
5

Expressive Description Logics
Diego Calvanese

Giuseppe De Giacomo

Abstract

This chapter covers extensions of the basic description logics introduced in Chap-
ter 2 by very expressive constructs that require advanced reasoning techniques. In
particular, we study reasoning in description logics that include general inclusion ax-
ioms, inverse roles, number-restrictions, reflexive-transitive closure of roles, fixpoint
constructs for recursive definitions, and relations of arbitrary arity. The chapter will
also address reasoning w.r.t. knowledge bases including both a TBox and an ABox,
and discuss more general ways to treat objects. Since the logics considered in the
chapter lack the finite model property, finite model reasoning is of interest and will
also be discussed. Finally, we mention several extensions to description logics that
lead to undecidability, confirming that the expressive description logics considered
in this chapter are close to the boundary between decidability and undecidability.

5.1 Introduction

Description logics have been introduced with the goal of providing a formal re-
construction of frame systems and semantic networks. Initially, the research has
concentrated on subsumption of concept expressions. However, for certain applica-
tions, it turns out that it is necessary to represent knowledge by means of inclusion
axioms without limitation on cycles in the TBox. Therefore, recently there has
been a strong interest in the problem of reasoning over knowledge bases of a general
form. See Chapters 2, 3, and 4 for more details.

When reasoning over general knowledge bases, it is not possible to gain tractabil-
ity by limiting the expressive power of the description logic, because the power of
arbitrary inclusion axioms in the TBox alone leads to high complexity in the infer-
ence mechanisms. Indeed, logical implication is ExpTime-hard even for the very
simple language AL (see Chapter 3). This has lead to investigating very powerful
languages for expressing concepts and roles, for which the property of interest is

184

Expressive Description Logics 185

no longer tractability of reasoning, but rather decidability. Such logics, called here
expressive description logics, have the following characteristics:

(i) The language used for building concepts and roles comprises all classical con-
cept forming constructs, plus several role forming constructs such as inverse
roles, and reflexive-transitive closure.

(ii) No restriction is posed on the axioms in the TBox.

The goal of this chapter is to provide an overview on the results and techniques
for reasoning in expressive description logics. The chapter is organized as follows.
In Section 5.2, we outline the correspondence between expressive description logics
and Propositional Dynamic Logics, which has given the basic tools to study reason-
ing in expressive description logics. In Section 5.3, we exploit automata-theoretic
techniques developed for variants of Propositional Dynamic Logics to address rea-
soning in expressive description logics with functionality restrictions on roles. In
Section 5.4 we illustrate the basic technique of reification for reasoning with expres-
sive variants of number restrictions. In Section 5.5, we show how to reason with
knowledge bases composed of a TBox and an ABox, and discuss extensions to deal
with names (one-of construct). In Section 5.6, we introduce description logics with
explicit fixpoint constructs, that are used to express in a natural way inductively
and coinductively defined concepts. In Section 5.7, we study description logics that
include relations of arbitrary arity, which overcome the limitations of traditional
description logics of modeling only binary links between objects. This extension
is particularly relevant for the application of description logics to databases. In
Section 5.8, the problem of finite model reasoning in description logics is addressed.
Indeed, for expressive description logics, reasoning w.r.t. finite models differs from
reasoning w.r.t. unrestricted models, and requires specific methods. Finally, in Sec-
tion 5.9, we discuss several extensions to description logics that lead in general to
undecidability of the basic reasoning tasks. This shows that the expressive descrip-
tion logics considered in this chapter are close to the boundary to undecidability,
and are carefully designed in order to retain decidability.

5.2 Correspondence between Description Logics and Propositional
Dynamic Logics

In this section, we focus on expressive description logics that, besides the standard
ALC constructs, include regular expression over roles and possibly inverse roles
[Baader, 1991; Schild, 1991]. It turns out that such description logics correspond
directly to Propositional Dynamic Logics, which are modal logics used to express
properties of programs. We first introduce syntax and semantics of the description

186 D. Calvanese, G. De Giacomo

logics we consider, then introduce Propositional Dynamic Logics, and finally discuss
the correspondence between the two formalisms.

5.2.1 Description Logics

We consider the description logic ALCIreg , in which concepts and roles are formed
according to the following syntax:

C, C ′ −→ A | ¬C | C u C ′ | C t C ′ | ∀R.C | ∃R.C

R, R′ −→ P | R tR′ | R ◦R′ | R∗ | id(C) | R−

where A and P denote respectively atomic concepts and atomic roles, and C and
R denote respectively arbitrary concepts and roles.

In addition to the usual concept forming constructs, ALCIreg provides constructs
to form regular expressions over roles. Such constructs include role union, role com-
position, reflexive-transitive closure, and role identity. Their meaning is straight-
forward, except for role identity id(C) which, given a concept C, allows one to
build a role which connects each instance of C to itself. As we shall see in the next
section, there is a tight correspondence between these constructs and the operators
on programs in Propositional Dynamic Logics. The presence in the language of the
constructs for regular expressions is specified by the subscript “reg” in the name.
ALCIreg includes also the inverse role construct, which allows one to denote the

inverse of a given relation. One can, for example, state with ∃child−.Doctor that
someone has a parent who is a doctor, by making use of the inverse of role child.
It is worth noticing that, in a language without inverse of roles, in order to express
such a constraint one must use two distinct roles (e.g., child and parent) that cannot
be put in the proper relation to each other. We use the letter I in the name to
specify the presence of inverse roles in a description logic; by dropping inverse roles
from ALCreg , we obtain the description logic ALCreg .

From the semantic point of view, given an interpretation I, concepts are in-
terpreted as subsets of the domain ∆I , and roles as binary relations over ∆I , as
follows1:

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C u C ′)I = CI ∩ C ′I

(C1 t C2)I = CI
1 ∪ CI

2

(∀R.C)I = {o ∈ ∆I | ∀o′. (o, o′) ∈ RI ⊃ o′ ∈ CI}
1 We use R∗ to denote the reflexive-transitive closure of the binary relation R, and R1 ◦R2 to denote the

chaining of the binary relations R1 and R2.

Expressive Description Logics 187

(∃R.C)I = {o ∈ ∆I | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI}

P I ⊆ ∆I ×∆I

(R tR′)I = RI ∪R′I

(R ◦R′)I = RI ◦R′I

(R∗)I = (RI)∗

id(C)I = {(o, o) ∈ ∆I ×∆I | o ∈ CI}
(R−)I = {(o, o′) ∈ ∆I ×∆I | (o′, o) ∈ RI}

We consider the most general form of TBoxes constituted by general inclusion
axioms of the form C v C ′, without any restriction on cycles. We use C ≡ C ′ as
an abbreviation for the pair of axioms C v C ′ and C ′ v C. We adopt the usual
descriptive semantics for TBoxes (cf. Chapter 2).

Example 5.1 The following ALCIreg TBox Tfile models a file-system constituted
by file-system elements (FSelem), each of which is either a Directory or a File. Each
FSelem has a name, a Directory may have children while a File may not, and Root is
a special directory which has no parent. The parent relationship is modeled through
the inverse of role child.

FSelem v ∃name.String

FSelem ≡ Directory t File

Directory v ¬File

Directory v ∀child.FSelem

File v ∀child.⊥
Root v Directory

Root v ∀child−.⊥

The axioms in Tfile imply that in a model every object connected by a chain of
role child to an instance of Root is an instance of FSelem. Formally, Tfile |=
∃(child−)∗.Root v FSelem. To verify that the implication holds, suppose that there
exists a model in which an instance o of ∃(child−)∗.Root is not an instance of FSe-
lem. Then, reasoning by induction on the length of the chain from the instance of
Root to o, one can derive a contradiction. Observe that induction is required, and
hence such reasoning is not first-order.

In the following, when convenient, we assume, without loss of generality, that t
and ∀R.C are expressed by means of ¬, u, and ∃R.C. We also assume that the
inverse operator is applied to atomic roles only. This can be done again without

188 D. Calvanese, G. De Giacomo

loss of generality, since the following equivalences hold: (R1;R2)− = R−
1 ◦ R−

2 ,
(R− 1 tR2)− = R−

1 tR−
2 , (R∗)− = (R−)∗, and (id(C))− = id(C).

5.2.2 Propositional Dynamic Logics

Propositional Dynamic Logics (PDLs) are modal logics specifically developed for
reasoning about computer programs [Fischer and Ladner, 1979; Kozen and Tiuryn,
1990; Harel et al., 2000]. In this section, we provide a brief overview of PDLs, and
illustrate the correspondence between description logics and PDLs.

Syntactically, a PDL is constituted by expressions of two sorts: . programs and
formulae. Programs and formulae are built by starting from atomic programs and
propositional letters, and applying suitable operators. We denote propositional let-
ters with A, arbitrary formulae with φ, atomic programs with P , and arbitrary
programs with r, all possibly with subscripts. We focus on converse-pdl [Fischer
and Ladner, 1979] which, as it turns out, corresponds to ALCIreg . The abstract
syntax of converse-pdl is as follows:

φ, φ′ −→ > | ⊥ | A | φ ∧ φ′ | φ ∨ φ′ | ¬φ | 〈r〉φ | [r]φ

r, r′ −→ P | r ∪ r′ | r; r′ | r∗ | φ? | r−

The basic Propositional Dynamic Logic pdl [Fischer and Ladner, 1979] is obtained
from converse-pdl by dropping converse programs r−.

The semantics of PDLs is based on the notion of (Kripke) structure, defined as
a triple M = (S, {RP },Π), where S denotes a non-empty set of states, {RP } is a
family of binary relations over S, each of which denotes the state transitions caused
by an atomic program P , and Π is a mapping from S to propositional letters such
that Π(s) determines the letters that are true in state s. The basic semantical
relation is “a formula φ holds at a state s of a structure M”, written M, s |= φ,
and is defined by induction on the formation of φ:

M, s |= A iff A ∈ Π(s)
M, s |= > always
M, s |= ⊥ never
M, s |= φ ∧ φ′ iff M, s |= φ and M, s |= φ′

M, s |= φ ∨ φ′ iff M, s |= φ or M, s |= φ′

M, s |= ¬φ iff M, s 6|= φ
M, s |= 〈r〉φ iff there is s′ such that (s, s′) ∈ Rr and M, s′ |= φ
M, s |= [r]φ iff for all s′, (s, s′) ∈ Rr implies M, s′ |= φ

where the family {RP } is systematically extended so as to include, for every program

Expressive Description Logics 189

r, the corresponding relation Rr defined by induction on the formation of r:

RP ⊆ S × S
Rr∪r′ = Rr ∪Rr′

Rr;r′ = Rr ◦ Rr′

Rr∗ = (Rr)∗

Rφ? = {(s, s) ∈ S × S | M, s |= φ}
Rr− = {(s1, s2) ∈ S × S | (s2, s1) ∈ Rr}.

If, for each atomic program P , the transition relationRP is required to be a function
that assigns to each state a unique successor state, then we are dealing with the
deterministic variants of PDLs, namely dpdl and converse-dpdl [Ben-Ari et al.,
1982; Vardi and Wolper, 1986].

It is important to understand, given a formula φ, which are the formulae that
play some role in establishing the truth-value of φ. In simpler modal logics, these
formulae are simply all the subformulae of φ, but due to the presence of reflexive-
transitive closure this is not the case for PDLs. Such a set of formula is given by
the Fischer-Ladner closure of φ [Fischer and Ladner, 1979].

To be concrete we now illustrate the Fischer-Ladner closure for converse-pdl.
However, the notion of Fischer-Ladner closure can be easily extended to other PDLs.
Let us assume, without loss of generality, that ∨ and [·] are expressed by means
of ¬, ∧, and 〈·〉. We also assume that the converse operator is applied to atomic
programs only. This can again be done without loss of generality, since the following
equivalences hold: (r ∪ r′)− = r− ∪ r′−, (r; r′)− = r′−; r−, (r∗)− = (r−)∗, and
(φ?)− = φ?.

The Fischer-Ladner closure of a converse-pdl formula ψ, denoted CL(ψ), is the
least set F such that ψ ∈ F and such that:

if φ ∈ F then ¬φ ∈ F (if φ is not of the form ¬φ′)
if ¬φ ∈ F then φ ∈ F
if φ ∧ φ′ ∈ F then φ, φ′ ∈ F
if 〈r〉φ ∈ F then φ ∈ F
if 〈r ∪ r′〉φ ∈ F then 〈r〉φ, 〈r′〉φ ∈ F
if 〈r; r′〉φ ∈ F then 〈r〉〈r′〉φ ∈ F
if 〈r∗〉φ ∈ F then 〈r〉〈r∗〉φ ∈ F
if 〈φ′?〉φ ∈ F then φ′ ∈ F.

