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Abstract

Number restrictions are concept constructors that ardalaiin almost all implemented Description
Logic systems. However, they are mostly available only irmther weak form, which considerably
restricts their expressive power.

On the one hand, the roles that may occur in number resmigtime usually of a very restricted
type, namely atomic roles or complex roles built using eifhéersection or inversion. In the present
paper, we increase the expressive power of Descriptiondsolgy allowing for more complex roles
in number restrictions. As role constructors, we considengosition of roles (which will be present
in all our logics) and intersection, union, and inversionraies in different combinations. We will
present two decidability results (for the basic logic theteads ACC by number restrictions on roles
with composition, and for one extension of this logic), ahtee undecidability results for three other
extensions of the basic logic.

On the other hand, with the rather weak form of number restris available in implemented
systems, the number of role successors of an individual ngnbe restricted by a fixed non-negative
integer. To overcome this lack of expressiveness, we alwdriables ranging over the non-negative
integers in place of the fixed numbers in number restrictidtge expressive power of this constructor
is increased even further by introducing explicit quantii®r the numerical variables. The Description
Logic obtained this way turns out to have an undecidablesfsatility problem. For a restricted logic
we show that concept satisfiability is decidable.

1 Introduction

Description Logics provideonstructorsthat can be used to build complex concepts and
roles from atomic concepts (unary predicates) and roles (binary predicaktesyvell-known
Description Logic AL [24] allows for propositionalconstructors, LI, — on concepts as
well as foruniversalandexistential value restrictionsFor examplé, the following concept
describes happy parents as humans having a nice child and whose childreppyeand
have some nice friends:

Hurmman 1 (3chi | d.Ni ce) 1 (vchi | d.(Happy 1 (3fri end.Ni ce))).

*To appear inJournal of Logic and Computatioivol. 9(3), 1999
1This investigation was motivated by a process engineeripijcation. However, to present our results in a way
that is more intuitive for readers not familiar with procesgyineering, we give examples concerning families.



The general idea underlying knowledge representation systems based oipfiestogics
(DL-systems) is the following. First, titerminologyof an application domain is fixed. In the
terminology belownumber restrictionsire used to describe parents as those humans having
atleast one child, parents of many children as those having at least fainechiétc. Number
restrictions allow one to restrict the numberrofe-successorghat is, the number of those
objects an object is related to via a role. In this exam@te4 chi | d) restricts the number

of chi | d-successors to at least 4, wherégs2 chi | d) restricts this number to at most 2.

Parent := Human M (>1child)
Par ent _of many := Parent M (>4child)
Par ent _of few := Parent M (<2child)
HappyParent := Human 1 (dchil d.Ni ce)
M (vchi |l d.(Happy M (3fri end.Ni ce)))

In the next modelling step, this terminology can be used to describraeate “world.” DL-
systems are designed t@asonabout both the terminology and the description of concrete
worlds. For example, they should be able to infer tHappy Par ent , Par ent _of _nany,
and Par ent _of _f ew are subsumed bipar ent . Another relevant inference problem is
to decide whether a given concept is satisfiable, that is, whether its demtriptnon-
contradictory.

To be useful in an application, thexpressive powesf a given Description Logic must
be adequate for the application (see [2, 15] for a formal definition pfessive power).
Intuitively, the Description Logic should allow one to describe tielevant properties of
objects of the application.

Number restrictions appear to provide expressive power required by applications.
Moreover, humans also tend to describe objects by restricting the nurhbbjetts they
are related to. As a consequence, number restrictions are present in mesnengtd DL
systems [16, 20, 21, 3]. Unfortunately, they are usually fountéirtweakest form:

1. They arenot qualifying that is, we may not restrict the number of role-successors of
a certain kind, but only the total number of role successors. For examvgl cannot
restrict the number of childrethat are girls but we can only restrict the total number
of children.

2. Inside number restrictions, only atomic roles are allowed, thatosiplexroles built
using some role-forming constructors are disallowed. Thus, oneotaestrict the
number of grandchildren using only the ra&i | d.

3. Finally, it is only possible to restrict the number of role-sucoes® at least or at most
n, for afixednon-negative integer. For example, it is not possible to describe persons
having more children than they have friends or persons hauing same number of
children as their spouse or husbhand—without fixing a bound fomtlisber.

The first shortcoming has been overcome in [12], where so-cqlietifyingnumber restric-

tions were introduced. For examplez 4 chi | d G rl) is a qualifying number restriction
describing parents having at least four children that are girls. To over¢bhensecond and
third shortcoming, we will introduceomplex roles in number restrictio@sdsymbolic num-

ber restrictions



Complex roles in number restrictions

Complex roles are built using role constructors such as compositicion, intersection,
inversion (or converse), or the transitive closure of roles. It waswstthat Description Logics
can be extended with complex roles in value restrictions without dpdecidability of the
relevant inference problems[1, 22, 23, 7, 6, 8]. However, investigatdf the computational
complexity of complex roles in number restrictions were restrictechtersection [9] and
inversion [5]. If both complex roles and number restrictions are piteisea Description
Logic, one thus must distinguish between the roles allowed in valugctems and those
allowed in number restrictions.

By restricting the use of complex roles to value restrictions, osedexpressiveness, as
illustrated by the following examples. For example, by usingipositiorof roles in number
restrictions one can describe persons having at least four grandchildren:

Human 1 (> 4 chi | dochi | d).

To describe those persons whose children still live at home, addilypthe unionof roles
inside number restrictions is needed:

Human 1 (= 1 has- addr ess U (chi | dohas- addr ess)).
To describe persons having at least five siblimgegrsioncomes into play:
Human M (> 6 chi | dochi I d™).

Finally, usingintersectionof roles, we can describe persons having at least five friends in
common with their husband or spouse:

Humann (>5friendn (marri ed-toof ri end)).

Symbolic number restrictions

In traditional number restrictions, we always have to fix a non-negatieger by which the
number of role successors is restricted. Thus, we cannot describe, foplexg@arents whose
children like at least as many things as they dislike—without giving@peubound on the
number of things their children may dislike. Symmetry-conditioks lihe one above (i.e.,
conditions of the form “having the same numbensfas ofys) often occur in practice, but
they cannot be expressed using traditional number restrictions.
To overcome this lack of expressiveness, we introduce numerical variables. . to be

used in number restrictions. Thus, the above example can be described by

Parent Mvchild.((= adislikes)n(>alikes))
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wherea is supposed to be interpreted by a non-negative integer. This ezaayglals a cer-
tain ambiguity: the exact meaning of the concept expression depends drewtiet variable
«a must be interpreted by the same non-negative integer for all childrewhether it can

have different values for different children. To avoid this ambiguitg will introduce ex-

plicit existential quantification of numerical variables (denoted dyto distinguish between
(1) parents all of whose children like more things than they dislike

Parent M (Vchil d.(Ja.(= adislikes)n (> alikes))), 1)



and (2) parents where all children dislike the same number of thingsljkenchore things
than they dislike:

Parent M (Ja.(Vchil d.(=adislikes)n(>alikes))). (2)

Outline of this paper

In the following, these two ways of augmenting the expressive pofveumber restrictions
are investigated in detail. It turns out that these extensions are ofshifh expressive
power that they lead, in many cases, to undecidability. To keep things akesis1possible,
we will restrict our attention to the basic inference problems subsiompnd satisfiability
of concepts, and not mix both extensions. In Section 2, the basic Désaripgics and the
relevant inference problems are introduced.

In Section 3, the extensions by complex roles in number restrictiensmaoduced, and
their computational properties are investigated. Extension&6by different kinds of com-
plex roles in number restrictions are almost completely classified wiftertgo the decid-
ability of the satisfiability and subsumption problem. These resar obtained either as a
consequence of a general decidability resultin [11], or they are explmibved in this paper.
The latter ones include the

¢ decidability of AZC with composition in number restrictions,
¢ undecidability of AZC with composition and intersection in number restrictions,
¢ undecidability of AZC with composition, union, and inversion in number restrictions.

In addition, we also conside4C . (i.e., the extension Qfl{C by transitive closure of roles in
value restrictions), and show that its extension by number restigtio roles with composi-
tion is undecidable.

In Section 4, symbolic number restrictions are introduced. It tuurtstioat, for “full”
symbolic number restrictions, satisfiability and subsumption adeaidable, whereas a re-
striction to the kind of symbolic number restrictions used in althef above examples leads
to decidability of satisfiability. Unfortunately, this restricticedlds to a logic that is no longer
closed under negation, and it turns out that, for this logic, thewsupsion problem is still
undecidable.

Finally, in Section 5, we mention related decidability and undecidabiéisults from
Description Logics, Modal Logics, and Predicate Logic.

2 Preliminaries

All investigations in this work concern extensions of the Descriptiogic ACCN [13, 9],
which is the extension ofilC [24] with (non-qualifying) number restrictions on atomic roles.
For these two Description Logics, both satisfiability and subswnpire decidable. More
precisely, these inference problems were shown tB&i@ace-complete [13, 9].

Definition 1 Let N~ be a set oftoncept namesand Ny a set ofrole names The set of
ALC-conceptss the smallest set such that

e every concept name is a concept.



¢ if C andD are concepts anf is a role name, then

- (CnD), (CuD), (-0C), (Boolean operators)
- (VR.C), (3R.C) (value restrictions)

are concepts.

Starting with role names itV g, regular rolesare built using the role constructors composition
(RoS), union(R U S), and transitive closurgR ™).

e AL, is obtained fromAL by allowing, additionally, for regular roles in value re-
strictions.

e ALC, is obtained fromALC by allowing, additionally, for the transitive closure of roles
in value restrictions.

o ACCN (resp. AL, N and AL, N) is obtained fromALL (resp. AL, and AL )
by allowing, additionally, for concepts of the for® n R) and (< n R) (number
restrictions), for all role nameR and non-negative integers

In the next section, we will also consider the additional role corsirs intersectiotRM.5)
and inversior(R™1).

The meaning of these constructors, and thus also of the Descriptidoshwg have just
introduced, is defined using a Tarski-style model-theoretic semantics.

