Expressive Languages for Path Queries over
Graph-Structured Data

Pablo Barceld
Dept. of Computer Science, Univ. of Chile

pbarcelo@dcc.uchile.cl

Leonid Libkin

Sch. of Informatics, Univ. of Edinburgh
libkin@inf.ed.ac.uk

ABSTRACT

For many problems arising in the setting of graph
querying (such as finding semantic associations in RDF
graphs, exact and approximate pattern matching, se-
quence alignment, etc.), the power of standard lan-
guages such as the widely studied conjunctive regu-
lar path queries (CRPQs) is insufficient in at least two
ways. First, they cannot output paths and second, more
crucially, they cannot express relations among paths.

We thus propose a class of extended CRPQs, called
ECRPQs, which add regular relations on tuples of
paths, and allow path variables in the heads of queries.
We provide several examples of their usefulness in
querying graph structured data, and study their proper-
ties. We analyze query evaluation and representation of
tuples of paths in the output by means of automata. We
present a detailed analysis of data and combined com-
plexity of queries, and consider restrictions that lower
the complexity of ECRPQs to that of relational con-
junctive queries. We study the containment problem,
and look at further extensions with first-order features,
and with non-regular relations that express arithmetic
properties of paths, based on the lengths and numbers
of occurrences of labels.

Categories and Subject Descriptors. H.2.1 [Database
Management]: Logical Design—Data Models; F.1.1
[Computation by abstract devices|: Models of
Computation—Automata

General Terms. Theory, Languages, Algorithms

Keywords. Graph databases, conjunctive queries, reg-
ular relations, regular path queries

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODS 10, June 6-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0033-9/10/0655.00.

Carlos Hurtado
Fac. Ingenieria y Ciencias, Univ. A. Ibafiez

carlos.hurtado®Quai.cl

Peter Wood
Dept. of CS and Inf. Syst., Birkbeck, U. London

ptw@dcs.bbk.ac.uk
1. Introduction

For graph-structured data, queries that allow users to
specify the types of paths in which they are interested
have always played a central role. Most commonly, the
specification of such paths has been by means of regu-
lar expressions over the alphabet of edge labels [2, 10,
13, 16, 29]. The output of a query is typically a set of
tuples of nodes that are connected in some way by the
paths specified. The canonical class of queries with this
functionality are the conjunctive regular path queries
(CRPQs), which have been the subject of much inves-
tigation, e.g. [10, 14, 16].

However, the rapid increase in the size and complexity
of graph-structured data (e.g. in the Semantic Web, or
in biological applications) has raised the need for ad-
ditional functionality in query languages. Specifically,
in many examples, the minimum requirements of suffi-
ciently expressive queries are: (a) the ability to define
complex semantic relationships between paths and (b)
the ability to include paths in the output of the query.
Neither of these is supported by CRPQs.

There are multiple examples of queries that require
these new capabilities. For example, [5] introduces
a query language for RDF/S in which paths can be
compared based on specific semantic associations. In
handling biological sequences one often needs to com-
pare paths based on similarity (e.g., edit distance) [20].
Paths can be compared with respect to other parame-
ters, e.g., lengths or numbers of occurrences of labels,
which can be useful in route-finding applications [6].

As for the ability to output paths, this has been pro-
posed, for example, as an extension to the SPARQL
query language — the standard for retrieving RDF data
[24]. However, [24] only proposed a declarative lan-
guage, and left most basic questions unexplored (e.g.,
what should an output be if there are infinitely many
paths between nodes?). Other applications for this
new functionality include determining the provenance
of data or artifacts [21], finding associations in linked
data [27], biological data [26] or social (or criminal) net-

works [32], as well as performing semantic searches over
web-derived knowledge [36].

While the need for the extended functionality of graph
query languages is well-documented (and sometimes is
even incorporated into a programming syntax), the ba-
sic theoretical properties of such languages are com-
pletely unexplored. We do not know whether queries
can be meaningfully evaluated, what their complexity
is, whether they can be optimized, etc.

Our main goals, therefore, are to formally define exten-
sions of graph queries that can express complex seman-
tic associations between paths and output paths to the
user, and to study them, concentrating on query evalu-
ation and its complexity, as well as some static analysis
problems.