Note that CL(ψ) includes all the subformulae of ψ, but also formulae of the form
〈r〉〈r∗〉φ derived from 〈r∗〉φ, which are in fact bigger than the formula they derive
from. On the other hand, both the number and the size of the formulae in CL(ψ)
are linearly bounded by the size of ψ [Fischer and Ladner, 1979], exactly as the set
of subformulae. Note also that, by definition, if φ ∈ CL(ψ), then CL(φ) ⊆ CL(ψ).

190 D. Calvanese, G. De Giacomo

A structure M = (S, {RP }, Π) is called a model of a formula φ if there exists a
state s ∈ S such that M, s |= φ. A formula φ is satisfiable if there exists a model
of φ, otherwise the formula is unsatisfiable. A formula φ is valid in structure M
if for all s ∈ S, M, s |= φ. We call axioms formulae that are used to select the
interpretations of interest. Formally, a structure M is a model of an axiom φ, if
φ is valid in M. A structure M is a model of a finite set of axioms Γ if M is a
model of all axioms in Γ. An axiom is satisfiable if it has a model and a finite set of
axioms is satisfiable if it has a model. We say that a finite set Γ of axioms logically
implies a formula φ, written Γ |= φ, if φ is valid in every model of Γ.

It is easy to see that satisfiability of a formula φ as well as satisfiability of a finite
set of axioms Γ can be reformulated by means of logical implication, as ∅ 6|= ¬φ and
Γ 6|= ⊥ respectively.

Interestingly, logical implication can, in turn, be reformulated in terms of satisfi-
ability, by making use of the following theorem (cf. [Kozen and Tiuryn, 1990]).

Theorem 5.2 (Internalization of axioms) Let Γ be a finite set of converse-pdl
axioms, and φ a converse-pdl formula. Then Γ |= φ if and only if the formula

¬φ ∧ [(P1 ∪ · · · ∪ Pm ∪ P−
1 ∪ · · · ∪ P−

m)∗]Γ′

is unsatisfiable, where P1, . . . , Pm are all atomic programs occurring in Γ∪{φ} and
Γ′ is the conjunction of all axioms in Γ.

Such a result exploits the power of program constructs (union, reflexive-transitive
closure) and the connected model property (i.e., if a formula has a model, it has a
model which is connected) of PDLs in order to represent axioms. The connected
model property is typical of modal logics and it is enjoyed by all PDLs. As a
consequence, a result analogous to Theorem 5.2 holds for virtually all PDLs.

Reasoning in PDLs has been thoroughly studied from the computational point of
view, and the results for the PDLs considered here are summarized in the following
theorem [Fischer and Ladner, 1979; Pratt, 1979; Ben-Ari et al., 1982; Vardi and
Wolper, 1986]:

Theorem 5.3 Satisfiability in pdl is ExpTime-hard. Satisfiability in pdl, in
converse-pdl, and in converse-dpdl can be decided in deterministic exponential
time.

Expressive Description Logics 191

5.2.3 The correspondence

The correspondence between description logics and PDLs was first published by
Schild [1991].1 In the work by Schild, it was shown that ALCIreg can be consid-
ered a notational variant of converse-pdl. This observation allowed for exploiting
the results on converse-pdl for instantly closing long standing issues regarding the
decidability and complexity of both satisfiability and logical implication in ALCreg

and ALCIreg .2 The paper was very influential for the research in expressive de-
scription logics in the following decade, since thanks to the correspondence between
PDLs and description logics, first results but especially formal techniques and in-
sights could be shared by the two communities. The correspondence between PDLs
and description logics has been extensively used to study reasoning methods for
expressive description logics. It has also lead to a number of interesting extensions
of PDLs in terms of those constructs that are typical of description logics and have
never been considered in PDLs. In particular, there is a tight relation between
qualified number restrictions and graded modalities in modal logics [Van der Hoek,
1992; Van der Hoek and de Rijke, 1995; Fattorosi-Barnaba and De Caro, 1985;
Fine, 1972].

The correspondence is based on the similarity between the interpretation struc-
tures of the two logics: at the extensional level, individuals (members of ∆I) in
description logics correspond to states in PDLs, whereas links between two individ-
uals correspond to state transitions. At the intensional level, concepts correspond
to propositions, and roles correspond to programs. Formally, the correspondence
is realized through a one-to-one and onto mapping τ from ALCIreg concepts to
converse-pdl formulae, and from ALCIreg roles to converse-pdl programs. The
mapping τ is defined inductively as follows:

τ(A) = A τ(P) = P
τ(¬C) = ¬τ(C) τ(R−) = τ(R)−

τ(C u C ′) = τ(C) ∧ τ(C ′) τ(R tR′) = τ(R) ∪ τ(R′)
τ(C t C ′) = τ(C) ∨ τ(C ′) τ(R ◦R′) = τ(R); τ(R′)
τ(∀R.C) = [τ(R)]τ(C) τ(R∗) = τ(R)∗

τ(∃R.C) = 〈τ(R)〉τ(C) τ(id(C)) = τ(C)?

Axioms in description logics’ TBoxes correspond in the obvious way to axioms in
PDLs. Moreover all forms of reasoning (satisfiability, logical implication, etc.) have
their natural counterpart.

One of the most important contributions of the correspondence is obtained by
1 In fact, the correspondence was first noticed by Levesque and Rosenschein at the beginning of the ’80s,

but never published. In those days Levesque just used it in seminars to show intractability of certain
description logics.

2 In fact, the decidability of ALCreg without the id(C) construct was independently established by
Baader [1991].

192 D. Calvanese, G. De Giacomo

rephrasing Theorem 5.2 in terms of description logics. It says that every TBox can
be “internalized” into a single concept, i.e., it is possible to build a concept that
expresses all the axioms of the TBox. In doing so we rely on the ability to build a
“universal” role, i.e., a role linking all individuals in a (connected) model. Indeed,
a universal role can be expressed by using regular expressions over roles, and in
particular the union of roles and the reflexive-transitive closure. The possibility
of internalizing the TBox when dealing with expressive description logics tells us
that for such description logics reasoning with TBoxes, i.e., logical implication, is
no harder that reasoning with a single concept.

Theorem 5.4 Concept satisfiability and logical implication in ALCreg are
ExpTime-hard. Concept satisfiability and logical implication in ALCreg and
ALCIreg can be decided in deterministic exponential time.

Observe that for description logics that do not allow for expressing a universal
role, there is a sharp difference between reasoning techniques used in the presence
of TBoxes, and techniques used to reason on concept expressions. The profound
difference is reflected by the computational properties of the associated decision
problems. For example, the logic AL admits simple structural algorithms for de-
ciding reasoning tasks not involving axioms, and these algorithms are sound and
complete and work in polynomial time. However, if general inclusion axioms are
considered, then reasoning becomes ExpTime-complete (cf. Chapter 3), and the de-
cision procedures that have been developed include suitable termination strategies
[Buchheit et al., 1993a]. Similarly, for the more expressive logic ALC, reasoning
tasks not involving a TBox are PSpace-complete [Schmidt-Schauß and Smolka,
1991], while those that do involve it are ExpTime-complete.

5.3 Functional restrictions

We have seen that the logics ALCreg and ALCIreg correspond to standard pdl and
converse-pdl respectively, which are both well studied. In this section we show
how the correspondence can be used to deal also with constructs that are typical of
description logics, namely functional restrictions, by exploiting techniques developed
for reasoning in PDLs. In particular, we will adopt automata-based techniques,
which have been very successful in studying reasoning for expressive variants of
PDL and characterizing their complexity.

Functional restrictions are the simplest form of number restrictions considered
in description logics, and allow for specifying local functionality of roles, i.e., that
instances of certain concepts have unique role-fillers for a given role. By adding
functional restrictions on atomic roles and their inverse to ALCIreg , we obtain
the description logic ALCFIreg . The PDL corresponding to ALCFIreg is a PDL

Expressive Description Logics 193

that extends converse-dpdl [Vardi and Wolper, 1986] with determinism of both
atomic programs and their inverse, and such that determinism is no longer a global
property, but one that can be imposed locally.

Formally, ALCFIreg is obtained from ALCIreg by adding functional restrictions
of the form 6 1 Q, where Q is a basic role, i.e., either an atomic role or the inverse
of an atomic role. Such a functional restriction is interpreted as follows:

(6 1Q)I = {o ∈ ∆I | |{o′ ∈ ∆I | (o, o′) ∈ QI}| ≤ 1}

We show that reasoning in ALCFIreg is in ExpTime, and, since reasoning in
ALCreg is already ExpTime-hard, is in fact ExpTime-complete. Without loss
of generality we concentrate on concept satisfiability. We exploit the fact that
ALCFIreg has the tree model property, which states that if a ALCFIreg concept
C is satisfiable then it is satisfied in an interpretation which has the structure of a
(possibly infinite) tree with bounded branching degree (see later). This allows us
to make use of techniques based on automata on infinite trees. In particular, we
make use of two-way alternating automata on infinite trees (2ATAs) introduced by
Vardi [1998]. 2ATAs were used by Vardi [1998] to derive a decision procedure for
modal µ-calculus with backward modalities. We first introduce 2ATAs and then
show how they can be used to reason in ALCFIreg .

5.3.1 Automata on infinite trees

Infinite trees are represented as prefix closed (infinite) sets of words over N (the set
of positive natural numbers). Formally, an infinite tree is a set of words T ⊆ N∗,
such that if x·c ∈ T , where x ∈ N∗ and c ∈ N, then also x ∈ T . The elements of
T are called nodes, the empty word ε is the root of T , and for every x ∈ T , the
nodes x·c, with c ∈ N, are the successors of x. By convention we take x·0 = x, and
x·i·−1 = x. The branching degree d(x) of a node x denotes the number of successors
of x. If the branching degree of all nodes of a tree is bounded by k, we say that the
tree has branching degree k. An infinite path P of T is a prefix-closed set P ⊆ T
such that for every i ≥ 0 there exists a unique node x ∈ P with |x| = i. A labeled
tree over an alphabet Σ is a pair (T, V), where T is a tree and V : T → Σ maps
each node of T to an element of Σ.

Alternating automata on infinite trees are a generalization of nondeterministic
automata on infinite trees, introduced by Muller and Schupp [1987]. They allow for
an elegant reduction of decision problems for temporal and program logics [Emerson
and Jutla, 1991; Bernholtz et al., 1994]. Let B(I) be the set of positive Boolean
formulae over I, built inductively by applying ∧ and ∨ starting from true, false,
and elements of I. For a set J ⊆ I and a formula ϕ ∈ B(I), we say that J satisfies ϕ
if and only if, assigning true to the elements in J and false to those in I \J , makes

194 D. Calvanese, G. De Giacomo

ϕ true. For a positive integer k, let [k] = {−1, 0, 1, . . . , k}. A two-way alternating
automaton over infinite trees with branching degree k, is a tuple A = 〈Σ, Q, δ, q0, F 〉,
where Σ is the input alphabet, Q is a finite set of states, δ : Q × Σ → B([k] × Q)
is the transition function, q0 ∈ Q is the initial state, and F specifies the acceptance
condition.

The transition function maps a state q ∈ Q and an input letter σ ∈ Σ to a positive
Boolean formula over [k] × Q. Intuitively, if δ(q, σ) = ϕ, then each pair (c, q′)
appearing in ϕ corresponds to a new copy of the automaton going to the direction
suggested by c and starting in state q′. For example, if k = 2 and δ(q1, σ) =
(1, q2) ∧ (1, q3) ∨ (−1, q1) ∧ (0, q3), when the automaton is in the state q1 and is
reading the node x labeled by the letter σ, it proceeds either by sending off two
copies, in the states q2 and q3 respectively, to the first successor of x (i.e., x·1), or
by sending off one copy in the state q1 to the predecessor of x (i.e., x·−1) and one
copy in the state q3 to x itself (i.e., x·0).