Definition 2 An interpretationZ = (AZ,-%) consists of a seA”, called thedomainof Z,
and an extension functiof that maps every concept to a subset\df, and every (complex)
role to a subset ah? x AZ such that the following equalities are satisfied:

(Cn D) =C* N D7,
(Cu D) =C*UDT,
—\CI:AI\CI,
(AR.C)f ={d e AT |3e € AT : (d,e) € RT Ne € CT},

(VR.C)T ={d e AT |Vec AT : (d,e) € RT = e € C*},
(>nR)I—{dEAZ\#{€€AI|(d,e)ERI}Zn},
(<nR)I—{dEAI\#{€€AI|(d,e)ERI}Sn},
(R URy)* = RiTUR,T,
(RmRz)I N Ry,
(R~ )I—{(de)eAIxAI\(ed)eRI}
(R 10R2)If{(df)€AI><AI|He€AI (d,e) € RF A (e, f) € R},
(R*)F =Uis1(RP)'

where# X denotes the cardinality of a s&t and(R”) thei-times composition of2” with
itself. If d € C*, we say thatl is aninstance ofC in Z. If (d,e) € R%, we say thatl is an
R-predecessor af, ande is anR-successor of in 7.

A conceptC is calledsatisfiableiff there is some interpretatiod such thatCZ # 0.
We call such an interpretationraodel of C. A conceptD subsumes conceptC' (written
C C D) iff for all interpretationsZ we haveC? C D7,



Additional Boolean operators, such as implication, will be used as aialti@vs: for
example A = B stands for-A LI B. Furthermore, we can express all relationgin <, >}
inside number restrictions, forexamfle n R) = -(<n R)and(=n R) = ((<n R) N
(>n R)).

If a Description Logic allows for negation and conjunction of conceptbsumption and
(un)satisfiability can be reduced to each other:

e C' C Diff C =D is unsatisfiable,
e (' is unsatisfiable ifiC C A M —A (for a concept namel).

Since all but one Description Logic considered here are in fact propoaity closed, this
connection between satisfiability and subsumption will be heavilyadtqul: we restrict our
attention to one of the two inference problems, namely satisfiability) m the decidability
and in the undecidability proofs.

3 Number Restrictions on Complex Roles

In this section, we introduce extensions 4fCN, AL\, and ACC N with number re-
strictions on complex roles and investigate the complexity of theesponding inference
problems. This investigation yields an almost complete classificatidheoéxtensions of
ALCN by different kinds of complex roles in number restrictions. Furthemnit turns out
that it suffices to extendlC, N with number restrictions on role chains (that is to allow for
number restrictions with composition) to obtain undecidability.

To simplify the presentation of our results, we start by giving aeseé of how to build
extensions ofACCN', ALC,.g\N', and ACC N with number restrictions on complex roles. The
name of such an extension consists of the name of the base logicddlloythe set of role
constructors that are allowed inside number restrictions.

Definition 3 For a setM C {U,M,o, ~!'} of role constructors and a complex roig
we call a number restriction of the forf®>> »n R) or (< n R) an M-number restric-
tion iff R is built using only constructors from/. The set of ACCA (M )-conceptgresp.
ALCLN (M)-conceptsand AL\ (M )-concepty is obtained fromAZC-concepts (resp.
ALC ;- and ALC .g-concepts) by additionally allowing fav/-number restrictions.

Composition is present in all extensions investigated in this papéhéofollowing rea-
sons. On the one hand, composition in number restrictions sfrongieases the expres-
sive power: it allows one to restrict the number of raleain-successors. The expressive-
ness of this extension even leads to the loss of the tree-model propgnyperty satisfied
by most of the Description Logics considered in the literature. For @@nthe concept
(> 2 R)MN (VR3S.A) M (<1 RoS) is obviously satisfiable, but each of its instances has
two R-successors having a comm@&rsuccessor. Thus, models of this concept cannot be
tree-models. On the other hand, decidability of satisfiability and sapsan for ACCN (M)
for setsM C {u,n, !} follows immediately from a result in [11]; this result is discussed
in more detail in Section 5.

The examples introduced in Section 1 should provide an intuition ledtvean be ex-
pressed using complex roles inside number restrictions. To obtageped insight into the
expressive power of Description Logics with complex number restrigtive first show the
undecidability results.



3.1 Undecidable Extensions

We will use a reduction of the domino problem—a well-known undedi&lploblem [14, 4]
often used in undecidability proofs in logic—to show that concept saltiiitly is undecidable
for the three extensiondCA (o, U, ), ALCN (o, M), and AL N (o) of the decidable logic
ALCN (o) considered in the next subsection. For didactic reasons, we will alsidesrthe
logics AL g\ (o, L) and ACLC4 N (o, L1), although their undecidability follows from the other
results.

Definition 4 A tiling systemD = (D,H,V) is given by a non-empty seD =
{Ds,...,D,} of domino typesand by horizontal and verticatatching pairsH C D x D,

V C D x D. Thedomino problenasks for acompatible tilingof the first quadraniN x IN
of the plane, i.e., a mappirtg N x N — D such that, for alin,n € N,

(t(m,n),t(m+1,n)) € Hand
(t(m,n),t(m,n+1)) € V.

The standard domino problem asks for a compatible tiling of the aviptdne. However,
a compatible tiling of the first quadrant yields compatible tilingsadbitrarily large finite
rectangles, which in turn yield a compatible tiling of the plane [14ju§, the undecidability
result for the standard problem [4] carries over to this variant.

In order to reduce the domino problem to satisfiability of concepts, wst show how a
given tiling systemD can be translated into a concdpp (of the logic under consideration)
such thatEyp is satisfiable iffD allows for a compatible tiling. This task can be split into
three subtasks, which we will first explain on an intuitive leveldoefshowing how they can
be achieved for the five Description Logics under consideration.

Task 1: It must be possible to represent a single “squardNof IN, which consists of points
(n,m), (n,m+1),(n+1,m),and(n+1,m+1). Theidea s to introduce roles, Y,
where X goes one step into the horizontal (i.e-) direction, andY” goes one step
into the vertical (i.ey-) direction. The Description Logic must be expressive enough
to describe that an individual (a poifi, m)) has exactly oneé-successor (the point
(n+1,m)), exactly on& -successor (the poiiit, m+1)), and that theXoY -successor
coincides with th& o X -successor (the poiit, + 1,m + 1)).

Task 2: It must be possible to express that a tiling is locally compatitde, hat theX - and
Y -successors of a point have an admissible domino type. The idea sdtiats each
domino typeD; with an atomic concepb;, and to express the horizontal and vertical
matching conditions via value restrictions on the roles”.

Task 3: It must be possible to impose the abdeeal conditions on all points ifN x IN.
This can be achieved by constructing a “universal” idland a “start” individual such
that every point is &/-successor of this start individual. The local conditions can then
be imposed on all points via value restrictionsioffior the start individual.

Task 2 is rather easy, and can be realized using #f€-conceptCp given in Figure 1.
The first conjunct expresses that every point has exactly one domieo &yl the value
restrictions in the second conjunct express the horizontal and verticahimgtconditions.

Task 1 can be achieved in any extension 4CN (o) with either union or intersection of
roles in number restrictions: see the conceptsandC,, in Figure 1.



Cp= U (D;n( 1 -Dy)n

1<i<m 1<j<m

- i#£]

)i (X, U D U D))
Cho:= =1X)NE=1Y)N(=1XeY)N(=1YoX)M(=1YoX U XoY)
Ch:= (=1X)N(=1Y)N(=1XeY)N(=1YoX)N(=1YoX M XoY)

ES) = (=1R)N(VR*.(CLNCp M (>2R)N(<2RUXLY)))

EP = C1U)n(VU. (CLNCpN(=1XoU )N (=1YoU )N
(K1UTUYoU ' UXoUY)))
E¥ = (=1R)N(=1RMNRoToR)M
(VRYTVR. (CqhnCpn(K1T)NMWY(K1T)N(VX(L1T))N

(=1TNXoTNYoT)N
(=1 XMNXoToR)MN(=1Y MNYoToR)))

whereA = B is an abbreviation forA L B and

(= n R) is an abbreviation fof>n R) N (< n R).

Figure 1: Concepts used in the proof of Theorem 5

Task 3is easy for logics that extend/C .., and more difficult for logics without transitive
closure. The general idea is that the start individuislan instance of the concept, to be
constructed. From this individual, one can reach &ighe origin(0,0) of N x IN and alll
points that are connected with the origin via arbitrafyandY -paths.

With this intuition in mind, the reduction concepts that achieve Taatehow explained
in detail for each undecidable extension &fC, AL ., and AL, by complex number
restrictions.

ALC N (o, L1): We start with an extension ofilC.., since here it is rather easy to reach,
from the start individual, all individuals representing points e plane. In fact, in
extensions ofA(C,.;, we can use the complex ro[e& LI Y)* to reach every point
accessible from the origif0), 0) via arbitrary X - andY -paths. Thus, for each tiling
systemD, the AL .\ (o, LI)-concept

EY) = (=1 R)N (V(RU (Ro(X UY)T)).(CL M Cp)).

can be constructed, which is obviously satisfiable if, and only fdmits a compatible
tiling.

ALC,N (o, 11): The complex role in the value restriction can even be restricted to desimp
transitive closure of an atomic role. Intuitively, a starting pantside the plane is
used which is connected to each point in the plane via sBmpath. To achieve this,
the conceptEg') in Figure 1 makes sure that thé- and theY -successors of each
point in the plane are alsB-successors of this point. Hen&" can be used in place

of (X UY)* as “universal” role, and thus the concelbgl) is in ALCN (o, ).



ALCN (o,11,~1): In ACCN (o0,11,71), a role naméJ for the “universal” role is explicitly in-
troduced, and number restrictions involving composition, uniod,iaversion of roles
are used to make sure that the start individual is directly connected with every
point: see the concegﬂg) in Figure 1 and the left diagram in Figure 2. The number
restrictions inside the value restriction make sure that every pdimat is reached via
U from the start individual satisfies the following: [8-successor and ifs-successor
each have exactly orié-predecessor, which coincides with the (uniguiepredecessor
of p, i.e., the start individual. Thus, th€-successor and thé-successor op are also
U-successors of the start individual.

