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Abstract
Several aspect languages and frameworks have recognized the need
for dynamic deployment of aspects. However, they do not provide
sufficiently expressive means to precisely specify the scope of de-
ployed aspects. As a result, programmers have to resort to unnec-
essarily complex pointcut definitions that hinder the reuse potential
of aspects. To address the issue of precise and expressive scoping
of aspects at deployment time, we propose deployment strategies
for parameterized dynamic aspect deployment. This novel mech-
anism gives full control over the propagation of the aspect on the
call stack and within created objects or functions, and permits a
deployment-specific refinement of its pointcuts. We discuss and il-
lustrate the gain in expressiveness, and provide the operational se-
mantics of deployment strategies with Scheme interpreters, for both
functional and object-oriented based aspect languages.

1. Introduction
In the pointcut-advice (PA) mechanism for aspect-oriented pro-
gramming [25, 36], as embodied in AspectJ [21] and others, cross-
cutting behavior is defined by means of pointcuts and advices.
Points during execution at which advices may be executed are
called (dynamic) join points. A pointcut identifies a set of join
points, and an advice is the action to be taken at a join point
matched by a pointcut. An aspect is a module that encompasses
a number of pointcuts and advices. In AspectJ, the decision of
whether or not to use an aspect within a program is done at build
time; if so, the aspect has global scope, i.e. it sees all join points
of the program execution. Restricting the scope of an aspect can be
done by introducing conditions in the pointcut definitions.

This however renders pointcut definitions unnecessarily com-
plex and sacrifices the reuse potential of aspects [2, 13, 28]. Also,
the exact dynamic patterns under which an aspect should be effec-
tive may be impossible to foresee or very hard to express in the
aspect definition. Furthermore, when analyzing the potential prob-
lems that can arise when importing modules containing woven as-
pects, McEachen and Alexander also make clear that developers
need more control over scoping of aspects [26].
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Dynamic deployment permits designers to address the tradeoff
between specificity and reusability by deferring certain decisions
to aspect deployment, leaving aspect definitions more reusable. Us-
ing dynamic deployment, the programmer has explicit control over
the scope of an aspect. Dynamic aspect deployment has also been
shown to better support software variability [29, 31].

A number of aspect languages and frameworks hence support
dynamic aspect deployment, under different flavors and scoping
semantics. For instance, CaesarJ [2] supports per-thread aspect de-
ployment, deploy(a){block}, whereby the aspect instance a sees
all join points produced in the dynamic extent of the execution of
block. This mechanism is also found e.g. in AspectScheme [16]
and AspectS [20]. There also exist mechanisms to deploy as-
pects on particular objects [2, 31], or globally [2, 19, 31, 33].
AspectScheme supports lexical scoping too, whereby an aspect
sees all join points that are lexically visible in block, including
those occurring within nested function definitions, even if the func-
tion is used outside of the block [16]. Dynamic and lexical scoping
in AspectScheme are introduced in Sect. 2.

All the above deployment mechanisms are limited in that their
scoping semantics only represent a fixed set of solutions in the
design space. For instance, when deploying an aspect over the dy-
namic extent of a block, one may need to specify certain bounds to
this extent, beyond which the aspect does not propagate anymore;
e.g. to avoid seeing join points occurring behind the access to a par-
ticular facade object in the system. As another example, consider
that when deploying a monitoring aspect, one may want to avoid
monitoring the activity of certain dynamically-determined sensi-
tive objects. The problem is that existing mechanisms only permit
to deploy an aspect instance as is: it is not possible to specify a
deployment-specific refinement, that makes it possible to filter out
particular join points within the extent of the aspect deployment.
These kinds of strategies should possibly be specified at deploy-
ment time, and not require a modification of the aspect definition
itself. We further illustrate these limitations and others in Sect. 3.

In order to address the issue of precise and expressive scoping of
aspects at deployment time, we propose a novel mechanism called
deployment strategies, which gives full control over (a) the propa-
gation of the aspect on the call stack, (b) its propagation within cre-
ated objects or functions, and (c) deployment-specific refinement
of its pointcuts. Sect. 4 gives an informal presentation of our pro-
posal, and shows how deployment strategies concisely express the
scenarios considered in Sect. 3. To set the base for the operational
semantics of deployment strategies, Sect. 5 describes the seman-
tics of scoping in AspectScheme. We extend this description for
deployment strategies (Sect. 6) and present Scheme interpreters for
them (Sect. 7) in both functional and object-oriented based aspect
languages. Sect. 8 discusses related work and Sect. 9 concludes.
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2. Background: Static and Dynamic Aspects
Dutchyn, Tucker and Krishnamurthi studied the introduction of
pointcut-advice AOP to a language with higher-order functions
like Scheme [16]. The proposed language, AspectScheme, extends
Scheme with global top-level aspects (not discussed here), as well
as statically- and dynamically-scoped aspects, revised hereafter.
We also discuss the transposition of these scoping mechanisms to
objects, and their applications.

2.1 AspectScheme in a Nutshell
In AspectScheme, join points are function applications (for sim-
plicity, no discrimination is made between function application
and execution [16]). A join point can be either top-level or nested
within other active function applications. So a join point in con-
text is actually represented by a recursive structure, whose head
is the function to be applied, and whose tail is the active func-
tions. Both pointcuts and advices are first-class values. A pointcut
is a predicate over join points in context: it is a function of type
PC = JoinPoint → Bool1. A call pointcut designator (i.e. a
function that returns a pointcut) can be defined as follows:

(define call
(lambda (f) (lambda (jp) (eq? f (car jp)))))2

If open-file is a function in scope, (call open-file) returns
a pointcut that matches application of that function. An advice
is a join point transformer, that takes a join point as parameter
and returns a new function to use instead. It is a function of type
ADV = JoinPoint→ V al→ V al, e.g.:

(define trace
(lambda (jp) (lambda (arg) (printf "calling")

(app/prim jp arg)))

The trace advice, for a join point jp, returns a function that when
applied to the argument, emits a trace and performs the original
function application. app/prim is similar to proceed in AspectJ,
and ensures that applying jp will not invoke any further aspects.

2.2 Scoping Strategies
As pointcuts and advices are first-class values, AspectScheme in-
troduces an expression to dynamically deploy an aspect over a body
expression. Thus scoping considerations appear: it is necessary to
define the precise extent of the jurisdiction of the aspect, i.e. what
join points it will see.

The authors build upon the familiar reasoning of scope for vari-
ables: in a first-class function, statically-scoped variables get their
values from the environment in which the function was defined; in
constrast, dynamically-scoped variables get their values from the
environment of the function application.

Consequently, two aspect deployment expressions are intro-
duced (both of type PC → ADV → Exp→ V al):

• fluid-around deploys a dynamically-scoped aspect. Such an
aspect sees all join points occurring in the dynamic extent of
its body. This is essentially the same mechanism as a deploy
expression in CaesarJ.
• around deploys a statically-scoped aspect. Such an aspect only

sees join points occurring lexically in its body, including those
of unapplied functions, which are exported from the body.

1 Formalizing pointcuts as functions of type JoinPoint→ Bool does not
take into account the fact that generally pointcuts –and in this case, Scheme
functions– can access mutable state that we ought to model explicitly.
However this would only obscure the main points we are focusing on.
2 The eq? primitive of AspectScheme compares functions by consider-
ing both the source locations and the captured lexical environments [16].