A run of a 2ATA A over a labeled tree (T, V) is a labeled tree (Tr, r) in which
every node is labeled by an element of T × Q. A node in Tr labeled by (x, q)
describes a copy of A that is in the state q and reads the node x of T . The labels of
adjacent nodes have to satisfy the transition function of A. Formally, a run (Tr, r)
is a T ×Q-labeled tree satisfying:

(i) ε ∈ Tr and r(ε) = (ε, q0).
(ii) Let y ∈ Tr, with r(y) = (x, q) and δ(q, V (x)) = ϕ. Then there is a (possibly

empty) set S = {(c1, q1), . . . , (cn, qn)} ⊆ [k]×Q such that:

• S satisfies ϕ and
• for all 1 ≤ i ≤ n, we have that y·i ∈ Tr, x·ci is defined, and r(y·i) =

(x·ci, qi).

A run (Tr, r) is accepting if all its infinite paths satisfy the acceptance condition1.
Given an infinite path P ⊆ Tr, let inf (P) ⊆ Q be the set of states that appear
infinitely often in P (as second components of node labels). We consider here Büchi
acceptance conditions. A Büchi condition over a state set Q is a subset F of Q, and
an infinite path P satisfies F if inf (P) ∩ F 6= ∅.

The non-emptiness problem for 2ATAs consists in determining, for a given a,
whether the set of trees it accepts is nonempty. The results by Vardi [1998] provide
the following complexity characterization of non-emptiness of 2ATAs.

Theorem 5.5 ([Vardi, 1998]) Given a 2ATA A with n states and an input alpha-
bet with m elements, deciding non-emptiness of A can be done in time exponential
in n and polynomial in m.

1 No condition is imposed on the finite paths of the run.

Expressive Description Logics 195

5.3.2 Reasoning in ALCFIreg

The (Fischer-Ladner) closure for ALCFIreg extends immediately the analogous
notion for converse-pdl (see Section 5.2.2), treating functional restrictions as atomic
concepts. In particular, the closure CL(C0) of an ALCFIreg concept C0 is defined
as the smallest set of concepts such that C0 ∈ CL(C0) and such that (assuming t
and ∀ to be expressed by means of u and ∃, and the inverse operator applied only
to atomic roles)2:

if C ∈ CL(C0) then ¬C ∈ CL(C0) (if C is not of the form ¬C ′)
if ¬C ∈ CL(C0) then C ∈ CL(C0)
if C u C ′ ∈ CL(C0) then C, C ′ ∈ CL(C0)
if ∃R.C ∈ CL(C0) then C ∈ CL(C0)
if ∃(R tR′).C ∈ CL(C0) then ∃R.C, ∃R′.C ∈ CL(C0)
if ∃(R ◦R′).C ∈ CL(C0) then ∃R.∃R′.C ∈ CL(C0)
if ∃R∗.C ∈ CL(C0) then ∃R.∃R∗.C ∈ CL(C0)
if ∃id(C).C ′ ∈ CL(C0) then C ∈ CL(C0)

The cardinality of CL(C0) is linear in the length of C0.
It can be shown, following the lines of the proof in [Vardi and Wolper, 1986] for

converse-dpdl, that ALCFIreg enjoys the tree model property, i.e., every satisfiable
concept has a model that has the structure of a (possibly infinite) tree with branch-
ing degree linearly bounded by the size of the concept. More precisely, we have the
following result.

Theorem 5.6 Every satisfiable ALCFIreg concept C0 has a tree model with branch-
ing degree kC0 equal to twice the number of elements of CL(C0).

This property allows us to check satisfiability of an ALCFIreg concept C0 by
building a 2ATA that accepts the (labeled) trees that correspond to tree models of
C0. Let A be the set of atomic concepts appearing in C0, and B = {Q1, . . . , Qn}
the set of atomic roles appearing in C0 and their inverses. We construct from C0

a 2ATA AC0 that checks that C0 is satisfied at the root of the input tree. We
represent in each node of the tree the information about which atomic concepts are
true in the node, and about the basic role that connects the predecessor of the node
to the node itself (except for the root). More precisely, we label each node with a
pair σ = (α, q), where α is the set of atomic concepts that are true in the node, and
q = Q if the node is reached from its predecessor through the basic role Q. That
is, if Q stands for an atomic role P , then the node is reached from its predecessor
through P , and if Q stands for P−, then the predecessor is reached from the node

2 We remind that C and C′ stand for arbitrary concepts, and R and R′ stand for arbitrary roles.

196 D. Calvanese, G. De Giacomo

through P . In the root, q = Pdum , where Pdum is a new symbol representing a
dummy role.

Given an ALCFIreg concept C0, we construct an automaton AC0 that accepts
trees that correspond to tree models of C0. For technical reasons, it is convenient
to consider concepts in negation normal form (i.e., negations are pushed inside as
much as possible). It is easy to check that the transformation of a concept into
negation normal form can be performed in linear time in the size of the concept.
Below, we denote by nnf (C) the negation normal form of C, and with CLnnf (C0)
the set {nnf (C) | C ∈ CL(C0)}. The automaton AC0 = (Σ, S, δ, sini , F) is defined
as follows.

• The alphabet is Σ = 2A×(B∪{Pdum}), i.e., the set of pairs whose first component
is a set of atomic concepts, and whose second component is a basic role or the
dummy role Pdum . This corresponds to labeling each node of the tree with a truth
assignment to the atomic concepts, and with the role used to reach the node from
its predecessor.

• The set of states is S = {sini} ∪ CLnnf (C0) ∪ {Q,¬Q | Q ∈ B}, where sini is the
initial state, CLnnf (C0) is the set of concepts (in negation normal form) in the
closure of C0, and {Q,¬Q | Q ∈ B} are states used to check whether a basic role
labels a node. Intuitively, when the automaton in a state C ∈ CLnnf (C0) visits
a node x of the tree, this means that the automaton has to check that C holds
in x.

• The transition function δ is defined as follows.

1. For each α ∈ 2A, there is a transition from the initial state

δ(sini , (α, Pdum)) = (0,nnf (C0))

Such a transition checks that the root of the tree is labeled with the dummy
role Pdum , and moves to the state that verifies C0 in the root itself.

2. For each (α, q) ∈ Σ and each atomic concept A ∈ A, there are transitions

δ(A, (α, q)) =
{

true, if A ∈ α
false, if A 6∈ α

δ(¬A, (α, q)) =
{

true, if A 6∈ α
false, if A ∈ α

Such transitions check the truth value of atomic concepts and their negations
in the current node of the tree.

Expressive Description Logics 197

3. For each (α, q) ∈ Σ and each basic role Q ∈ B, there are transitions

δ(Q, (α, q)) =
{

true, if q = Q
false, if q 6= Q

δ(¬Q, (α, q)) =
{

true, if q 6= Q
false, if q = Q

Such transitions check through which role the current node is reached.

4. For the concepts in CLnnf (C0) and each σ ∈ Σ, there are transitions

δ(C u C ′, σ) = (0, C) ∧ (0, C)

δ(C t C ′, σ) = (0, C) ∨ (0, C ′)

δ(∀Q.C, σ) = ((0,¬Q−) ∨ (−1, C)) ∧
∧

1≤i≤kC0
((i,¬Q) ∨ (i, C))

δ(∀(R tR′).C, σ) = (0, ∀R.C) ∧ (0, ∀R′.C)

δ(∀(R ◦R′).C, σ) = (0, ∀R.∀R′.C)

δ(∀R∗.C, σ) = (0, C) ∧ (0,∀R.∀R∗.C)

δ(∀id(C).C ′, σ) = (0,nnf (¬C)) ∨ (0, C ′)

δ(∃Q.C, σ) = ((0, Q−) ∧ (−1, C)) ∨
∨

1≤i≤kC0
((i, Q) ∧ (i, C))

δ(∃(R tR′).C, σ) = (0, ∃R.C) ∨ (0, ∃R′.C)

δ(∃(R ◦R′).C, σ) = (0, ∃R.∃R′.C)

δ(∃R∗.C, σ) = (0, C) ∨ (0, ∃R.∃R∗.C)

δ(∃id(C).C ′, σ) = (0, C) ∧ (0, C ′)

All such transitions, except for those involving ∀R∗.C and ∃R∗.C, inductively
decompose concepts and roles, and move to appropriate states of the automaton
and nodes of the tree. The transitions involving ∀R∗.C treat ∀R∗.C as the
equivalent concept C u ∀R.∀R∗.C, and the transitions involving ∃R∗.C treat
∃R∗.C as the equivalent concept C t ∃R.∃R∗.C.

5. For each concept of the form 6 1Q in CLnnf (C) and each σ ∈ Σ, there is a
transition

δ(6 1Q, σ) = ((0, Q−) ∧
∧

1≤i≤kC0
(i,¬Q)) ∨

((0,¬Q−) ∧
∧

1≤i<j≤kC0
((i,¬Q) ∨ (j,¬Q)))

Such transitions check that, for a node x labeled with 6 1Q, there exists at
most one node (among the predecessor and the successors of x) reachable from
x through Q.

6. For each concept of the form ¬6 1Q in CLnnf (C) and each σ ∈ Σ, there is a

198 D. Calvanese, G. De Giacomo

transition

δ(¬6 1Q, σ) = ((0, Q−) ∧
∨

1≤i≤kC0
(i, Q)) ∨

∨

1≤i<j≤kC0
((i, Q) ∧ (j,Q))

Such transitions check that, for a node x labeled with ¬6 1Q, there exist at
least two nodes (among the predecessor and the successors of x) reachable from
x through Q.

• The set F of final states is the set of concepts in CLnnf (C0) of the form ∀R∗.C.
Observe that concepts of the form ∃R∗.C are not final states, and this is suffi-
cient to guarantee that such concepts are satisfied in all accepting runs of the
automaton.

A run of the automaton AC0 on an infinite tree starts in the root checking that
C0 holds there (item 1 above). It does so by inductively decomposing nnf (C0)
while appropriately navigating the tree (items 3 and 4) until it arrives to atomic
concepts, functional restrictions, and their negations. These are checked locally
(items 2, 5 and 6). Concepts of the form ∀R∗.C and ∃R∗.C are propagated using
the equivalent concepts C u ∀R.∀R∗.C and C t ∃R.∃R∗.C, respectively. It is only
the propagation of such concepts that may generate infinite branches in a run. Now,
a run of the automaton may contain an infinite branch in which ∃R∗.C is always
resolved by choosing the disjunct ∃R.∃R∗.C, without ever choosing the disjunct C.
This infinite branch in the run corresponds to an infinite path in the tree where
R is iterated forever and in which C is never fulfilled. However, the semantics of
∃R∗.C requires that C is fulfilled after a finite number of iterations of R. Hence
such an infinite path cannot be used to satisfy ∃R∗.C. The acceptance condition of
the automaton, which requires that each infinite branch in a run contains a state
of the form ∀R∗.C, rules out such infinite branches in accepting runs. Indeed, a
run always deferring the fulfillment of C will contain an infinite branch where all
states have the form ∃R1. · · · ∃Rn.∃R∗.C, with n ≥ 0 and R1 ◦ · · · ◦ Rn a postfix
of R. Observe that the only remaining infinite branches in a run are those that
arise by propagating concepts of the form ∀R∗.C indefinitely often. The acceptance
condition allows for such branches.

Given a labeled tree T = (T, V) accepted by AC0 , we define an interpretation
IT = (∆I , ·I) as follows. First, we define for each atomic role P , a relation RP as
follows: RP = { (x, xi) | V (xi) = (α, P) for some α ∈ 2A } ∪ { (xi, x) | V (xi) =
(α, P−) for some α ∈ 2A }. Then, using such relations, we define:

• ∆I = { x | (ε, x) ∈ (
⋃

P (RP ∪R−P))∗ };
• AI = ∆I∩{ x | V (x) = (α, q) and A ∈ α, for some α ∈ 2A and q ∈ B∪{Pdum} },

for each atomic concept A;

Expressive Description Logics 199

• P I = (∆I ×∆I) ∩RP , for each atomic role P .

Lemma 5.7 If a labeled tree T is accepted by AC0, then IT is a model of C0.

Conversely, given a tree model I of C0 with branching degree kC0 , we can obtain
a labeled tree TI = (T, V) (with branching degree kC0) as follows:

• T = ∆I ;
• V (ε) = (α, Pdum), where α = {A | ε ∈ AI};
• V (xi) = (α, Q), where α = {A | xi ∈ AI} and (x, xi) ∈ QI .

Lemma 5.8 If I is a tree model of C0 with branching degree kC0, then TI is a
labeled tree accepted by AC0.

From the lemmas above and the tree model property of ALCFIreg (Theorem 5.6),
we get the following result.

Theorem 5.9 An ALCFIreg concept C0 is satisfiable if and only if the set of trees
accepted by AC0 is not empty.