Y Y
X
/Y
X
U

VW

e

Figure 2: The universal role fadCN (o, 1,~" ) and ACLCN (0, 1)

ALCN (o,M): For ACLCN (o,1), a similar construction is possible. Since inversion of roles is
not allowed inALCA (o, 1), two role namesk andT" are needed for the construction
of the universal role. The intuition is thdt plays the role of the inverse @ (except
for one individual), and the “universal” role corresponds to the cositipn RoT' o R;
see the right diagram in Figure 2. The start individuélvhich is an instance oEg)),
has exactly ondz-successopq gy, which coincides with it§207'o R-successor. The

individual p(g o) corresponds to the origin @ x IN. The number restrictions d_f(g)
make sure thap( o) satisfies the following: It has exactly orfe-successor, call it
s', which coincides with thé?o T-successor of, and with the (unique]'-successors
of the X- andY -successors af(q,o). In addition, the (uniqueX -successor of g o)
is also anX o T' o R-successor o ), which makes sure that th&-successor of
P(0,0) IS an R-successor of', and thus anizo 7o R-successor of. The same holds
for the Y'-successor. One can now continue the argument wittXtheiccessor (resp.
Y'-successor) of(o,) in place ofp(q,g)-

With the intuitions given above, it is not hard to show forall < i < 3, that a tiling
systemD has a compatible tiling ing) is satisfiable, and that the same is truel!';’@l ),

Theorem 5 Satisfiability (and thus also subsumption) of concepts is undecidatvle f
AL N (o,10), ALCN (0,1, 1), and ALCN (o, 1).
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Figure 3: (Un)decidability results for extensionsCN .

This theorem does not explicitly mention the undecidability result4€C,.\ (e, L1), since it
is an immediate consequence of the result46¢,\ (o, ).

Figure 3 gives an overview of the (un)decidability results for extars of ACCN by
complex roles in number restrictions. Decidable extensions are light whereas undecid-
able ones are dark grey. The overview shows the results from Theoregether with the
decidability results that follow from [11] and the decidability resthiat will be shown in
the next section. The only problems that remain open for the extensioACA concern
ALCN (0,71) and ALCN (o, U). Until now, neither a decision procedure for one of these
extensions nor a proof of their undecidability could be found.

To make the picture more complete, we will now focus on extensioo&Bf . So far,
only ALC N (o, L1) was shown to be undecidable. It will now be shown that, in extensibns o
ALC, N, it suffices to allow for composition in number restriction in ordeldse decidability
(see Figure 6 for an overview of the (un)decidability results foeestons of ACC. A by
number restrictions on complex roles). Again, a reduction of the domproblem to concept
satisfiability is used to show undecidability g A (o). Since this reduction is rather
different from the ones above and more complicated, it is treated separaielyrelundant)
reduction forAZC, NV (o, L) was given since it served to give the intuition &fC N (o, U, 1)
and ACCN (o,M). The concepts used for the reduction of the domino probleAth N (o)-
concept satisfiability are given in Figure 4.

The concepCyim Makes sure that each point will be an instance of either B or C
(which are disjoint), and that with each point exactly one domino ®pwiill be associated.

Task 1is achieved via the concepty, which describes a square by using a single rdle
Each instance of'y has twoX-successors that in turn each have tWesuccessors. The
conjunct(= 3 X o X) makes sure that th& -successors of an instance @f; have one

10



Ce =(=2X)N(¥X.(=2X))N(=3 X oX)
Chorim = (AuBuC)ﬂ]<LI< (D;n( [T =Dy))

Caiag = (A= ((3X.B)N (3X.C))) N
(B= ((3X.A)N(EX.0)))N
(C=((3X.A)N(3X.B)))

Cp =
1£m ((AnD;) = (3X.(Cn ((Di,Dl_'j)eH D;)) N3X.(B ((Di.’%]])evpj)))) M
(BN D;)= (3X.(AnN ((Di,Dl_',-)eH D;))n3x.(cn ((Di,%J)eij)))) N
(CnD;)= (3X.(Bn ((D‘_ H)eHDj)) n3ax.(An ((n, E)eij)))))

EY = (=1X)N(3X.A) 1 (VX+.(Ca N Cprim M Caing M Cp))

whereA, B andC are disjoint concepts since they are abbreviations for
AZ:A], B = _\A]HAQ CZ:ﬁA]ﬂ_!AQ

Figure 4: Concepts used in the proof of Theorem 6

commonX -successor.

Task 3is easy becausdC N (o) allows for the transitive closure of roles.dfis an instance
A
of Eg) , thens has exactly oneX-successor, say(o,q), which is an instance ofl. Each

point in the grid is anX "-successor of. Thus, the local conditions on all points in the grid

are imposed bY X+ (Cg M Cprim M Cdiag 1 Cp).

Task 2 is difficult because we must distinguish between the “horizontal” andwvbsical”
X-successor of a point. For this purpose, the concdpi3, andC are used in the following
way (see Figure 5 for a better intuition).

A C B A C B
. . . . . °
C B A C B A
° . . . ° °
B A C B A C
. [} . . [} [}
A C B A C B
. . ] . . .

Figure 5: Visualisation of the grid as enforced by th&, A/ (o) reduction concept.

11
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De Giacomo and zerini
—1

ALCL N

Figure 6: (Un)decidability results for extensionsA4C . .

The conceptain, Makes sure that each instanceohas oneX-successor irB and one in
C, and similar for instances d@® andC'. Without loss of generality, we draw the-successor
of pg,o thatis inC to its right and call itp, . The otherX-successor ofg o, Which is in B,
is calledpo 1 and is drawn above it. Now, it is easy to see that the remaining parts gfith
are determined in the sense that

¢ for each diagonal in the grid there is & € {A, B,C} such that all points on this
diagonal are instances &f,

¢ horizontal successors of points ihare always inC, of points inC' are always inB,
and of points inB are always in4,

e vertical successors of points i are always inB, of points inB are always irC, and
of points inC' are always in4.

With the intuitions given above, it is not hard to show that a tilgygtemD has a com-
patible tiling iff £ is satisfiablé

Theorem 6 Satisfiability (and thus also subsumption) of concepts is undecidairle f

ALCAN (o).

2To make the reduction more obvious, the cono@ﬁp is longer than necessary. In fact, the subconcggt,,
could have been left out.
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3.2 AN (o) is decidable

We present a tableau-like algorithm for deciding satisfiability4sE A (o)-concepts. The
algorithm and the proof of its correctness are very similar to existiggrithms and proofs
for ACC with number restrictions on atomic roles [13, 12]. These proofs iheamploy
the fact that each satisfiahlC\ -concept has a tree-modelt can easily be seen that, in
contrast taALCN, the logic ALCN (o) does not have the tree-model property. For example,
the concept

(>2R)N(VR.3S.A)N(<1RoS)

is obviously satisfiable, but each of its instances haBa$ successod that is reachable via
two different paths. In particula#, has two different role predecessors.

Nevertheless, the models that will be generated by our algorithm are ineitsrsto tree-
models in that every element of the model can be reached from an initial (reateat via
role chains, the root does not have a role predecessor, and every roldérolnathe root to an
element has the same length (even though there may exist more than ommdaumhin the
proof of the termination of the algorithm, this fact will be usedhe place of the tree-model
property.

As usual [24], we assume without loss of generality that all conceptsnamegdation
normal form (NNF), i.e., negation occurs only immediately in fronatdmic concepts. The
basic data structure our algorithm works on are constraints:

Definition 7 Let 7 = {z,y, 2,...} be a countably infinite set of individual variables. A
constraintis either of the form

xRy, whereR is a role name ilNg andz,y € T,
x: D for someALCN (o)-conceptD in NNF and some: € T, or
x#y forz,yert

A constraint systens a set of constraints. For a constraint systgéntet r¢ C T denote
the individual variables occurring if.

An interpretatior is amodel of a constraint systefff there is a mapping : 7¢ — A
such thatZ, = satisfy each constraint i}, i.e.,

(m(z),7(y)) € R* forallzRy € S,

n(x) # 7(y) forall (z #y) € S,
n(x) e D*  forallz:D € S.

For a constraint syste$), individual variables:, y, and role nameg;, we say thay is an
Ryo0...0R,,-successoof z in S iff there areyy, . .., y,, € 7 such thatt = y9,y = y,., and
{yiRit1yi+1 | 0 <i <m —1} C S. The systenst contains alashiff {z: A,z:-A} C S
for some concept namé and some variable € 7, orz:(< n R) € S andz hast > n
R-successorgi, ...,y in S such that for ali # j we havey; # y; € S. A constraint
systemsS is calledcompletdff none of the completion rules given in Figure 7 can be applied
toS.

3A tree-model is a model having the shape of a tree, i.e., iahast, which does not have role predecessors, and
every other element of the model has exactly one role pradeceln particular, there are no cyclic role chains in
the model.

“We consider such inequalities as being symmetric, i.ex, # y belongs to a constraint system, then# z
(implicitly) belongs to it as well.
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1. Conjunction: If z:(C; N Cy) € Sandz:C; ¢ Sorz:Cy ¢ S, then
S — SU{Z‘ZC],Z‘ZCQ}

2. Disjunction: If z:(Cy U C5) € Sandz:Cy ¢ Sandz:Cy ¢ S, then
S — 51:SU{.77201}
S — SQZSU{JIZCQ}

3. Value restriction: If z:(VR.C) € S for a role nameR, y is an R-successor
ofzinSandy:C ¢ S, then
S— Su{y:C}

4. Existential restriction: If 2 :(3R.C) € S for a role nameR and there is
no R-successoy of z in Swithy : C € S, then
S — SU{zRz,z:C}foranewvariable € 7\ 7s.

5. Number restriction: If z:(> n Ryo...0R,,) € S forrole namesk;,..., R,
andz has less than R, 0...0R,,-successors i¥, then
S— SU{zR1y2,ymBRmz} U{yiRiyi+1|2<i<m—1}U
{z #w|wisanRo...oR,-successor of in S}
wherez, y; are new variables im \ 7s.

6. Number restriction: If z:(< n Rjo...0R,,) € S, x has more than
Rjo...0R,,-successors if§, and there aré; o. . .o R,,,-successorg, , y, of z in S with

(y1 75 yg) € S, then
S = Sy, .y, = Sly2/y1]
for all pairsy;,y2 of Ryo...0R,,-successors of with (y; # y2) € S.

Figure 7: The completion rules fo4CA (o)

Figure 7 introduces theompletion ruleghat are used to test{C\/ (o)-concepts for sat-
isfiability. In these rules, the constraint systéify-/y:] is obtained fromS by substituting
each occurrence @k in S by y;.

The completion algorithnworks on a tree where each node is labelled with a constraint
system. It starts with the tree consisting of a root labelled Witk {z( : Cy }, whereCj, is
the ACCN (o)-concept in NNF to be tested for satisfiability. A rule can only be applieal t
leaf labelled with a clash-free constraint system. Applying a fule> S;, for1 < i < n,
to such a leaf leads to the creationmohew successors of this node, each labelled with one
of the constraint systents;. The algorithm terminates if none of the rules can be applied to
any of the leaves. In this situation, it answers witt “is satisfiable” iff one of the leaves is
labelled with a clash-free constraint system.