(let ((apply-to-brussels (lambda (f) (f "brussels") )))

(fluid-around (call open-file) trace
(apply-to-brussels open-file)))

Above, the let defines and binds a higher-order function that takes
another function f as parameter and applies it to "brussels";
then, we dynamically deploy an aspect consisting of the trace
advice defined previously and a call pointcut. Then we apply the
function apply-to-brussels to open-file. When open-file
is finally applied (the framebox above), the trace aspect does see
the join point, because the application occurs in the dynamic extent
of the fluid-around body expression. Conversely, in:

(let ((traced-open (fluid-around (call open-file) trace

(lambda (f) (open-file f) ))))

(traced-open "brussels"))

The aspect does not apply, because the dynamic extent of the
aspect body only consists of a function definition. The (framed)
application of open-file is only in the lexical scope of the
fluid-around body expression: later applications are out of
reach. Statically-scoped aspects serve exactly this purpose:

(let ((traced-open (around (call open-file) trace

(lambda (f) (open-file f) ))))

(traced-open "brussels"))

The aspect applies, because the application of open-file occurs
lexically in the body of around. As a consequence, the aspect
is “engrained” in the function that is exported from the around
expression and bound to traced-open. At future applications of
the function, the aspect will see the corresponding join point.

2.3 Static Aspects for Objects
Dynamically-scoped aspects have attracted considerable attention
in the object-based aspect community. Examples are their incar-
nation in the CaesarJ language, as well as in related mechanisms
outside of the pointcut-advice family, like dynamic mixin layers as
provided by ContextL [11].

In contrast, statically-scoped aspects for objects have received
little attention. Indeed, just like a first-class function, an object is
a computational entity that embeds code (methods) to be evalu-
ated at a later time. The notion of statically-scoped aspects in As-
pectScheme can therefore be transposed to objects: as a first ap-
proximation in a classless object-oriented language like Self [35],
if an object is created in the lexical scope of the deployment block
of an aspect, the aspect is engrained in the object. To the best of our
knowledge, this has however not been considered; the closest pro-
posals explore per-object aspect deployment (a.k.a. instance-local
advising) [2, 31], which is quite different semantically, as will be
shown later when comparing existing scoping models (Sect. 8).
Also, Warth et al. proposed statically-scoped adaptations for ob-
jects [37], but this mechanism addresses the issue of augmenting
the structure of a class, much like the inter-type declarations mech-
anism of AspectJ. Instead, this paper focuses on the behavioral part
of adaptation with the pointcut-advice mechanism.

Because many aspect languages are based on object orientation,
we are interested in bringing the analysis of scoping to both the
functional and object-oriented worlds. We therefore use object-
oriented scenarios to illustrate both the current state of affairs, its
limitations, and the applications of our proposal.

2.4 Applications
Both static and dynamic aspects have their utility; the two scop-
ing semantics complement each other. Dynamic aspects give con-
trol on the computation that occurs within a given dynamic extent,
for instance to trap certain calls in an untrusted program [16]. The
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class CarFactory {
Car get(...){

if(...) { return new Lotus(); }
else if(...) { return new Jaguar(); }
...

} }
Car c = CarFactory.get(...);
SpeedLimit sl =

speedLimit(...) ? new SpeedLimit(120) : null;
deploy-d(sl){ c.drive(); }

Figure 1. Usage-based variability with deploy-d.

class CarFactory {
Car get(...){

SpeedLimit sl =
speedLimit(...) ? new SpeedLimit(120) : null;

deploy-s(sl){
if(...) { return new Lotus(); }
else if(...) { return new Jaguar(); }
...

} } }
Car c = CarFactory.get(...);
c.drive();

Figure 2. Production-based variability with deploy-s.

interest of dynamically-scoped aspects has also been shown for
context-dependent adaptation [11], as well as variability manage-
ment [29]: the variant of an aspect that must be applied for a given
usage scenario can be determined dynamically. We call this usage-
based variability (Fig. 1): the client of the CarFactory can choose
to deploy or not the SpeedLimit aspect (with deploy-d), in order
to ensure that the car cannot be driven too fast.

Conversely, static aspects allow the encapsulation of crosscut-
ting features of library functions, so that the exported functions use
the aspects whenever applied. Dutchyn et al. use this mechanism to
engrain permission checking aspects within functions of a simple
operating system API that can be used by untrusted clients [16].
In terms of variability management, we call this production-based
variability. On Fig. 2 it is now the factory that takes the decision of
whether or not SpeedLimit is to be added to the created car. The
aspect is deployed as statically scoped (with deploy-s), therefore
it gets engrained in the created car, similarly to what happens for
function definitions in AspectScheme. The client is unaware of this
feature, and simply runs c.drive().

3. The Need for More Expressive Scoping
The two options of the scoping model above represent a notable
gain in expressiveness compared to statically-deployed aspects.
However, in the following we present several dynamic deployment
scenarios for which neither deploy-d nor deploy-s are sufficient.
We will therefore enumerate and informally describe a number
of desired operators deploy-1, deploy-2, . . . , which solve these
scenarios. Sect. 4 then overviews our proposal and expresses these
desired operators concisely.

3.1 Case 1: Simple Refactoring
Consider the following example in AspectScheme, which applies a
static billing aspect to a service function:

(define (get-service)
(around billing-pc billing-adv

(lambda ...))) ;; the actual service definition

abstract aspect QAReport {
abstract pointcut abnormalEvent();
before() : abnormalEvent(){

QASite.notify(thisJoinPoint);
} }
class CarFactory {

Bill order(...){
QAReport qa = (...)? new QALevel1() : new QALevel0();
deploy-2(qa){

ProdLine.createAndDispatch(...); }
...

} }

Figure 3. Abstract and reusable QA aspect, and its dynamic de-
ployment.

The returned service function embeds the billing aspect so that its
usages are affected. But now, consider a simple refactoring:

(define (get-service)
(around billing-pc billing-adv

(get-basic-service))) ;; returns the service

By simply moving the definition of the function in an auxiliary
function, the billing aspect is not captured anymore within the
service function, because the definition of that function is now
lexically outside of the aspect body. Deploying billing as a dy-
namic aspect does not solve the problem because even if the as-
pect sees the definition of the service function, it is not engrained
in that function. This refactoring issue also manifests itself in the
example of Fig. 2. Consider a refactoring whereby the cars are
not instantiated directly within the lexical scope of the deploy-s
block, but are obtained following a factory pattern, e.g. by calling
LotusFactory.get: SpeedLimit is no longer captured at car cre-
ation time. We need a dedicated deploy-1 expression in order to
obtain a refactoring-compliant version of deploy-s.

3.2 Case 2: More Pervasive Propagation
Consider a quality assurance (QA) aspect in the car factory. There
is an abstract, reusable, QAReport aspect that, upon occurrences
of abnormal events, notifies the QASite of the factory (Fig. 3).
There are different QA levels, which have different definitions of
what an abnormal event is. The definition of the different QA
levels is a variability that is well captured by sub-aspects in a static
manner. However, the precise points at which these aspects must
be deployed depends on dynamic conditions and are therefore best
addressed with dynamic deployment.

The car factory must determine the QA level corresponding to
the requested car, and deploy it over the call to the production line.
Note that the order method of the car factory does not obtain a
reference to the created car; it just dispatches the production, and
then returns the bill to the client. Because abnormal events can be
events occurring within the factory, or within the car, even after
the car has been sold and dispatched to the client, the deploy-2
mechanism must ensure that the QA aspect sees (a) all join points
occurring within the dynamic extent of the production of the car,
and (b) all join points occurring during the activity of cars and
their elements. Therefore, deploy-2 must be some mechanism that
combines both deploy-d and deploy-s.