We work with the class of extended conjunctive reqular
path queries or (ECRPQs), which generalize CRPQs by
allowing them to express the kind of semantic associa-
tion properties we explained above. That is, we allow
(i) n-tuples of path labels to be checked for conformity
to n-ary path languages, and (ii) paths, rather than
simply nodes, to be output. Conformity with respect
to n-ary languages is given, following the idea behind
CRPQs, with respect to n-ary regular relations.

As an example, consider a graph G with a single edge
label, defining the student-advisor relationship. Using
CRPQs, one can express many queries, such as find-
ing academic ancestors, or people whose sets of aca-
demic parents and grandparents intersect, or checking
whether Van Gucht and Tannen have a common aca-
demic ancestor (and if so, who that person is). However,
with CRPQs we cannot express queries asking for pairs
of scientists who have the same-length path to Tarski,
for example, nor can one ask for the precise paths by
which Van Gucht and Tannen are related to their com-
mon academic ancestor. With ECRPQs, we can express
such queries.

While leaving the above queries to the reader as an
exercise, we now outline a few examples of problems
where the power of ECRPQs is required. They will be
fully developed in Section 3, after we have presented the
syntax and semantics of ECRPQs.

(i) Pattern matching Given an alphabet ¥ and a set
of variables V, a pattern is a string over X U V. A pat-
tern defines a pattern language by instantiating vari-
ables with strings in X*. Pattern languages need not be
context-free: e.g., the language of squared words over X
can be expressed by the pattern X X, where X € V. But
finding nodes x and y connected by a path whose label
is in the language of squared words can be expressed by
the ECRPQ:

ATLS(JI, y) — (‘T7 1, Z)u (Zu T2, y)u T = T2
where z, y and z are node variables and m; and o are

path variables. Variables z, 71, and 7y are meant to
be existentially quantified. What makes this different

from CRPQs is the binary relation m; = w2 on paths:
it states that the paths between x and an intermediate
node z, and between z and y are the same.

(i) Semantic web associations In RDF/S, properties
can be declared to be subproperties of other proper-
ties. This is used in [5] to define a notion of semantic
association based on p-isomorphic property sequences:
two sequences are p-isomorphic if they are of the same
length and the properties at the same position in each
sequence are subproperties of one another. Such pairs
of sequences can be found by a modification of the pre-
vious query with a different binary relation expressing
the fact that the paths are p-isomorphic.

(iii) Approzimate matching Approximate string match-
ing [19, 23] and (biological) sequence alignment [20] are
both based on the notion of edit distance. The relation
representing pairs of sequences that have edit distance
at most k from one another, for some fixed k, is regular
[18]. So given a graph representing a pair of sequences,
an ECRPQ can determine whether they have edit dis-
tance at most k. We show in Section 3.1 that we can
also output the actual gaps and mismatches in the se-
quences using an ECRPQ.

Outline of the results After we formally define ECR-
PQs, we present an algorithm for query evaluation. It
turns out that the sets of labels of paths satisfying a
query are regular, and thus the evaluation algorithm
constructs automata to represent such sets.

We then investigate the complexity of query evaluation.
As yardsticks, we consider relational languages as well
as CRPQs. For conjunctive queries, combined complex-
ity is NP-complete, while it jumps to PSPACE-complete
for relational calculus. Hence we cannot hope to get
anything below NP for ECRPQs, and we hope not to
exceed the complexity of relational queries in a reason-
able class. As for data complexity, it is known to be
NLoGsPACE-complete for CRPQs, so this will serve as
another benchmark.

It turns out that the data complexity of ECRPQs
matches that of CRPQs, but combined complexity goes
up from NP to PSPACE, matching relational calculus in-
stead. In this case it is natural to look for restrictions.
A standard one for CQs is a restriction to acyclicity.
This works for CRPQs — combined complexity becomes
tractable — but does not work for ECRPQs, as the com-
bined complexity remains PSPACE-complete. However,
if our regular relations can only talk about lengths of
paths, then the complexity of ECRPQs drops to NP,
matching the complexity of the usual relational CQs.

We then look at extensions of CRPQs and ECRPQs:
with negation and universal quantification, and with
some non-regular relations. For the former, we get sur-
prisingly reasonable bounds for CRPQs, but the com-
plexity becomes too high when both negation and re-
lations on paths are allowed. For the latter, we look
at extensions with linear constraints on path lengths,

and prove some good complexity bounds (tractable
data complexity and NP combined complexity). We
also look at relations that compare numbers of occur-
rences of labels in paths, and prove some low complexity
bounds for queries with such relations.