Soundness and completeness of this algorithm is an immediate consequémedodf
lowing facts:

Lemma 8 LetC, be anALC N (o)-conceptin NNF, and le¥ be a constraint system obtained
by applying the completion rules ta : Co}. Then
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1. For each completion rulR that can be applied t§ and for each interpretatidh, the
following equivalence holdsT is a model ofS iff 7 is a model of one of the systems
S; obtained by applying.

2. If Sis a complete and clash-free constraint system, fhaas a model.
3. If S contains a clash, thefidoes not have a model.
4. The completion algorithm terminates when appliedg: Cy }.

Indeed, termination shows that after finitely many steps we obtain a tobetisat all its leaf
nodes are labelled with complete constraint system&,Ifs satisfiable, thedzy : Cy} is
also satisfiable, and thus one of the complete constraint systems fiebkiby (1). By (3),
this system must be clash-free. Conversely, if one of the completaammstystems is clash-
free, then it is satisfiable by (2), and because of (1) this implies{thatC, } is satisfiable.
Consequently, the algorithm is a decision procedure for satisfiabfitdZC A (o)-concepts:

Theorem 9 Subsumption and satisfiability offC N (o)-concepts is decidable.

Proof of Part 1 of Lemma 8: We consider only the rules concerned with number restric-
tions, since the proof for Rules 1-4 is just as f#iC.

5. Number restriction: Assume that the rule is applied to the constrairnt> n Rjo...o
R,,), and that its application yields

S'=SU{zRiy2,ymBmz} U{yiRiyiy1 |2 <i <m —1}
U{z# w|wisanR;o...oR,,-successor of in S}.

SinceS is a subset of’, any model ofS’ is also a model of.

Conversely, assume thatis a model ofS, and letr : 7 — A” be the corresponding
mapping of individual variables to elementsAf. On the one hand, sindesatisfies
z:(>n Ryo...oR,,), m(z) has at least R;o...oR,,-successors ifi. On the other
hand, since Rule 5 is applicableito(> n Rjo.. .oR,,), z haslessthan R;o.. oR,,-
successors i8. Thus, there exists aR; o. ..o R,,-successob of w(z) in Z such that
b # n(w) forall Ryo...0R,,-successors of z in S. Leth,,...,b, € AT be such
that (7 (z),ba) € R, (by,b3) € RE,..., (bm,b) € RE. We definer’ : 75 — AZ
by 7'(y) := n(y) forally € 75, «'(y;) := b; forall i,2 < i < m, andn’'(z) := b.
Obviously,Z, ©' satisfyS’.

6. Number restriction: Assume that the rule can be appliedtd< n Rio0...0R,,) € S,
and letZ together with the valuatiom : 7s — AZ be a model ofS. On the one
hand, since the rule is applicable,has more tham R;o...o R,,-SuUccessors if.
On the other handZ, = satisfyz:(< m Rjo...0R,,) € S, and thus there are two
differentR; 0. ..o R,,-successorg, , y» of x in S such thatr(y:) = 7(y2). Obviously,
this implies that(y, # y») ¢ S, which shows that,, ,, = S[y2/y:1] is one of the
constraint systems obtained by applying Rule & t0< n R;o...oR,,). In addition,
sincen(y1) = m(y2), Z, w satisfyS,, ...

Conversely, assume théy, ,, = S[y2/y:1] is obtained fromS by applying Rule 6, and
let Z together with the valuation be a model of5,, ,.. If we take a valuation’ that
coincides withm on the variables irs, , ~and satisfiest'(y2) = #(y:1), thenZ, '
obviously satisfysS.
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Proof of Part 2 of Lemma 8: Let S be a complete and clash-free constraint system that is
obtained by applying the completion rulesfte, : Cy}. We define a canonical modglof S
as follows:
AT .= 715 and
forall A € N¢ : re AT iff z:A€S,
forall R € Ng: (z,y) € R iff zRy € S.

In addition, letr : 7 — A” be the identity ons. We show thaf, 7 satisfy every constraint
inS.

By definition of Z, a role constraint of the formRy is satisfied byZ, = iff zRy € S.
More generallyy is anR; o. . .0 R,,-successor af in S iff y isanR;o...oR,,-successor of
x in Z. We show by induction on the structure of the conagphat every concept constraint
x:C € Sis satisfied byZ, =. Again, we restrict our attention to number restrictions since the
induction base and the treatment of the other constructors is just agfor

e Considert:(> n Rio...0R,;) € S. SinceS is complete, Rule 5 cannot be applied to
z:(>n Ryo...0R,,), and thus has at least R o. . .oR,,-successors iy, which are
alsoR;o. . oR,,-successors af in Z. This shows thal, = satisfyz :(> n Rjo.. oR,,).

e Constraints of the formz :(< n Ry0...0R,,) € S are satisfied becauseis clash-free
and complete. In fact, assume thahas more tham R;o...o R,,-Successors if.
Thenz also has more tham R, o. ..o R,,-successors it¥. If S contained inequality
constraintgy; # y; for all these successors, then we would have a clash. Otherwise,
Rule 6 could be applied.

Proof of Part 3 of Lemma 8: Assume thatS contains a clash. Ifz:A,2:-A4} C S,
then it is clear that no interpretation can satisfy both constraints. Thusresthat: :(<
n R) € S andz has/ > n R-successorg,...,y¢ in S with (y; # y;) € Sforall i # j.
Obviously, this implies that in any mod&l = of S, n(x) hasf > n distinct R-successors
7(y1),...,m(ye) In Z, which shows thal, = cannot satisfy: :(< n R).

Proof of Part 4 of Lemma 8: The detailed proof can be found in the appendix. For this
proof, the following observations, which are an easy consequence okfiretidn of the
completion rules, are important:

Lemma 10 Let Cy be anALCN (o)-concept in NNF, and le§ be a constraint system ob-
tained by applying the completion rules{o, : Cy}.

1. Every variabler # z, that occursinS is anR;o. . .oR,,-successor af, for some role
chain of lengthm > 1. In addition, every other role chain that connecgswith = has
the same length.

2. If z can be reached ifi by a role chain of lengtln from z, then for each constraint
z:C'in S, the maximal role depfrof C is bounded by the maximal role depth@§
minusm. Consequentlyy is bounded by the maximal role depth@g.

5The role depth is formally defined in the appendix. Intulijyet is the depth of nested role “expressions” in
value restrictions and number restrictions.
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Intuitively, these two facts are used as follows. kef be the maximal role depth afj.
Because of the first fact, every individualn a constraint systerfi (reached from{z, : C}
by applying completion rules) has a unique role leleslel ), which is its distance from
the root nodexy, i.e., the unique length of the role chains that conngatvith . Because
of the second fact, the level of each individual is an integer betWemmdm,. Both facts
together imply that the length of role chains is boundedryy Since the number of direct
role successors of a given individual can also be bounded by the sizg tifis implies that
the size of the constraint systems that can be built by the completioritaly is bounded. A
formal proof of termination based on an explicit termination orderéngjven in the appendix.

Discussion of the result: For logics where number restrictions may contain—in addition
to composition—union or intersection of roles, an important prgpesed in the above ter-
mination proof is no longer satisfied. It is not possible to assoeiatd individual generated
by a tableau-like procedure with a unique role level, which is itsadise from the “root”
individual ¢ (i.e., the instance, of C, to be generated by the tableau algorithm). Indeed,
in the concept

Co:= (3RIR.A)N(<1RURoR)

the number restriction enforces that &rsuccessor of an instance 6f, is also anRk o R-
successor of this instance. For this reasonkesuccessor of the root individual must be both
on levell and on leveR, and thus the relatively simple termination argument that was used
above is not available for these larger logics. However, as we will shelaw, this termi-
nation argument can still be used if union and intersection are restrictetetohains of the
same length. Without this restriction, satisfiability may become uddédé: in Section 3.1

we have shown that satisfiability is in fact undecidable €N (o, ). For ALCN (o, L)),
decidability of satisfiability is still an open problem.

3.3 An extension of the decidability result

The algorithm given in Section 3.2 will be extended such that it can a¢sd tmion and
intersection of role chains that have the same length. The proof ofie@ss, completeness
and termination of this extended algorithm is very similar to the améffe basic algorithm,
and will thus only be sketched.

In the remainder of this section.camplex rolas

e arolechaifR = Rjo...0R,, Or
e anintersectioriR = Rjo...0R, M S;0...0S, of two role chains of the same length, or
e aunionR = Ryo...0R, U Sj0...05, of two role chains of the same length.

The satisfiability algorithm is extended by adding two new rules tallemumber restrictions
(> n R) for complex roles with union or intersection and by modifying thie fior number

restrictions such that it can handle the new types of complex roles. riiaufate the new
rules, we must extend the notion of a role successor in a constratgnsyappropriately.
Building up on the notion of a role successor for a role chain, we defin

e yisan(Ryo...0R, L S;o...0S5,)-successor af in S iff y isanR;o.. .oR,-successor
oranSjo...oS,-successor aof in .S, and

17



5a. Number restriction: If z:(> n Rjo...0R,, USj0...05,,) € S andz has less
thann (Rio0...0R,, L Syo0...05,,)-successors iy, then
S =8 =SU{zRy2,ym Rz} U{yiRiyi+1 |2 <i<m—1} U
{z#w]|wisan(Rjo...0R,, U S0...05,,)-successor of in S}
S = Sy =SU{zS192, YmSmz} U{yiSiyit1 | 2<i<m—1}U
{z#w|wisan(Rjo...0R,, USjo...05y,)-successor of in S}
wherez, y; are new variables i \ 7s.

5b. Number restriction: If :(> n Ryjo...0R,;, M Sj0...05,,) € S andz has less
thann (Ryo...0R,, M Syo...05,,)-successors i, then
S — SU{zRiy2, 25195, YmBRmz, Y5, Smz} U
{YiRiyit1,¥iSiyip1 |2 <i<m -1} U
{z#w|wisan(Rjo...0R,; M Syo0...05,)-successor af in S}
wherez, yi, y; are new variables im \ 7s.

6'. Number restriction: If z:(< n R) € S for some complex rol&®, = has more
thann R-successors iy, and there ar&-successorg, , y» of z in S with (y1 # y2) &
S, then

S = Sy = Sly2/y1]

for all pairsy;, y» of R-successors of with (y; # y2) € S.

