
Expressive power of Constraint Handling
Rules extensions and fragments

Jacopo Mauro
University of Bologna / INRIA
jmauro@cs.unibo.it

Abstract
Constraints can be used in concurrency theory to increase the concise-

ness and the expressive power of concurrent languages from a pragmatic
point of view. In this work we study the expressive power of a concurrent
language, namely Constraint Handling Rules, that supports constraints as a
primitive construct. We show what features of this language make it Turing
powerful and what happens to its expressive power if priorities are intro-
duced.

1 Introduction
Constraint is a ubiquitous concept: in every day life there are a lot of rules (phys-
ical, chemical, economical, and legal) that restrict, limit or regulate the way we
operate and what decisions we take. In computer science constraints can be very
useful not only to model the world but also to discover or verify if instances sat-
isfy a model. For these reasons the notion of constraints gave birth to a new field
called Constraint Programming that has attracted wide attention since it provides
a concise and elegant way to describe problems and also efficient tools to com-
pute solutions. Concurrency is a universal concept too. In every second of our life
there are thousands of events or tasks occurring simultaneously and interacting
with each other. With the evolution of the networks a lot of connected computers
are available and nowadays more and more people think that we are inevitably
going towards a world full of interconnected devices. This network of devices is
a concurrent system and has peculiarities and characteristics that an environment
constituted by only one processing unit does not have. On one hand a concurrent
system is usually hard to use since, in such a system, problems like deadlocks, re-
sources conflicts, security emerge. On the other hand a concurrent system can be
the only mean to solve problems requiring huge amounts of resources or modeling
complex scenarios in a simple and clear way.

jmauro@cs.unibo.it

The idea of approaching hard combinatorial optimization problems through
a combination of search and constraint solving appeared first in logic program-
ming. Despite the continued support of logic programming for constraint pro-
grammers, research efforts were initiated to import constraint technologies into
other paradigms. Nowadays constraints can for instance be easily used in imper-
ative languages. However constraints are equally well suited for modeling and
supporting concurrency. In particular, concurrent computation can be seen for
instance as agents that communicate and coordinate through a shared constraint
store [21]. Importing constraint in existing languages raises some concerns: how
easy is to use the new language, how expressive, and how extensible? Each con-
cern is intrinsically linked to the host language and has a direct impact on poten-
tial end-users. It is desirable to obtain a declarative reading of a high-level model
statement that exploits the facilities of the host language. Extensibility is also cru-
cial since it is important to support the addition of user-defined constraints and
user-defined search procedures.

Among all the concurrent languages having constraints as primitive building
blocks [9, 23, 26–28, 30, 33] we focus our attention to the language called Con-
straint Handling Rule (CHR) [15, 16], a committed-choice declarative language.
In the last few years, several papers have been devoted to investigate the expres-
sivity of CHR that, as a language, is Turing powerful. When looking for decidable
properties it is natural to consider restrictions of CHR which allow for instance the
use of only the equality constraint = (interpreted in the usual way as equality on
the Herbrand universe) and which, similarly to Datalog, is defined over a signature
which contains no function symbols of arity > 0. In this work we first present,
as an example, a decidability result obtained for a fragment of CHR that does not
allow the introduction of new variables. Then we give an overview of the state of
the art concerning the study of the decidability result of some fragments of CHR.

In the second part of the work we consider an extension of CHR dubbed
CHRωp [22] that was proposed for supporting an high-level, explicit form of exe-
cution control which is more flexible and declarative than the one offered by the
usual ωr semantics [12] of CHR. This extension is obtained by introducing ex-
plicitly in the syntax of the language rule annotations which allow to specify the
priority of each rule to execute. Priorities can be either static, when the annota-
tions are completely defined at compile time, or dynamic, when the annotations
contain variables which are instantiated at run-time. In this work we show several
expressivity results relating CHR and CHRωp by using the notion of acceptable en-
coding, i.e. a notion of expressivity coming from the field of concurrency theory.
In fact, in this field the issue of the expressive power of a language has received
a considerable attention in the last years and several techniques and formalisms
have been proposed for separating the expressive power of different languages
which are Turing powerful (and therefore can not be properly compared by using

the standard tools of computability theory). Such a separation is meaningful both
from a theoretical and a pragmatic point of view, since different (Turing complete)
languages can provide quite different tools for implementing our algorithms. We
show in particular an example of acceptable encoding that proves that dynamic
priorities does not improve the expressive power of static priorities while instead
priorities do improve the expressivity of CHR.

Structure of the paper. In Section 2 we introduce the CHR language and the
notion of acceptable encoding used to discriminate between two Turing powerful
languages. In Section 3 we study the decidability fragments of CHR while in Sec-
tion 4 we investigate the expressive power of CHR with priorities. We conclude
in Section 5.

Note. This work is an extract of the results presented in the PhD thesis of the
author. For more details we defer the readers attention to [24]. I would like to
thank my coauthors and my PhD advisor, Prof. Maurizio Gabbrielli, for their help
and guidance during these last years.

2 Constraint Handling Rules
Constraint Handling Rule (CHR) [4, 14–16] is a committed-choice declarative
language which has been originally designed for writing constraint solvers and
which is nowadays a general purpose language. In this section, after introducing
the used notation, we give an overview of the CHR syntax and semantics. We then
define what is an acceptable encoding between two CHR languages.

2.1 Notation
Following [12, 16], we distinguish the constraints handled by an existing solver,
called built-in (or predefined) constraints, from those defined by the CHR pro-
gram, called user-defined (or CHR) constraints. Therefore we assume a signature
Σ on which program terms are defined and two disjoint sets of predicate symbols
Πb for built-in and Πu for user-defined constraints.

Definition 1 (Built-in constraint). A built-in constraint p(t1, . . . , tn) is an atomic
predicate where p is a predicate symbol from Πb and t1, . . . , tn are terms over the
signature Σ. For built-in constraints we assume a (first order) theory CT which
describes their meaning.

Definition 2 (User-defined constraint). A user-defined (or CHR) constraint p(t1, . . . , tn)
is an atomic predicate where p is a predicate symbol from Πu and t1, . . . , tn are
terms over the signature Σ.

We use c, d to denote built-in constraints, h, k to denote CHR constraints and
a, b, f , g to denote both built-in and user-defined constraints (we will call these
generally constraints). The capital versions of these notations will be used to
denote multisets of constraints. We also denote by f alse any inconsistent con-
junction of constraints and with true the empty multiset of built-in constraints.

We will use “,” rather than ∧ to denote conjunction and we will often consider
a conjunction of atomic constraints as a multiset of atomic constraints. We prefer
to use multisets rather than sequences (as in the original CHR papers) because our
results do not depend on the order of atoms in the rules. In particular, we will use
this notation based on multisets in the syntax of CHR.

The notation ∃Vφ, where V is a set of variables, denotes the existential closure
of a formula φ w.r.t. the variables in V , while the notation ∃−Vφ denotes the
existential closure of a formula φ with the exception of the variables in V which
remain unquantified. Fv(φ) denotes the free variables appearing in φ. Finally, we
denote by t̄ and X̄ a sequence of terms and of distinct variables, respectively.