While query containment is known to be decidable for
CRPQs, we show that ECRPQs share more properties
with full relational calculus: containment for them be-
comes undecidable. We recover decidability in one im-
portant subcase though.

Organization In the next section, we present back-
ground material on graphs, regular relations and CR-
PQs. Section 3 introduces ECRPQs and looks at their
applications in more detail. In Section 4, we consider
the evaluation of ECRPQs. Section 5 deals with the
data and combined complexity of ECRPQs. In Sec-
tion 6 we look at query containment, and in Section 7
we consider extensions with negation, and with non-
regular features.

2. Preliminaries

Labeled graphs and paths Queries in our set-
ting will be evaluated over labeled database graphs
(db-graphs), that naturally model semistructured data.
Formally, if ¥ is a finite alphabet, then a X-labeled db-
graph G (or simply db-graph if ¥ is clear from the con-
text) is a pair (V, E), such that V is a finite set of nodes
and F CV x X xVis aset of directed edges labeled in
3.

A path p between nodes vy and v, in G is a sequence
VoaQU1A1V2 * * * Uy —10m—1Um, Where m > 0, so that all
the v;’s are in V, all the a;’s are letters of X, and
(vi, ai,viy1) is in E for each ¢ < m. The label of such a
path p, denoted by A(p), is the string ag -« - aym—1 € X*.
We also define the empty path as (v, €,v) for each v € V;
the label of such a path is the empty string e.

Note that a X-labeled db-graph G can be naturally
viewed as a nondeterministic finite automaton (NFA)
over alphabet ¥ without initial and final states. Its
states are nodes in V, and its transitions are edges in
E. We use this equivalence in several constructions in
the paper.

Regular relations As our plan is to extend the notion
of recognizability from string languages to n-ary string
relations, we now give the standard definition of regular
relations over ¥ [15, 18, 8]. Let L be a symbol not
in 3. We denote the extended alphabet (X U {L}) by
¥,. Let § = (s1,...,8,) be an n-tuple of strings over
alphabet ¥. We construct a string [s] over alphabet
(X1)™, whose length is the maximum of the s;’s, and
whose i-th symbol is a tuple (¢q,...,¢,), where each
cr is the i-th symbol of si, if the length of s is at
least i, or | otherwise. In other words, we pad shorter
strings with the symbol L, and then view the n strings
as one string over the alphabet of n-tuples of letters.

An n-ary relation S on X* is regular, if the set {[3] |
5 € S} of strings over alphabet (3,)" is regular (i.e.,
accepted by an automaton over (X,)", or given by a
regular expression over (X)™). We shall often use the
same letter for both a regular expression over (X,)"
and the relation over ¥* it denotes, as doing so will not
lead to any ambiguity.

As an example, consider a binary relation s < s, saying
that s is a prefix of s’. The automaton recognizing this
relation accepts if it reads a sequence of letters of the
form (a,a), for a € X, possibly followed by a sequence
of letters of the form (L,b), for b € X. As another ex-
ample, consider a binary relation el(s, s’) (equal length)
saying that |s| = |¢'|. This relation is recognized by an
automaton that accepts if it does not see any letters
involving the | symbol.

To understand which relations on strings are regular,
it is often useful to provide a model-theoretic charac-
terization of this class. In the following we assume fa-
miliarity with first-order logic (FO). Consider the FO-
structure Mypniv = (X%, =<, el, (Py)aex) with domain
¥*, where < and el are as above, and P,(s) is true
iff the last letter for s is a. This is known as a uni-
versal automatic structure due to the following [8, 9]:
an n-ary relation S on X* is regular iff there exists
an FO formula ¢g(x1,...,2,) over Muypuiy such that

S={5€(Z)" | Muniv F ¢s(5)}.

In particular, regular relations are closed under all
Boolean combinations, product, and projection. Fur-
thermore, using the above result it is quite easy to show
that an n-ary relation is regular, by exhibiting FO for-
mulae defining them (see [8, 9, 7] for examples). For
example, |s| < |s'| is a regular relation definable by
o(x,y) = F (¥ 2 yANy # yAely,x)). On the
other hand, more elaborate techniques have to be used
to prove that an n-ary relation on ¥ is not regular. Ex-
amples of this kind include the binary relation <, that
consists of all pairs (s1, s2) such that s1 is a subsequence
of s9, and the ternary relation that contains all tuples
(81, 82, 83) such that s;s2 = s3.