Figure 8: The additional completion rules.

e yisan(Ryo...0R,MS;o...05,)-successor af in S iff y isanR;o...oR,-successor
and anS;o...0S,,-successor af in S.

Obviously, this definition is such that role successois are also role successors in every
model of S: if Z, « satisfy.S, andy is anR-successor of: in S for a complex roleR, then
7(y) is anR-successor of (z) in Z.

The new rules are described in Figure 8. The riles5b are added to the completion
rules, whereas rul&’ substitutes rulé in Figure 7. To show that the new algorithm obtained
this way decides satisfiability of concepts for the extended logic, we prase that all four
parts of Lemma 8 still hold.

1. Local correctnes®f the rules5a, 56 and6’ can be shown as in the proof of Part 1 of
Lemma 8 above.

2. Thecanonical modeihduced by a complete and clash-free constraint system is defined
as in the proof of Part 2 of Lemma 8. The proof that this canonical modéy sesisfies
the constraint system is also similar to the one given there. Note thiataiion of
an R-successor of a complex rofe in a constraint system was defined such that it
coincides with the notion of aR-successor in the canonical modeinduced by the
constraint system.

3. The proof that a constraint system containing a clash is unsatisiahle same as the
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one given above. Note that this depends on the fact that role successa@ristiaint
system are also role successors in every model of the constraint system.

4. The proof ofterminationis also very similar to the one given above. The definition of
the depth of a concept (see the appendix) is extended in the obvious wagdepts
with number restrictions on complex roles:

depti>n Rio...0oR,, M S10...0S5,) = m,
deptf> n Ryo...0oR, U Sjo0...05,,) m,
deptf<n Ryo...0R;,, M Sjo...05,,) m,
depti<n Rio...0oR,, US10...0S5,) = m.

Because the role chains in complex roles are of the same length, it is easg to
that Lemma 10 still holds. Thus, we can define the same measdieas in the ap-
pendix for all constraint systems obtained by applying the extendedletiorprules
to {zo:Cp}. Itis easy to see that the proof thét— S’ impliesx(S) > x(S’) can
be extended to the new rules. It should be noted that the proof givéreiappendix
was already formulated in a more general way than necessary for the logic e@usid
there. Actually, we have only used the fact that all role chains connectmgntivid-
uals have the same length (which is still satisfied for the extendec)|@mnd not that
these role chains also have the same name (which is only satisfigdfdf (o)).

The following theorem is an immediate consequence of these observations:

Theorem 11 Subsumption and satisfiability is decidable for the logic that exted A (o)
by number restrictions on union and intersection of role chains ofdhe=dength.

4 Symbolic Number Restrictions

In this section, we introduce the extension.4CA" by symbolic number restrictions and
investigate the complexity of satisfiability and subsumption &f éxtension. As motivated
by the examples in the introduction, we need a formalism that allows urstroduce ex-
plicitly existentially quantified numerical variables in number restoict. If we want to
extendALCN such that it is still closed under negation, universal quantificatioruoferical
variables comes in as the dual of existential quantification. We will shhatthis propo-
sitionally closed extension is undecidable. However, if we restricueeof negation such
that universally quantified numerical variables do not occur, satisfiabiitpmes decidable.
Unfortunately, subsumption of this restricted logic is still ecitlable.

4.1 Syntax and Semantics

In order to introduce symbolic number restrictions, we must extarrdvocabulary by vari-
ables that stand for non-negative integers.

Definition 12 Let Ny be a set of numerical variables. TheiCA™® is obtained fromAZCN
by additionally allowing for

¢ symbolicnumber restriction$< a R) and(> « R) for a role nameR and a numerical
variablea, and
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« the existential quantificatiof...C') of numerical variables: whereC' is an ACCN -
concept.

As in the case of traditional number restrictions, we use additionafiosls=, <, > as
abbreviations. For examplé= a R) is an abbreviation fo(< « R) M (> a R). To give an
intuitive understanding of the meaning of symbolic number resrist we first present two
examples: the concept

Human 1 (Vchi | d.la.(=avice)n (> avirtue))
describes persons whose children all have less vices than virtues, whereastiept
Human N (Ja.Vchil d.(=avice)N (> a virtue))

describes persons whose children all have the same number of vices, whitialler than
the number of their virtues.

Since ACCN® allows for full negation of concepts, universal quantification of nuoari
variables can be expressed: in the following, we(ts.C) as shorthand for(la.-C).
Before giving the semantics ofZCA"°-concepts, we define what it means for a numerical
variable to occur free in a concept.

Definition 13 The occurrence of a variabte € Ny is said to beébound inC' iff o occursin
the scope’’ of a quantified subtermila.C") of C. Otherwise, the occurrence is said to be
free The set freéC') C Ny denotes the set of variables that occur fre€'inThe concept’

is closediff free(C) = (). For a non-negative integer, the concepC|[£] is obtained from
the concept by substituting all free occurrences@tby n.

Note that, as usual, a variable can occur both free and bound in a concepkafgle,a
occurs both free and bound (= a R) M (la.(3R.(> a R)))) .
Using this notation, we can define the semanticsiff\°-concepts.

Definition 14 An AN ®-interpretation is and(CA -interpretation that, additionally, satis-
fies the equation
(la.0)? = |J (C[2)*

[0
neN

for all closed ACCN ®-conceptg|a.C). If C' is not closed and fré€') = {a,, ..., a,} for
n > 1then
CT = (... ayn.O)T.

This definition reduces the semantics of symbolic number restrictmniset semantics of
traditional ones. Sincéta.C) is an abbreviation for({a.—C), we can give its semantics
directly by

(ta.0)" = [ (C[=)"

(6]
neN

Similar to ACCV, it can be shown thatlZCA still has the tree-model property, but in contrast
to ALCN, the logicACCN S does not have the finite-model property. For example, the concept

(ta.(> a R)) ®3)
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is satisfiable, but each instance of (3) has infinitely mBrguccessors. On the one hand, the
interpretatioriZ where

AT = {®, 90, 91,92, -}
RY = {(z,y;) |i e N}

is clearly a model of (3). On the other hand, each mddet (3) satisfies),,en(> n R)? #
@, hence each instance of (3) has infinitely mdiyguccessors.

To give a better insight into the expressive power of symbolicnemestrictions we first
give the undecidability result.

4.2 AN is undecidable

Similar to the undecidability proofs in Section 3.1, undecidabilftgatisfiability for ACCN

is shown by a reduction of the domino problem to concept satisfialfldy.ACCN, however,
the proof is easier if we take another variant of the domino problentedalsof asking for a
compatible tiling of the first quadrant of the plane, we now ask for agatihle tiling of the
“second eighth{IN x N)< := {(a,b) | a,b € N anda < b} of the plane. Since such a tiling
yields compatible tilings of arbitrarily large finite rectangles, ittaygelds a compatible tiling
of the plane [14].

In contrast to the reduction given in Section 3.1, in this reductiamjnidividuals repre-
senting points in the grid are not related to each other by roles—thecedguivalent to the
“horizontal” and “vertical” rolesX andY. Instead, the reduction works as follows: First,
we define andC\®-conceptCy such that, for each model ¢fn with o € CF, there is
a natural relationship between tuplgsb) € (N x N)< andS-successorg,,, of o. The
point(a, b) is represented by afi-successor o havinga L-successors angdR-successors.
Second, for a given tiling systefd, we construct a conceptp that (1) is subsumed ¥y,

(2) ensures that eveny, , has exactly one domino type, and (3) encodes the compatibility
conditions of the matching pairs.

The formal definition ofC is given in Figure 9. Assume thdtis a model ofCy with
o € CL. Now, C; makes sure that, for every non-negative integes has anS-successor
having exactlys L-successors. The precondition@f makes sure that is smaller tharb,
and thus the whole implication says that, for each pait b of non-negative integers,has
anS-successor having exactyl.-successors artdR-successors (there can be more than one
suchS-successor). Finally(’s says that, whenever &tsuccessor ob hasa L-successors
andb R-successors, we have< b. Thus, there is an obvious correspondence betvgeen
successors af and points in the second eighth of the plane: ev#guccessor correspondsto
apointin(IN x IN) < and vice versa. More formally, we will prove the following obsergat
concerningCy wWhere, for a role namé& and some: € A7, zx” denotes the number of
R-fillers of z in Z, that is

er’ = #{y € A | (v,y) € R"}.
Lemma 15 Let Cy be the concept introduced in Figure 9.

1. Cy is satisfiable.

2. LetZ be amodel o€y with o € CZ and lety = {y € AT | (0,y) € ST}.
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On = (Ta.1B.(Cy N Cy 11 C3)) where

Cy:=(3S.(= ))

Co = ((35( L)n(<pL)=@3S(=al)f(=pR))
Cs:=(VS.((=aL)N(=BR)) = (<B L))

Given a tiling systenD = ({D,...,D,,}, H,V) and the subconcept, , Cy, C5 of
Cn as defined above, let

Cp=Cnn(¥S.( L (D;m( T =D;))n

1<i<m 1<j<m

i7£]
(ta:18. I1 (35 (= a L)1 (= BR)ND)) =
(¥S.(# a L) U (# BR)UD,)) 1 (1)

(ty- (<, B) M =(a+1,7)) =
(VS.((=~ L)N (=B R)) = o L g PN (2)

(tr-(=6+1,7) =
(VS.((=aL)n(=vR)) = Q D;)))))) (3)

Figure 9: Definition of the concepféy andCp used for the reduction of the domino problem
to the ALCN® satisfiability problem

(i) For each(a,b) € (N x N)< there existsy,, € Y with (y.;).” = a and
(Yas)r" =b.
(i) If y € Y andy? = a andyg? = b, thena < b.

3. If o € Cn7, then there is an injective mappirg (N x N)< — Y from the second
eighth of the plane to the set Stsuccessors af.

PrROOF. 1. DefineZ = (A%,-%) ando as follows:

AT = {o}W{yap | (a,b) € (N x N)<}w{l,, 7 | a,be N},
ST = {(0,yas) | (a,b) € (N x N)<},

L' = {(ap lw) | (a,b) € (N x N)< anda’ < a},

R" = {(Wap,rv) | (a,b) € (N x N)< andd’ < b}.