3.3 Case 3: More Precise Control on Propagation
Deploying QAReport with deploy-2 is extreme in the sense that
every single join point that derives from the call to the production
line will be seen, be it produced in the dynamic extent of the
production, or in the dynamic extent of the activity of any object
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aspect SecurityPack {
after(ProdStep p, Car c): this(p) && args(c) &&

execution(* ProdStep.addAirBags(Car)) {
p.addExtraAirBags(c);

}
around(ProdStep p, Car c): this(p) && args(c) &&

execution(* ProdStep.setSeatBelt(Car,SeatBelt)) {
proceed(c, new FivePointSeatBelt());

} }

class SPSetup extends ProductStep {
SecurityPack sp = new SecurityPack();
process(List<Car> batch) {
List<Car> cars_sp = filterCarsWithSP(batch);
deploy-4(cars_sp)(sp){

super.process(batch); // triggers next step
}}}

Figure 4. SecurityPack aspect customizing the configuration of a
car, and its dynamic deployment.

thereby created, and so on. It is highly desirable then to introduce
some bounds to the pervasive propagation of Case 2.

For instance, the production line repeatedly accesses the store
database through a DBAccess facade object; we suppose this part
to be trusted and therefore there is no need to apply the QA report
aspect beyond that point. We should also be able to specify that
the QA aspect is only captured by Product objects (Car, Engine,
etc.), and not by the myriad of objects that are created and used
during the production process but not relevant for the purpose.

We cannot expect or require the developer of the aspect to
be aware these details and prevent the propagation of the aspect
in the definition itself. This would definitely sacrifice the reuse
potential of the QA aspect by making it specific to a very particular
case. Rather, we should use a parametrized deploy-3 expression,
instead of deploy-2, in order to obtain this more precise control
over the propagation of the aspect.

3.4 Case 4: Deployment-Specific Filtering
Consider an optional security pack that can be applied to some cars,
implemented as an aspect (Fig. 4). The security pack consists of
adding extra airbags to the car, as well as replacing normal seat
belts with 5-point belts. The aspect intervenes in the car building
process, which is modeled as a pipeline of production steps: each
ProdStep receives a batch of cars, performs its task on them and
passes the batch on to the next step, invoking super.process (the
wiring between steps is defined in the base class).

Fig. 4 shows the new production step introduced to deploy the
security pack only for the cars that need it. deploy-4 must ensure
that the aspect sees the join points corresponding to the execution
of the relevant production steps. This is exactly like deploy-d.
However, the security pack aspect should only see join points that
are related to those cars in the batch for which the security pack
is required. This means that it should be possible to have the
aspect apply only when specific, dynamically-determined instances
are involved in a join point. Therefore, deploy-4 must also be a
parameterizable deployment expression.

4. Expressive Scoping of Aspects
The previous examples clearly outline that the two scoping mech-
anisms present in AspectScheme are insufficient to express rele-
vant scenarios of dynamic deployment. After a brief analysis of the
problem, we give a rapid overview of our proposal for expressive
scoping of aspects, and show how the previous cases are succinctly

expressed. Detailed description of the semantics of our proposal is
deferred to the following sections.

4.1 Analysis of the Problem
The requirements of the deployment scenarios of Sect. 3 point to
the fact that there are three orthogonal dimensions to be considered
when deploying an aspect:

1. Call stack propagation: when should a deployed aspect see the
join points produced beyond the activation of a new stack frame
(function application, method call)?

2. Delayed evaluation propagation: when should a deployed as-
pect be captured in created procedural values (functions, ob-
jects) in order to see the join points of their future evaluations?

3. Local join point filtering: should a deployed aspect see all the
join points as specified by its definition and the above propa-
gation properties? or should all the pointcuts of the deployed
aspect possibly be refined in a deployment-local manner, leav-
ing the aspect definition unchanged?

The problem of existing scoping models for dynamic aspect de-
ployment is that (a) they lack fine-grained control over dimensions
1 and 2, (b) they do not make it possible to express custom combi-
nations of them, and (c) they do not consider the third dimension.
As will be shown later, these three dimensions however naturally
map to determining steps in the life-cycle of a deployed aspect in
the interpreter.

4.2 Deployment Strategies in a Nutshell
We introduce the notion of deployment strategies. A deploy-
ment strategy δ〈c, d, f〉 specifies the scoping semantics of a
dynamically-deployed aspect a with three components, corre-
sponding to the three dimensions identified above:

• c and d are called propagation functions: c is used to specify
whether a propagates along the call stack and d specifies prop-
agation within delayed evaluation.
• f is called a join point filter. It is used to express deployment-

specific filtering of the join points seen by a.

All three components are pointcuts: boolean-returning functions
that take a join point in context as parameter (i.e. elements of PC).

Syntax. Instead of a certain number of deployment expressions
with hardwired semantics, we support one deployment expression
parameterized with a deployment strategy:

depl(a, δ〈c, d, f〉, e)

depl deploys aspect a (or a list of aspects) on expression e3 using
the deployment strategy δ. When it comes to illustrating our model
with a Java-like language, we use the following syntax, an exten-
sion of the CaesarJ deploy syntax:

deploy ::= deploy[c ,d ,f ](asp ){ expr }

As in CaesarJ, asp is simply an object that may contain pointcuts
and advices. These pointcuts (and associated advices) are only
activated when the instance is deployed. Deploying an object that
has no pointcuts and advices has no effect. In each variant of the
syntax (including the formal one), we use the special component
’ ’ whenever a particular deployment strategy component is left
unspecified.

3 For uniformity, and in line with Scheme, we do not make an explicit
distinction between an expression, a statement, or a block thereof.
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4.3 Expressing the Examples
Cases 1 and 2. Case 1 requires the possibility to deploy an aspect
that is captured in objects created in the dynamic extent of the
deployment expression. This means that the call stack propagation
function c must always return true. In addition, the aspect needs to
be captured in created objects, therefore d must also always return
true. The case is similar for deploy-2. So, assuming that true is
a constant function, deploy-2 is expressed as:

deploy[true,true, ](qa){
ProdLine.createAndDispatch(...);
}

With this deployment strategy δ〈true, true, 〉, the QA aspect will
see all join points occurring within the dynamic extent of the
production of the car, and will also get captured by the created
car and its elements. Therefore, any abnormal events either during
the production process or later, during the usage of the car, will be
reported to the QASite.

Case 3. We can use c and d to restrict the pervasive propagation
above. First, we use c to define a more precise call stack propa-
gation strategy, whereby the propagation of the aspect on the call
stack stops when the target of the call is the database facade. Hence
deploy-3 is expressed as:

deploy[!target(DBAccess),target(Product), ](qa){
ProdLine.createAndDispatch(...);
}

Similarly to AspectJ pointcuts, target(DBAccess) matches when
the target of the join point is of type DBAccess. Above we also
specified the component d in a similar manner, so that the QA
aspect is captured only if the created object is of abstract type
Product.

Case 4. While the above cases dealt with propagation issues,
Case 4 illustrates the need for deployment-specific tailoring of a
reusable aspect, using dynamic values. deploy-4 is expressed as:

deploy[true, ,if(cars_sp.contains(jp.args(1)))](sp){
next.process(batch);
}

The aspect is deployed so as to propagate on the stack (c is the true
constant function), in order to give it dynamic scope. A join point
filter is used to ensure that the security pack aspect only sees join
points where the argument (denoted above with jp.args(1)) is a
car for which the security pack applies (that is, a car contained in
the car sp list).