From this theorem, it follows that we can use algorithms for non-emptiness of
2ATAs to check satisfiability in ALCFIreg . It turns out that such a decision proce-
dure is indeed optimal w.r.t. the computational complexity. The 2ATA AC0 has a
number of states that is linear in the size of C0, while the alphabet is exponential in
the number of atomic concepts occurring in C0. By Theorem 5.5 we get an upper
bound for reasoning in ALCFIreg that matches the ExpTime lower bound.

Theorem 5.10 Concept satisfiability (and hence logical implication) in ALCFIreg

is ExpTime-complete.

Functional restrictions, in the context of expressive description logics that in-
clude inverse roles and TBox axioms, were originally studied in [De Giacomo and
Lenzerini, 1994a; De Giacomo, 1995] using the so called axiom schema instantia-
tion technique. The technique is based on the idea of devising an axiom schema
corresponding to the property of interest (e.g., functional restrictions) and instan-
tiating such a schema to a finite (polynomial) number of concepts. A nice il-
lustration of this technique is the reduction of converse-pdl to pdl in [De Gi-
acomo, 1996]. Axiom schema instantiation can be used to show that reasoning
w.r.t. TBoxes is ExpTime-complete in significant sub-cases of ALCFIreg (such as
reasoning w.r.t. ALCFI TBoxes [Calvanese et al., 2001b]). However, it is still
open whether it can be applied to show ExpTime-completeness of ALCFIreg .
The attempt in this direction presented in [De Giacomo and Lenzerini, 1994a;
De Giacomo, 1995] turned out to be incomplete [Zakharyaschev, 2000].

200 D. Calvanese, G. De Giacomo

5.4 Qualified number restrictions

Next we deal with qualified number restrictions, which are the most general form
of number restrictions, and allow for specifying arbitrary cardinality constraints on
roles with role-fillers belonging to a certain concept. In particular we will consider
qualified number restrictions on basic roles, i.e., atomic roles and their inverse. By
adding such constructs to ALCIreg we obtain the description logic ALCQIreg . The
PDL corresponding to ALCQIreg is an extension of converse-pdl with “graded
modalities” [Fattorosi-Barnaba and De Caro, 1985; Van der Hoek and de Rijke,
1995; Tobies, 1999c] on atomic programs and their converse.

Formally, ALCQIreg is obtained from ALCIreg by adding qualified number re-
strictions of the form 6n QC and > nQC, where n is a nonnegative integer, Q is
a basic role, and C is an ALCQIreg concept. Such constructs are interpreted as
follows:

(6 nQC)I = {o ∈ ∆I | |{o′ ∈ ∆I | (o, o′) ∈ QI ∧ o′ ∈ CI}| ≤ n}
(> nQC)I = {o ∈ ∆I | |{o′ ∈ ∆I | (o, o′) ∈ QI ∧ o′ ∈ CI}| ≥ n}

Reasoning in ALCQIreg is still ExpTime-complete under the standard assump-
tion in description logics, that numbers in number restrictions are represented
in unary1. This could be shown by extending the automata theoretic tech-
niques introduced in Section 5.3 to deal also with qualified number restrictions.
Here we take a different approach and study reasoning in ALCQIreg by exhibit-
ing a reduction from ALCQIreg to ALCFIreg [De Giacomo and Lenzerini, 1995;
De Giacomo, 1995]. Since the reduction is polynomial, we get as a result Exp-
Time-completeness of ALCQIreg . The reduction is based on the notion of reifica-
tion. Such a notion plays a major role in dealing with Boolean combinations of
(atomic) roles [De Giacomo and Lenzerini, 1995; 1994c], as well as in extending
expressive description logics with relation of arbitrary arity (see Section 5.7).

5.4.1 Reification of roles

Atomic roles are interpreted as binary relations. Reifying a binary relation means
creating for each pair of individuals (o1, o2) in the relation an individual which is
connected by means of two special roles V1 and V2 to o1 and o2, respectively. The
set of such individuals represents the set of pairs forming the relation. However, the
following problem arises: in general, there may be two or more individuals being all
connected by means of V1 and V2 to o1 and o2 respectively, and thus all representing

1 In [Tobies, 2001a] techniques for dealing with qualified number restrictions with numbers coded in binary
are presented, and are used to show that even under this assumption reasoning over ALCQI knowledge
bases can be done in ExpTime.

Expressive Description Logics 201

the same pair (o1, o2). Obviously, in order to have a correct representation of a
relation, such a situation must be avoided.

Given an atomic role P , we call its reified form the following role

V −
1 ◦ id(AP) ◦ V2

where AP is a new atomic concept denoting individuals representing the tuples of
the relation associated with P , and V1 and V2 denote two functional roles that
connect each individual in AP to the first and the second component respectively
of the tuple represented by the individual. Observe that there is a clear symmetry
between the role V −

1 ◦ id(AP) ◦ V2 and its inverse V −
2 ◦ id(AP) ◦ V1.

Definition 5.11 Let C be an ALCQIreg concept. The reified counterpart ξ1(C) of
C is the conjunction of two concepts, ξ1(C) = ξ0(C) uΘ1, where:

• ξ0(C) is obtained from the original concept C by (i) replacing every atomic role
P by the complex role V −

1 ◦ id(AP) ◦ V2, where V1 and V2 are new atomic roles
(the only ones present after the transformation) and AP is a new atomic concept;
(ii) and then re-expressing every qualified number restriction

6n (V −
1 ◦ id(AP) ◦ V2).D as 6nV −

1 .(AP u ∃V2.D)
>n (V −

1 ◦ id(AP) ◦ V2).D as > nV −
1 .(AP u ∃V2.D)

6n (V −
2 ◦ id(AP) ◦ V1).D as 6nV −

2 .(AP u ∃V1.D)
>n (V −

2 ◦ id(AP) ◦ V1).D as >n V −
2 .(AP u ∃V1.D)

• Θ1 = ∀(V1 t V2 t V −
1 t V −

2)∗.(6 1V1 u6 1V2).

The next theorem guarantees that, without loss of generality, we can restrict
our attention to models of ξ1(C) that correctly represent relations associated with
atomic roles, i.e., models in which each tuple of such relations is represented by a
single individual.

Theorem 5.12 If the concept ξ1(C) has a model I then it has a model I ′ such
that for each (o, o′) ∈ (V −

1 ◦ id(APi) ◦ V2)I
′
there is exactly one individual ooo′ such

that (ooo′ , o) ∈ V I′
1 and (ooo′ , o′) ∈ V I′

2 . That is, for all o1, o2, o, o′ ∈ ∆I′ such that
o1 6= o2 and o 6= o′, the following condition holds:

o1, o2 ∈ AI
′

Pi
⊃ ¬((o1, o) ∈ V I′

1 ∧ (o2, o) ∈ V I′
1 ∧ (o1, o′) ∈ V I′

2 ∧ (o2, o′) ∈ V I′
2).

The proof of Theorem 5.12 exploits the disjoint union model property : let C be an
ALCQIreg concept and I = (∆I , ·I) and J = (∆J , ·J) be two models of C, then
also the interpretation I] J = (∆I] ∆J , ·I] ·J) which is the disjoint union of
I and J , is a model of C. We remark that most description logics have such a
property, which is, in fact, typical of modal logics. Without going into details, we

202 D. Calvanese, G. De Giacomo

a b

P P PP

c d e

Fig. 5.1. A model of the ALCQIreg concept C0 =
∃P.(= 2 P−.(= 2 P.>)).

a b

V2V2 V2 V2

c d e

AP

1
AP APAP

3

V1 V1 V1 V1

2 4

Fig. 5.2. A model of the reified counterpart ξ1(C0) of C0.

just mention that the model I ′ is constructed from I as the disjoint union of several
copies of I, in which the extension of role V2 is modified by exchanging, in those
instances that cause a wrong representation of a role, the second component with
a corresponding individual in one of the copies of I.

By using Theorem 5.12 we can prove the result below.

Theorem 5.13 An ALCQIreg concept C is satisfiable if and only if its reified coun-
terpart ξ1(C) is satisfiable.

5.4.2 Reducing ALCQIreg to ALCFIreg

By Theorem 5.13, we can concentrate on the reified counterparts of ALCQIreg

concepts. Note that these are ALCQIreg concepts themselves, but their special form
allows us to convert them into ALCFIreg concepts. Intuitively, we represent the
role V −

i , i = 1, 2 (recall that Vi is functional while V −
i is not), by the role FVi ◦F ′

Vi

∗,
where FVi and F ′

Vi
are new functional roles1. The main point of such transformation

is that it is easy to express qualified number restrictions as constraints on the
chain of (FVi ◦F ′

Vi

∗)-successor of an individual. Formally, we define the ALCFIreg -
counterpart of an ALCQIreg concept as follows.

Definition 5.14 Let C be an ALCQIreg concept and ξ1(C) = ξ0(C) u Θ1 its rei-
fied counterpart. The ALCFIreg -counterpart ξ2(C) of C is the conjunction of two
concepts, ξ2(C) = ξ′0(C) ∧Θ2, where:
1 The idea of expressing nonfunctional roles by means of chains of functional roles is due to Parikh [1981],

who used it to reduce standard pdl to dpdl.

Expressive Description Logics 203

a b

c d e

AP

1
AP APAP

2 4

FV1

FV2 FV2

FV1

FV2

F ′V1
F ′V1

F ′V2 3

Fig. 5.3. A model of the ALCFI-counterpart ξ2(C0) of C0.

• ξ′0(C) is obtained from ξ0(C) by simultaneously replacing:2

– every occurrence of role Vi in constructs different from qualified number re-
strictions by (FVi ◦ F ′

Vi

∗)−, where FVi and F ′
Vi

are new atomic roles;
– every 6nV −

i .D by ∀(FVi ◦ F ′
Vi

∗ ◦ (id(D) ◦ F ′
Vi

+)n).¬D;
– every >nV −

i .D by ∃(FVi ◦ F ′
Vi

∗ ◦ (id(D) ◦ F ′
Vi

+)n−1).D.

• Θ2 = ∀(
⊔

i=1,2(FVi t F ′
Vi
t F−

Vi
t F ′

Vi

−))∗.(θ1 u θ2), with θi of the form:

6 1FVi u6 1 F ′
Vi
u6 1F−

Vi
u6 1F ′

Vi

− u ¬(∃F−
Vi

.> u ∃F ′
Vi

−.>).

Observe that Θ2 constrains each model I of ξ2(C) so that the relations F I
Vi

, F ′
Vi

I ,
(F−

Vi
)I , and (F ′

Vi

−)I are partial functions, and each individual cannot be linked
to other individuals by both (F−

Vi
)I and (F ′

Vi

−)I . As a consequence, we get that
((FVi ◦F ′

Vi

∗)−)I is a partial function. This allows us to reconstruct the extension of
Vi, as required.

We illustrate the basic relationships between a model of an ALCQIreg concept
and the models of its reified counterpart and ALCFIreg -counterpart by means of
an example.

Example 5.15 Consider the concept

C0 = ∃P.(= 2 P−.(= 2 P.>))

and consider the model I of C0 depicted in Figure 5.1, in which a ∈ CI
0 . Such

a model corresponds to a model I ′ of the reified counterpart ξ1(C0) of C0, shown
in Figure 5.2. The model I ′ of ξ1(C0) in turn, corresponds to a model I ′′ of the
ALCFIreg -counterpart ξ2(C0) of C0, shown in Figure 5.3. Notice that, from I ′′ we
can easily reconstruct I ′, and from I ′ the model I of the original concept.

It can be shown that ξ1(C) is satisfiable if and only if ξ2(C) is satisfiable. Since, as
it is easy to see, the size of ξ2(C) is polynomial in the size of C, we get the following
characterization of the computational complexity of reasoning in ALCQIreg .
2 Here R+ stands for R ◦R∗ and Rn stands for R ◦ · · · ◦R (n times).

204 D. Calvanese, G. De Giacomo

Theorem 5.16 Concept satisfiability (and hence logical implication) in ALCQIreg

is ExpTime-complete.

5.5 Objects

In this section, we review results involving knowledge on individuals expressed in
terms of membership assertions. Given an alphabet O of symbols for individuals, a
(membership) assertion has one of the following forms:

C(a) P (a1, a2)

where C is a concept, P is an atomic role, and a, a1, a2 belong to O. An in-
terpretation I is extended so as to assign to each a ∈ O an element aI ∈ ∆I in
such a way that the unique name assumption is satisfied, i.e., different elements
are assigned to different symbols in O. I satisfies C(a) if aI ∈ CI , and I satisfies
P (a1, a2) if (aI1 , aI2) ∈ RI . An ABox A is a finite set of membership assertions, and
an interpretation I is called a model of A if I satisfies every assertion in A.