7 is a well-definedALCN *-interpretation and it is clear that, for gk, b) € (N x N)<, we
have(ya;)r.” = aand(yas)r~ = b. It remains to be shown thate C”:

We know thato € Cn” iff for all a,b € N: 0 € (Ci[2][5])7, 0 € (C5[2][4])", and
o€ (Cs[% ][ DZ. Thus, leta,b € N.

o o€ (Ci[2][§])* since(o,yan) € ST for someb’ > a.
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eoc€ (Cg[i][%])z: If o € (3S.(=a L)N (< b L)%, thena < band(o,y.,) € ST,

which implieso € (3S.(=a L)1 (= b R))~.
e o€ (03[%][%])1 Let (o,y) € ST. If y € (= a L) N (= b R))”, theny = y, , with
a < b, which impliesy € (< b L)Z.

2(i). The subconcepf; ensures that, for each € IN, there exists somg, € Y with
(ya)LI = a. If a,b € N satisfya < b, theny, obviously belongs t¢(=a L) N (< b L))~.
Thus, the subconceft, ensures that there also exists S#successoy, ; of o that hasa
L-successors angdR-successors.

2(ii). The subconcepf’s ensures that, foralj € Y, yr* = a andyg? = b implies
yr.” < b, and thus: < b.

3. This is a direct consequence of 2(i): we defirie, b) := y wherey € Y is such that
y.t = aandyr? = b. [ |

Please note that, far,b € IN, there might be more than onec Y with y;,” = a and
A
Yro = b.
The definition of the concepts, associated with a tiling systef is also given in Fig-
ure 9, where the following abbreviations are employed:

<(@f) = ES((=aL)n(=FR)N~(=B L)),
—(a+1,0) = <(@B)NFS.((<aL)u(>pL).

In the context of the concejily, these abbreviations really express the relatoand the
successor relation on natural numbers:dar Cn”, we haver € (<(a, ﬂ)[%][%])f iffa <b

as an immediate consequence of Lemma 15.2. Furthermae(=(a + 1, 6)[%][%])1 iff
a + 1 = b sinceo has someS-successor having L-successors for eache IN.

The first line in the definition o, makes sure that'y subsume€’p, and that every
S-successor of an instane®f C'p has exactly one domino type. In the remainder of the def-
inition, we consider ary-successoy, , with domino typeD; anda L- andb R-successors.
Now, (1) ensures that eveffrsuccessor with the same numberfefand R-successors ag, ;
has the same domino tyge;, (2) takes care of the horizontal matching condition, and (3)
of the vertical matching condition. Given this intuition, it is easyskmw that the following
lemma holds.

Lemma 16 Cp is satisfiable iff there exists a compatible tiling of the second &iglthe
plane usingD.

The proof of this lemma can be found in the appendix.

Now, undecidability of the domino problem yields undecidability loé tsatisfiability
problem for ACCN ®-concepts. Sinc€' is unsatisfiable iffC T (A 1 —A), this implies
undecidability of subsumption.

Theorem 17 Satisfiability and subsumption offZC\"*-concepts are undecidable.

4.3 A decidable restriction of ACCN®

We have seen in the last section that, by using universally quantifieéncahvariables in
ALCN®, we can enforce infinite models. The undecidability proof also makesgtise of
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universal quantification. In order to obtain a decidable extensiadf\ with symbolic
number restrictions, which also has the finite-model property, wednite AZEN°, a frag-
ment of ACCA® that is obtained by allowing only for existential quantification of reuial
variables. This is achieved by restricting the use of negation.

Definition 18 AZEN *-concepts are thosdCA *-concepts where negation occurs only in
front of concept names or number restrictions.

In the following, we will refer to concept names and number restrictiors@micconcepts.
Since inACCN® universal quantification of numerical variables came in only as an abbrevi-
ation of negated existential quantification, all numerical variabledS\ ™ are therefore
existentially quantified. Nevertheless, the logic is still an extemsif ALCN since ALCN -
concepts in NNF satisfy the above restriction. Furthermore, all exangples in Section 1

to motivate the introduction of symbolic number restrictions.4f&EN° -concepts.

In this section, it will be shown that satisfiability ofZ/N “-concepts is decidable. In
order to simplify our investigation of the satisfiability problewr tAZ/N°-concepts, we
will restrict our attention to concepts where each numerical variable occumr dittund
or free, and where each variable is bound at most oncg¢. bit is easy to see that each
ACUEN® -concept can be transformed into an equivalent concept of this form by eiastien
guantifying all free variables and by appropriately renaming bound vasabl

Decidability of satisfiability ofAZEN“-concepts will be shown by presenting a tableau-
based algorithm and showing that, for eadd4A°-conceptC, this algorithm is sound,
complete, and terminating. Similarly to the algorithm presented in Se8td, the algorithm
works on constraints, but fodZN °-concepts we need additional variables Suppose
we have the constraigt:(VR.(la.C)). Then, for eaciR-successar of y, we need a variable
a, that stand forx “in the context ofz”. Since there are further subtle differences between
the algorithm in Section 3.2 and the one $&f4S\"°, we provide a complete description of
the latter.

Definition 19 We assume that we have a countably infiniterset {z, y, z, . . .} of individ-
ual variables, and for each pdi, z) € Ny x 7 a new numerical variable, which may
occur free in concepts. Bonstraintis either of the form

xRy, whereR is arole name iV andz,y € 7, or
z:D  for someAUEN S -conceptD and some: € 7.

A constraint systeris a set of constraints.
An interpretatiori is a model of a constraint systeshiff there is a mapping: ~ — A7
and a mapping: Ny x 7 — N such thatZ, =, v satisfy each constraint ifi, i.e., we have

(m(x),7(y)) € R  forallzRy € S,
n(z) ev(D)E  forallz:D € S,

wherev (D) is obtained fromD by replacing each variable, by its v-imagev(a, y).

A constraint systen$ is said to contain @lashiff for some concept namd and some
variablez € 7 we have{z: A,z:—~A} C S. A constraint systen§ is said to benumerically
consistentff the conjunction of all numerical constraints 1 i.e.,

N (zrreln) A A (zgrela,),
z:(reln R) € S z:(relay R) € S
r€T,R€ Ng,neN z,y € T,R € Np,a € Ny
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is satisfiable i(IN, <), wherezg, o, are interpreted as variables for non-negative integers
and rel stands for relations §K, >, <, >, =}.

A constraint systen§ is calledcompletdff none of the completion rules of Figure 10 can
be applied tcS.

Like the algorithm presented in the previous section, the algorfbmiZEN S works
on a tree where each node is labelled with a constraint system. It stélnta wée consisting
of aroot labelled withs = {z( : Cy} for some closed concepy. A rule can only be applied
to a leaf labelled with a clash-free constraint system. Applying aSule S;, for1 < i < n,
to such a leaf leads to the creationmofiew successors of this node, each labelled with the
constraint systemsS;. The algorithm terminates if none of the rules can be applied to any of
the leaves. The algorithm answers withy'is satisfiable” iff one of the leaves obtained this
way is a clash-free, numerically consistent, and complete constraint system.

Before showing that the completion algorithm described in Figureiélly a decision
procedure for satisfiability of4Z4\ °-concepts, let us make some comments on the rules.
First, note that each of the completion rules adds constraints when appléedonstraint
system, none of the rules removes constraints, and individual variatdasever identified
or substituted. With respect to this last property, the algorithm4@/SA™ differs from the
tableau-based algorithms fgZCA/ described in [9] and forllC N (o) presented in the previ-
ous section. Unlike Rule 4 in Figure 10, these algorithms intceglfor each constraint of the
formz : 3R.C, a newR-successor of. If = also has a constraint of the form(< n R), and
more tham R-successors have been introduced, then some of these individuals aifesidien
Rule 4 in Figure 10 avoids identification by “guessing” the numbelioived R-successors
of z before introducing these successors. In fact, since we do not havieierpmbers,
and since restrictions on numerical variablgsin constraintse :(< «, R) can derive from
different parts of the constraint system, an identification on demand jzassible here. The
second new feature is Rule 3. Given a constrairft,a.D), we substitute a new numerical
variablea, for a to make sure that the semantics of the existential quantifieés obeyed,
i.e., that the valuation forx depends orx. If we would just usey, the difference between
la.YR.D andVR.(l«a.D) would not be captured.

Again, correctness of this algorithm is an easy consequence of the fofjdevimma.

Lemma 20 Let C, be a closeddZ/EN °-concept, and le§ be a constraint system obtained
by applying the completion rules ta: : Co}. Then

1. The completion algorithm terminates when applied:ig: C}.

2. For each completion rulR that can be applied t§, and for each interpretatidhwe
have:Z is a model ofS iff Z is a model of one of the systemys obtained by applying
R.

3. If S is clash-free, numerically consistent, and complete, théas a model.

4. If S contains either a clash or is not numerically consistent, th&lves not have a
model.

PROOF 1. The termination proof is similar to the one for the tableau-basgakighm for
ALCN [9].
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1. Conjunction: If z:(C, M Cy) € Sandz:C, ¢ Sorx:Cy ¢ S, then
S —n SU{z:C,z:Cy}
2. Disjunction: If 2:(Cy U Cy) € Sandz:C;, ¢ Sandz:Cy ¢ S, then
S—, Si=Su{z:C}
S =y Se=SU{x:Cy}
3. Numerical Existential Quantification: If z:(la.D) € S andz: D[%=] ¢ S, then
S —, Su{z:D[2=]}

4. New Objects:
If xRy ¢ S forally € r, andm > 0, k > 0 aremaximalsuch that

{2:(3R.Ey),...,2:(3R.Ey,),z:(VR.Dy),...,2:(VR.Dy)} C S

and Rules 1-3 cannot be appliedSpthen for eacm with 1 < n < m and for each
n-PartitionP = W, <;<, P; of {1,...,m}, letSp be defined as follows:

S—rSp = SU{zRy;,|1<i<n}U{z:(>nR)}U

{yi:Ej|1<i<n,jeP}U{y:D;[1<i<n1<j<k}

wherey; € T are new variables (i.e., variables not occurringin
5. Prophylactic new objects:
If zRy ¢ Sforally € r andz:(< 0 R) ¢ S andk maximal withz :(VR.D;) € S for
1<i<kz:(relIN R) e SforN €e NorN = a, forsomey € 7,a € Ny and
Rules 1-4 cannot be applied$o thensS; , S, are defined as follows:

S =, S =SU{z:(<0R)}

S—, So=SU{zRy}U{y:D; |1 <i<k}u{z:(>0R)}

wherey € 7 is a new variables (i.e., a variable not occurringsin

Figure 10: Thecompletion algorithnfor AZEN°-concepts

2. We consider only Rules 3, 4 and 5 since Rules 1 and 2 are obviafisisihenerated
by the application of a completion rule £ thenS C S’. Hence every model &’ is also a
model of S. Thus we must consider only the other direction.