Conjunctive regular path queries A basic querying
mechanism for graph databases is the class of regular
path queries [3, 11] that retrieve all pairs of objects in
a db-graph connected by a path conforming to some
regular expression. However, it has been argued (e.g.
[30]) that in order to make regular path queries useful in
practice, they should be extended with several features,
one of them being the possibility of using conjunctions
of atoms. This extension yields the class of conjunctive
regular path queries, which we formally define below
(see also [13, 29, 16, 10]).

Fix a countable set of node variables (typically denoted
by z,y, z,...), and a countable set of path variables (de-
noted by m,w, x,...). A conjunctive reqular path query
(CRPQ) @ over a finite alphabet ¥ is an expression of

the form:
Ans(z) «— /\ (zi, i, i), /\ Lj(w;), (1)
1<i<m 1<<t
such that

(i) m>0,t>0,
(ii) each L; is a regular expression over X,

(iil) z = (1, ., @Tm), ¥ = (Y1,-..,Ym) and Z are tu-

ples of node variables,
(iv) {1,
(v) {w1,...,w¢} are distinct path variables and each
wj is among the m;’s, and

., Tm } are distinct path variables,

(vi) z is a tuple of node variables among = and .

The atom Ans(Z) is the head of the query, the expres-
sion on the right of the « is its body. The query @ is
Boolean if its head is of the form Ans(), i.e. z is the
empty tuple.

Intuitively, such a query @ selects tuples z for which
there exist values of the remaining node variables from
z and y and paths m; between x; and y; whose labels
satisfy the regular expressions L; to L;. Formally, to
define the semantics of CRPQs @ of the form (1), we
first introduce a relation (G,o,u) = @, where o is a
mapping from Z,y to the set of nodes of a db-graph
G = (V,FE), and p is a mapping from {m,...,m,} to
paths in G. This relation holds iff p(m;) is a path in
G from o(x;) to o(y;), for 1 < i < m, and the label of
each path p(w;) is in the language of L;, for 1 < j <t.

We now define Q(G) to be the set of tuples o(Z) such
that (G, o, 1) E Q. If Q is Boolean, we let Q(G) be true
if (G,o,p) | Q for some o and p (that is, as usual, the
empty tuple models the Boolean constant true, and the
empty set models the Boolean constant false).

Remark: Our syntax differs slightly from the usual
CRPQ syntax in the literature (see e.g. [16, 10]). The
reason is that we make explicit use of path variables
in the queries — to treat CRPQs and ECRPQs in a
uniform manner — while the standard approach is to
refer to paths only implicitly.

3. Extended Conjunctive Path

Queries

Regular

Our goal is to extend the class of CRPQs in two ways.
First, we want to allow free path variables in the heads of
queries. Second, we want the bodies of queries to permit
checking relations on sets of paths rather than just con-
formance of individual paths to regular languages. This
leads to the definition of a class of extended CRQPs.

An extended conjunctive regular path query (ECRPQ)

Q@ over X is an expression of the form:
ATLS(E,)_() — /\ (xiaﬂ-iayi)v /\ Rj(@j)a (2)
1<i<m 1<j<t

such that

(i) m>0,t>0,

(i) each R; is a regular expression that defines a reg-
ular relation over X,

(i) = (z1,...,2m) and § = (y1,...
of node variables,

,Ym) are tuples

(iv) 7 = (71,...,mn) is a tuple of distinct path vari-

ables,

(v) {@1,...,0:} are distinct tuples of path variables,
such that each w; is a tuple of variables from 7, of
the same arity as R,

(vi) z is a tuple of node variables among Z, g, and
(vii) ¥ is a tuple of path variables among those in 7.

Note that this is similar to the definition of CRPQs; the
main differences between (1) and (2) are:

e ECRPQs can check whether a tuple of paths be-
longs to a regular relation, rather than just check-
ing whether a path belongs to a regular language;
and

e outputs of ECRPQs may contain both nodes
and paths, while outputs of CRPQs contain only
nodes.

The head, the body, and the notion of Boolean ECRPQs
are defined in the standard way. The relational part of

an ECRPQ Q (2) is Ay <;cp (@i, T, i)

The semantics of ECRPQs is defined by a natural ex-
tension of the semantics of CRPQs. For an ECRPQ
Q of the form (2), a db-graph G and mappings o from
node variables to nodes and p from path variables to
paths, we write (G, o, u) E Q if

e 4(m;) is a path in G from o(x;) to o(y;), for 1 <
i <m, and

e for each w; = (mj,,..., 7,), the tuple of strings
consisting of labels of wu(mj,),...,u(m;,) belongs
to the relation R;.