A knowledge base is a pair K = (T ,A), where T is a TBox, and A is an ABox.
An interpretation I is called a model of K if it is a model of both T and A. K is
satisfiable if it has a model, and K logically implies an assertion β, denoted K |= β,
where β is either an inclusion or a membership assertion, if every model of K satisfies
β. Logical implication can be reformulated in terms of unsatisfiability: e.g., K |=
C(a) iff K∪{¬C(a)} is unsatisfiable; similarly K |= C1 v C2 iff K∪{(C1u¬C2)(a′)}
is unsatisfiable, where a′ does not occur in K. Therefore, we only need a procedure
for checking satisfiability of a knowledge base.

Next we illustrate the technique for reasoning on ALCQIreg knowledge bases
[De Giacomo and Lenzerini, 1996]. The basic idea is as follows: checking the sat-
isfiability of an ALCQIreg knowledge base K = (T ,A) is polynomially reduced to
checking the satisfiability of an ALCQIreg knowledge base K′ = (T ′,A′), whose
ABox A′ is made of a single membership assertion of the form C(a). In other
words, the satisfiability of K is reduced to the satisfiability of the concept C w.r.t.
the TBox T ′ of the resulting knowledge base. The latter reasoning service can be
realized by means of the method presented in Section 5.4, and, as we have seen,
is ExpTime-complete. Thus, by means of the reduction, we get an ExpTime al-
gorithm for satisfiability of ALCQIreg knowledge bases, and hence for all standard
reasoning services on ALCQIreg knowledge bases.

Definition 5.17 Let K = (T ,A) be an ALCQIreg knowledge base. We call the
reduced form of K the ALCQIreg knowledge base K′ = (T ′,A′) defined as follows.
We introduce a new atomic role create, and for each individual ai, i = 1, . . . , m,

Expressive Description Logics 205

occurring in A, a new atomic concept Ai. Then:

A′ = {(∃create.A1 u · · · u ∃create.Am)(g)},

where g is a new individual (the only one present in A′), and T ′ = T ∪ TA ∪ Taux,
where:

• TA is constituted by the following inclusion axioms:

– for each membership assertion C(ai) ∈ A, one inclusion axiom

Ai v C

– for each membership assertion P (ai, aj) ∈ A, two inclusion axioms

Ai v ∃P.Aj u6 1P.Aj

Aj v ∃P−.Ai u6 1 P−.Ai

– for each pair of distinct individuals ai and aj occurring in A, one inclusion
axiom

Ai v ¬Aj

• Taux is constituted by one inclusion axiom (U stands for (P1 t · · · t Pn t P−
1 t

· · · t P−
n)∗, where P1, . . . , Pn are all atomic roles in T ∪ TA):

Ai u C v ∀U.(¬Ai t C)

for each Ai occurring in T ∪TA and each C ∈ CLext(T ∪TA), where CLext(T ∪TA)
is a suitably extended syntactic closure of T ∪ TA 1 whose size is polynomially
related to the size of T ∪ TA [De Giacomo and Lenzerini, 1996].

To understand how the reduced form K′ = (T ′,A′) relates to the original knowl-
edge base K = (T ,A), first, observe that the ABox A′ is used to force the exis-
tence of the only individual g, connected by the role create to one instance of each
Ai. It can be shown that this allows us to restrict the attention to models of K′
that represent a graph connected to g, i.e., models I = (∆I , ·I) of K′ such that
∆I = {g} ∪ {s′ | (g, s′) ∈ createI ◦ (

⋃

P (P I ∪ P I−)∗)}.
The TBox T ′ consists of three parts T , TA, and Taux. T are the original inclusion

axioms. TA is what we may call a “naive encoding” of the original ABox A as
inclusion axioms. Indeed, each individual ai is represented in TA as a new atomic
concept Ai (disjoint from the other Aj ’s), and the membership assertions in the
original ABox A are represented as inclusion axioms in TA involving such new
atomic concepts. However T ∪ TA alone does not suffice to represent faithfully
(w.r.t. the reasoning services we are interested in) the original knowledge base,
1 The syntactic closure of a TBox is the syntactic closure of the concept obtained by internalizing the

axioms of the TBox.

206 D. Calvanese, G. De Giacomo

because an individual ai in K is represented by the set of instances of Ai in K′. In
order to reduce the satisfiability of K′ to the satisfiability of K, we must be able to
single out, for each Ai, one instance of Ai representative of ai. For this purpose, we
need to include in T ′ a new part, called Taux, which contains inclusion axioms of
the form:

(Ai u C) v ∀U.(¬Ai t C)

Intuitively, such axioms say that, if an instance of Ai is also an instance of C,
then every instance of Ai is an instance of C. Observe that, if we could add an
infinite set of axioms of this form, one for each possible concept of the language
(i.e., an axiom schema), we could safely restrict our attention to models of K′ with
just one instance for every concept Ai, since there would be no way in the logic to
distinguish two instances of Ai one from the other. What is shown by De Giacomo
and Lenzerini [1996] is that in fact we do need only a polynomial number of such
inclusion axioms (as specified by Taux) in order to be able to identify, for each i, an
instance of Ai as representative of ai. This allows us to prove that the existence of
a model of K′ implies the existence of a model of K.

Theorem 5.18 Knowledge base satisfiability (and hence every standard reasoning
service) in ALCQIreg is ExpTime-complete.

Using a similar approach, De Giacomo and Lenzerini [1994a] and De Gia-
como [1995] extend ALCQreg and ALCIreg by adding special atomic concepts Aa,
called nominals, having exactly one single instance a, i.e., the individual they name.
Nominals may occur in concepts exactly as atomic concepts, and hence they con-
stitute one of the most flexible ways to express knowledge about single individuals.

By using nominals we can capture the “one-of” construct, having the form
{a1, . . . , an}, denoting the concept made of exactly the enumerated individuals
a1, . . . , an

1. We can also capture the “fills” construct, having the form R : a, de-
noting those individuals having the individual a as a role filler of R 2 (see [Schaerf,
1994b] and references therein for further discussion on these constructs).

Let us denote with ALCQOreg and ALCIOreg the description logics resulting
by adding nominals to ALCQreg and ALCIreg respectively. De Giacomo and Lenz-
erini [1994a] and De Giacomo [1995] polynomially reduce satisfiability in ALCQOreg

and ALCIOreg knowledge bases to satisfiability of ALCQreg and ALCIreg con-
cepts respectively, hence showing decidability and ExpTime-completeness of rea-
soning in these logics. ExpTime-completeness does not hold for ALCQIOreg ,
1 Actually, nominals and the one-of construct are essentially equivalent, since a name Aa is equivalent to
{a} and {a1, . . . , an} is equivalent to Aa1 t · · · tAan .

2 The “fills” construct R : a is captured by ∃R.Aa.

Expressive Description Logics 207

i.e., ALCQIreg extended with nominals. Indeed, a result by Tobies [1999a;
1999b] shows that reasoning in such a logic is NExpTime-hard. Its decidability
still remains an open problem.

The notion of nominal introduced above has a correspondent in modal logic
[Prior, 1967; Bull, 1970; Blackburn and Spaan, 1993; Gargov and Goranko, 1993;
Blackburn, 1993]. Nominals have also been studied within the setting of PDLs
[Passy and Tinchev, 1985; Gargov and Passy, 1988; Passy and Tinchev, 1991]. The
results for ALCQOreg and ALCIOreg are immediately applicable also in the setting
of PDLs. In particular, the PDL corresponding to ALCQOreg is standard pdl aug-
mented with nominals and graded modalities (qualified number restrictions). It is
an extension of deterministic combinatory PDL, dcpdl, which is essentially dpdl
augmented with nominals. The decidability of dcpdl is established by Passy and
Tinchev [1985], who also prove that satisfiability can be checked in nondetermin-
istic double exponential time. This is tightened by the result above on ExpTime-
completeness of ALCQOreg , which says that dcpdl is in fact ExpTime-complete,
thus closing the previous gap between the upper bound and the lower bound. The
PDL corresponding to ALCIOreg is converse-pdl augmented with nominals, which
is also called converse combinatory PDL, ccpdl [Passy and Tinchev, 1991]. Such
logic was not known to be decidable [Passy and Tinchev, 1991]. Hence the results
mentioned above allow us to establish the decidability of ccpdl and to precisely
characterize the computational complexity of satisfiability (and hence of logical im-
plication) as ExpTime-complete.

5.6 Fixpoint constructs

Decidable description logics equipped with explicit fixpoint constructs have been
devised in order to model inductive and coinductive data structures such as lists,
streams, trees, etc. [De Giacomo and Lenzerini, 1994d; Schild, 1994; De Giacomo
and Lenzerini, 1997; Calvanese et al., 1999c]. Such logics correspond to extensions of
the propositional µ-calculus [Kozen, 1983; Streett and Emerson, 1989; Vardi, 1998],
a variant of PDL with explicit fixpoints that is used to express temporal properties
of reactive and concurrent processes [Stirling, 1996; Emerson, 1996]. Such logics can
also be viewed as a well-behaved fragment of first-order logic with fixpoints [Park,
1970; 1976; Abiteboul et al., 1995].

Here, we concentrate on the description logic µALCQI studied by Calvanese et
al. [1999c]. Such a description logic is derived from ALCQI by adding least and
greatest fixpoint constructs. The availability of explicit fixpoint constructs allows
for expressing inductive and coinductive concepts in a natural way.

208 D. Calvanese, G. De Giacomo

Example 5.19 Consider the concept Tree, representing trees, inductively defined
as follows:

(i) An individual that is an EmptyTree is a Tree.
(ii) If an individual is a Node, has at most one parent, has some children, and

all children are Trees, then such an individual is a Tree.

In other words, Tree is the concept with the smallest extension among those satis-
fying the assertions (i) and (ii). Such a concept is naturally expressed in µALCQI
by making use of the least fixpoint construct µX.C:

Tree ≡ µX.(EmptyTree t (Node u6 1 child− u ∃child.> u ∀child.X))

Example 5.20 Consider the well-known linear data structure, called stream.
Streams are similar to lists except that, while lists can be considered as finite se-
quences of nodes, streams are infinite sequences of nodes. Such a data structure is
captured by the concept Stream, coinductively defined as follows:

(i) An individual that is a Stream, is a Node and has a single successor which is
a Stream.

In other words, Stream is the concept with the largest extension among those sat-
isfying condition (i). Such a concept is naturally expressed in µALCQI by making
use of the greatest fixpoint construct νX.C:

Stream ≡ νX.(Node u6 1 succ u ∃succ.X)

Let us now introduce µALCQI formally. We make use of the standard first-
order notions of scope, bound and free occurrences of variables, closed formulae,
etc., treating µ and ν as quantifiers.

The primitive symbols in µALCQI are atomic concepts, (concept) variables, and
atomic roles. Concepts and roles are formed according to the following syntax

C −→ A | ¬C | C1 u C2 | >nR.C | µX.C | X

R −→ P | P−

where A denotes an atomic concept, P an atomic role, C an arbitrary µALCQI
concept, R an arbitrary µALCQI role (i.e., either an atomic role or the inverse of
an atomic role), n a natural number, and X a variable.

The concept C in µXC must be syntactically monotone, that is, every free occur-
rence of the variable X in C must be in the scope of an even number of negations
[Kozen, 1983]. This restriction guarantees that the concept C denotes a monotonic
operator and hence both the least and the greatest fixpoints exist and are unique
(see later).

Expressive Description Logics 209

In addition to the usual abbreviations used in ALCQI, we introduce the ab-
breviation νX.C for ¬µX.¬C[X/¬X], where C[X/¬X] is the concept obtained by
substituting all free occurrences of X with ¬X.

The presence of free variables does not allow us to extend the interpretation
function ·I directly to every concept of the logic. For this reason we introduce
valuations. A valuation ρ on an interpretation I is a mapping from variables to
subsets of ∆I . Given a valuation ρ, we denote by ρ[X/E] the valuation identical to
ρ except for the fact that ρ[X/E](X) = E .