Numerical Existential Quantification:Application of this rule adds the constraint
r:C[%=] to S, wherez : |a.C is contained inS. If 7,7, v satisfy S, then we know that
there exists am € N such thatr(z) € v(C[2])%. Since the variable,, does not occur in
S (by our assumption that every variable is bound only once in thetiopucept), we can
assume without loss of generality théty,) = n, and thusZ, 7, v satisfyz : C[2=].

New Objectslet z, R, k, m be as specified in the precondition of Rule 4 andZleiat-
isfy S. Since{z:(3R.Ey),...,xz:(3R.E,,),z:(YR.Dy),. .., z:(VR.Dy)} C S, there exist

somel < m and/ distinct elementd,, ..., d, € AT such that

e (m(x),d;) € R* foralliwith1 < i <¥,
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e forall 1 < j <mthereissomg’ € {1,..., ¢} with d; € E;”, and

e foralll < j<kandall <i<(wehavel; € D;”.

The second item above implies that there exists at least one funttiph...,m} —
{1,...,¢} such thatdy;) € E;” forall 1 < j < (. Let P be the(-partition of {1,...,m}
induced byf, i.e., Py := {j | f(j) = j'}. Inthe corresponding constraint systein, ¢
new variableg); and the corresponding new constraints are introducedx g = d; for

1 < i < /4. Then, by definition of? and the three items from above,
o (m(z),m(y;)) € R forall1 <i <,

e for each of the new constraings: E; in Sp we haver(y;) € EjI sincej € P; implies
f(j) =i, and thusr(y;) = d;(;) € E;7,

e for each of the new constraings: D; in Sp we haver(y;) = d; € DJI, and

e xp’ > ¢sincer(z) has at least th&-successors,, . .. , dy.

HenceZ satisfiesSp.

Prophylactic New Objectd et =, R, k be as specified in the precondition of Rule 5 and
assume that satisfiesS. Two cases are to be distinguished:zlf” = 0, then clearlyZ
satisfiesS;. Now letzg” > 0 with (7 (), d) € R” forsomed € AZ. If we definer(y) = d,
thenZ satisfiesS, = SU{zRy}U{z:(>0R)}U{y:D; |1 <i < k}.

3. As usual, we construct the canonical interpretafigrinduced byS: AZs consists
of the individual variables occurring if; (z,y) € R”’s iff xRy € S; andz € A”s iff
x:A € S. This yields a tree-like interpretation. However, this Interpretatieed not be a
model of S since some number restrictions may be violated for one of the faligwéasons.
Either (a) an individual does not have any role successors, but theteege is implied
by number restrictions, or (b) it has some, but not sufficiently maig saccessors. Note
that exact numerical restrictions on the number of role successors arelyiaesolution in
(N, <) of the numerical constraints (which are satisfiable sificg& numerically consistent).
In the first caseS does not contain any constraints on such role successors since Rule 5 is
not applicable. Thus, we can simply generate an appropriate number of théhe decond
case, the idea is to add sufficiently margpiesof some already existing role succesgor
More precisely, we need to copy the whole subtree thajfessits root. Proceeding like this
from the leaves to the root, we end up with a mode$ofl his can be shown by induction on
the structure of concepts in constraints.

4. This is obvious. [ |

Theorem 21 Satisfiability of AZEN®-concepts is decidable.

PrROOF Lemma 20 implies that the completion algorithm always terminates. liti@ddhe
second statement of the lemma shows that the original sygtgnCy} has a model iff one
of the leaves of the tree obtained by the algorithm has a model. Thosn# of the leaves
is clash-free and numerically consistent, then the fourth statement tdrtiraa shows that
{z:Cy} does not have a model. Otherwise, one of the leaves is a clash-free, caligeri
consistent, and complete, and thus the third statement of the lemmattatyus, : Cp } has

a model. Obviously{z, : Cy} has a model ifi’; is satisfiable. It remains to be shown that it
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is decidable whether a constraint system contains a clash and whether a nosgsi@m is
numerically consistent. Detecting clashes is trivial.

Numerical consistency can be tested using a modified cycle detection atgauitiming
in time polynomial in the size of the formula. To be more preciseyargformulais translated
into a graph whose nodes correspond to the numerical variables and gativaéntegers oc-
curring in the formula. The edges are induced by the numerical constddittie formula.
For exampleq < 3 yields an edge from the node corresponding to the node correspond-
ing to 3, and this edge is labelled witk. Obviously, if there is a cyclic path in the graph
that is labelled with at least one strict inequality, then the formulasatisfiable. Because
of the presence of concrete numbers, testing for cycles is not suffidiengh. Given nodes
k., k., corresponding to the numbensm, one must also check that a path frémto &,,
does not contain more than — n strict inequalities.

Unfortunately, sinced4N " is not propositionally closed, subsumption cannot be re-
duced to satisfiability. A closer look at the specific form of the conéegptintroduced in
Figure 9 reveals that it can be written@s = D, 1D, for two AZEN °-conceptsD; , D..

In fact, D, is the first conjunct of”p and D, is the negation of the remainder 6%. Note
thatD; does not contain numerical variables. Furthermore, all numerical variablegioccur
in the remainder of’p are universally quantified, which shows thag contains only exis-
tential quantification of numerical variables. SinBe M — D, is unsatisfiable iffD; T D,
this implies:

Theorem 22 Subsumption ofAZEN S -concepts is undecidable.

5 Related work

Some Modal Logics and Description Logics can be translated into firgréwdic such that
only two different variable names occur in the formulae obtained by thisstation. Thus,
decidability of subsumption and other inference problems for thededdgllows from the
known decidability result foL,, i.e., first-order logic with two variables and without function
symbols [18, 10]. Recently, this decidability result has been extendég ice., first-order
logic with 2 variables and counting quantifiers [11]. Independently, it has been praved i
[19] that satisfiability ofC; formulae can be decided in nondeterministic doubly exponential
time. As an immediate consequence, satisfiability and subsumptiofdfox (L, 1, -, 7 1),
the extension ofAZC by number restrictions with inversion and Boolean operators on rales, i
still decidable. It should be noted, however, that expressing commgosf roles in predicate
logic requires more than two variables.

Using sophisticated techniques for translating Description Logic casdefo formulae
of Propositional Dynamic Logics, it has been shown in [5] that decidatgsf&ability and
subsumption for a very expressive extensionddf ., is ExpTime-complete. In particular,
this extension allows foqualifyingnumber restrictions on atomic and inverse roles, and thus
it is an extension of the logielC e\ (7).

To the best of our knowledge, there are no (un)decidability or comyleesults for logics
that are similar to our DL with symbolic number restrictions.
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6 Conclusion

The expressive power of traditional number restrictions is seveeslyicted for at least two
reasons: only fixed non-negative integers may occur in number restsctand it is not
possible to restrict the number of successors of a complex role. dip#ger, we have tried
to overcome these two restrictions by introducing two separate appro@cteedending the
expressiveness of number restrictions: symbolic number restrictiod number restrictions
on complex roles. Although our goal was to obtain decidable Descrijhibgyics, it turned
out that both types of extensions may easily cause undecidability.

For number restrictions on complex roles, we have considered extsnsfol{CN and
ACC, N, and investigated decidability of the subsumption and the satisfiapitbblem. We
could provide an almost complete classification of extensiondGN with number restric-
tions on complex roles, and a rather strong undecidability resultX@mnsions ofAZC V.
Another inference problem of the decidable extensifi\ (o), namely checking the con-
sistency of a concrete world description (“ABox-consistency”), wagstigated in [17]. It
was shown that consistency of ABoxes of a restricted form is decidable—eatdecidabil-
ity of consistency of generadC A (o)-ABoxes is still an open problem.

To overcome the need to fix a non-negative integer in number rests¢tigmintroduced
numerical variables to be used in humber restrictions, where these varaidse exis-
tentially quantified. The propositionally closed extension (naméky,dne that allows for
full negation, and thus implicitly introduces universal quantificatid numerical variables)
turned out to be undecidable, whereas a restriction of this “full” extent atomic nega-
tion turned out to have a decidable satisfiability problem. Unfately, the subsumption
problem for this logic is still undecidable. The undecidability grizoalso interesting from
a theoretical point of view because symbolic number restrictions levexpressive power
to enforce infinitely branching models, whereas the undecidability adrdtgics is usually
due to the fact that infinite paths can be enforced.

Summing up, this paper almost completely answers the question howefaxgressive
power of number restrictions can be increased without losing decidabfliiye important
inference problems. The decidable extensions, namely compositiotesfironumber re-
strictions and the decidable form of symbolic number restrictiomsyide an expressive
power that is useful in many applications, not only in the process engigeapplication
that motivated this research.
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Appendix

Proof of Part 4 of Lemma 8 We must show that the tableau algorithm that tests satisfia-
bility of ACCN (o)-concepts always terminates. In the following, we consider only constrai
systemsS that are obtained by applying the completion rule$ig: Cy}. For a concepC,
we define its and/or-siZ€’|- ., as the number of occurrences of conjunction and disjunction
constructors irC. The maximal role deptbleptiC) of C'is defined as follows:

deptifA) := depttf—A) :=0for A € N¢,

depth{Cy 1 Cy) := max deptC,), dept{C-)},

deptfCy U Cs) := max depti{C,), dept{Cs)},

deptiVR,.C4) := depti3R,.Cy) := 1 + deptHC,),

deptf> n Ryo...0R;,) := m,

deptf<n Rio...0Ry,) := m.

The following observations were made in Lemma 10:

1. Every variabler # x4 that occursinS is anR;o. ..o R,,-successor oty for some
role chain of lengthm > 1. In addition, every other role chain that connegtswith x
has the same length.

2. If z can be reached i by a role chain of lengthn from z,, then for each constraint
z:C in S, the maximal role depth af' is bounded by the maximal role depthf
minusm. Consequentlyy is bounded by the maximal role depth(d.
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Let mq be the maximal role depth @f,. Because of the first fact in Lemma 10, every
individual z in a constraint systerfi (reached fron{z, : Cy } by applying completion rules)
has a unique role levéévelz), which is its distance from the root nodsg, i.e., the unique
length of the role chains that connegtwith z. Because of the second fact, the level of each
individual is an integer betwedhandm,.