4.4 Supporting Deployment Strategies
The remainder of this paper enters in the details of the semantics
of our model. In particular, we explain how to interpret deployment
strategies using concise Scheme interpreters a la Aspect SandBox,
for both functional and object-oriented base languages.

Therefore, this paper focuses on semantics, and does not address
the challenges of efficient implementation in production-quality en-
vironments. Nevertheless, there exist several techniques to support
dynamic deployment of aspects, at different levels: residues [18,
25], metalevel wrappers [19], optimized compilers with static anal-
ysis [3, 10], and VM support [9]. The flexibility introduced by our
model represents quite a challenge for efficient dynamic deploy-
ment. However, very promising recent work on both aspect-aware
VMs [7, 8] and dynamic layer (de)activation [12] suggests that such
advanced scoping mechanisms can be efficiently supported.

5. Semantics of Scoping in AspectScheme
We now dive into the semantics of scoping of aspects in As-
pectScheme in order to set the base for the semantics of deployment
strategies.

5.1 Prelude
The semantics of AspectScheme is presented in [16], using a vari-
ation on the CEKS machine [17]. For the sake of a clearer focus on
scoping and a smoother transition to the object-oriented world, we
reformulate these semantics as a Scheme interpreter, in the line of
the Aspect SandBox (ASB) interpreters [15, 24, 25, 34].

For the sake of simplicity, and without loss of generality, we
restrict ourselves to before advice. The focus of this work is on
scoping, that is, how to delimit the set of join points that an as-
pect can potentially match; the kinds of effects at these join points
is an orthogonal concern. Therefore, in contrast with the original
AspectScheme description, advices are not modeled as function
transformers, but simply as functions that perform their effect be-
fore the standard interpretation proceeds (their return values are
ignored). We also do not account for context exposure beyond the
fact that an advice receives the matched join point as parameter.

All the interpreters we discuss in this paper4 follow the same
general structure: the main function, eval, evaluates an expression
following a simple case-based test on its type. An expression is a
parsed abstract syntax tree, which can be tested with predicates like
const?, and accessed with accessors such as const-value.

Compared to traditional functional interpreters, these inter-
preters have two distinctive features : (a) in order to be able to
model aspect scoping precisely, an interpreter evaluates an expres-
sion within an aspect environment that is passed around between
evaluation steps5, in addition to the lexical environment; (b) in or-
der to model join points in context, an interpreter takes as parameter
the join point at the enclosing function application.

5.2 AspectScheme Semantics
In AspectScheme, an aspect environment is defined as follows:

A = {〈s, pc, adv〉 | s ∈ S, pc ∈ PC, adv ∈ ADV}
An aspect in an environment, i.e. a deployed aspect, is repre-
sented as a triple consisting of the scope s, element of S =
{static, dynamic}, the pointcut function pc and the advice func-
tion adv. PC and ADV are as defined in Sect. 2.1.

Fig. 5 shows a simplified AspectScheme interpreter. A deployed
aspect dasp is a simple structure (created with make-dasp) that has
three fields, accessed with dasp-scope, dasp-pc, dasp-adv.

When evaluating an aspect deployment expression, the inter-
preter extends the current aspect environment with the deployed as-
pect dasp, and evaluates the body (eg. 2 ). In the case of an around
expression, corresponding to the deployment of a statically-scoped
aspect, the aspect is marked with the static attribute 1 ; if the ex-
pression is a fluid-around, the aspect scope is set to dynamic 3 .

When evaluating a function definition, the interpreter returns a
closure, closing over the current lexical environment. In addition,
to implement the semantics of statically-scoped aspects, a closure
also closes over an aspect environment Adef that consists of all
aspects with static scope in the current aspect environment 4 .

Adef = {〈s, pc, adv〉 ∈ A | s = static}

4 The executable Scheme interpreters, along with examples, are available at:
http://pleiad.dcc.uchile.cl/research/scope
5 The ASB interpreter of [25] and the formal model of [36] use a global
aspect environment, which is insufficient for modeling scoping a la As-
pectScheme [16] (and by extension, deployment strategies as well).
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;; evaluate expression exp in lexical environment E and aspect environment A, with current join point jp
(define (eval exp E A jp)

(cond ((const? exp) (const-value exp))
((var? exp) (lookup (var-name exp) E))
((arnd? exp) (let ((dasp (make-dasp ’static (eval (arnd-pc exp) E A jp) ←− 1

(eval (arnd-adv exp) E A jp))))
(eval (arnd-body exp) E (cons dasp A) jp))) ←− 2

((farnd? exp) (let ((dasp (make-dasp ’dynamic (eval (farnd-pc exp) E A jp) ←− 3
(eval (farnd-adv exp) E A jp))))

(eval (farnd-body exp) E (cons dasp A) jp)))
((fun? exp) (make-closure (fun-params exp) (fun-body exp) E (collect-static A))) ←− 4
((app? exp) (let* ((cl (eval (app-fun exp) E A jp))

(args (eval-args (app-args exp) E A jp))
(njp (make-jp cl args jp)) ←− 5
(env (extend-env (closure-params cl) args (closure-env cl)))
(asps (append (collect-dynamic A) (closure-aspects cl)))) ←− 6

(weave-all A njp) ←− 7
(eval (closure-body cl) env asps njp))) ←− 8

...))
(define (collect-static asps) (collect-if (lambda (a) (eq? (dasp-scope a) ’static)) asps))
(define (collect-dynamic asps) (collect-if (lambda (a) (eq? (dasp-scope a) ’dynamic)) asps))

Figure 5. Simplified AspectScheme interpreter.

Reciprocally, the aspect environment in which the body of the
function is to be evaluated, Aapp, is the union of (a) the aspects
with dynamic scope in the current aspect environment, and (b) the
aspect environment captured in the closure 6 :

Aapp = {〈s, pc, adv〉 ∈ A | s = dynamic} ∪ closure.A

Finally, to implement before advice weaving, the interpreter cre-
ates the new join point corresponding to the function application 5
and triggers weaving before the actual evaluation of the body of the
applied function6. weave-all applies the weaving function to all
the aspects in the current environment 7 . Therefore, Aweave, the
set of aspects in the current environment that are woven at the new
join point, is simply defined in AspectScheme as Aweave = A.

Finally, once the advices of the matching aspects have been
evaluated, the interpreter evaluates the function body in the corre-
sponding environments, with the new join point as parameter 8 .

To sum up, the essential part of the semantics of statically- and
dynamically-scoped aspects in AspectScheme can be described by
the structure of the aspect environment A, and the definition of
Adef , Aapp, and Aweave (Fig. 6).

From functions to objects. These scoping semantics can be for-
mulated in an object-oriented context as follows. With objects, the
call stack is modified by the evaluation of a method call (message
send). Acall, the aspect environment that is used to evaluate the
body of a method, is equivalent to Aapp. Similarly to closures, ob-
jects carry along their aspect environment. Anew, the aspect envi-
ronment that is captured within a newly-created object, is equiv-
alent to Adef . Aweave is unaffected by the paradigm shift. So,
the AspectScheme semantics transposed to an object-oriented lan-
guage are the same as those of Fig. 6, replacing closure by this,
which refers to the currently-active object. In the following, when-
everAnew andAcall are equivalent toAdef andAapp, respectively,
we do not make the distinction between both.

6 Here, dynamically-scoped aspects are applied before statically-scoped
ones. This arbitrary choice reflects the fact that static aspects are engrained
within the function, and can therefore be considered “part of” (or at least
“closer to”) the original function definition. Also arbitrarily, a deployed
aspect is added at the beginning of the environment, giving it default
precedence over the previously-deployed ones. We do not discuss aspect
composition any further in this paper.