In the following, if t̄ = t1, . . . tm and t̄′ = t′1, . . . t
′
m are sequences of terms then

the notation p(t̄) = p′(t̄′) represents the set of equalities t1 = t′1, . . . , tm = t′m if p =

p′, and it is undefined otherwise. This notation is extended in the expected way
to multiset of constraints. Moreover we use ++ to denote sequence concatenation
and] for multi-set union.

We follow the logic programming tradition and indicate the application of a
substitution σ to a syntactic object t by σt.

To distinguish between different occurrences of syntactically equal constraints
a CHR constraints can be labeled by a unique identifier. The resulting syntactic
object is called identified CHR constraint and is denoted by k#i, where k is a CHR
constraint and i is the identifier. We also use the functions defined as chr(k#i) =

k and id(k#i) = i, possibly extended to sets and sequences of identified CHR
constraints in the obvious way.

2.2 CHR program

A CHR program is defined as a sequence of three kinds of rules: simplification,
propagation and simpagation rules. Intuitively, simplification rewrites constraints
into simpler ones, propagation adds new constraints which are logically redun-
dant but may trigger further simplifications, simpagation combines in one rule the
effects of both propagation and simplification rules. For simplicity we consider
simplification and propagation rules as special cases of a simpagation rule. The
general form of a simpagation rule is:

r @Hk\Hh ⇐⇒ D | B

reflexivity leq(X,Y)⇐⇒ X = Y | true
antisymmetry leq(X,Y), leq(Y, X)⇐⇒ X = Y

transitivity leq(X,Y), leq(Y,Z)⇒ leq(X,Z)

Figure 1: A program for defining ≤ in CHR

where r is a unique identifier of a rule, Hk and Hh (the heads) are multi-sets of
CHR constraints, D (the guard) is a possibly empty multi-set of built-in constraints
and B is a possibly empty multi-set of (built-in and user-defined) constraints. If
Hk is empty then the rule is a simplification rule. If Hh is empty then the rule is a
propagation rule. At least one of Hk and Hh must be non empty.

In the following when the guard D is empty or true we omit D |. Also the
names of rules are omitted when not needed. For a simplification rule we omit
Hk\ while we write a propagation rule as Hk ⇒ D | B. A CHR goal is a multi-set
of (both user-defined and built-in) constraints. An example of a CHR program is
shown in Figure 1. This program implements the less or equal predicate, assuming
that we have only the equality predicate in the available built-in constraints. The
first rule, a simplification, deletes the constraint leq(X,Y) if X = Y . Analogously
the second rule deletes the constraints leq(X,Y) and leq(Y, X) adding the built-in
constraint X = Y . The third rule of the program is a propagation rule and it is used
to add a constraint leq(X,Z) when the two constraints leq(X,Y) and leq(Y,Z) are
found.

2.3 Traditional operational semantics
The theoretical operational semantics of CHR, denoted by ωt, is given in [12] as
a state transition system T = (Conf ,

ωt
→P): configurations in Conf are tuples of

the form 〈G, S , B,T 〉n, where G is the goal (a multi-set of constraints that remain
to be solved), S is the CHR store (a set of identified CHR constraints), B is the
built-in store (a conjunction of built-in constraints), T is the propagation history
(a set of sequence of identifiers used to store the rule instances that have fired) and
n is the next free identifier (it is used to identify new CHR constraints). The prop-
agation history is used to avoid trivial non termination that could be introduced by
repeated application of the same propagation rule. The transitions of ωt are shown
in Table 1.

Given a program P, the transition relation
ωt
→P⊆ Conf × Conf is the least

relation satisfying the rules in Table 1. The Solve transition allows to update the
constraint store by taking into account a built-in constraint contained in the goal.
The Introduce transition is used to move a user-defined constraint from the goal

Solve 〈(c,G), S ,C,T 〉n
ωt
→P 〈G, S , c ∧ C,T 〉n where c is a built-in

constraint
Introduce 〈(k,G), S ,C,T 〉n

ωt
→P 〈G, {c#n} ∪ S ,C,T 〉n+1 where k is a

CHR constraint
Apply 〈G,H1∪H2∪S ,C,T 〉n

ωt
→P 〈(B,G),H1∪S , θ∧D∧C,T∪{t}〉n

where P contains a (renamed apart) rule

r @H′1\H
′
2 ⇐⇒ D | B

and there exists a matching substitution θ s.t. chr(H1) =

θH′1, chr(H2) = θH′2, CT |= C → ∃−Fv(C)(θ ∧ D) and t =

id(H1) ++ id(H2) ++ [r] < T

Table 1: Transitions of ωt

to the CHR constraint store, where it can be handled by applying CHR rules.
The Apply transition allows to rewrite user-defined constraints (which are in the
CHR constraint store) by using rules from the program. As usual, in order to
avoid variable name clashes, this transition assumes that all variables appearing
in a program clause are fresh ones. The Apply transition is applicable when the
current store (B) is strong enough to entail the guard of the rule (D), once the
parameter passing has been performed. Note also that, as previously mentioned,
the condition id(H1) ++ id(H2) ++ [r] < T avoids repeated application of the
same propagation rule and therefore trivial non-termination.

An initial configuration has the form 〈G, ∅, true, ∅〉1 while a final configuration
has either the form 〈G, S , f alse,T 〉k, when it is failed, or the form 〈∅, S , B,T 〉k,
when it is successfully terminated because there are no applicable rules.

Given a goal G, the operational semantics that we consider observes the non
failed final stores of terminating computations. This notion of observable is the
most used in the CHR literature and is captured by the following.

Definition 3. [Qualified answers [16]] Let P be a program and let G be a goal.
The set QAP(G) of qualified answers for the query G in the program P is defined
as:

QAP(G) = {∃−Fv(G)(K ∧ d) | CT 6|= d ↔ f alse,

〈G, ∅, true, ∅〉1
ωt
→P

∗

〈∅,K, d,T 〉n
ωt
9P}

We also consider the following different notion of answer, obtained by com-
putations terminating with a user-defined constraint which is empty. We call these

observables data sufficient answers slightly deviating from the terminology of [16]
(a goal which has a data sufficient answer is called a data-sufficient goal in [16]).

Definition 4. [Data sufficient answers] Let P be a program and let G be a goal.
The set SAP(G) of data sufficient answers for the query G in the program P is
defined as:

SAP(G) = {∃−Fv(G)(d) | CT 6|= d ↔ f alse,

〈G, ∅, true, ∅〉1
ωt
→P

∗

〈∅, ∅, d,T 〉n}

Both previous notions of observables characterize an input/output behaviour,
since the input constraint is implicitly considered in the goal. Clearly in general
SAP(G) ⊆ QAP(G) holds, since data sufficient answers can be obtained by setting
K = ∅ in Definition 3.

2.4 Abstract operational semantics

The first CHR operational semantics defined in [16] differs from the traditional
semantics ωt. Indeed this original, so called, abstract semantics denoted by ωa,
allows the firing of a propagation rule an infinite number of times. For this reason
ωa can be seen as the abstraction of the traditional semantics where the propaga-
tion history is not considered. In Table 2 we have reported the transaction of the
ωa semantics following the structure of the theoretical semantics using configura-
tions without a propagation history set.