The output of Q on G (where the head of Q is Ans(Zz, X))
is defined as

Q@) = {(e(2), (X)) | (G,0,p) = Q}-

Note that the implicit existential quantification over
path variables that appear in the body but not in the
head is quantification over a potentially infinite set, as
there are infinitely many paths in any cyclic db-graph.

From now on, we identify the class of CRPQs with the
restriction of the class of ECRPQs to queries that do not

use regular relations of arity > 2. This is more general
than the definition of the previous section, since we now
allow CRPQs to output paths.

It is easy to prove that the class of ECRPQs is strictly
more expressive than the class of CRPQs. Formally,

Proposition 3.1 There is a Boolean ECRPQ Q) that is
not equivalent to any CRPQ Q'.

3.1 Applications of ECRPQs

In this section, we show that ECRPQs can express
queries found in a wide variety of application areas, in-
cluding finding associations in semantic web (or linked)
data, pattern matching, approximate string matching,
and biological sequence alignment.

Finding semantic web associations In a query lan-
guage for RDF/S introduced in [5], paths can be com-
pared based on specific semantic associations. Edges
correspond to RDF properties and paths to property
sequences. A property a can be declared to be a sub-
property of property b, which we denote by a < b. Two
property sequences v and v are called p-isomorphic iff
U = Up,...,U, and v = vy,...,v,, for some n, and
u; < v; or v; < u; for every i < n [5]. Nodes z and y
are called p-isoAssociated iff = and y are the origins of
two p-isomorphic property sequences.

Finding nodes which are p-isoAssociated cannot be
done in a query language supporting only conventional
regular expressions, not least because doing so requires
checking that two paths are of equal length. However,
pairs of p-isomorphic sequences can be expressed us-
ing the regular relation R given by the following reg-
ular expression: (U, yex. (a<bvb=<a) (a,b))*. Then an
ECRPQ returning pairs of nodes = and y that are p-
isoAssociated can be written as follows:

ATLS(I, y) — ($,7T1,Zl), (vaer ZQ)) R(Whﬂ?)

Path variables in an ECRPQ can also be used to return
the actual paths found by the query, a mechanism found
in the query languages proposed in [2, 5, 21, 24]. For
example, in [5] a p-query can take a pair of nodes u,v
and return the property sequences relating them. This
too can be expressed by an ECRPQ:

Ans(my,me) — (u,m1,21), (v, 72, 22), R(my, m2)

where the regular relation R is defined as above.

Pattern matching Let X be a finite alphabet and V
be a countable set of variables such that XNV = (. A
pattern a is a string over X UV. It denotes the language
Ly(«) obtained by applying substitutions o : V — ¥*
to a. As we remarked already, such languages need not
even be context-free.

However, for each pattern a = «y - - - ay,, where every

a; € XUV, we can define an ECRPQ Q. (z,y) which

finds pairs of nodes connected by a path in Ly («) (note
that this property is not definable by a CRPQ).

Indeed, the relational part of @, is
(0, 1, 21)5 ooy (Tn—1, Ty). If o is a letter,
then @, contains the atom a(m;), and if «; is a
variable, then it contains ¥*(m;). Finally, to ensure
equality of variables, for every two oy,«; which are
the same variable, the query @, contains a conjunct
m = m;. It is clear that @), indeed finds nodes
connected by paths from Ly ().

In fact, ECRPQs can express queries corresponding to
a larger class of languages than the pattern languages.
Regular expressions with backreferencing [4], as pro-
vided by egrep and Perl, for example, are in some sense
a generalization of patterns in that substitutions of vari-
ables are restricted by regular expressions: the syntax
(e)%X, where e is a regular expression and X is a vari-
able, binds a string w € L(e) to X. Subsequent uses of
X in the expression then match w. It should be clear
that we can easily extend the above construction of an
ECRPQ for patterns to one that corresponds to a reg-
ular expression with backreferencing.

In fact, ECRPQs can match patterns, such as a™b"c"”,
where a,b,c € ¥ and n € N, that cannot be denoted by
regular expressions with backreferencing, with the help
of the equal length predicate:

Ans(z,y) « (v,m1, 21), (21, T2, 22), (22, 3,),
a’*(ﬂ'l)vb*(ﬂ'Q)vC*(ﬂ'3)7el(ﬂ'17WQ)vel(W277T3)a
where el(m, ') is a shorthand for (U, yex(a, b)) (m, 7).