A = {〈s, pc, adv〉 | s ∈ S, pc ∈ PC, adv ∈ ADV}
Adef = {〈s, pc, adv〉 ∈ A | s = static}
Aapp = {〈s, pc, adv〉 ∈ A | s = dynamic} ∪ closure.A

Aweave = A

Figure 6. AspectScheme semantics in a nutshell.

6. Semantics of Deployment Strategies
The unidimensional characterization of scoping provided by As-
pectScheme does not suffice to express the examples of Sect. 3.
The problem is that a dynamically-scoped aspect is always and
only propagated in Aapp, and a statically-scoped aspect is always
and only propagated in Adef . The discussed deployment scenarios
require much more flexibility.

To address this, we introduce deployment strategies, which sup-
port expressive scoping of dynamically-deployed aspects (Sect. 4).
A deployment strategy accompanies an aspect instance during its
deployment, and describes the scoping semantics associated to its
life cycle while deployed. The determining events in the life cycle
of a deployed aspect can be seen from Fig. 5:

(i) the aspect is propagated on the call stack 6 8 ;
(ii) the aspect is propagated in a closure 4 or object;
(iii) the aspect is woven at the new join point 7 .

Since we aim at allowing any combination of these dimensions,
a deployment strategy δ〈c, d, f〉 has three components, each one
addressing a particular dimension, and corresponding to the def-
initions of the three environments Adef , Aapp and Aweave. The
deployment expression depl(a, δ〈c, d, f〉, e) deploys the aspect a
on the expression e with the semantics specified by the strategy δ.

We therefore extend the representation of an aspect environ-
ment, i.e. a set of deployed aspects, as follows:

A = {〈a, δ〈c, d, f〉〉 | a ∈ ASP, c, d, f ∈ PC}

where ASP is the type of aspects (how aspects are precisely
defined is not relevant for our purposes).
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deployment scoping semantics
δ〈false, true, 〉 statically-scoped aspects
δ〈true, false, 〉 dynamically-scoped aspects
δ〈true, true, 〉 all join points in dynamic extent as well

as in unapplied functions
δ〈false, false, 〉 only lexically-visible join points that

are immediately evaluated

Table 1. Scoping semantics with propagation constants.

Note that call stack propagation is thread-local: the deployed
aspect affects only the join points produced by the activity of
the thread executing the deployment block. Conversely, delayed
evaluation is thread-global: the aspect sees all join points produced
by the execution of the procedural value (function or object), no
matter which thread is active.

In the following, we describe more precisely the components c
and d, used to control aspect propagation, and the component f ,
used for filtering out join points.

6.1 Controlling Propagation
We first discuss propagation functions. We assume the mapping
to object-oriented languages discussed previously; Sect. 6.1.3 dis-
cusses the details specific to propagation with objects.

6.1.1 Constant-Valued Propagation Functions
Let us first consider the case where propagation functions are
constant-valued. That is, c (for call stack propagation), and d (for
delayed evaluation propagation) are either the true or false con-
stant functions. In this model, the aspect environments Adef and
Aapp (recall Sect. 5.2) become:

Adef = {〈a, δ〈c, d, f〉〉 ∈ A | d = true}
Aapp = {〈a, δ〈c, d, f〉〉 ∈ A | c = true} ∪ closure.A

When a function is defined, the closure captures only those
aspects whose propagation function d is the true function; when a
function is applied, the body is evaluated in an aspect environment
comprised of the aspects in the current aspect environment whose
propagation function c is true, plus the aspects captured in the
closure about to be applied.

This simple model makes it possible to express four scop-
ing semantics, two of which correspond to the statically- and
dynamically-scoped aspects of AspectScheme (Table 1). The third
alternative, δ〈true, true, 〉, solves Cases 1 and 2 in Sect. 3, in
particular the refactoring issue: the deployed aspect affects the
evaluation of any function (resp. object) escaping the deployment
block, no matter how deep in the call stack it was defined (resp.
created). The fourth alternative makes it possible to denote only
the lexically-visible and immediately-evaluated join points; this
strategy is not possible with the AspectScheme model.

6.1.2 Non-Constant Propagation Functions
With constant-valued propagation functions, if an aspect propa-
gates, it will always do so. Propagation functions in general allow
for more flexibility in this regard, by giving the possibility of sub-
jecting propagation to a dynamic condition. On each execution step
where the propagation of an aspect is questioned, the propagation
function is evaluated, passing it the join point as parameter. That is,
c and d are pointcuts, i.e. elements of PC.

The actual join point that is passed to the propagation function
is the newly-created join point (njp), which corresponds to the ex-
pression being interpreted. In this model, the aspect environments
Adef and Aapp are defined as follows:

Adef = {〈a, δ〈c, d, f〉〉 ∈ A | d(njp)}
Aapp = {〈a, δ〈c, d, f〉〉 ∈ A | c(njp)} ∪ closure.A

While most aspect languages that extend object-oriented lan-
guages provide object creation join points, AspectScheme does not
create join points for function definition expressions. Therefore,
there is no newly-created join point when evaluating d: the join
point passed to the propagation function is the current join point.

This model permits one to express advanced strategies by char-
acterizing the join points upon which an aspect should stop its prop-
agation. This was illustrated in Case 3 (Sect. 4), where call stack
propagation is stopped when reaching a facade object, and delayed
evaluation propagation is limited to objects of a certain type.

6.1.3 Propagation with Objects
The definition ofAnew andAcall are a direct transposition ofAdef

and Aapp introduced above:

Anew = {〈a, δ〈c, d, f〉〉 ∈ A | d(njp)}
Acall = {〈a, δ〈c, d, f〉〉 ∈ A | c(njp)} ∪ this.A

We now discuss peculiarities of object-oriented languages that have
an impact on the aspect propagation model.

Object creation. For a deployed aspect to be captured within
the aspect environment of an object Anew, it needs to be in the
current aspect environment A at the time the object is effectively
created. In a classless language with ex-nihilo creation of objects
like Self [35], as well as in a language with first-order classes, like
Java, object creation is done via a particular expression (new): the
precise locus of creation is therefore straightforward to localize.

Conversely, in a language with first-class classes, like Smalltalk,
there is no dedicated expression: objects are instantiated by stan-
dard message sending. The message is processed by the class, and
at some point, possibly after processing various messages, the class
may invoke a creation primitive, like basicNew, resulting in the
actual allocation of the new object. Therefore, to be captured in
an object, an aspect should be deployed so as to propagate on the
stack up to that point, at least for class-level messages (indeed, this
distinction can be done by the call stack propagation function).

Self sends and super sends. In object-oriented programming,
some message sends are peculiar, because they are sent to the
currently-active object: self sends and super sends. Because these
are method calls affecting the call stack, the call stack propagation
function of an aspect is used to determine whether the aspect
propagates with the method call or not.

There is a particular case to consider: if an aspect is engrained
within the currently-active object, it does see all join points oc-
curring within methods executing on that object, even if it does
not propagate on the stack. This can be seen from the definition of
Acall above: if an aspect a has been captured in the aspect environ-
ment of the object (i.e. it is part of this.A), it is included in Acall,
regardless of the call stack propagation function of its deployment.

6.2 Join Point Filtering
Beyond the components c and d related to the propagation of an
aspect, there is a third component to a deployment strategy: a join
point filter f . Such a filter is a deployment-local refinement of the
pointcuts of an aspect. As a result, the aspect sees less join points.