Given a program P, the transition relation
ωa
→P⊆ Conf × Conf is the least

relation satisfying the rules in Table 2.
Initial and final configurations can be defined analogously to those of ωt se-

mantics. In the same way we can define the observables: qualified and data suffi-
cient answers.

2.5 CHR with priorities

De Koninck et al. [22] extended CHR with user-defined priorities. This new lan-
guage, denoted by CHRωp , provides an high level alternative for controlling pro-
gram execution, that is more appropriate to needs of CHR programmers than other
low level approaches.

The syntax of CHR with priorities is compatible with the syntax of CHR. A
simpagation rule has now the form

p :: r @Hk\Hh ⇐⇒ D | B

Solve 〈(c,G), S ,C,T 〉n
ωa
→P 〈G, S , c ∧ C,T 〉n where c is a built-in

constraint
Introduce 〈(k,G), S ,C,T 〉n

ωa
→P 〈G, {c#n} ∪ S ,C,T 〉n+1 where k is a

CHR constraint
Apply 〈G,H1∪H2∪S ,C,T 〉n

ωt
→P 〈(B,G),H1∪S , θ∧D∧C,T∪{t}〉n

where P contains a (renamed apart) rule

r @H′1\H
′
2 ⇐⇒ D | B

and there exists a matching substitution θ s.t. chr(H1) =

θH′1, chr(H2) = θH′2, CT |= C → ∃−Fv(C)(θ ∧ D)

Table 2: Transitions of ωa

1 :: source(V) =⇒ dist(V, 0)
1 :: dist(V,D1)\dist(V,D2)⇐⇒ D1 ≤ D2|true

D + 2 :: dist(V,D), edge(V,C,U) =⇒ dist(U,D + C)

Figure 2: A program for computing the shortest path in CHRωp

where r,Hk,Hh,D, B are defined as in the CHR simpagation rule in Section 2.2,
while p is an arithmetic expression, with Fv(p) ⊆ (Fv(Hk) ∪ Fv(Hh)), which
expresses the priority of rule r. If Fv(p) = ∅ then p is a static priority, otherwise
it is called dynamic.

The formal semantics of CHRωp , defined by [22], is an adaptation of the tra-
ditional semantics to deal with rule priorities. Formally this semantics, denoted
by ωp, is a state transition system T = (Conf ,

ωp
→P) where P is a CHRωp program

while configurations in Conf , as well as the initial and final configurations, are the
same as those introduced for the traditional semantics in Section 2.3. The transi-
tion relation

ωp
→P⊆ Conf ×Conf is the least relation satisfying the rules in Table 3.

The Solve and Introduce transitions are equal to those defined for the traditional
semantics. The Apply transition instead is modified in order to take into account
priorities. In fact, a further condition is added imposing that a rule can be fired
only if no other rule that can be applied has a smaller value for the priority an-
notation (as usual in many systems, smaller values correspond to higher priority;
For simplicity in the following we will use the terminology “higher” or “lower”
priority rather than considering the values).

Solve 〈(c,G), S ,C,T 〉n
ωp
→P 〈G, S , c ∧ C,T 〉n where c is a built-in

constraint

Introduce 〈(k,G), S ,C,T 〉n
ωp
→P 〈G, {c#n} ∪ S ,C,T 〉n+1 where k is a

CHR constraint

Apply 〈∅,H1 ∪ H2 ∪ S ,C,T 〉n
ωp
→P 〈B,H1 ∪ S , θ ∧ D ∧C,T ∪ {t}〉n

where P contains a (renamed apart) rule

p :: r @H′1\H
′
2 ⇐⇒ D | B

and there exists a matching substitution θ s.t. chr(H1) =

θH′1, chr(H2) = θH′2, CT |= C → ∃−Fv(C)(θ ∧ D), θp is a
ground arithmetic expression and t = id(H1) ++ id(H2) ++

[r] < T . Furthermore no rule of priority p′ and substitution
θ′ exists with θ′p′ < θp for which the above conditions hold

Table 3: Transitions of ωp

An example of a CHRωp program (from [22]) is shown in Figure 2. This
program can be used to compute the length of the shortest path between a source
node and all the other nodes in the graph. We assume that the source node n
is defined by using the constraint source(n) and that the graph is represented by
using the constraints edge(V,C,U) for every edge of length C between two nodes
V,U. When the program terminates we obtain a constraint dist(U,C) iff the length
of the shortest path between the source node and U is C.

The qualified and data sufficient answers for CHRωp can be defined analo-
gously to those of the standard language:

Definition 5. [Qualified answers] Let P be a CHRωp program and let G be a goal.
The set QAP(G) of qualified answers for the query G in the program P is defined
as:

QAP(G) = {∃−Fv(G)(K ∧ d) | CT 6|= d ↔ f alse,

〈G, ∅, true, ∅〉1
ωp
→P

∗

〈∅,K, d,T 〉n
ωp
9P}

Definition 6. [Data sufficient answers] Let P be a CHRωp program and let G be
a goal. The set SAP(G) of data sufficient answers for the query G in the program

P is defined as:

SAP(G) = {∃−Fv(G)(d) | CT 6|= d ↔ f alse,

〈G, ∅, true, ∅〉1
ωp
→P

∗

〈∅, ∅, d,T 〉n}

2.6 Language encoding
In order to compare the expressive power of two languages we use the notion of
language encoding, first formalized in [10, 29, 34].1 Intuitively, a language L is
more expressive than a language L′ or, equivalently, L′ can be encoded in L, if
each program written in L′ can be translated into an L program in such a way
that: (1) the intended observable behavior of the original program is preserved,
under some suitable decoding; (2) the translation process satisfies some additional
restrictions.

In this work we impose two requirements on the translation. First we require
that the translation of the goal (in the original program) and the decoding of the re-
sults (in the translated program) are homomorphic w.r.t. the conjunction of atoms.
This assumption essentially means that our encoding and decoding functions re-
spect the structure of the original goal and of the results (recall that for CHR
programs these are constraints, that is, conjunction of atoms). Next we assume
that the results to be preserved are the, so called, qualified answers. Also this
is a rather natural assumption, since these are the typical CHR observables for
many CHR reference semantics. To simplify the treatment we assume that both
the source and the target language use the same built-in constraints, semantically
described by a theory CT , which is not changed in the translation process.

We formally define a program encoding as any function PROG : PL → PL′
which translates a L program into a (finite) L′ program (PL and PL′ denote the
set ofL andL′ programs, respectively). To simplify the treatment we assume that
both the source and the target language use the same built-in constraints semanti-
cally described by a theory CT .

In order to define when an encoding is acceptable, we have to define how
the initial goal and the observables should be translated by the encoding and the
decoding functions, respectively. We require that these translations are compo-
sitional w.r.t. the conjunction of atoms. This assumption essentially means that
the encoding and the decoding respect the structure of the original goal and of
the observables. Moreover, since the source and the translated programs use the
same constraint theory, it is natural to assume also that these two functions do not
modify or add built-in constraints (in other words, we do not allow to simulate the
behaviour and the effects of the constraint theory).

1 The original terminology of these papers was “language embedding”.

We do not impose any restriction on the program translation, hence we have
the following definition.