Approximate matching and sequence alignment
We treat approximate string matching and (biological)
sequence alignment together because both are based on
the notion of edit distance between strings. We consider
the three edit operations of insertion, deletion and sub-
stitution, defined as follows. Let s,s’ € X*. Applying
an edit operation to s yielding s’ can be modeled as a
binary relation ~» over ¥* such that x ~» y holds iff
there exist u,v € ¥*, a,b € X, with a # b, such that
one of the following is satisfied:

x =wuav, y=ubv (substitution)
x=uav, y=uv (deletion)
x=wuv, y=ubv (insertion)

Let < stand for the composition of ~ with itself k
times. The edit distance d.(x,y) between x and y is the

minimum number & of edit operations such that z A Y.

We define a relation D<F between strings as follows:
(z,y) € DSF iff d.(x,y) < k. This relation is regular
(indeed, it is easy to see that it is accepted by a two-tape
transducer, and the difference between the lengths of
and y is bounded by k; then it follows from the fact that
rational relations of such bounded distance are regular
18).

We now consider the use of edit distance in finding

string (or sequence) alignments. We can view an align-
ment of strings = and y over X at distance k as follows:

r = o a3 T1 - ap I (3)
Yy = Y% b oyi - bk oy

such that (i) x;,y; € £* and x; = y; for ¢ € [0, k], and
(ii) a;, b; € Z U {e} and a; # by, for i € [1,k]. There is
an alignment of x and y at distance k iff (z,y) € D<K,
We call each pair (x;,y;) a match and each pair (a;, b;)
a mismatch if a;,b; € ¥ or a gap if a; or b; is e. (If
we allow that a; = b;, then we align the strings with
distance at most k).

We have shown above that we can use an ECRPQ to
determine whether there exists an alignment at distance
k between two strings. However, we may also wish to
return the actual gaps and mismatches to the user. For
that, we assume that each node has an e-labeled loop,
and use an ECRPQ whose body is as follows

/\ (:Eiaﬂ-iaxi-‘rl)a /\ (yiapiuyi+1)7

0<i<2k 0<i<2k

/\ T2; = P2i, /\ R(m2i-1,p2i—1),

0<i<k 1<i<k

where R is a finite language containing all pairs (a,b)
in ¥ U {e} with a # b. The head of the query contains
the variables T2i—1, P2i—1, for 1 S 7 S k.

With the same approach, we can use ECRPQs to align
not only pairs but arbitrary tuples of sequences. Mul-
tiple sequence alignment is used to find the shared evo-
lutionary origins of biological sequences.

4. Query Evaluation

We now describe how ECRPQs can be evaluated. We
need to take care of two aspects that distinguish ECR-
PQs from CRPQs: relations on paths, and path vari-
ables in the output. To deal with the former, we de-
fine a notion of convolutions of db-graphs and queries,
that reduces the evaluation of ECRPQs to the evalua-
tion of CRPQs. To deal with the latter, we produce an
automaton construction that can represent both nodes
and paths in the output.

Convolutions of graphs and queries We now
present a construction that transforms a db-graph G
and an ECRPQ Q into a db-graph G’ and a CRPQ @’
with a single relational atom so that the evaluation of
Q' over G’ “coincides” (modulo a simple translation)
with the evaluation of Q) over G.

Let G be a Y-labeled db-graph. By GG, we denote the
Y| -labeled db-graph obtained from G by adding a 1-
labeled loop to each node of G. We iteratively define
G, the m’th convolution of G, as follows:

G'=G, and G =G, ®G™,

where ® denotes the product of two db-graphs. We use
the symbol ® rather than x to indicate that this is
not the standard product viewed as a graph/automaton
over the same alphabet, but rather a graph over the
product of alphabets. Formally, given a Y;-labeled db-
graph G; = (V1, E1) and a Yo-labeled db-graph G2 =
(Va, Es), their product G1 ® G is the (X1 x X3)-labeled
db-graph G = (Vi x Vu, E), where E contains edges
((v1,v2), (a,b), (v],v5)), such that (v1,a,v]) € Fy and
(v2,b,v4) € E3. Note that this makes G™ a (X)™-
labeled db-graph.