Let I be an interpretation and ρ a valuation on I. We assign meaning to concepts
of the logic by associating to I and ρ an extension function ·Iρ , mapping concepts
to subsets of ∆I , as follows:

XI
ρ = ρ(X) ⊆ ∆I

AIρ = AI ⊆ ∆I

(¬C)Iρ = ∆I \ CI
ρ

(C1 u C2)Iρ = (C1)Iρ ∩ (C2)Iρ
> nR.CI

ρ = {s ∈ ∆I | |{s′ | (s, s′) ∈ RI and s′ ∈ CI
ρ }| ≥ n}

(µX.C)Iρ =
⋂

{E ⊆ ∆I | CI
ρ[X/E] ⊆ E }

Observe that CI
ρ[X/E] can be seen as an operator from subsets E of ∆I to subsets

of ∆I , and that, by the syntactic restriction enforced on variables, such an operator
is guaranteed to be monotonic w.r.t. set inclusion. µX.C denotes the least fixpoint
of the operator. Observe also that the semantics assigned to νX.C is

(νX.C)Iρ =
⋃

{E ⊆ ∆I | E ⊆ CI
ρ[X/E] }

Hence νX.C denotes the greatest fixpoint of the operator.
In fact, we are interested in closed concepts, whose extension is independent

of the valuation. For closed concepts we do not need to consider the valuation
explicitly, and hence the notion of concept satisfiability, logical implication, etc.
extend straightforwardly.

Exploiting a recent result on ExpTime decidability of modal µ-calculus with
converse [Vardi, 1998], and exploiting a reduction technique for qualified number
restrictions similar to the one presented in Section 5.4, Calvanese et al. [1999c] have
shown that the same complexity bound holds also for reasoning in µALCQI.

Theorem 5.21 Concept satisfiability (and hence logical implication) in µALCQI
is ExpTime-complete.

For certain applications, variants of µALCQI that allow for mutual fixpoints, de-

210 D. Calvanese, G. De Giacomo

noting least and greatest solutions of mutually recursive equations, are of interest
[Schild, 1994; Calvanese et al., 1998c; 1999b]. Mutual fixpoints can be re-expressed
by suitably nesting the kind of fixpoints considered here (see, for example, [de
Bakker, 1980; Schild, 1994]). It is interesting to notice that, although the resulting
concept may be exponentially large in the size of the original concept with mutual
fixpoints, the number of (distinct) subconcepts of the resulting concept is polyno-
mially bounded by the size of the original one. By virtue of this observation, and
using the reasoning procedure by Calvanese et al. [1999c], we can strengthen the
above result.

Theorem 5.22 Checking satisfiability of a closed µALCQI concept C can be done
in deterministic exponential time w.r.t. the number of (distinct) subconcepts of C.

Although µALCQI does not have the rich variety of role constructs of ALCQIreg ,
it is actually an extension of ALCQIreg , since any ALCQIreg concept can be ex-
pressed in µALCQI using the fixpoint constructs in a suitable way. To express
concepts involving complex role expressions, it suffices to resort to the following
equivalences:

∃(R1 ◦R2).C = ∃R1.∃R2.C
∃(R1 tR2).C = ∃R1.C t ∃R2.C

∃R∗.C = µX.(C t ∃R.X)
∃id(D).C = C uD.

Note that, according to such equivalences, we have also that

∀R∗.C = νX.(C u ∀R.X)

Calvanese et al. [1995] advocate a further construct corresponding to an implicit
form of fixpoint, the so called well-founded concept construct wf (R). Such con-
struct is used to impose well-foundedness of chains of roles, and thus allows one to
correctly capture inductive structures. Using explicit fixpoints, wf (R) is expressed
as µX.(∀R.X).

We remark that, in order to gain the ability of expressing inductively and
coinductively defined concepts, it has been proposed to adopt ad hoc seman-
tics for interpreting knowledge bases, specifically the least fixpoint semantics for
expressing inductive concepts and the greatest fixpoint semantics for expressing
coinductive ones (see Chapter 2 and also [Nebel, 1991; Baader, 1990a; 1991;
Dionne et al., 1992; Küsters, 1998; Buchheit et al., 1998]). Logics equipped
with fixpoint constructs allow for mixing statements interpreted according to the
least and greatest fixpoint semantics in the same knowledge base [Schild, 1994;
De Giacomo and Lenzerini, 1997], and thus can be viewed as a generalization of
these approaches.

Expressive Description Logics 211

Recently, using techniques based on alternating two-way automata, it has been
shown that the propositional µ-calculus with converse programs remains ExpTime-
decidable when extended with nominals [Sattler and Vardi, 2001]. Such a logic
corresponds to a description logic which could be called µALCIO.

5.7 Relations of arbitrary arity

A limitation of traditional description logics is that only binary relationships be-
tween instances of concepts can be represented, while in some real world situations
it is required to model relationships among more than two objects. Such rela-
tionships can be captured by making use of relations of arbitrary arity instead
of (binary) roles. Various extensions of description logics with relations of ar-
bitrary arity have been proposed [Schmolze, 1989; Catarci and Lenzerini, 1993;
De Giacomo and Lenzerini, 1994c; Calvanese et al., 1997; 1998a; Lutz et al., 1999].

We concentrate on the description logic DLR [Calvanese et al., 1997; 1998a],
which represents a natural generalization of traditional description logics towards n-
ary relations. The basic elements of DLR are atomic relations and atomic concepts,
denoted by P and A respectively. Arbitrary relations, of given arity between 2 and
nmax, and arbitrary concepts are formed according to the following syntax

R −→ >n | P | ($i/n: C) | ¬R | R1 uR2

C −→ >1 | A | ¬C | C1 u C2 | ∃[$i]R | 6 k [$i]R

where i and j denote components of relations, i.e., integers between 1 and nmax, n
denotes the arity of a relation, i.e., an integer between 2 and nmax, and k denotes
a nonnegative integer. Concepts and relations must be well-typed, which means
that only relations of the same arity n can be combined to form expressions of type
R1 uR2 (which inherit the arity n), and i ≤ n whenever i denotes a component of
a relation of arity n.

The semantics of DLR is specified through the usual notion of interpretation
I = (∆I , ·I), where the interpretation function ·I assigns to each concept C a
subset CI of ∆I , and to each relation R of arity n a subset RI of (∆I)n, such that

212 D. Calvanese, G. De Giacomo

the following conditions are satisfied

>In ⊆ (∆I)n

PI ⊆ >In
(¬R)I = >In \RI

(R1 uR2)I = RI
1 ∩RI

2
($i/n:C)I = {(d1, . . . , dn) ∈ >In | di ∈ CI}

>I1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 u C2)I = CI
1 ∩ CI

2
(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI . di = d}

(6 k [$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ RI
1 | di = d}| ≤ k}

where P, R, R1, and R2 have arity n. Observe that >1 denotes the interpretation
domain, while >n, for n > 1, does not denote the n-cartesian product of the domain,
but only a subset of it, that covers all relations of arity n that are introduced. As a
consequence, the “¬” construct on relations expresses difference of relations rather
than complement.

The construct ($i/n: C) denotes all tuples in >n that have an instance of concept
C as their i-th component, and therefore represents a kind of selection. Existential
quantification and number restrictions on relations are a natural generalization of
the corresponding constructs using roles. This can be seen by observing that, while
for roles the “direction of traversal” is implicit, for a relation one needs to explicitly
say which component is used to “enter” a tuple and which component is used to
“exit” it.
DLR is in fact a proper generalization of ALCQI. The traditional description

logic constructs can be reexpressed in DLR as follows:

∃P.C as ∃[$1](P u ($2/2: C))
∃P−.C as ∃[$2](P u ($1/2:C))
∀P.C as ¬∃[$1](P u ($2/2:¬C))
∀P−.C as ¬∃[$2](P u ($1/2:¬C))
6 k P.C as 6 k [$1](P u ($2/2:C))
6 k P−.C as 6 k [$2](P u ($1/2: C))

Observe that the constructs using direct and inverse roles are represented in DLR
by using binary relations and explicitly specifying the direction of traversal.

A TBox in DLR is a finite set of inclusion axioms on both concepts and relations
of the form

C v C ′ R v R′

Expressive Description Logics 213

where R and R′ are two relations of the same arity. The notions of an interpretation
satisfying an assertion, and of model of a TBox are defined as usual.

The basic technique used in DLR to reason on relations is reification (see Sec-
tion 5.4.1), which allows one to reduce logical implication in DLR to logical im-
plication in ALCQI. Reification for n-ary relations is similar to reification of roles
(see Definition 5.11): A relation of arity n is reified by means of a new concept and
n functional roles f1, . . . , fn. Let the ALCQI TBox T ′ be the reified counterpart of
a DLR TBox T . A tuple of a relation R in a model of T is represented in a model
of T ′ by an instance of the concept corresponding to R, which is linked through
f1, . . . , fn respectively to n individuals representing the components of the tuple. In
this case reification is further used to encode Boolean constructs on relations into
the corresponding constructs on the concepts representing relations.

As for reification of roles (cf. Section 5.4.1), performing the reification of relations
requires some attention, since the semantics of a relation rules out that there may
be two identical tuples in its extension, i.e., two tuples constituted by the same
components in the same positions. In the reified counterpart, on the other hand,
one cannot explicitly rule out (e.g., by using specific axioms) the existence of two
individuals o1 and o2 “representing” the same tuple, i.e., that are connected through
f1, . . . , fn to exactly the same individuals denoting the components of the tuple.
A model of the reified counterpart T ′ of T in which this situation occurs may
not correspond directly to a model of T , since by collapsing the two equivalent
individuals into a tuple, axioms may be violated (e.g., cardinality constraints).
However, also in this case the analogue of Theorem 5.12 holds, ensuring that from
any model of T ′ one can construct a new one in which no two individuals represent
the same tuple. Therefore one does not need to take this constraint explicitly
into account when reasoning on the reified counterpart of a knowledge base with
relations. Since reification is polynomial, from ExpTime decidability of logical
implication in ALCQI (and ExpTime-hardness of logical implication in ALC) we
get the following characterization of the computational complexity of reasoning in
DLR [Calvanese et al., 1997]

Theorem 5.23 Logical implication in DLR is ExpTime-complete.

DLR can be extended to include regular expressions built over projections of
relations on two of their components, thus obtaining DLRreg . Such a logic, which
represents a generalization of ALCQIreg , allows for the internalization of a TBox.
ExpTime decidability (and hence completeness) of DLRreg can again be shown
by exploiting reification of relations and reducing logical implication to concept
satisfiability in ALCQIreg [Calvanese et al., 1998a]. Recently, DLRreg has been
extended to DLRµ, which includes explicit fixpoint constructs on concepts, as those

214 D. Calvanese, G. De Giacomo

introduced in Section 5.6. The ExpTime-decidability result extends to DLRµ as
well [Calvanese et al., 1999c].

Recently it has been observed that guarded fragments of first order logic [Andréka
et al., 1996; Grädel, 1999] (see Section 4.2.1), which include n-ary relations, share
with description logics the “locality” of quantification. This makes them of interest
as extensions of description logics with n-ary relations [Grädel, 1998; Lutz et al.,
1999]. Such description logics are incomparable in expressive power with DLR and
its extensions: On the one hand the description logics corresponding to guarded
fragments allow one to refer, by the use of explicit variables, to components of
relations in a more flexible way than what is possible in DLR. On the other hand
such description logics lack number restrictions, and extending them with number
restrictions leads to undecidability of reasoning. Also, reasoning in the guarded
fragments is in general NExpTime-hard [Grädel, 1998; 1999] and thus more difficult
than in DLR and its extensions, although PSpace-complete fragments have been
identified [Lutz et al., 1999].

5.7.1 Boolean constructs on roles and role inclusion axioms

Observe also that DLR (and DLRreg) allows for Boolean constructs on relations
(with negation interpreted as difference) as well as relation inclusion axioms R v
R′. In fact, DLR (resp. DLRreg) can be viewed as a generalization of ALCQI
(resp. ALCQIreg) extended with Boolean constructs on atomic and inverse atomic
roles. Such extensions of ALCQI were first studied in [De Giacomo and Lenzerini,
1994c; De Giacomo, 1995], where logical implication was shown to be ExpTime-
complete by a reduction to ALCQI (resp. ALCQIreg). The logics above do not
allow for combining atomic roles with inverse roles in Boolean combinations and role
inclusion axioms. Tobies [2001a] shows that, for ALCQI extended with arbitrary
Boolean combinations of atomic and inverse atomic roles, logical implication remains
in ExpTime. Note that, in all logics above, negation on roles is interpreted as
difference. For results on the impact of full negation on roles see [Lutz and Sattler,
2001; Tobies, 2001a].