Definition 7 (Acceptable encoding). Suppose that C is the class of all the possible
multisets of constraints. An acceptable encoding (of L into L′) is a tern of map-
pings (PROG,INP,OUT) where PROG : PL → PL′ is the program encoding,
INP : C → C is the goal encoding, and OUT : C → C is the output decoding
which satisfy the following conditions:

1. the goal encoding function is compositional, that is, for any goal (A, B) ∈ C,
INP(A, B) = INP(A),INP(B) holds. We also assume that the built-ins
present in the goal are left unchanged and no new built-ins can be added;

2. the output decoding function is compositional, that is, for any qualified an-
swer (A, B) ∈ C, OUT (A, B) = OUT (A),OUT (B) holds. We also assume
that the built-ins present in the answer are left unchanged and no new built-
ins can be added;

3. Qualified answers are preserved for the class C, that is, for all P ∈ PL and
G ∈ C, QAP(G) = OUT (QAPROG(P)(INP(G))) holds.

Moreover we define an acceptable encoding for data sufficient answers of L into
L′ exactly as an acceptable encoding, with the exception that the third condition
above is replaced by the following:

3’. Data sufficient answers are preserved for the class C, that is, for all P ∈ PL
and G ∈ C, SAP(G) is equal to the data sufficient answers in
OUT (QAPROG(P)(INP(G))).2

Further weakening these conditions and requiring for instance that the trans-
lation of A, B is some form of composition of the translation of A and B does not
seem reasonable, as conjunction is the only form for goal composition available
in CHR.

3 Non Turing powerful fragments of CHR
The computational power of CHR depends on several aspects, including the num-
ber of atoms allowed in the heads, the underlying signature Σ on which programs
are defined, and the constraint theory CT , defining the built-ins.

2Note that in 3. and in 3′. the function OUT () is extended in the obvious way to sets of
qualified answers.

In this section, as an example, we give the proof that the fragment of CHR
that does not introduce new variables is non Turing powerful. Then we provide an
overview of the decidability results of CHR fragments.

The language under consideration in this section is the CHR defined over a
signature which contains no function symbol of arity > 0 and interpreted using the
ωa semantics. We denote this language as CHRωa(C). We also use the notation
CHRωa(P) to denote the language where all constraints have arity zero (i.e. Σ = ∅).
Finally CHRωa(F) indicates the CHR language which allows functor symbols and
the = built-in.3

3.1 Range-restricted CHRωa(C)

We consider the (multi-headed) range-restricted CHRωa(C) language. We call a
CHR rule range-restricted if all the variables which appear in the body and in
the guard appear also in the head of a rule. More formally, if Var(X) denotes
the variables used in X, the rule r @Hk\Hh ⇐⇒ D | B is range-restricted if
Var(B)∪Var(D) ⊆ Var(Hk,Hh) holds. A CHR language is called range-restricted
if it allows range-restricted rules only.

We prove that in range-restricted CHRωa(C) the existence of an infinite com-
putation is a decidable property. This shows that this language is less expressive
than Turing Machines and than CHRωa(C). Our result is based on the theory of
well-structured transition systems (WSTS) and we refer to [1, 13] for this theory.
Here we only provide the basic definitions on WSTS, taken from [13].

Recall that a quasi-order (or, equivalently, preorder) is a reflexive and transi-
tive relation. A well-quasi-order (wqo) is defined as a quasi-order ≤ over a set
X such that, for any infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j
such that xi ≤ x j. Thus well-quasi-orders exclude the possibility of having infinite
strictly decreasing sequences.

A transition system is defined as usual, namely it is a structure TS = (S ,→),
where S is a set of states and→⊆ S × S is a set of transitions. We define S ucc(s)
as the set {s′ ∈ S | s→ s′} of immediate successors of s. We say that TS is finitely
branching if, for each s ∈ S , S ucc(s) is finite. Hence we have the key definition.

Definition 8 (Well-structured transition system with strong compatibility). A well-
structured transition system with strong compatibility is a transition system TS =

(S ,→), equipped with a quasi-order ≤ on S , such that the two following condi-
tions hold:

1. ≤ is a well-quasi-order;
3Note that this last language is the signature used in most of the current CHR implementation.

Indeed the host language of the majority of CHR implementations is Prolog and therefore the usual
signature supports arbitrary Herbrand terms and unification.

2. ≤ is strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all
transitions s1 → s2, there exists a state t2 such that t1 → t2 and s2 ≤ t2

holds.

The next theorem is a special case of a result in [13] and will be used to obtain
our decidability result.

Theorem 1. Let TS = (S ,→,≤) be a finitely branching, well-structured transition
system with strong compatibility, decidable ≤ and computable S ucc(s) for s ∈
S . Then the existence of an infinite computation starting from a state s ∈ S is
decidable.

Consider a given goal G and a (CHR) program P and consider the transition
system T = (Conf ,

ωa
→P) defined in Section 2.4. Obviously the number of con-

stants and variables appearing in G or in P is finite. Moreover, observe that since
we consider range-restricted programs, the application of the transitions

ωa
→P does

not introduce new variables in the computations. In fact, even though rules are
renamed (in order to avoid clash of variables), the definition of the Apply rule
(in particular the definition of θ) implies that in a transition s1

ωa
→P s2 we have

that Var(s2) ⊆ Var(s1) holds. Hence an obvious inductive argument implies that
no new variables arise in computations. For this reason, given a goal G and a
program P, we can assume that the set Conf of all the configurations uses only a
finite number of constants and variables. In the following we implicitly make this
assumption. We define a quasi-order on configurations as follows.

Definition 9. Given two configurations s1 = 〈G1, S 1, B1〉i and s2 = 〈G2, S 2, B2〉 j

we say that s1 ≤ s2 if

• for every constraint c ∈ G1 |{c ∈ G1}| ≤ |{c ∈ G2}|

• for every constraint c ∈ {d . d#i ∈ S 1} |{i . c#i ∈ S 1}| ≤ |{i . c#i ∈ S 2}|

• B1 is logically equivalent to B2

It is possible to prove that ≤ is a well-quasi-order on Conf and that given a
CHRωa(C) program P, (Conf ,

ωa
→P,≤) is a well-structured transition system with

strong compatibility. For more details please see [20].
Exploiting the WSTS we have the desired result.

Theorem 2. Given a range-restricted CHRωa(C) program P and a goal G, the
existence of an infinite computation for G in P is decidable.

Proof. First observe that, due to our assumption on range-restricted programs,
T = (Conf ,

ωa
→P) is finitely branching. In fact, as previously mentioned, the use

of rule Apply can not introduce new variables (and hence new different states).
The thesis follows immediately from the strong compatibility of (Conf ,

ωa
→P,≤)

and Theorem 1. �

The previous Theorem implies that range-restricted CHRωa(C) is strictly less
expressive than Turing Machines, in the sense that there can not exist a termination
preserving encoding of Turing Machines into range-restricted CHRωa(C). To be
more precise, we consider an encoding of a Turing Machine into a CHR language
as a function f which, given a machine Z and an initial instantaneous description
D for Z, produces a CHR program and a goal. This is denoted by (P,G) = f (Z,D).
Hence we have the following.

