
Expressiveness in Architecture Description Languages

Rich Hilliard
Integrated Systems and Internet Solutions, Inc.

rh@isis2000.com

Tim Rice
Integrated Systems and Internet Solutions, Inc.

tbrice@isis2000.com

Abstract

This paper explores some issues in the expressiveness of Ar-
chitecture Description Languages (ADLs) based on our work
architecting large, software-intensive systems for command
and control and related domains. We briefly outline and
motivate several cases where current ADLs lack architec-
turally useful forms of expression and suggest approaches to
addressing some of these cases.

1 Architectural Description

Architects don’t make architectures, they make representa-
tions of architectures. Architectural description – the means
to record architectural information in a form such that it
may be used (communicated, analyzed, manipulated) and
re-used – is central to the emerging practice of software sys-
tems architecture.

Interest in architectural description has taken various
forms. One active area of current research is architecture
description languages (ADLs) as witnessed by:

• a proliferation of ADLs, such as: Acme, Darwin, LILE-
Anna, MetaH, QAD, Rapide, UniCON, and Wright;
and investigations into exploiting other notations (e.g.,
Unified Modeling Language) for architectural use [18];

• efforts to categorize, compare and evaluate ADLs: [3,
15, 21]; and,

• attempts to define requirements and desirable features
for ADLs [7, 14, 19].

In another effort, the IEEE has undertaken the develop-
ment of a Recommended Practice for Architectural Descrip-
tion [9] to reflect current practices in an ADL-independent
manner and provide a foundation for the evolution of the
field.

The very notion of representation presumes some con-
ventions for encoding information. Current ADLs take a
linguistic approach to an area which has been the province
of informal diagrams. The linguistic approach is usually
premised on a textual model, perhaps because ADLs have

been developed by analogy with programming languages and
module interconnection languages.

These ADLs are oriented toward capturing the major
structural constituents of a system and their interconnec-
tions. Within the field called Software Architecture, the de
facto vocabulary for describing architectures includes com-
ponents and connectors.

In this paper, we outline and motivate other aspects of
architectural expression, which we have encountered in the
roles of architect [5] or architectural evaluator [8], and which
are supported to varying degrees by current ADLs. The
purpose of the examples in section 2 is to motivate discussion
with ADL developers.

Scope There are many potential uses of architectural de-
scriptions (ADs), and thus, of ADLs. These range from cre-
ation, analysis, maintenance, and evaluation, through sys-
tem synthesis (the composition of actual systems from ADL
descriptions).

In this paper, we focus on description and communica-
tion aspects of AD usage. For large projects, these are the
most common and most critical uses of architectural infor-
mation, and therefore the most critical roles an ADL may
play. In such projects, architectural descriptions are needed
to communicate and share information among clients and
other stakeholders, designers, and maintainers, and for the
analysis of architecture descriptions, relative to stakeholder
concerns.

We do not address synthesis issues in this paper.

2 Can Your ADL Do This?

In the remainder of the paper, we briefly outline some ex-
pressive challenges for current ADLs; each has been moti-
vated by one or more actual cases.

2.1 Multiple Viewpoints

The notion of multiple viewpoints – a virtual holy grail in
many parts of software engineering and computer science
– has not fared as well in Software Architecture. Multi-
ple viewpoints provide a way to separate concerns within a
representation, and thereby manage descriptive complexity.
This is as useful in architecture as in those fields (such as
requirements engineering and design) where multiple view-
points are commonly used.

Although multiple viewpoints are typically advocated by
industrial methods (e.g., [5, 11]), many ADLs do not sup-



port multiple viewpoints as they are found, for example, in
modeling languages such as UML.

ADLs, for the most part, emphasize what might be called
an implicit, structuralist viewpoint (as in the ontology of
components and connectors).

The IEEE Recommended Practice for Architectural De-
scription attempts to define a framework for declaring view-
points and populating them to develop meaningful, multiple
views of an architecture.

2.2 Closed-World

Architectural decision-making takes place at the juncture of
the problem and solution spaces – between client’s needs for
the system, and possible design approaches [17]. Frequently,
the architect must feed back the implications of a design al-
ternative to the client, possibly in the form of trade-offs
among requirements. Within an architectural description,
one would like to be able to clearly delineate the “depen-
dent” and “independent variables” of an architecture. For
example, it would be nice to be able to delineate:

• decisions made by the client (these independent vari-
ables are usually called “requirements”);

• “givens” of the environment (e.g., the laws of physics
or of another domain) which are outside the control of
the architect but may influence the result; and

• decisions made by the architect in response to the
client needs and environmental influences (dependent
variables).

It would also be useful to delineate which decisions be-
tween client and architect are negotiable and record their
resolutions at any point in time.

In our work, the needs of the client and other stake-
holders are documented separately from the architectural
description. Traceability relations are maintained between
elements of the AD and the stakeholders’ needs to insure
coverage, consistency, and satisfaction.