Consider an ECRPQ @ of the form:
Ans(Z,x) «— /\ (T2i—1, i, T2i), /\ Rj(7). (4)

1<i<m 1<j<t

Note that the variables z1,...,zs,, are not necessar-
ily distinct. Let S; (1 < j < t) be the nj-ary regular
relation defined by R;. We let Lg be the regular ex-
pression over (X)™ that represents the m-ary regular
relation Sg = S1(7!) < ... > Sy(7'). Note that Sg
is indeed regular since the class of regular relations is
closed under intersection, projection, and product, and
that relations of the form {5 | s; = s;}, which are nec-
essary for defining joins, are regular as well.

The convolution of ECRPQ @ (4) is the CRPQ query
Q. defined as

Ans(y,y',m) — (y,m,y'), Lo(m). (5)

Note that this is indeed a CRPQ over (X,)™-labeled
db-graphs. Moreover, Q.(G™), which consists of two
m-tuples of nodes and a path in G™, contains all the
information we need to extract Q(G); below, we show
how to do this.

Let

be a path in G™, where v; = (v},...,v") for each i < p
isamnode in G™, and a; = (a;,...,a™) foreachi < p—1
is an element of (X,)™. Then, for each j < m, we let

p(j) = vpapvi - vy,_qay_qv;
be a path in G| . Notice that this is indeed a path in G|
but not necessarily in G, as it may contain |-labeled
loops. We then let ps(j) stand for the path obtained
from p(j) by eliminating all such loops v_Lv; this is now
a path in G.

The output of Q.(G™) consists of tuples of the form
(u,a',p), where © = (u1,us,...,uzm-1) and @’ =
(ug, ug, ..., Uusy) are nodes in G™ and p is a path in
G™. We say that (@, d’) are Q-compatible if, whenever
xz; = x; in @, we have u; = uj, for all 4,7 < 2m. We
now define the Q-compatible output of Q. on G™ as the
projection of the set

{0500, | 50, @sompett)

onto the attributes that appear in the head of @ in (4).

That is, if x; is among z, we project onto u;, and if 7;
is among Y, we project onto pg(j).

Theorem 4.1 Let Q be an ECRPQ of the form (/) and
G a db-graph. Then the Q-compatible output of the con-
volution CRPQ Q. on G™ coincides with Q(QG).

Representing paths in the answers Since ECRPQs
can return paths, the answer to a query may be infinite
(for example, if there is a cycle in the input graph, then
we have infinitely many paths). In such cases we need
to return a compact representation of the set of answers
to an ECRPQ. It turns out that for each tuple of nodes
v, the set {x | (U, x) € Q(G)} is a regular relation, and
an automaton defining this relation can be constructed
in time polynomial in the size of the input graph. We
now present this construction.

Consider an ECRPQ @ of the form (2), ie,
Ans(z,X) — Nicicm @i mi,9i), Nicjcp, RBi(77), a db-
graph G = (V,E), and a tuple v of nodes such that
|o| = |Z|. We let Q(G, v) stand for the set {p | (7,p) €
Q(G)}

Let |x| = k. We say that a path 7 in G* rep-
resents a k-tuple of paths (p1,...,px) in Q(G,1t) if
7s(j) = p;j for each j < k and the label of 7 is pre-
cisely [A(p1), ..., A(pr)]- Recall that A(-) stands for the
label of a path; in particular, each A(p;) is a string
in ¥*. Notice that such a path 7 is unique for the
tuple (p1,...,pk), and in turn determines the tuple

(p1, ..., px) uniquely.

Proposition 4.2 For each ECRPQ Q with the head
Ans(z1,...,20,X1,- -+ X&), db-graph G = (V,E) and
tuple v € V¢, one can construct, in polynomial time in
|E|, an automaton Ag’ﬁ) over the alphabet VU (X)*
that accepts precisely the representations of all the tu-

ples of paths in Q(G, 7).

5. Complexity of query evaluation

The reduction from ECRPQs to CRPQs gives us fairly
easy upper bounds: one has to compute the convolution
and evaluate a CRPQ over it. Using NLOGSPACE and
NP bounds on the data and combined complexity of
CRPQs, we conclude that the data complexity of ECR-
PQs is in PTIME, and their combined complexity is in
ExpTiME. But can we do better?