Definition 10 (Termination preserving encoding). An encoding f of Turing Ma-
chines into a CHR language is termination preserving4 if the following holds: the
machine Z starting with D terminates iff the goal G in the CHR program P has
only terminating computations, where (P,G) = f (Z,D). The encoding is weak
termination preserving if: the machine Z starting with D terminates iff the goal G
in the CHR program P has at least one terminating computation.

Since termination is undecidable for Turing Machines, we have the following
immediate corollary of Theorem 2.

Corollary 1. There exists no termination preserving encoding of Turing Machines
into range-restricted CHRωa(C).

Note that the previous result does not exclude the existence of weak encod-
ings. For example, in [8] it is shown that the existence of an infinite computation
is decidable in CCS!, a variant of CCS, yet it is possible to provide a weak ter-
mination preserving encoding of Turing Machines in CCS! (essentially by adding
spurious non-terminating computations). We conjecture that such an encoding
is not possible for CHRωa(C). Note also that previous results imply that range-
restricted CHRωa(C) is strictly less expressive than CHRωa(C): in fact there exists
a termination preserving encoding of Turing Machines into CHRωa(C) [11, 31].

3.2 Overview
We proved that range-restricted CHRωa(C) is strictly less expressive than Turing
Machines (and therefore than CHRωa(C)). In [20] a similar result is proven for

4For many authors the existence of a termination preserving encoding into a non-deterministic
language L is equivalent to the Turing completeness of L, however there is no general agreement
on this, since for others a weak termination preserving encoding suffices.

CHRωa
1 (C), the language defined over a signature which does not allow function

symbols but only one constraint in the head. These results are not immediate.
Indeed, CHRωa(C), without further restrictions and with any of the two semantics,
is a Turing complete language [11,31]. It remains quite expressive also with these
restrictions: for example, CHRωa

1 (C) allows an infinite number of different states,
hence, for example, it can not be translated to Petri Nets.

Several papers have considered the expressive power of CHR in the last few
years. In particular, [31] showed that a further restriction of CHRωa

1 (C), which
does not allow built-ins in the body of rules (and which therefore does not allow
unification of terms) is not Turing complete. This result is obtained by translat-
ing CHRωa

1 (C) programs (without unification) into propositional CHR and using
the encoding of propositional CHR intro Petri Nets provided in [2]. The trans-
lation to propositional CHR is not possible for the language (with unification)
CHRωa

1 (C). [2] also provides a translation of range-restricted CHRωa(C) to Petri
nets. However in this translation, differently from our case, it is also assumed
that no unification built-in can be used in the rules, and only ground goals are
considered. Related to this work is also [11], where it is shown that CHRωa(F)
is Turing complete and that restricting to single-headed rules decreases the com-
putational power of CHR. However, these results are based on the theory of lan-
guage embedding, developed in the field of concurrency theory to compare Turing
complete languages, hence they do not establish any decidability result. Another
related study is [32], where the authors show that it is possible to implement any
algorithm in CHR in an efficient way, i.e. with the best known time and space
complexity. Earlier works by Frühwirth [17, 18] studied the time complexity of
simplification rules for naive implementations of CHR. In this approach an upper
bound on the derivation length, combined with a worst-case estimate of (the num-
ber and cost of) rule application attempts, allows to obtain an upper bound of the
time complexity.

A summary of the existing results concerning the computational power of sev-
eral dialects of CHR is shown in Table 4. In this table, “no” and “yes” refer to
the existence of a termination preserving encoding of Turing Machines into the
considered language.

4 Expressive power of priorities in CHR
In this section we first show that dynamic priorities do no augment the expressive
power of the language w.r.t. static priorities. This result is obtained by providing
an acceptable encoding of CHR with priorities into the fragment of CHR that uses
static priorities only. We then prove that (static) priorities augment the expressive
power of CHR in the sense that there exists no acceptable encoding of CHRωp into

Signature Operational semantics k = 1 k > 1
P (propositional) ωa No No

range-restricted C
(constants)

ωa No No

C (constants), without = ωa and ωt No Yes
C (constants) ωa and ωt No Yes

F (functors) ωa and ωt Yes Yes

Table 4: Summary of termination preserving encoding of Turing Machines

CHR (with the ωt semantics). To conclude we give an overview of the state of the
art related to the expressive power equivalence between different CHR languages.

We consider the following languages and semantics:

• CHRωt : this is standard CHR, where the theoretical semantics is used,

• CHRωp: this is CHR with priorities, where both dynamic and static priorities
can be used, the semantics is ωp defined in Section 2.5;

• static CHRωp: this is CHR with static priorities only, with the ωp semantics;

• static CHRωp

2 : this is CHR with static priorities only, with the ωp semantics,
where we allow at most two constraints in the head of a rule.

In the following, given a program P, we denote by Pred(P) and Head(P) the
set of all the predicate symbols p s.t. p occurs in P and in the head of a rule in P,
respectively.

4.1 Encoding CHRωp into static CHRωp

We prove that the CHRωp language, which allows dynamic priorities, is not more
expressive than static CHRωp , which allows static priorities only. This result is
obtained by providing an (acceptable) encoding of CHRωp into static CHRωp .

We assume that P is a CHRωp program composed by m rules and we also
assume that the i-th rule (with i ∈ {1, . . . ,m}) has the form:

pi :: rulei @ Hi\H′i ⇔ Gi|Bi

Moreover, given a multiset of CHR constraints H̄ = h1(t̄1), . . . , hn(t̄n) and a
sequence of (distinct) variables V̄ = V1, . . . ,Vn, we denote by new′(H̄, V̄) the mul-
tiset of atoms newh1(V1, t̄1), . . . , newhn(Vn, t̄n).

First, we require that the goal encoding is a non surjective function. The reason
for this requirement is that the program encoding needs to use, in the translated
program, some fresh constraints which do not appear in the initial (translated)
goal. A simple goal encoding that satisfies this requirement is the one that does
not change built-in constraints and adds a letter, say “a", at the beginning of the
other constraints, as shown below

INP(b(t̄)) =

{
b(t̄) if b(t̄) is a built-in constraint
ab(t̄) otherwise

The program encoding T (P) from CHRωp into static CHRωp is instead defined
as the function that, given a program P, produces the following program:

for every predicate name ak ∈ INP(Head(P))
1 :: rule(1,k) @ start\id(V), ak(X̄)⇔ id(V + 1), newak(V, X̄)

2 :: rule(2,k) @ ak(X̄)⇒ start, id(0)

2 :: rule3 @ start ⇔ highest_priority(in f)

for every i ∈ {1, . . . ,m}
3 :: rule(4,i) @ end\instancei(_)⇔ true

4 :: rule5 @ end ⇔ true

for every i ∈ {1, . . . ,m} EVALUATE_PRIORITIES(i)

7 :: rule9 @ highest_priority(in f), id(V)⇔ end

for every i ∈ {1, . . . ,m} ACTIVATE_RULE(i)

If rulei is not a propagation rule then EVALUATE_PRIORITIES(i) are the fol-
lowing rules