2.3 Capturing Architect’s Intent

Much of the work of the architect is to articulate various
system characteristics. These characteristics may be struc-
tural, stylistic, interactional, etc. With regard to these var-
ious system characteristics, the architect usually needs to
express at least three degrees of intent (or “force”), in rela-
tion to subsequent design activity. The architect needs to
capture commitments – decisions that a designer is not at
liberty to change; obligations – lower-level decisions a de-
signer must address; and freedoms – those things left to the
implementation. (See [2] on commitments and obligations,
see [12] on freedoms.)

Current ADLs have an implicit, declarative force and
appear not to be designed to capture this range of intents.
Acme has partial support for two forms of obligations: en-
sures relationships and their desired logical consequences in
terms of derives relationships [16].

In our work previously, we adopted a “MIL-SPEC” ap-
proach to signalling the architect’s intent, using the terms
will, shall, and may to signal commitments, obligations,
and freedoms, respectively [4].

More sophisticated forms of expression could be attained
from examination of work in modal and deontic logics, and
their recent application to knowledge representation.

2.4 First-Class Constraints

While components and connectors are widely accepted con-
structs in Software Architecture and enjoy a rough consensus
on their meanings, constraints, though frequently discussed,
are not yet understood in a common fashion. Where present
in ADLs, constraints are usually modeled as predicates ap-
plied to entities of interest. E.g.,

WrittenInAda95(theServer)

The example is intended to suggest a constraint on the
possible implementations of a component (theServer). (Note
that this example begs the question posed in 2.3 with regard
to intent – is it an obligation or commitment being expressed
here?)

Rapide provides a rich vocabulary of constraints over
sets of events [13]. Other ADLs provide partial solutions,
often oriented toward the target domain, or underlying im-
plementation model. What is lacking is a general model of
constraints.

We have found the following model to be useful. An
architectural constraint is characterized by:

name : a unique name for the constraint. By naming con-
straints they may be referred to, more readily com-
bined with others and reused.

constraint type : the type defines the permissible opera-
tions and logical connectives which may apply to the
constraint.

expression : An inscription which states the constraint
(e.g., number of simultaneous clients must be less than
or equal to 3). The expression should conform to the
constraint type prescription.

target set : The set of elements (e.g., component and con-
nection instances) to which the constraint applies.

source set : The set of elements from which the constraint
originates, such as when one architectural decision af-
fects others. Identifying the source provides a basis by
which to propagate constraints and retract constraints
when decisions about the source (which induced the
constraint) are changed.

A source or target set may be all entities of a particular
type; a source or target could be an entire architectural view
(which in turn consists of a collection of components or con-
nections). By adding the possibility that the source is un-
known, one can handle the “degenerate” case of constraint as
predicate above. This provides a way to express constraints
which are “extra-architectural” such as those arising from
needs, requirements, etc.

2.5 Computational Independence

Many ADLs, particularly those developed for domain-specific
software architectures, have a built-in, implicit underlying
model of computation (for discussion, see [1, pp. 7–8]).

In terms of economy of expression, this is quite efficient
for application-level development. However, there are cases
where the architect would like to defer the choice of the
computational model. E.g., in product line development,
one might select the computational model as a part of the
design of individual products within the product line. Con-
sider a product line for a MapServer intended to operate
in a client-server environment, or ‘stand-alone’ as a library



linked into a single application, or distributed for replica-
tion purposes wrapped with an Object Request Broker. It
should be possible to state certain elements of the architec-
ture independent of these decisions. However, this stretches
the capabilities of existing structure-based ADLs.

Inverardi and Wolf [10] suggest “an operational seman-
tic formalism ... based on a more flexible, relatively neutral
computational model,” and investigate the application of
the Chemical Abstract Machine in this regard. A general
solution could involve the analogue of a meta-object pro-
tocol for computational models – reifying the major design
constituents of a computing model [20] (certainly overkill for
architectural description!).

2.6 Quantification

Most ADLs embody an ontology of types and instances, re-
flecting perhaps their programming language (or module in-
terconnection language) heritage. While this works for small
systems, for larger projects a wider range of facilities may
be warranted.

First-order logic quantifiers (∀, ∃) provide increased ex-
pressivity for some cases. Other quantifier-like decisions,
e.g., the server must handle 1 to 10 simultaneous clients,
may be captured via constraints. Whether more sophis-
ticated quantification mechanisms (such as those found in
description logics for knowledge representation) are useful
is an open issue.

In a proposal for Dynamic Acme, [16] introduces optional
and multiple elements, which fulfill some of the roles of quan-
tifiers. UML is also an instructive example.