Horrocks et al. [2000b] investigate reasoning in SHIQ, which is ALCQI extended
with roles that are transitive and with role inclusion axioms on arbitrary roles (di-
rect, inverse, and transitive). SHIQ does not include reflexive-transitive closure.
However, transitive roles and role inclusions allow for expressing a universal role
(in a connected model), and hence allow for internalizing TBoxes. Satisfiability
and logical implication in SHIQ are ExpTime-complete [Tobies, 2001a]. The im-
portance of SHIQ lies in the fact that it is the logic implemented by the current
state-of-the-art description logic-based systems (cf. Chapters 8 and 9).

Expressive Description Logics 215

5.7.2 Structured objects

An alternative way to overcome the limitations that result from the restriction to
binary relationships between concepts, is to consider the interpretation domain as
being constituted by objects with a complex structure, and extend the description
logics with constructs that allow one to specify such structure [De Giacomo and
Lenzerini, 1995]. This approach is in the spirit of object-oriented data models
used in databases [Lecluse and Richard, 1989; Bancilhon and Khoshafian, 1989;
Hull, 1988], and has the advantage, with respect to introducing relationships, that
all aspects of the domain to be modeled can be represented in a uniform way, as
concepts whose instances have certain structures. In particular, objects can either
be unstructured or have the structure of a set or of a tuple. For objects having the
structure of a set a particular role allows one to refer to the members of the set, and
similarly each component of a tuple can be referred to by means of the (implicitly
functional) role that labels it.

In general, reasoning over structured objects can have a very high computational
complexity [Kuper and Vardi, 1993]. However, reasoning over a significant fragment
of structuring properties can be polynomial reduced to reasoning in traditional de-
scription logics, by exploiting again reification to deal with tuples and sets. Thus,
for such a fragment, reasoning can be done in ExpTime [De Giacomo and Lenz-
erini, 1995]. An important aspect in exploiting description logics for reasoning over
structured objects, is being able to limit the depth of the structure of an object
to avoid infinite nesting of tuples or sets. This requires the use of a well-founded
construct, which is a restricted form of fixpoint (see Section 5.6).

5.8 Finite model reasoning

For expressive description logics, in particular for those containing inverse roles and
functionality, a TBox may admit only models with an infinite domain [Cosmadakis
et al., 1990; Calvanese et al., 1994]. Similarly, there may be TBoxes in which a
certain concept can be satisfied only in an infinite model. This is illustrated in the
following example by Calvanese [1996c].

Example 5.24 Consider the TBox

FirstGuard v Guard u ∀shields−.⊥
Guard v ∃shields u ∀shields.Guard u6 1 shields−

In a model of this TBox, an instance of FirstGuard can have no shields-predecessor,
while each instance of Guard can have at most one. Therefore, the existence of an
instance of FirstGuard implies the existence of an infinite sequence of instances of
Guard, each one connected through the role shields to the following one. This means

216 D. Calvanese, G. De Giacomo

that FirstGuard can be satisfied in an interpretation with a domain of arbitrary
cardinality, but not in interpretations with a finite domain.

Note that the TBox above is expressed in a very simple description logic, in partic-
ular AL (cf. Chapter 2) extended with inverse roles and functionality.

A logic is said to have the finite model property if every satisfiable formula of the
logic admits a finite model, i.e., a model with a finite domain. The example above
shows that virtually all description logics including functionality, inverse roles, and
TBox axioms (or having the ability to internalize them) lack the finite model prop-
erty. The example shows also that to lose the finite model property, functionality in
only one direction is sufficient. In fact, it is well known that converse-dpdl, which
corresponds to a fragment of ALCFIreg , lacks the finite model property [Kozen and
Tiuryn, 1990; Vardi and Wolper, 1986].

For all logics that lack the finite model property, reasoning with respect to un-
restricted and finite models are fundamentally different tasks, and this needs to
be taken explicitly into account when devising reasoning procedures. Restricting
reasoning to finite domains is not common in knowledge representation. However,
it is typically of interest in databases, where one assumes that the data available
are always finite [Calvanese et al., 1994; 1999e].

When reasoning w.r.t. finite models, some properties that are essential for the
techniques developed for unrestricted model reasoning in expressive description log-
ics fail. In particular, all reductions exploiting the tree model property (or similar
properties that are based on “unraveling” structures) [Vardi, 1997] cannot be ap-
plied since this property does not hold when only finite models are considered. An
intuitive justification can be given by observing that, whenever a (finite) model
contains a cycle, the unraveling of such a model into a tree generates an infinite
structure. Therefore alternative techniques have been developed.

In this section, we study decidability and computational complexity of finite
model reasoning over TBoxes expressed in various sublanguages of ALCQI. Specif-
ically, by using techniques based on reductions to linear programming problems,
we show that finite concept satisfiability w.r.t. to ALUNI TBoxes1 constituted by
inclusion axioms only is ExpTime-complete [Calvanese et al., 1994], and that finite
model reasoning in arbitrary ALCQI TBoxes can be done in deterministic double
exponential time [Calvanese, 1996a].

5.8.1 Finite model reasoning using linear inequalities

A procedure for finite model reasoning must specifically address the presence of
number restrictions, since it is only in their presence that the finite model property
1 ALUNI is the description logic obtained by extending ALUN (cf. Chapter 2) with inverse roles.

Expressive Description Logics 217

fails. We discuss a method which is indeed based on an encoding of number restric-
tions into linear inequalities, and which generalizes the one developed by Lenzerini
and Nobili [1990] for the Entity-Relationship model with disjoint classes and rela-
tionships (hence without IS-A). We first describe the idea underlying the reason-
ing technique in a simplified case. In the next section we show how to apply the
technique to various expressive description logics [Calvanese and Lenzerini, 1994b;
1994a; Calvanese et al., 1994; Calvanese, 1996a].

Consider an ALNI TBox1 T containing the following axioms: for each pair of
distinct atomic concepts A and A′, an axiom A v ¬A′, and for each atomic role P ,
an axiom of the form > v ∀P.A2 u ∀P−.A1, for some atomic concepts A1 and A2

(not necessarily distinct). Such axioms enforce that in all models of T the following
hold:

P1: The atomic concepts have pairwise disjoint extensions.

P2: Each role is “typed”, which means that its domain is included in the extension
of an atomic concept A1, and its codomain is included in the extension of an
atomic concept A2.

Assume further that the only additional axioms in T are used to impose cardi-
nality constraints on roles and inverse roles, and are of the form

> v > m1 P u6 n1 P

> v > m2 P− u6n2 P−

where m1, n1, m2, and n2 are positive integers with m1 ≤ n1 and m2 ≤ n2.
Due to the fact that properties P1 and P2 hold, the local conditions imposed

by number restrictions on the number of successors of each individual, are reflected
into global conditions on the total number of instances of atomic concepts and roles.
Specifically, it is not difficult to see that, for a model I of such a TBox, and for
each P , A1, A2, m1, m2, n1, and n2 as above, the cardinalities of P I , AI1 , and AI2
must satisfy the following inequalities:

m1 · |AI1 | ≤ |P I | ≤ n1 · |AI1 |
m2 · |AI2 | ≤ |P I | ≤ n2 · |AI2 |

On the other hand, consider the system ΨT of linear inequalities containing for
each atomic role P typed by A1 and A2 the inequalities

m1 ·Var(A1) ≤ Var(P) ≤ n1 ·Var(A1)
m2 ·Var(A2) ≤ Var(P) ≤ n2 ·Var(A2)

(5.1)

1 ALNI is the description logic obtained by extending ALN (cf. Chapter 2) with inverse roles.

218 D. Calvanese, G. De Giacomo

where we denote by Var(A) and Var(P) the unknowns, ranging over the non-
negative integers, corresponding to the atomic concept A and the atomic role P
respectively.

It can be shown that, if the only axioms in T are those mentioned above, then
certain non-negative integer solutions of ΨT (called acceptable solutions) can be put
into correspondence with finite models of T . More precisely, for each acceptable
solution S, one can construct a model of T in which the cardinality of each concept
or role X is equal to the value assigned by S to Var(X) [Lenzerini and Nobili, 1990;
Calvanese et al., 1994; Calvanese, 1996c]. Moreover, given ΨT , it is possible to
verify in time polynomial in its size, whether it admits an acceptable solution.

This property can be exploited to check finite satisfiability of an atomic concept
A w.r.t. a TBox T as follows:

(i) Construct the system ΨT of inequalities corresponding to T .
(ii) Add to ΨT the inequality Var(A) > 0, which enforces that the solutions

correspond to models in which the cardinality of the extension of A is positive.
(iii) Check whether ΨT admits an acceptable solution.

Observe that for simple TBoxes of the form described above, this method works in
polynomial time, since (i) ΨT is of size polynomial in the size of T , and can also
be constructed in polynomial time, and (ii) checking the existence of acceptable
solutions of ΨT can be done in time polynomial in the its size. Notice also that the
applicability of the technique heavily relies on conditions P1 and P2, which ensure
that, from an acceptable solution of ΨT , a model of T can be constructed.

5.8.2 Finite model reasoning in expressive description logics

The method we have presented above is not directly applicable to more complex
languages or TBoxes not respecting the particular form above. In order to extend it
to more general cases we make use of the following observation: Linear inequalities
capture global constraints on the total number of instances of concepts and roles.
So we have to represent local constraints expressed by number restrictions by means
of global constraints. This can be done only if P1 and the following generalization
of P2 hold:

P′2: For each atomic role P and each concept expression C appearing in T , the
domain of P is either included in the extension of C or disjoint from it.
Similarly for the codomain of P .

This condition guarantees that, in a model, all instances of a concept “behave” in
the same way, and thus the local constraints represented by number restrictions are

Expressive Description Logics 219

indeed correctly captured by the global constraints represented by the system of
inequalities.

It is possible to enforce conditions P1 and P′2 for expressive description logics,
by first transforming the TBox, and then deriving the system of inequalities from
the transformed version. We briefly sketch the technique to decide finite concept
satisfiability in ALUNI TBoxes consisting of specializations, i.e., inclusion axioms
in which the concept on the left hand side is atomic. A detailed account of the
technique and an analysis of its computational complexity has been presented by
Calvanese [1996c].

First of all, it is easy to see that, by introducing at most a linear number of new
atomic concepts and TBox axioms, we can transform the TBox into an equivalent
one in which the nesting of constructs is eliminated. Specifically, in such a TBox the
concept on the right hand side of an inclusion axiom is of the form L, L1tL2, ∀R.L,
>n R, or 6nR, where L is an atomic or negated atomic concept. For example,
given the axiom

A v C1 t C2

where C1 and C2 do not have the form above, we introduce two new atomic concepts
AC1 and AC2 , and replace the axiom above by the following ones

A v AC1 tAC2

AC1 v C1

AC2 v C2

Then, to ensure that conditions P1 and P′2 are satisfied, we use instead of atomic
concepts, sets of atomic concepts, called compound concepts1 and instead of atomic
roles, so called compound roles. Each compound role is a triple (P, ̂C1, ̂C2) consist-
ing of an atomic role P and two compound concepts ̂C1 and ̂C2. Intuitively, the
instances of a compound concept ̂C are all those individuals of the domain that are
instances of all concepts in ̂C and are not instances of any concept not in ̂C. A com-
pound role (P, ̂C1, ̂C2) is interpreted as the restriction of role P to the pairs whose
first component is an instance of ̂C1 and whose second component is an instance of
̂C2.

This ensures that two different compound concepts have necessarily disjoint exten-
sions, and hence that the property corresponding to P1 holds. The same observation
holds for two different compound roles (P, ̂C1, ̂C2) and (P, ̂C ′

1, ̂C ′
2) that correspond

to the same role P . Moreover, for compound roles, the property corresponding
to property P2 holds by definition, and, considering that the TBox contains only
specializations and that nesting of constructs has been eliminated, also P′2 holds.