6 :: rule(7,i) @ new′(INP(Hi), Z̄), new′(INP(H′i), Ū)\highest_priority(in f)⇔
Gi|highest_priority(pi)

6 :: rule(8,i) @ new′(INP(Hi), Z̄), new′(INP(H′i), Ū)\highest_priority(P)⇔
Gi, pi < P|highest_priority(pi)

if rulei is a propagation rule then EVALUATE_PRIORITIES(i) are the following
rules

5 :: rule(6,i) @new′(INP(Hi), Z̄)⇒ Gi|instancei(Z̄)

6 :: rule(7,i) @ instancei(Z̄), new′(INP(Hi), Z̄)\highest_priority(in f)⇔
Gi|highest_priority(pi)

6 :: rule(8,i) @ instancei(Z̄), new′(INP(Hi), Z̄)\highest_priority(P)⇔
Gi, pi < P|highest_priority(pi)

if rulei is a propagation rule then ACTIVATE_RULE(i) is the following rule

8 :: rule(10,i) @ new′(INP(Hi), Z̄)\instancei(Z̄), highest_priority(P), id(V)⇔
Gi, pi = P|U pdate(INP(Bi),V), highest_priority(in f)

if rulei is not a propagation rule then ACTIVATE_RULE(i) is the following rule

8 :: rule(10,i) @ new′(INP(Hi), Z̄), new′(INP(H′i), Ū), highest_priority(P), id(V)⇔
Gi, pi = P|U pdate(INP(Bi),V), highest_priority(in f)

In the above encoding we assume that the constraint theory CT allows to use
equalities and inequalities (so we can evaluate whether pi = h and pi > h where
h ∈ Z and pi is an arithmetic expression). We also assume in f is a conventional
constant which is bigger than all pi (i.e. it represents the lowest priority). The
U pdate(C,V) function is defined instead as follows

U pdate(k(t̄),V) = newk(V, t̄)
if k(t̄) is a CHR constraint

U pdate(c(t̄),V) = c(t̄)
if c(t̄) is a built-in constraint

U pdate([],V) = id(V)

U pdate([d(X̄) | Ds],V) =

U pdate(d(X̄),V),U pdate(Ds,V + 1).

Example 4.1. Let us consider as P the shortest path program depicted in Figure
2. The correspondent T (P) is the following program:

1 :: start\id(V), asource(X̄)⇔ id(V + 1), newasource(V, X̄)
1 :: start\id(V), adist(X̄)⇔ id(V + 1), newadist(V, X̄)

1 :: start\id(V), aedge(X̄)⇔ id(V + 1), newaedge(V, X̄)

2 :: asource(X̄)⇒ start, id(0)
2 :: adist(X̄)⇒ start, id(0)
2 :: aedge(X̄)⇒ start, id(0)

2 :: start ⇔ highest_priority(in f)

3 :: end\instance1(Z̄)⇔ true
3 :: end\instance2(Z̄)⇔ true
3 :: end\instance3(Z̄)⇔ true

4 :: end ⇔ true

5 :: newasource(V, X)⇒ instance1(V)
6 :: newasource(V, X)\highest_priority(in f)⇔ highest_priority(1)

6 :: newasource(V, X)\highest_priority(P)⇔ 1 < P|highest_priority(1)

6 :: newadist(V1, X1, X2), newadist(V2,Y1,Y2)\highest_priority(in f)⇔
X2 ≤ Y2|highest_priority(1)

6 :: newadist(V1, X1, X2), newadist(V2,Y1,Y2)\highest_priority(P)⇔
X2 ≤ Y2, 1 < P|highest_priority(1)

5 :: newadist(V1, X1, X2), newaedge(V2, Ȳ)⇒
instance3(V1,V2)

6 :: newadist(V1, X1, X2), newaedge(V2, Ȳ)\highest_priority(in f)⇔
highest_priority(X2 + 2)

6 :: newadist(V1, X1, X2), newaedge(V2, Ȳ)\highest_priority(P)⇔
X2 + 2 < P|highest_priority(X2 + 2)

7 :: highest_priority(in f), id(V)⇔ end

8 :: newasource(V, X)\instance1(V̄), highest_priority(P), id(V ′)⇔
1 = P|newadist(V ′, X, 0), id(V ′ + 1), highest_priority(in f)

8 :: newadist(V1, X, X1)\newadist(V2, X, X2), highest_priority(P), id(V ′)⇔
X1 ≤ X2, 1 = P|id(V ′), highest_priority(in f)

8 :: newadist(V1, X, X1), newaedge(V2, X, X2, X3)\instance3(V1,V2), highest_priority(P),
id(V ′)⇔ X1 + 2 = P|newadist(X3, X1 + X2), id(V ′ + 1), highest_priority(in f)

�

We now provide some explanations for the above encoding. Intuitively the
result of the encoding can be divided in three phases:

1. Init. In the init phase, for each (user defined) predicate symbol ak ∈ INP(Head(P))
we introduce a rule rule(1,k), which replaces ak(t̄) distinct variables) by newak(V, t̄)
where V is a variable which will be used to simulate the identifier used in
identified constraints. Moreover we use the id predicate symbol to memo-
rize the highest identifier used. Rules rule(2,k) (one for each predicate sym-
bol ak ∈ INP(Head(P)), as before) are used to fire rules rule(1,k) and also to
start the following phase (via rule3). Note that rules rule(1,k) have maximal
priority and therefore are tried before rules rule(2,k).

2. Main. The main phase is divided into two phases: the evaluation phase
starts when the init phase adds the constraint highest_priority(in f). Rules
rule(6,i), . . . , rule(8,i) store in highest_priority the highest priority on all the
rule instances that can be fired. After the end of the evaluation phase the
activation starts. During this phase if a rule can be fired one of the rules
rule(10,i) is fired. After the rule has been fired the constraint highest_priority(in f)
is produced which starts a new evaluation phase.

3. Termination. The termination phase is triggered by rule rule9. This rule
fires when no instance from the original program can fire. During the termi-
nation phase all the constraints produced during the computation (namely
id, instancei, highest_priority, end) are deleted.

In the following we now provide some more details on the two crucial points
in this translation: the evaluation and the activation phases.

• Evaluation. The rules in the set denoted by

EVALUATE_PRIORITIES(i)

are triggered by the insertion of highest_priority(in f) in the constraint store.
In the case of a propagation rule rulei ∈ P, the rules in

EVALUATE_PRIORITIES(i)

should consider the possibility that there is an instance of rulei that can not
be fired because it has been previously fired. When an instance of a propa-
gation rule can fire, rule rule(6,i) adds a constraint instancei(v̄), where v̄ are
the identifiers of the CHR atoms which can be used to fire rulei. The ab-
sence of the constraint instancei(v̄) in the constraint store means that either
rulei can not be fired by using the CHR atoms identified by v̄ or has already
fired for the CHR atoms identified by v̄.

The evaluation of the priority for a simpagation or a simplification rule is
instead more simple because the propagation history does not affect the ex-
ecution of these two types of rules.

Rules rule(7,i) and rule(8,i) replace the constraint highest_priority(p) with
the constraint highest_priority(p′) if a rule of priority p′ can be fired and
p > p′.