2.7 Architectural Patterns and Styles

Much current work in software design and architecture is
centered on the articulation of patterns and styles. There
are various ways to think of styles – as languages in them-
selves, as theories in their own right, etc. [6]. Similar con-
siderations arise with patterns. One way to think of both
patterns and styles is as idioms (or, recurring fragments)
over some vocabulary. Design patterns – in the sense of the
book of the same name – are defined over the vocabulary
of object-oriented programming constructs (classes, meth-
ods, interfaces, inheritance relations). To support pattern
and style making, ADLs should be sufficiently modular to
allow expression of individual entities. Current ADLs ap-
proach this for components, but not for connections and
constraints.

3 Conclusion

If there is an underlying thread to the cases above, it is
this: architecting is decision making and the issues of ex-
pressiveness can be considered as documenting when certain
decisions are made, by whom (client, architect, developers),
for whom (client, user other stakeholders), and in a way
that may be communicated to others. The consequences
of this for actual ADLs is that expressiveness is improved
by having explicit constructs for many aspects which have
previously been implicit. Good language design suggests
making such constructs necessary only when needed – that
the defaults match current intuitions, while allowing overt
expression when necessary.

References

[1] Robert J. Allen. A Formal Approach to Software Archi-
tecture. PhD thesis, Carnegie Mellon University, May
1997. Distributed as CMU-CS-97-144.

[2] A. Burns and M. Lister. A framework for building de-
pendable systems. The Computer Journal, 34(2), 1991.

[3] Paul C. Clements. A survey of architecture description
languages. In Proceedings of the Eighth International
Workshop on Software Specification and Design. IEEE
Computer Society Press, 1996.

[4] DII–AF Chief Architects’ Office. The Air Force’s
Command and Control System Target Architecture ver-
sion 1.0, 1998. http://www.esc-dii.hanscom.af.mil/
afdiin/Chief Architect/.

[5] David E. Emery, Richard F. Hilliard, and Timothy B.
Rice. Experiences applying a practical architectural
method. In Alfred Strohmeier, editor, Reliable Soft-
ware Technologies – Ada-Europe ’96, number 1088 in
Lecture Notes in Computer Science. Springer, 1996.

[6] David Garlan. Research directions in software architec-
ture. ACM Computing Surveys, 27(2):257–261, 1995.

[7] Richard F. Hilliard. Representing software systems ar-
chitectures or, components, connections and (why not?)
first-class constraints and views. In Joint Proceedings
of the SIGSOFT ’96 Workshops, 1996.

[8] Richard F. Hilliard, Michael J. Kur-
land, Steven D. Litvintchouk, Timothy B. Rice, and
Stephen C. Schwarm. Architecture quality assessment.
http://katanga.mitre.org/ose/arch/AQAPage.html.

[9] IEEE
Architecture Working Group. Recommended Practice
for Architectural Description (draft version 3.0), July
1998. http://www.pithecanthropus.com/~awg/.

[10] Paola Inverardi and Alexander L. Wolf. Formal specifi-
cation and analysis of software architectures using the
chemical abstract machine model. IEEE Transactions
on Software Engineering, 21(4):373–386, April 1995.

[11] Philippe B. Kruchten. The 4+1 view model of archi-
tecture. IEEE Software, 28(11):42–50, November 1995.

[12] Phillip E. London and Martin Feather. Implementing
specification freedoms. Science of Computer Program-
ming, 2:91–131, 1982.

[13] David C. Luckham, John J. Kenney, Larry M. Au-
gustin, James Vera, Doug Bryan, and Walter Mann.
Specification and analysis of system architecture using
Rapide. IEEE Transactions on Software Engineering,
21(4), April 1995.

[14] David C. Luckham, James Vera, and Sigurd Meldal.
Three concepts of system architecture. Technical Re-
port CSL-TR-95-674, Stanford University, July 1995.

[15] Nenad Medvidovic. A classification and comparison
framework for software architecture description lan-
guages. Technical Report UCI-ICS-97-02, Department
of Information and Computer Science, University of
California, Irvine, February 1997.



[16] R. Monroe, D. Garlan, and D. Wile. Acme StrawMan-
ual. Available from the ACME Web site at CMU.

[17] Eberhard Rechtin and Mark Maier. The art of systems
architecting. CRC Press, 1996.

[18] Jason E. Robbins, Nenad Medvidovic, David F. Red-
miles, and David S. Rosenblum. Integrating archi-
tecture description languages with a standard design
method. Presented at the Second EDCS Cross Cluster
Meeting in Austin, Texas.

[19] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an emerging discipline. Prentice Hall,
1996.

[20] Patrick Steyaert. Open Design of Object-Oriented Lan-
guages, A Foundation for Specialisable Reflective Lan-
guage Frameworks. PhD thesis, Vrije Universiteit Brus-
sel, 1994.

[21] Steve Vestal. A cursory overview and comparison of
four architecture description languages. Unpublished,
1993.