Recall from Sect. 5.2 (Fig. 6) that in AspectScheme, as well as
in the other deployment mechanisms we are aware of, the set of
aspects that is considered for weaving at a new join point, Aweave,
is the current aspect environmentA. The f component of a deploy-
ment strategy makes it possible to introduce deployment control
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A = {〈a, δ〈c, d, f〉〉 | a ∈ ASP, c, d, f ∈ PC}
Adef = {〈a, δ〈c, d, f〉〉 ∈ A | d(njp)}
Aapp = {〈a, δ〈c, d, f〉〉 ∈ A | c(njp)} ∪ closure.A

Aweave = {〈a, δ〈c, d, f〉〉 ∈ A | f(njp)}

Figure 7. Deployment strategies semantics in a nutshell.

over Aweave. Like propagation functions, filters are boolean predi-
cates parameterized by the new join point. That is, f ∈ PC. In this
model, Aweave is defined as:

Aweave = {〈a, δ〈c, d, f〉〉 ∈ A | f(njp)}
The introduction of join point filters makes it possible to solve

Case 4 as shown in Sect. 4, where a filter is used to limit the activity
of an aspect to those join points where dynamically-determined
objects (cars with the security pack option) are involved.

Join point filters and propagation functions serve really orthog-
onal objectives. While propagation functions delimit the scope
boundaries of an aspect, join point filters act as a means to hide
certain join points occurring within those boundaries. When a prop-
agation function returns false, the aspect is never propagated along
that dimension anymore. On the contrary, if a join point filter rules
out a join point, the aspect is still active, and can continue matching
join points and propagating as specified by the other components
of the deployment strategy.

To sum up, the semantics of deployment strategies can be de-
scribed by the new structure of an aspect environment A, and the
definitions of the environments at determining points in the inter-
pretation process. This is shown on Fig. 7, and can be contrasted
with the summary of AspectScheme semantics, Fig. 6.

7. Interpretation of Deployment Strategies
We now describe the semantics of our model using an interpreter-
based operational description. First, we revisit the AspectScheme
interpreter of Fig. 5, thereby clarifying the semantics of deployment
strategies in a higher-order functional language. Then, we expose a
variant of the Aspect SandBox interpreter of Masuhara et al. [25],
to show the semantics of our model in an object-oriented language.

7.1 Functional Base Language
We now provide the operational semantics of deployment strate-
gies in a functional language, via the Scheme interpreter of Fig. 8.
Compared to the AspectScheme interpreter (Fig. 5), around and
fluid-around expressions have been replaced by depl. When
interpreting a deployment expression, the interpreter creates a de-
ployed aspect dasp, which aggregates the deployment strategy
δ〈c, d, f〉 and the aspect itself 9 . It then evaluates the body of the
deployment expression within the extended aspect environment 10 .

When a function definition is evaluated, only the aspects in
the current environment that should be propagated in the di-
mension of delayed evaluation are captured in the closure 11 .
collect-match-d returns the list of all given aspects for which
the d propagation function applied to the current join point yields
true 15 . This defines Adef .

When evaluating a function application, the interpreter appends
the set of aspects that should be propagated in the call stack (that
is, whose c propagation function matches the newly-created join
point njp), to the aspects previously captured in the closure 12 .
This defines Aapp.

When a new join point is created, instead of weave-all, the
interpreter calls weave-some 13 : only the aspects whose join point

(define (eval exp E A jp)
(cond
((const? exp) (const-value exp))
((var? exp) (lookup (var-name exp) E))
((depl? exp) 16
(let ((dasp (make-dasp exp E A jp)))

(eval (depl-body exp) E (cons dasp A) jp)))
((new? exp)
(let* ((class (lookup-cls (new-class exp)))

(args (eval-args (new-args exp) E A jp)))
(new-obj class args A jp)))

((call? exp)
(let* ((sig (call-signature exp))

(obj (eval (call-target exp) E A jp))
(args (eval-args (call-args exp) E A jp)))

(call-method sig obj args A jp)))
...))

(define (new-obj class args asps jp)
(let* ((njp (make-jp ’new #f class args jp))) 17

(weave-some asps njp) 18
(let* ((vals ...create vector for fields)

(nasps (collect-match-d njp A)) 19
(obj (make-object class vals nasps))) 20

(execute (lookup ’init class) obj args asps njp) 21
obj)))

(define (call-method sig obj args asps jp)
(let ((njp (make-jp ’call sig obj args jp))) 22

(weave-some asps njp) 23
(execute (lookup-method sig (object-class obj))

obj args asps njp)))

(define (execute method this args asps jp)
(let* ((env ...new environment that includes bindings

...for this, declaring class, and args)
(nasps (union (collect-match-c jp asps) 24

(object-asps this))) 25
(njp (make-jp ’exec (method-name method)

this args jp))) 26
(weave-some nasps njp) 27
(eval-body (method-body method) env nasps jp))) 28

Figure 9. Interpretation of deployment strategies for an object-
oriented language.

filter matches the new join point are considered for weaving 14 .
This defines Aweave.

7.2 Object-Oriented Base Language
Within the Aspect SandBox (ASB) project, Masuhara, Kiczales and
Dutchyn developed a Scheme interpreter to study concise models
of AOP, both for theoretical studies and for prototyping alternative
AOP semantics and techniques [25]. We now give the operational
semantics of our model of expressive aspect scoping in an object-
oriented language as a variation of this interpreter.

The interpreter supports a simplified AspectJ-like language,
whose object-oriented features are like a simplified Java. In par-
ticular, it supports first-order classes. Since the original ASB in-
terpreter was used to model AspectJ-like aspects, there are two
notable differences with our interpreter (Fig. 9): (a) the expression
language includes an expression for dynamic aspect deployment,
depl, which has the exact same semantics as in the functional
case 16 ; (b) the interpreter passes aspect environments around, in
order to properly implement the scoping semantics, whereas the
original ASB interpreter uses a global aspect environment. Also,
as previously, for clarity we consider only before advices. To be
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(define (eval exp E A jp)
(cond ((const? exp) (const-value exp))

((var? exp) (lookup (var-name exp) E))
((depl? exp) (let ((dasp (make-dasp exp E A jp))) ←− 9

(eval (depl-body exp) E (cons dasp A) jp))) ←− 10
((fun? exp) (make-closure (fun-params exp) (fun-body exp) E (collect-match-d jp A))) ←− 11
((app? exp) (let* ((cl (eval (app-fun exp) E A jp))

(args (eval-args (app-args exp) E A jp))
(njp (make-jp cl args jp))
(env (extend-env (closure-params cl) args (closure-env cl)))
(asps (append (collect-match-c njp A) (closure-aspects cl)))) ←− 12

(weave-some A njp) ←− 13
(eval (closure-body cl) env asps njp)))

...))
(define (weave-some A jp) (weave-all (collect-match-f A jp) jp)) ←− 14
(define (collect-match-c jp asps) (collect-if (lambda (a) ((dasp-c a) jp)) asps))
(define (collect-match-d jp asps) (collect-if (lambda (a) ((dasp-d a) jp)) asps)) ←− 15
(define (collect-match-f jp asps) (collect-if (lambda (a) ((dasp-f a) jp)) asps))

Figure 8. Interpretation of deployment strategies for a higher-order functional language.

precise, we now consider three kinds of join points: new, call, and
exec, for object creation, method call and execution, respectively.