• Activation. When the evaluation phase ends if a rule can fire then one
of the rules rule(10,i) is fired since highest_priority(in f) has been removed
from the constraint store.

The only difference between a propagation rule and a simpagation/simplification
rule is that when a propagation rule is fired the corresponding constraint
instancei(v̄) is deleted to avoid the execution of the same propagation rule
in the future.

It is worth noting that the non-determinism in the choice of the rule to be
fired provided by the ωp semantics is preserved, since all the priorities of
ACTIVATE_RULE(i) are equal.

To conclude the definition of the acceptable encoding we need the last ingre-
dient: the output decoding function. If we run the goal INP(G) in the program
T (P) we obtain the same qualified answers obtained by running G in the program
P, with the only difference that if in the qualified answer of P there is a CHR
constraint k(t̄) then in the corresponding qualified answer of the encoded program
T (P) there will be either a constraint newak(V, t̄) (if k ∈ Head(P) or k(t̄) is intro-
duced by an Apply transition step) or a constraint ak(t̄) (if k < Head(P) and k(t̄)
is in the initial goal G).

Therefore the decoding function that we need is:

OUT (b(t̄)) =


b(t̄) if b(t̄) is a built-in constraint
k(t̄′) if b(t̄) = newak(V, t̄′)
k(t̄) if b(t̄) = ak(t̄).

The following result proven in [19] shows that the qualified answers are pre-
served by our encoding.

Theorem 3. The triple (T (), INP(), OUT ()) provides an acceptable encoding
between CHRωp and static CHRωp .

4.2 No encoding of static CHRωp into CHRωt

In this section we prove that priorities do augment the expressive power of CHR.
To do so we prove that there exists no acceptable encoding from static CHRωp

into CHRωt .
In order to prove this separation result we need the following lemma which

states a key property of CHR computations under the ωt semantics. Essentially

it says that, given a program P and goal G, if there exists a derivation for G
in P which produces a qualified answer (d,K) where d is a built-in constraint,
then when considering the goal (d,G) we can perform a derivation in P, which
is essentially the same of the previous one, with the only exception of a Solve
transition step (in order to evaluate the constraint d). Hence it is easy to observe
that such a new computation for (d,K) in P will terminate producing the same
qualified answer (d,K).

The proof of the following Lemma is then immediate.

Lemma 1. Let P be a CHRωt program and let G be a goal. Assume that G in
P has the qualified answer (d,K). Then the goal (d,G) has the same qualified
answer (d,K) in P.

Lemma 1 is not true anymore if we consider CHRωp programs. Indeed if we
consider the program P consisting of the rules

1 :: h(X)⇔ X = yes| f alse

2 :: h(X)⇔ X = yes

then the goal h(X) has the qualified answer X = yes in P, while the goal X =

yes, h(X) has no qualified answer in P. With the help of the previous lemma we
can now prove our main separation result.

Theorem 4. There exists no acceptable encoding for data sufficient answers from
CHRωp into CHRωt . class G.

Proof. The proof is by contradiction. Consider the following program P in CHRωp

1 :: h(X)⇔ X = yes| f alse

2 :: h(X)⇔ X = yes

and assume that (γ(),INP(),OUT ()) is an acceptable encoding for data suffi-
cient answers from CHRωp into CHRωt .

Let G be the goal h(X). Then SAP(G) = {X = yes}. Since the goal h(X)
has the data sufficient answer X = yes in the program P and since the encoding
preserves data sufficient answers,QAγ(P)(INP(a(X))) contains a qualified answer
S such that OUT (S) = (X = yes). Moreover, since the output decoding function
is such that the built-ins appearing in the answer are left unchanged, we have that
S is of the form (X = yes,K), where K is a (possibly empty) multiset of CHR
constraints.

Then since the goal encoding function is such that the built-ins present in
the goal are left unchanged INP(X = yes, h(X)) = (X = yes,INP(h(X))) and

therefore from previous Lemma 1, it follows that the program γ(P) with the goal
INP(X = yes, h(X)) has the qualified answer S .

However (X = yes, h(X)) has no data sufficient answer in the original program
P. This contradicts the fact that (γ(),INP(),OUT ()) is an acceptable encoding
for data sufficient answers from CHRωp into CHRωt , thus concluding the proof.

�

Since the existence of an acceptable encoding implies the existence of an ac-
ceptable encoding for data sufficient answers we have the following immediate
corollary:

Corollary 2. There exists no acceptable encoding from CHRωp into CHRωt .

4.3 Overview
Some immediate acceptable encodings derive directly from the language defini-
tions. Indeed, when a language L is a sublanguage of L′ then a tern of identity
functions provides an acceptable encoding between the two languages. We first
observe that static CHRωp

2 is a sublanguage of static CHRωp that, in its turn, is a
sublanguage of CHRωp . Therefore we have the following.

Fact 1. There exists acceptable encodings from static CHRωp

2 to static CHRωp ,
and from static CHRωp to CHRωp .

As far as CHRωt is concerned, at a first glance it could be considered as a
sublanguage of static CHRωp where all the rules have equal priority. However this
is not completely true since in the ωp semantics, for the application of an Apply
transition, the goal multiset of the configuration must be empty while in the ωt

semantics it is possible to fire a rule even though some constraints have not being
introduced into the CHR store by a Solve or an Introduce transition. However it is
easy to see that from the monotonicity of ωt it follows that for every computation
reaching a non-failed final configuration there is one computation reaching the
same final configuration where the Solve and Introduce transitions are performed
as soon as they can be executed. Hence every final configuration reached by a
CHRωt program P can be reached by the static CHRωp program having the same
rules as P with a fixed and constant priority. Therefore we have the following.

Fact 2. There exists an acceptable encoding from CHRωt to static CHRωp .

In [19] it is shown that, differently from the case of standard CHR, allowing
more than two atoms in the head of rules does not augment the expressive power
of the language. Moreover, as proven in Section 4.1, dynamic priorities do not
increase the expressive power w.r.t. static ones.

static CHRωp

2

�''
static CHRωp

OO

��

��

OO

CHRωtoo

CHRωp

Figure 3: Graphical sum-
mary:
d: absence of an acceptable
encoding
→: presence of an acceptable
encoding

On the other hand we have proven that, when considering the theoretical se-
mantics, there exists no acceptable encoding of CHR with (static) priorities into
standard CHR. This means that, even though both languages are Turing power-
ful, priorities augment the expressive power of the language in a quite reasonable
sense. For a graphical overview of the expressive power of CHR with and without
priority we refer to Figure 3.

Our notion of acceptable encoding has been recently used in [3] to justify
a source-to-source transformation. When instead we move to the more general
field of concurrent languages one can find several works related to the present
one. In particular, concerning priorities, [35] shows that the presence of priorities
in process algebras does augment the expressive power. More precisely the au-
thors show, among other things, that a finite fragment of asynchronous CCS with
(global) priority can not be encoded into π-calculus nor in the broadcast based b-π
calculus. This result is related to our separation result for CHRωp and CHR, even
though the formal setting is completely different.