In the following, we define a mappingof constraint systemS to 5(mg + 1)-tuples of
non-negative integers such thfat— S’ impliesx(S) > x(S’), where> denotes the lexico-
graphic ordering ol (mq + 1)-tuples. Since this lexicographic ordering is well-founded, this
implies termination of our algorithm. In fact, if the algorithm didtrterminate, then there
would exist an infinite sequendy — S; — ..., and this would yield an infinite descending
=-chain of tuples.

Thus, letS be a constraint system that can be reached ffog C} by applying com-
pletion rules. We define

K(S) := (Ko, K1y« s Bmg—1, Kmo ) s
wherer := (ko1, k2, ki3, ke, ke 5) @and the components ; are obtained as follows:
e ky 1 is the number of individual variablesin S with levelz) = ¢.

e kyo is the sum of the and/or-size€’| ., of all constraintsz:C € S such that
levelz) = ¢ and the conjunction or disjunction rule is applicable:ta” in S.

e Foraconstraing:(> n Ryo...0R,;,), letk be the maximal cardinality of all sefe
of Ryo...0R,,-successors af for whichy; # y; € S for all pairs of distinct elements
yi,y; of M. We associate with :(> n Ryo...0R,,) the number := n—k, if n > k,
andr := 0 otherwise. The componeht s sums up all the numbersassociated with
constraints of the form :(> n R;0...0R,,) for variablesz with levelxz) = /.

e kg 4 is the number of all constraints:(3R.C) € S such thatlevelz) = ¢ and the
existential restriction rule is applicable ia(3R.C) in S.

e k¢ 5 is the number of all pairs of constraints(VR.C'), xRy € S such thalevelz) = ¢
and the value restriction rule is applicabletoVR.C'), zRy in S.

In the following, we show for each of the rules of Figure 7 that S’ impliesx(S) > x(S').

1. Conjunction: Assume that the rule is applied to the constrain€; 1 C,, and letS’ be
the system obtained froi$i by its application. Lef := levelz).
First, we compare, andx;, the tuples respectively associated with leiel S andS’.
Obviously, thefirst componentsf x, andx;, agree since the number of individuals and
their levels are not changed. Thecond componenf «j is smallerthan the second
component ok,: |C; N Cs|n . is removed from the sum, and replaced by a number
that is not larger thafC |-, + |C2|~ 1 (depending on whether the top constructor of
C1 and(, is disjunction or conjunction, or some other constructor). Sinpéetiare
compared with the lexicographic ordering, a decrease in this componemgisrsake
that it is irrelevant what happens in later components.
For the same reason, we need not consider tuple$or m > ¢. Thus, assume that
m < £. In such a tuple, the first three components are not changed by applicition o
the rule, whereas the remaining two components remain unchanged or decrease. Such
a decrease can happerafely) = m andS contains constraintgRz, y :(VR.C;) (or
y:(AR.Cy)).
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2. Disjunction: This rule can be treated like the conjunction rule.

3. Value restriction: Assume that the rule is applied to the constraint&/R.C'), z Ry, and
let S’ be the system obtained frofby its application. Let := leve[z). Obviously,
this implies thatevely) = levelz) + 1 > .
On level/, the first three components a&f, remain unchanged; the fourth remains
the same, or decreases ffcontains constraintsSy andz:(35.C) for an individ-
ual z with levelz) = (); and the fifth decreases by at least one since the constraints
z:(VR.C), zRy are no longer counted. It may decrease by more than afiedhtains
constraintsSy andz :(V.S.C) for an individualz with levelz) = ¢.
Because of this decrease at le¢glhe tuples at larger levels (in particular, the one for
level levelz) + 1, where there might be an increase), need not be considered.
The tuples of levels smaller thdrare not changed by application of the rule. In partic-
ular, the third component of such a tuple does not change since no rdeaaots or
inequality constraints are added or removed.

4. Existential restriction: Assume that the rule is applied to the constraindR.C), and
let S = S U {zRy,y:C} be the system obtained fro% by its application. Let
¢ := levelx). Obviously, this implies thatevely) = leve[z) + 1 > .
The first two components of, obviously remain unchanged. The third component
may decrease (if is the first successor for an at-least restriction) or it stays the same.
Since the fourth component decreases, the possible increase of the fiflogent is
irrelevant.
For the same reason, the increase of the first component efis irrelevant.
Tuples of levels smaller thafiare not increased by application of the rule. All com-
ponents of such a tuple remain unchanged, with the possible excepttha third
component, which may decrease.

5. Number restriction: Assume that the rule is applied to the constraint> n R;o...o0
R,,) € S, letS’ be the system obtained by rule application, and tetlevelz).
Similar to Rule 4, the first two components@f remain the same. In addition, there is
a decrease in the third component«f since the new individual can now be added
to the maximal sets of explicitly distind®; o. ..o R,,,-successors of. Note that these
sets were previously smaller thar{because even the set of &l o. . .oR,,,-successors
of x was smaller tham).
For this reason, the possible increase in the fifth componetit ahd in the first com-
ponents of tuples of levels larger thérare irrelevant. Tuples of levels smaller than
are either unchanged by application of the rule, or their third componergasss.

6. Number restriction: Assume that the rule is applied to the constrainf< n R; o
...oRy) € S, letS" =S, ,, be the system obtained by rule application, and let
¢ = levelz).

On level? + m, the first component of the tuple.,,,, decreases. Thus, possible in-
creases in the other components of this tuple are irrelevant.

Tuples associated with smaller levels remain unchanged or decrease. In fact, since
in S’ has all its old constraints and the constraintg-0oih S, some value restrictions or
existential restrictions for individuals of the level immediately abtevell + m may
become satisfied (in the sense that the corresponding rule no long@sapfdince
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no constraints are removed, previously satisfied value restrictiomsstential restric-
tions remain satisfied. The third component of tuples of smaller levelatancrease
since the individualg, , y» that have been identified were not related by inequality con-
straints.

Proof of Lemma 16 We must show that'p is satisfiable iff there exists a compatible tiling
of the second eighth of the plane usifg Note that the definition of'p, obviously implies
thatCp is subsumed b¢'n, and thus Lemma 15 applies to instance€'sf

“=" Given a model of C'p with 0 € Cp”, we define the mapping (N x N)< —» D as
follows:
t(a,b) = D;iff 0 € (3S.((=a L) N (= b R) 11 D;))~.

First, we show that is well-defined. Thus, lei, b € IN. Since
o€ (VS.(_ LI (p;n( T =Dj))))7,

1<i<m 1<j<m
i#]
eachS-successor of is an instance of exactly one; € D. For eacha,b) € (N x
N)< and eachD; € D

0€((3S.((=aL)N(=bR)ND;)) = (VS.((# a L) U (# b R) U D))",

which implies that allS-successors af having the same number @fsuccessors and
the same number dR-successors are instances of the sdmec D. Thust is well-
defined, and it remains to be shown thé indeed a compatible tiling.

Leta,b € N, a < bandt(a,b) = D;. From Lemma 15.2.(j) it follows that €
(3S.((= a L)N (= b R)))* and we have already seen that edebuccessor of is an
instance of exactly on®; € D; hencen € (3S.((= a L)1 (= b R)N D;))* for some
D;. Nowo € Cp” implies that

o€ (17.((<(a,b) N=(a+1,7)) = (3S.((=y L) N (= B R) N D))))"

for someD; with (D;, D;) € H. Henceo € (3S.((=a+1 L)N (= b R) N D;))%,
which implies that(a + 1,b) = D; and(D;, D,) € H.

Now leta,b € N with ¢ < b andt(a,b) = D;. Then agairo € (3S.((=a L) N (=
b R)N D;))*, ando € Cp” implies that

o€ (t.((= (b+1,7) = 3S.((=a L) (=~ R)N D))"

for someD; with (D;, D;) € V. Henceo € (3S.((=a L) N (= b+ 1 R) N D;))%,
which implies that(a,b + 1) = D, and(D;, D;) € V. To sum up, we have shown
thatt is a tiling.

“«” Given atilingt, we define a model = (A%, -T) of Cp as follows:
AT :={o} W {y.p | a,be Nanda < b} W {l,, 7y | a,b € N},
ST :={(0,9as) | a,b € N anda < b},
L" .= {(yap,la) | a,a’,b € Nanda' < a < b},
R™ := {(Yap,7p) | a,b,b' € N anda < bandb’ < b},
D} = {yau | t(a,b) = Di}
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By definition of D7, eachS-successor of is an instance of exactly one; € D, and
hence
. DT
0€ (VS'(lngglm(Di n (1S|;S|m D;))))”".
i#]

The interpretatiorZ defined above just extends the one constructed in the proof of
Lemma 15.1 by the interpretation of the atomic concéptsThus, Lemma 15.1 yields
0 € (T()/Tﬂ(cl M 02 M Cq))z
Now leta,b € N. Theno € (3S.((=a L)N (=B R) N Dz-))[g][%])Z iff @ <band
t(a, b) = Dz‘-
For alla,b such thab € ((3S.((=a L)N(= S R) N D,;))[%][%])Z, we must show
thato also belongs to the concepts on the right-hand side of the implicégémlines
(1), (2), (3) in Figure 4).

e o€ (VS.((a L)U(# B R) uDi)[g][%])I sinceo has exactly oné&-successor
Yas € AT havinga L-successors an R-successors, and for thig-successor
Ya,s We knowy, , € D} by assumption.

e Ifo e ((<(a,p)N=(a+ 1,7))[%][%][%])1 for someg € N, thena < b and

a + 1 = g. The definition off and the fact thatis a compatible tiling entail that
o€ (AS((=~vL)N(=pB RN Dj)[%][%])I for someD; with (D;,D;) € H,
and hence € (< (a,8)N=(a+1,79) = AS(=~v L)N(= 8 RN
Ujerron D))EIEIED)"

e lfo e (=(8+ 1,7))[%][%])1 for someg € N, thenb + 1 = g¢. Again, the
definition of Z and the fact that is a compatible tiling entail that € (3S.((=
al)N(=+v R)N Dj)[g][%])f for someD; with (D;, D;) € V, and hence

o€ ((=(8+1,7) = (35.((= a L)1 (=7 R) NUjev(p,) D;))[2][511£)7.

To sum up, we have shown that Cp”, and thu<’p, is satisfiable. [ |
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