1 A similar technique, called atomic decomposition there, was used by Ohlbach and Koehler [1999].

220 D. Calvanese, G. De Giacomo

We first consider the set T ′ of axioms in the TBox that do not involve number
restrictions. Such axioms force certain compound concepts and compound roles to
be inconsistent, i.e., have an empty extension in all interpretations that satisfy T ′.
For example, the axiom A1 v ¬A2 makes all compound concepts that contain both
A1 and A2 inconsistent. Similarly, the axiom A1 v ∀P.A2 makes all compound
roles (P, ̂C1, ̂C2) such that ̂C1 contains A1 and ̂C2 does not contain A2 inconsistent.
Checking whether a given compound concept is inconsistent essentially amounts to
evaluating a propositional formula in a given propositional model (the one corre-
sponding to the compound concept), and hence can be done in time polynomial in
the size of the TBox. Similarly, one can check in time polynomial in the size of the
TBox whether a given compound role is inconsistent. Observe however, that since
the total number of compound concepts and roles is exponential in the number of
atomic concepts in the TBox, doing the check for all compound concepts and roles
takes in general exponential time.

Once the consistent compound concepts and roles have been determined, we can
introduce for each of them an unknown in the system of inequalities (the inconsistent
compound concepts and roles are discarded). The axioms in the TBox involving
number restrictions are taken into account by encoding them into suitable linear
inequalities. Such inequalities are derived in a way similar to inequalities 5.1, ex-
cept that now each inequality involves one unknown corresponding to a compound
concept and a sum of unknowns corresponding to compound roles.

Then, to check finite satisfiability of an atomic concept A, we can add to the
system the inequality

∑

bC⊆2A | A∈ bC Var(̂C) ≥ 1

which forces the extension of A to be nonempty. Again, if the system admits an
acceptable solution, then we can construct from such a solution a finite model of
the TBox in which A is satisfied; if no such solution exists, then A is not finitely
satisfiable. To check finite satisfiability of an arbitrary concept C, we can introduce
a new concept name A, add to the TBox the axiom A v C, and then check the
satisfiability of A. Indeed, if A is finitely satisfiable, then so is C. Conversely, if the
original TBox admits a finite model I in which C has a nonempty extension, then
we can simply extend I to A by interpreting A as CI , thus obtaining a finite model
of the TBox plus the additional axiom in which A is satisfied.

The system of inequalities can be effectively constructed in time exponential in the
size of the TBox, and checking for the existence of acceptable solutions is polynomial
in the size of the system [Calvanese et al., 1994]. Moreover, since verifying concept
satisfiability is already ExpTime-hard for TBoxes consisting of specializations only

Expressive Description Logics 221

and expressed in the much simpler language ALU [Calvanese, 1996b], the above
method provides a computationally optimal reasoning procedure.

Theorem 5.25 Finite concept satisfiability in ALUNI TBoxes consisting of spe-
cializations only is ExpTime-complete.

The method can be extended to decide finite concept satisfiability also for a
wider class of TBoxes, in which a negated atomic concept and, more in general,
an arbitrary Boolean combination of atomic concepts may appear on the left hand
side of axioms. In particular, this makes it possible to deal also with knowledge
bases containing definitions of concepts that are Boolean combinations of atomic
concepts, and reason on such knowledge bases in deterministic exponential time.
Since ALUNI is not closed under negation, we cannot immediately reduce logical
implication to concept satisfiability. However, the technique presented above can
be adapted to decide in deterministic exponential time also finite logical implication
in specific cases [Calvanese, 1996c].

A further extension of the above method can be used to decide logical implication
in ALCQI. The technique uses two successive transformations on the TBox, each of
which introduces a worst case exponential blow up, and a final polynomial encoding
into a system of linear inequalities [Calvanese, 1996c; 1996a].

Theorem 5.26 Logical implication w.r.t. finite models in ALCQI can be decided
in worst case deterministic double exponential time.

For more expressive description logics, and in particular for all those description
logics containing the construct for reflexive-transitive closure of roles, the decidabil-
ity of finite model reasoning is still an open problem. Decidability of finite model
reasoning for C2, i.e., first order logic with two variables and counting quantifiers
(see also Chapter 4, Section 4.2) was shown recently [Grädel et al., 1997b]. C2 is
a logic that is strictly more expressive than ALCQI TBoxes, since it allows, for
example, to impose cardinality restrictions on concepts [Baader et al., 1996] or to
use the full negation of a role. However, apart from decidability, no complexity
bound is known for finite model reasoning in C2.

Techniques for finite model reasoning have also been studied in databases. In
the relational model, the interaction between inclusion dependencies and functional
dependencies causes the loss of the finite model property, and finite implication of
dependencies under various assumptions has been investigated by Cosmadakis et
al. [1990]. A method for finite model reasoning has been presented by Calvanese
and Lenzerini [1994b; 1994a] in the context of a semantic and an object-oriented
database model, respectively. The reasoning procedure, which represents a direct
generalization of the one discussed above to relations of arbitrary arity, does not

222 D. Calvanese, G. De Giacomo

exploit reification to handle relations (see Section 5.7) but encodes directly the
constraints on them into a system of linear inequalities.

5.9 Undecidability results

Several additional description logic constructs besides those discussed in the previ-
ous sections have been proposed in the literature. In this section we present the most
important of these extensions, discussing how they influence decidability, and what
modifications to the reasoning procedures are needed to take them into account.
In particular, we discuss Boolean constructs on roles, variants of role-value-maps
or role agreements, and number restrictions on complex roles. Most of these con-
structs lead to undecidability of reasoning, if used in an unrestricted way. Roughly
speaking, this is mainly due to the fact that the tree model property is lost [Vardi,
1997].

5.9.1 Boolean constructs on complex roles

In those description logics that include regular expressions over roles, such as
ALCQIreg , since regular languages are closed under intersection and complementa-
tion, the intersection of roles and the complement of a role are already expressible,
if we consider them applied to the set of role expressions. Here we consider the
more common approach in PDLs, namely to regard Boolean operators as applied
to the binary relations denoted by complex roles. The logics thus obtained are
more expressive than traditional pdl [Harel, 1984] and reasoning is usually harder.
We notice that the semantics immediately implies that intersection of roles can be
expressed by means of union and complementation.

Satisfiability in pdl augmented with intersection of arbitrary programs is decid-
able in deterministic double exponential time [Danecki, 1984], and thus is satisfia-
bility in ALCreg augmented with intersection of complex roles, even though these
logics have neither the tree nor the finite model property. On the other hand, satisfi-
ability in pdl augmented with complementation of programs is undecidable [Harel,
1984], and so is reasoning in ALCreg augmented with complementation of complex
roles. Also, dpdl augmented with intersection of complex roles is highly undecid-
able [Harel, 1985; 1986], and since global functionality of roles (which corresponds
to determinism of programs) can be expressed by means of local functionality, the
undecidability carries over to ALCFreg augmented with intersection of roles.

These proofs of undecidability make use of a general technique based on the
reduction from the unbounded tiling (or domino) problem [Berger, 1966; Robinson,
1971], which is the problem of checking whether a quadrant of the integer plane
can be tiled using a finite set of tile types—i.e., square tiles with a color on each

Expressive Description Logics 223

side—in such a way that adjacent tiles have the same color on the sides that touch1.
We sketch the idea of the proof using the terminology of description logics, instead
of that of PDLs. The reduction uses two roles right and up which are globally
functional (i.e., 6 1 right, 6 1 up) and denote pairs of tiles that are adjacent in the
x and y directions, respectively. By means of intersection of roles, right and up
are constrained to effectively define a two-dimensional grid. This is achieved by
imposing for each point of the grid (i.e., reachable through right and up) that by
following right ◦ up one reaches a point reached also by following up ◦ right:

∀(right t up)∗.∃((right ◦ up) u (up ◦ right))

To enforce this condition, the use of intersection of compositions of atomic roles is
essential. Reflexive-transitive closure (i.e., ∀(righttup)∗.C) is then also exploited to
impose the required constraints on all tiles of the grid. Observe that, in the above
reduction, one can use TBox axioms instead of reflexive-transitive closure to enforce
the necessary conditions in every point of the grid.

The question arises if decidability can be preserved if one restricts Boolean op-
erations to basic roles, i.e., atomic roles and their inverse. This is indeed the case
if complementation of basic roles is used only to express difference of roles, as
demonstrated by the ExpTime decidability of DLR and its extensions, in which
intersection and difference of relations are allowed (see Section 5.7).

5.9.2 Role-value-maps

Another construct, which stems from frame-systems, and which provides additional
useful means to specify structural properties of concepts, is the so called role-value-
map [Brachman and Schmolze, 1985], which comes in two forms: An equality role-
value-map, denoted R1 = R2, represents the individuals o such that the set of
individuals that are connected to o via role R1 equals the set of individuals connected
to o via role R2. The second form of role-value-map is containment role-value-map,
denoted R1 ⊆ R2, whose semantics is defined analogously, using set inclusion instead
of set equality. Using these constructs, one can denote, for example, by means of
owns◦made in ⊆ lives in the set of all persons that own only products manufactured
in the country they live in.

When role-value-maps are added, the logic loses the tree model property, and
this construct leads immediately to undecidability of reasoning when applied to
role chains (i.e., compositions of atomic roles). For ALCreg , this can be shown by
a reduction from the tiling problem in a similar way as to what is done in [Harel,
1985] for dpdl with intersection of roles. In this case, the concept right ◦ up =
1 In fact the reduction is from the Π1

1-complete—and thus highly undecidable—recurring tiling problem
[Harel, 1986], where one additionally requires that a certain tile occurs infinitely often on the x-axis.

224 D. Calvanese, G. De Giacomo

up ◦ right involving role-value-map can be used instead of role intersection to define
the constraints on the grid. The proof is slightly more involved than that for dpdl,
since one needs to take into account that the roles right and up are not functional
(while in dpdl all programs/roles are functional). However, undecidability holds
already for concept subsumption (with respect to an empty TBox) in AL (in fact
FL−) augmented with role-value-maps, where the involved roles are compositions
of atomic roles [Schmidt-Schauß, 1989]—see Chapter 3 for the details of the proof.

As for role intersection, in order to show undecidability, it is necessary to ap-
ply role-value-maps to compositions of roles. Indeed, if the application of role-
value-maps is restricted to Boolean combinations of basic roles, it can be added
to ALCQIreg without influencing decidability and worst case complexity of rea-
soning. This follows directly from the decidability results for the extension with
Boolean constructs on atomic and inverse atomic roles (captured by DLR). In-
deed, R1 ⊆ R2 is equivalent to ∀(R1 u ¬R2).⊥, and thus can be expressed using
difference of roles. We observe also that universal and existential role agreements
introduced in [Hanschke, 1992], which allow one to define concepts by posing various
types of constraints that relate the sets of fillers of two roles, can be expressed by
means of intersection and difference of roles. Thus reasoning in the presence of role
agreements is decidable, provided these constructs are applied only to basic roles.

5.9.3 Number restrictions on complex roles

In ALCFIreg , the use of (qualified) number restrictions is restricted to atomic and
inverse atomic roles, which guarantees that the logic has the tree model property.
This property is lost, together with decidability, if functional restrictions may be
imposed on arbitrary roles. The reduction to show undecidability is analogous to
the one used for intersection of roles, except that now functionality of a complex
role (i.e., 6 1 (right ◦ up) t (up ◦ right)) is used instead of role intersection to define
the grid.

An example of decidable logic that does not have the tree model property is
obtained by allowing the use of role composition (but not transitive closure) inside
number restrictions. Let us denote with N (X), where X is a subset of {t,u, ◦,− },
unqualified number restrictions on roles that are obtained by applying the role
constructs in X to atomic roles. Let us denote with ALCN (X) the description logic
obtained by extending ALC (cf. Chapter 2) with number restrictions in N (X). As
shown by Baader and Sattler [1999], concept satisfiability is decidable for the logic
ALCN (◦), even when extended with number restrictions on union and intersection
of role chains of the same length. Notice that, decidability for ALCN (◦) holds
only for reasoning on concept expressions and is lost if one considers reasoning
with respect to a TBox (or alternatively adds transitive closure of roles) [Baader

Expressive Description Logics 225

and Sattler, 1999]. Reasoning even with respect to the empty TBox is undecidable
if one adds to ALCN number restrictions on more complex roles. In particular,
this holds for ALCN (u, ◦) (if no constraints on the lengths of the role chains are
imposed) and for ALCN (t, ◦,−) [Baader and Sattler, 1999]. The reductions exploit
again the tiling problem, and make use of number restrictions on complex roles to
simulate a universal role that is used for imposing local conditions on all points of
the grid.

Summing up we can state that the borderline between decidability and undecid-
ability of reasoning in the presence of number restrictions on complex roles has been
traced quite precisely, although there are still some open problems. E.g., it is not
known whether concept satisfiability in ALCN (t, ◦) is decidable (although logical
implication is undecidable) [Baader and Sattler, 1999].