It turns out that we can. For data complexity, we
can lower the bound to NLOGSPACE: that is, the
data complexity of CRPQs and ECRPQs is the same.
For combined complexity, however, relations do make
a difference: we show PSPACE-completeness of com-
bined complexity. In the relational world, there are
many techniques for lowering the NP combined com-
plexity of conjunctive queries, typically by considering
acyclic queries. This approach works for CRPQs, for
which we show that acyclic queries can be evaluated in

PTiME. However, when we move to ECRPQs, acyclic-
ity does not lower the complexity. We then show that
the techniques inspired by modeling infinite-state sys-
tems for verifying their temporal properties give us NP-
completeness of combined complexity of classes of ECR-
PQs, matching the combined complexity of relational

CQs.
5.1 Data complexity

If we fix a query @ over X, the problem we look at is
the following:

PrROBLEM: ECRPQ-EVAL(Q)

InPUT: A Y-labeled db-graph G, a tuple v
of nodes in G and a tuple p of paths
in G.

QUESTION: Does (7, p) belong to Q(G)?

The convolution technique, if applied carefully, gives us
an NLOGSPACE upper bound. To evaluate the convolu-
tion query Q. over G™, we use an “on the fly” evalua-
tion of the emptiness algorithm for the cross product of
the automaton G™, with a guessed assignment for the
initial and final states, and the automaton Ag that ac-
cepts the language Lg of the convolution query. In the
proof we still have to deal with some technical details
(for instance, the presence of paths in the output for
non-Boolean queries).

Theorem 5.1 For each ECRPQ @, the problem
ECRPQ-EVAL(Q) is in NLOGSPACE.

Since the problem can be NLOGSPACE-hard even for
regular path queries that do not make use of path vari-
ables in the head [13], we also have a matching lower
bound. Also note that when query @ is fixed, Propo-
sition 4.2 tells us that there is a polynomial-size family
of automata that represents the whole space of answers
for @ over G.

5.2 Combined complexity

We now turn to the combined complexity, that is, query
evaluation that takes both the db-graph and the query
as the input:

ProBLEM: ECRPQ-EVAL

INPUT: A finite alphabet X, a 3-labeled db-
graph G, an ECRPQ @ over X, a
tuple v of nodes in G and a tuple p
of paths in G.

QUESTION: Does (7, p) belong to Q(G)?

The problem CRPQ-EVAL is the restriction to when
the query @ in the input is a CRPQ.

We start with the easier problem CRPQ-EVAL. It ap-
pears to be a folklore result (although we could not find
it stated explicitly in the literature) that, without path
variables in the head (i.e., the empty tuple p) this prob-
lem is NP-complete. For the sake of completeness we
present (in the full version) a proof of a slightly more
general result that handles free path variables as well.

Proposition 5.2 CRPQ-EVAL is NP-complete.

However, adding regular relations to queries makes the
query evaluation problem harder (at least under widely-
held complexity theoretical assumptions). Notice that
this is in stark contrast with what happens in the same
case to the data complexity of the problem, where rela-
tions on paths do not increase the complexity.

Theorem 5.3 ECRPQ-EVAL is PSPACE-complete. It
remains PSPACE-hard even when restricted to Boolean

ECRPQs.

Note that the algorithm of Theorem 4.1 runs in single-
exponential time; we give an on-the-fly construction of
the automaton for computing the output that reduces
the complexity to PSPACE. Hardness follows from en-

coding the regular expression intersection problem as
an ECRPQ.

We now look at various approaches to lowering the com-
plexity of query evaluation.

Acyclic queries It is, of course, a classical result of
relational theory that acyclic conjunctive queries are
tractable with respect to combined complexity. What
if we require that the relational part of an (E)CRPQ
be acyclic? Formally, we say that an ECRPQ or a
CRPQ @ is acyclic if the graph Hg of its relational
part A<, (@i, T, y;), containing precisely the edges
(24,y;) for i <m, is acyclic.

The following result shows that the situation is drasti-
cally different for CRPQs and ECRPQs: the restriction
works for the former but not for the latter. In fact,
allowing only unary regular relations is precisely the
boundary of tractability for the query evaluation prob-
lem restricted to acyclic ECRPQs.

Theorem 5.4 e The problem CRPQ-EVAL is in
PTIME, if restricted to the class of acyclic CRPQs.

o The problem ECRPQ-EVAL is PSPACE-complete,
even if restricted to the class of acyclic Boolean
ECRPQs over a fized alphabet 32, that make use of
reqular relations of arity at most 2.

For the first item, we show that the problem is re-
duced to evaluating acyclic CQs over the usual rela-
tional databases. The second item uses the reduction
of Theorem 5.3, which requires Boolean acyclic queries
and binary relations over a fixed alphabet.

Numer