A new expression provokes the creation of a join point 17 ,
against which aspects in the current environment are woven 18 . An
object is a structure that holds an aspect environment Anew: this
environment is obtained by collecting all aspects in the environ-
ment whose delayed evaluation propagation function matches the
new join point 19 . Once created 20 , the constructor of the object is
called (modeled as an init method) 21 .

When a method call is interpreted, the interpreter creates a call
join point 22 and weaves any aspect in the current environment that
matches the new join point 23 . It then triggers the execution of the
method. This means creating the aspect environment that will be
used to evaluate the body of the method, Acall: the union of the
aspects in the current environment whose call stack propagation
function matches the current call join point 24 , and the aspects
contained in the aspect environment captured by the now currently-
executing object 25 . The interpreter then creates the new execution
join point 26 and weaves aspects in the new environment 27 , before
evaluating the method body 28 .

As in the functional case, weave-some is used for weaving
( 18 23 ): it first evaluates the join point filters of the aspects in the
current environment before invoking weave for actual weaving.

8. Relation to Existing Scoping Semantics
We now discuss the relation between our scoping model and exist-
ing proposals, including how they can be expressed in our model,
and vice-versa.

For the sake of clarity of the comparison, we distinguish be-
tween being able to express a particular scoping semantics and be-
ing only able to emulate it. A model is able to express (or supports)
a particular scoping semantics for the deployment of aspect a iff
the mechanism can be obtained without altering the definition of a,
and without altering the expression on which a is deployed.

The first condition is to ensure that the advantage of control and
reuse of aspect definitions is maintained; the second is to ensure
that the deployment is oblivious to the expression on which it oc-
curs. In contrast, most of the semantics described can be emulated
in AspectJ, by introducing specific state into the aspect and extra
dynamic conditions to its pointcuts. It is clear that this sacrifices at
least one of the two above conditions.

8.1 Static Deployment
First of all, we briefly discuss how static aspect deployment, as
provided by AspectJ [21], can be expressed. A statically-deployed
aspect is an aspect that sees all join points occurring during the en-
tire execution of the program. CaesarJ supports static deployment
by means of a keyword to declare an aspect as deployed.

In our model, supporting this semantics simply means passing
an aspect environment that contains all aspects that should be de-
ployed statically, along with the initial program expression. The
propagation semantics of a statically-deployed aspect is that it al-
ways propagates on the call stack (δ〈true, , 〉): since any expres-
sion is executed in the dynamic extent of the initial program expres-
sion, the aspects thus deployed see all join points; delayed evalua-
tion propagation is therefore not required in this case.

8.2 Dynamic Deployment
Among approaches for dynamic deployment of aspects, there are
various scoping mechanisms proposed: global, per thread, lexical,
and per object.

8.2.1 Global scope
Several aspect languages, like CaesarJ, JAsCo [33], as well as AOP
frameworks, like AspectS [19], support a means to globally and
dynamically deploy or undeploy an aspect. For instance, in CaesarJ,
this mechanism is known as local deployment (local to a JVM): an
aspect thus deployed is active from the time it is deployed to the
time it is explicitly undeployed, and this for all running threads.

Supporting global scope deployment requires a global aspect
environment, shared by all threads. The global aspect environment
can be the initial environment discussed above, so that all statically-
deployed aspects reside in this environment. In addition, the lan-
guage must provide two expressions for explicit (un)deployment.
For instance, the global deployment expression gdepl can be in-
terpreted as follows:

((gdepl? exp)
(let* ((dasp (make-dasp exp E A jp)))

(set! *global-asps* (add dasp *global-asps* asps))))

By definition, the propagation functions of the aspects in the global
aspect environment are ignored, since the aspects residing there
have a global scope.

Douence et al. [14] propose an operator for sequential compo-
sition of aspects, A1 − C → A2, meaning “A1 until C (events)
then A2”. This operator is a flexible means of delimiting the scope
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of an aspect based on some event occurrences. In particular, one
can define the operators “A until C” and “A from C”. These de-
ployments have global scope and can therefore be supported in a
similar manner. In its general form,A1−C → A2, the sequencing
operator suggests an interesting extension to our scoping model,
whereby propagation functions (resp. join point filters) are not sim-
ply boolean predicates, but functions that return the aspect that
should be propagated (resp. woven), if any. We defer the discus-
sion of this extended model to a later work.

8.2.2 Thread-local scope
We have already related our proposal to aspect deployment on
thread-local scope as provided by CaesarJ and AspectScheme. A
simple model with propagation constants is enough to express
this semantics (Table 1): the deployed aspect always propagates
on the call stack, and never propagates with delayed evaluation:
δ〈true, false, 〉. In our model, propagation functions parameter-
ized over join points allow to express more fine-grained stack prop-
agation strategies, by supporting the specification of conditions
over the join points at which stack propagation occurs. This makes
it possible to stop propagation beyond a certain point.

Among adaptation mechanisms that have a thread-local scope,
as far as we know, only ContextL supports local undeployment [11].
ContextL is a language for context-oriented programming that al-
lows a program to be defined in mixin layers that can be dynami-
cally combined, activated, and deactivated. Activation and deacti-
vation of layers is thread-local. However, because ContextL does
not include a pointcut language for denoting points in a program
execution, it is impossible to specify, at layer deployment time, a
condition upon which the layer must be deactivated. Deactivation
must be done explicitly at all required sites. Interestingly, this de-
activation can be specified in a dedicated layer.

8.2.3 Lexical scope
The statically-scoped aspects of AspectScheme have semantics
δ〈false, true, 〉. These aspects propagate along with delayed
evaluation, however it is not possible to limit this propagation.

Lexical scoping can be expressed in AspectJ using program
text-based pointcuts such as within and withincode. Beyond the
fact that lexical deployment cannot be done dynamically, there is an
important difference with the semantics a la AspectScheme that we
have discussed for objects. In AspectJ, an aspect only propagates to
an object created with the lexical scope if the type definition of the
object is nested within that scope, i.e. it is an inner class.

This lexical scoping rule can be expressed in our model as
δ〈false, inner, 〉, where inner only matches the creation of an
inner class. Finally, none of the existing models can express no
propagation at all along delayed evaluation.

8.2.4 Object-level scope
In this work, we have come to the notion of aspect environments
in objects by elaborating on the lexically-scoped aspects of As-
pectScheme. Interestingly, the idea of binding an aspect to an object
has been proposed from a different perspective, where the focus is
on explicitly binding an aspect to an already-created object.

Rajan and Sullivan [31] propose per-object aspects in order to
support an aspect-oriented implementation of mediators [32], in the
language Eos. If an aspect is declared as instancelevel, then it
only sees the join points occurring within objects that have been
explicitly registered using its addObject method. An aspect can
cease to observe join points in an object using removeObject. Per
this deployment in CaesarJ is similar, except that the specification
of per-object deployment is not mixed with the aspect definition:
an aspect is deployed on an object using the runtime library method
deployOnObject on DeploySupport. They can be similarly un-

deployed by calling undeployFromObject. An aspect deployed
on an object intercepts only the join points in the execution con-
text of that object. These approaches to per-object aspects are in
fact reminiscent from well-known mechanisms in per-object meta-
object protocols: a metaobject redefines the semantics of the exe-
cution points of its referent [23]. Composition filters are another
instantiation of this same model [6].

Our semantics supports per-object aspects, but with two notable
differences. First, as in AspectScheme, capturing an aspect in the
environment occurs automatically as a result of object creation
(function definition), and not explicitly after the object is already
created. Supporting explicit per-object deployment is direct:

((deplobj? exp)
(let* ((obj (eval (deplobj-obj exp) A E jp))

(dasp (make-dasp exp A E jp)))
(obj-set-asps! (add dasp (obj-asps obj)))))

To interpret the deplobj expression, the interpreter first obtains
both the object and the aspect, and then adds the aspect in the aspect
environment of the object.