More generally, often in process calculi and in distributed systems separation
results are obtained by showing that a problem can be solved in a language and
not in another one (under some additional hypothesis, similar to those used here).
For example, in [25] the author proves that there exists no reasonable encoding
from the π-calculus to the asynchronous π-calculus by showing that the symmetric
leader election problem has no solution in the asynchronous version of the π-
calculus. A survey on separation results based on this problem can be found in
[36].

5 Conclusions

We considered Constraint Handling Rules (CHR), a well known concurrent lan-
guage that supports constraints as primitive constructs. We studied its expressive
power focusing first on some of its fragments and then considering what happens
when priorities are added.

There are still plenty of open question to address. For instance one may won-

der if the expressive power of CHR with priorities is equal to the CHR with the
refined semantics [12]. Another question to answer could be if range-restricted
CHRωa(C) is more expressive that CHRωa

1 (C), since the decidability result for
the second language is stronger. Moreover there are hundreds of concurrent lan-
guages that can be enriched with constraint primitives to improve their expressive
power. We are experiencing an increasingly attention towards this kind of tasks,
e.g. [5–7], and we expect a continuation of this trend in the feature.

References
[1] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General

decidability theorems for infinite-state systems. In in Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, LICS’96, pages 313–321, 1996.

[2] Hariolf Betz. Relating coloured Petri nets to Constraint Handling Rules. In K. Djel-
loul, G. J. Duck, and M. Sulzmann, editors, 4th Workshop on Constraint Handling
Rules, pages 33–47, Porto, Portugal, 2007.

[3] Hariolf Betz, Frank Raiser, and Thom W. Frühwirth. A complete and terminating
execution model for Constraint Handling Rules. TPLP, 10(4-6):597–610, 2010.

[4] Stefano Bistarelli, Thom W. Frühwirth, and Michael Marte. Soft constraint propa-
gation and solving in CHRs. In SAC, pages 1–5, 2002.

[5] Stefano Bistarelli and Francesco Santini. A Nonmonotonic Soft Concurrent Con-
straint Language for SLA Negotiation. Electr. Notes Theor. Comput. Sci., 236:147–
162, 2009.

[6] Maria Grazia Buscemi and Ugo Montanari. Open Bisimulation for the Concurrent
Constraint Pi-Calculus. In Sophia Drossopoulou, editor, ESOP, volume 4960 of
Lecture Notes in Computer Science, pages 254–268. Springer, 2008.

[7] Maria Grazia Buscemi and Ugo Montanari. A survey of constraint-based program-
ming paradigms. Computer Science Review, 2(3):137–141, 2008.

[8] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. Comparing Recursion,
Replication, and Iteration in Process Calculi. In ICALP, pages 307–319, 2004.

[9] Frank S. de Boer, Maurizio Gabbrielli, and Maria Chiara Meo. A Temporal Logic
for reasoning about Timed Concurrent Constraint Programs. In TIME, pages 227–
233, 2001.

[10] Frank S. de Boer and Catuscia Palamidessi. Embedding as a tool for language com-
parison. Inf. Comput., 108(1):128–157, 1994.

[11] Cinzia Di Giusto, Maurizio Gabbrielli, and Maria Chiara Meo. Expressiveness of
multiple heads in CHR. In SOFSEM, pages 205–216, 2009.

[12] Gregory J. Duck, Peter J. Stuckey, Maria J. García de la Banda, and Christian
Holzbaur. The refined operational semantics of Constraint Handling Rules. In ICLP,
pages 90–104, 2004.

[13] Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

[14] Thom Frühwirth. Temporal reasoning with Constraint Handling Rules. Technical
Report ECRC-94-5, European Computer-Industry Research Centre, Munchen, Ger-
many, 1994.

[15] Thom Frühwirth. Constraint Handling Rules. August 2009.

[16] Thom W. Frühwirth. Theory and practice of Constraint Handling Rules. J. Log.
Program., 37(1-3):95–138, 1998.

[17] Thom W. Frühwirth. As Time Goes by: Automatic Complexity Analysis of Simpli-
fication Rules. In KR, pages 547–557, 2002.

[18] Thom W. Frühwirth and Slim Abdennadher. The Munich Rent Advisor: A Success
for Logic Programming on the Internet. TPLP, 1(3):303–319, 2001.

[19] Maurizio Gabbrielli, Jacopo Mauro, and Maria Chiara Meo. The expressive power
of chr with priorities. Inf. Comput., 228:62–82, 2013.

[20] Maurizio Gabbrielli, Jacopo Mauro, Maria Chiara Meo, and Jon Sneyers. Decid-
ability properties for fragments of CHR. TPLP, 10(4-6):611–626, 2010.

[21] Maurizio Gabbrielli, Catuscia Palamidessi, and Frank D. Valencia. Concurrent and
Reactive Constraint Programming. In 25 Years GULP, pages 231–253, 2010.

[22] Leslie De Koninck, Tom Schrijvers, and Bart Demoen. User-definable rule priorities
for CHR. In PPDP, pages 25–36, 2007.

[23] Michael J. Maher. Logic semantics for a class of committed-choice programs. In
ICLP, pages 858–876, 1987.

[24] Jacopo Mauro. Constraints meet concurrency. PhD thesis, University of Bologna,
2012.

[25] Catuscia Palamidessi. Comparing the expressive power of the synchronous and
asynchronous pi-calculi. Mathematical Structures in Computer Science, 13(5):685–
719, 2003.

[26] Catuscia Palamidessi and Frank D. Valencia. A Temporal Concurrent Constraint
Programming Calculus. In CP, pages 302–316, 2001.

[27] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Default Timed Concurrent
Constraint Programming. In POPL, pages 272–285, 1995.

[28] Vijay A. Saraswat and Martin C. Rinard. Concurrent Constraint Programming. In
POPL, pages 232–245, 1990.

[29] Ehud Y. Shapiro. The family of concurrent logic programming languages. ACM
Comput. Surv., 21(3):413–510, 1989.

[30] Gert Smolka. The Oz Programming Model. In Computer Science Today, pages
324–343. 1995.

[31] Jon Sneyers. Turing-complete subclasses of CHR. In ICLP, pages 759–763, 2008.

[32] Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and com-
plexity of Constraint Handling Rules. ACM Trans. Program. Lang. Syst., 31(2),
2009.

[33] Kazunori Ueda. Guarded Horn Clauses. In LP, pages 168–179, 1985.

[34] Frits W. Vaandrager. Expressive Results for Process Algebras. In REX Workshop,
pages 609–638, 1992.

[35] Cristian Versari, Nadia Busi, and Roberto Gorrieri. On the Expressive Power of
Global and Local Priority in Process Calculi. In CONCUR, pages 241–255, 2007.

[36] Maria Grazia Vigliotti, Iain Phillips, and Catuscia Palamidessi. Tutorial on sepa-
ration results in process calculi via leader election problems. Theor. Comput. Sci.,
388(1-3):267–289, 2007.

	Introduction
	Constraint Handling Rules
	Notation
	CHR program
	Traditional operational semantics
	Abstract operational semantics
	CHR with priorities
	Language encoding

	Non Turing powerful fragments of CHR
	Range-restricted CHRa(C)
	Overview

	Expressive power of priorities in CHR
	Encoding CHRp into static CHRp
	No encoding of static CHRp into CHRt
	Overview

	Conclusions

