102, 2006.

[2] T. Amtoft and A. Banerjee. Verification condition
generation for conditional information flow. In FMSE,
2007.

[3] A. Askarov and A. Sabelfeld. Secure implementation
of cryptographic protocols: A case study of mutual
distrust. In ESORICS, pages 197–221, 2005.

14

[4] A. Askarov and A. Sabelfeld. Gradual release: Unifying
declassification, encryption and key release policies.
In IEEE Symp. Security and Privacy, pages 207–221,
2007.

[5] A. Askarov and A. Sabelfeld. Localized delimited
release: combining the what and where dimensions of
information release. In PLAS, pages 53–60, 2007.

[6] A. Banerjee and D. A. Naumann. Stack-based access
control for secure information flow. Journal of Func-
tional Programming, 15(2):131–177, 2005. Special
issue on Language Based Security.

[7] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: an overview. In CASSIS, 2004.

[8] N. Benton. Simple relational correctness proofs for
static analyses and program transformations. In POPL,
pages 14–25, 2004.

[9] G. Boudol. On typing information flow. In ICTAC,
2005.

[10] N. Broberg and D. Sands. Flow locks. In ESOP, pages
180–196, 2006.

[11] S. Chong and A. C. Myers. Security policies for
downgrading. In ACM CCS, pages 198–209, 2004.

[12] D. Clarke and S. Drossopoulou. Ownership, encapsula-
tion and the disjointness of type and effect. In OOPSLA,
pages 292–310, 2002.

[13] E. S. Cohen. Information transmission in sequential
programs. In R. DeMillo, D. Dobkin, A. Jones, and
R. Lipton, editors, Foundations of Secure Computation,
1978.

[14] B. Cook, A. Podelski, and A. Rybalchenko. Termina-
tion proofs for systems code. In PLDI, 2006.

[15] D. E. Denning. Cryptography and Data Security. 1982.

[16] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In PLDI, 2003.

[17] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted
declassification: high-level policy for a security-typed
language. In PLAS, pages 65–74, 2006.

[18] K. Hristova, T. Rothamel, Y. A. Liu, and S. D. Stoller.
Efficient type inference for secure information flow. In
PLAS, pages 85–94, 2006.

[19] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and
D. R. Cok. How the design of JML accommodates both
runtime assertion checking and formal verification. In
FMCO. 2003.

[20] P. Li and S. Zdancewic. Downgrading policies and
relaxed noninterference. In POPL, 2005.

[21] H. Mantel and A. Reinhard. Controlling the what and
where of declassification in language-based security. In
ESOP, pages 141–156, 2007.

[22] P. Müller. Modular Specification and Verification of
Object-Oriented Programs, volume 2262 of LNCS.
Springer-Verlag, 2002.

[23] P. Müller and A. Rudich. Ownership transfer in
universe types. In OOPSLA, pages 461–478, 2007.

[24] A. C. Myers. JFlow: Practical mostly-static information
flow control. In POPL, pages 228–241, 1999.

[25] D. A. Naumann. Verifying a secure information flow
analyzer. In TPHOLS, pages 211–226, 2005.

[26] D. A. Naumann. From coupling relations to mated
invariants for secure information flow and data abstrac-
tion. In ESORICS, 2006.

[27] J. Rushby. Noninterference, transitivity, and channel-
control security policies. Technical report, SRI, Dec.
1992.

[28] A. Sabelfeld and A. C. Myers. A model for delimited
information release. In ISSS, 2004.

[29] A. Sabelfeld and D. Sands. Dimensions and principles
of declassification. Journal of Computer Security, 2007.

[30] J. Smans, B. Jacobs, and F. Piessens. Static verification
of code access security policy compliance of .NET
applications. Journal of Object Technology, 2006.

[31] S. F. Smith and M. Thober. Improving usability of
information flow security in java. In PLAS, pages 11–
20, 2007.

[32] M. Strecker. Formal analysis of an information flow
type system for MicroJava (extended version). Techni-
cal report, Technische Universität München, July 2003.

[33] Q. Sun, A. Banerjee, and D. A. Naumann. Modular
and constraint-based information flow inference for an
object-oriented language. In SAS, 2004.

[34] T. Terauchi and A. Aiken. Secure information flow as
a safety problem. In SAS, pages 352–367, 2005.

[35] R. van der Meyden. What, indeed, is intransitive
noninterference? In ESORICS, pages 235–250, 2007.

[36] D. Volpano and G. Smith. Eliminating covert flows with
minimum typings. In CSFW, pages 156–169, 1997.

[37] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 1996.

[38] S. Zdancewic. Challenges for information-flow secu-
rity. In PLID, 2004.

15