The second difference is that in all the above proposals (includ-
ing metaobjects and per-object aspects), an aspect only sees the join
points where the executing object is the one on which it has been
deployed. This means that, once deployed on the object, the aspect
does not propagate on the stack (e.g. to affect the dynamic extent
of the activity of the object), nor does it propagate with delayed
evaluation (e.g. to affect the behavior of objects created therefrom).
In other words, the aspect is deployed as δ〈false, false, 〉. Our
model permits a per-object aspect deployment that includes the full
specification of the scoping semantics, including both propagation
functions and join point filters, once engrained in the object.

8.3 Expressing Propagation Functions
Propagation functions can be used to express very straightfor-
wardly all existing scoping mechanisms, and their expressiveness
is superior to each individual mechanism. However, we still have to
consider if we can use a combination of the existing mechanisms,
e.g. using deployment aspects, to express propagation functions.

Below, we analyze whether depl(a, δ〈c, d, 〉, e) can be ex-
pressed by a combination of existing proposals, denoted as follows:

• depls(a, e): the statically-scoped aspects of [16], with seman-
tics δ〈false, true, 〉.
• depld(a, e): the dynamically-scoped aspects found in e.g. As-

pectScheme and CaesarJ, with semantics δ〈true, false, 〉.
• undepld(a, e): a thread-local undeployment mechanism, like

the one found in ContextL [11].
• deplo(a, o): per-object deployment, that inserts a in the aspect

environment of o with semantics δ〈false, false, 〉.
Controlling stack propagation. depld(a, e) does not provide a
means to stop the propagation of a along the call stack. The only
alternative is to use an undeployment aspect da, that upon occur-
rences of a join point matched by c, undeploys a. This is the “a
until c” operator of Douence et al. [14], but in a dynamic and
thread-local manner. The only thread-local undeployment mech-
anism we know of is the layer deactivation of ContextL. Assuming
the existence of this mechanism undepld(a, e) in a language of the
pointcut-advice family, one can express δ〈c, , 〉 by deploying at
the same time a and an undeployment aspect uda:

depld([a, uda], e)

uda : ∀jp, jp.kind = call ∧ c(jp), undepld(a, proceed(jp))

Whenever a call join point is matched by c, uda undeploys a for
the rest of the extent of the execution of the matched join point.
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Controlling delayed evaluation propagation. depls(a, e) im-
plies unbounded propagation of a along the delayed evaluation
dimension of e. There is no way to stop propagation according to
a propagation criteria d. The alternative consists in using a (non-
trivial) combination of deplo and depld.

First, we can deploy using depld a deployment aspect da with
the following semantics:

da : ∀jp, jp.kind = new ∧ d(jp), deplo(a, obj)
Whenever a new join point matches the d criteria, da deploys a
within the newly-created object obj. However, deplo deploys a in
obj with strategy δ〈false, false, 〉: a will not be deployed within
objects created by obj. To solve this, one needs to recursively
deploy da in obj:

da : ∀jp, jp.kind = new ∧ d(jp), deplo([a, da], obj)

This solution solves the issue of propagating a within objects cre-
ated by obj, and therefore improves over depls by having propaga-
tion semantics δ〈false, d, 〉. Now, if we want to support propaga-
tion of a within objects that are not directly created by obj but as a
result of a call to another object (e.g. a factory, or a first-class class),
da must also be deployed with stack propagation (depld) for each
method called by obj. This can be done by a second deployment
aspect d′da

that has to be deployed with a:

da : ∀jp, jp.kind = new ∧ d(jp), deplo([a, da, d
′
da

], obj)

d′da
: ∀jp, jp.kind = call, depld(da, proceed(jp))

This shows that any deployment strategy related to delayed eval-
uation propagation that can be expressed in our model, can also be
expressed using the two deployment mechanisms deplo and depld.
However, as shown, this requires non-trivial gymnastics with de-
ployment aspects.

Evaluation. The conclusion of the analysis above is that: (a) call
stack propagation semantics can be expressed by a combination
of depld and undepld, and (b) delayed evaluation propagation
semantics can be expressed by a combination of depld and deplo.

The reader can however imagine how to combine the approach
to simulate delayed evaluation propagation with the one presented
for stack propagation, in order to express any deployment strategy
δ〈c, d, 〉. Besides the fact that we are not aware of any aspect lan-
guage supporting the three mechanisms depld, undepld and deplo,
the intertwined use of deployment and undeployment aspects is,
least to say, not convenient.

8.4 Join Point Filtering
The idea of allowing external extensions to all the pointcuts of
certain aspects has first been proposed in Extended AspectJ (EAJ)
as proposed by the abc team [4], using global pointcuts. A global
pointcut consists of a type pattern for denoting the aspects to which
it applies, and a pointcut expression that is a common conjunct
added to the pointcut expressions of all advices of the denoted
aspects. Global pointcuts can be used to tailor the scope of existing
aspects, e.g. by excluding certain classes. The join point filtering
mechanism of our model can be seen as a refinement of global
pointcuts in the context of dynamic deployment of aspects: the
conjunct is applied only to the deployed aspect instance, only for
the extent specified by the other components of the deployment
strategy. In contrast, global pointcuts are a static facility, with
global scope.

Extending a pointcut at deployment time is trivial in As-
pectScheme, because a pointcut is a first-class function that can
be wrapped as needed. Externally extending an aspect definition
can also be done with composition filters [6], however there are

no specific provisions to make the extension of a filter limited to a
particular scope, either with respect to the call stack or to control
its propagation amongst newly-created objects.

9. Conclusion
We propose an expressive scoping model for dynamically-deployed
aspects: deployment strategies. Deployment strategies provide ex-
plicit control over the propagation properties of a deployed aspect,
both along call stack and delayed evaluation dimensions, as well as
deployment-specific join point filters. We have formulated deploy-
ment strategies for both functional and object-oriented based aspect
languages.

This work provides a common operational framework for under-
standing the relation between various scoping semantics. In partic-
ular, we have clarified the relation between statically-, dynamically-
scoped and per-object aspects as provided by existing systems. But
deployment strategies allow the exploration of a much wider design
space for scoping, as has been illustrated.

Expressive scoping of dynamically-deployed aspects fosters
more reusable aspect definitions, while providing very fine-grained
control over scoping for specific deployment scenarios. Such a con-
trol is crucial to avoid unexpected aspect effects, in particular when
using independently-developed aspects [26]. Still, it is clear that
scoping alone does not suffice to address the inherent complex-
ity of aspect-oriented software development, and that development
methodologies, design patterns, dedicated syntactic constructs and
appropriate debugging tools remain crucial.

There are various possible extensions to the model we pre-
sented, by considering language features that can introduce extra
dimensions for scoping: exceptions, virtual classes, as well as con-
current and distributed AOP. Also, our treatment of deployment
strategies focus on behavioral adaptation with the pointcut-advice
mechanism. Many interesting aspects actually rely on both behav-
ioral and structural adaptation [1], e.g. using intertype declarations.
There exist several proposals for scoping structural adaptations, us-
ing either static scoping [5, 37] or dynamic scoping [11]. Simi-
larly to this work, we are interested in studying a common opera-
tional framework for exploring the scoping design space of struc-
tural adaptation.
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[14] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition,
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