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Abstract. We investigate extensions of Alur and Dill’s timed automata, based on the possibility to
update the clocks in a more elaborate way than simply reset them to zero. We call these automata
updatable timed automata. They form an undecidable class of models, in the sense that emptiness
checking is not decidable. However, using an extension of the region graph construction, we exhibit
interesting decidable subclasses. In a surprising way, decidability depends on the nature of the clock
constraints which are used, diagonal-free or not, whereas these constraints play identical roles in timed
automata. We thus describe in a quite precise way the thin frontier between decidable and undecidable
classes of updatable timed automata.

We also study the expressive power of updatable timed automata. It turns out that any updatable au-
tomaton belonging to some decidable subclass can be effectively transformed into an equivalent timed
automaton without updates but with silent transitions. The transformation suffers from an enormous
combinatorics blow-up which seems unavoidable. Therefore, updatable timed automata appear to be a
concise model for representing and analyzing large classes of timed systems.

1 Introduction

Since their introduction by Alur and Dill [AD90,AD94], timed automata are one of the most-studied and
most-established models for real-time systems. Numerous works have been devoted to the “theoretical”
comprehension of timed automata (among them, see [ACD+92], [AHV93], [AFH94], [ACH94], [Wil94],
[HKWT95]). However the major property of timed automata is probably that emptiness checking is a
decidable problem for this model [AD94]. Based on this nice theoretical result, several model-checkers
have been developed (for instance CMC1 [LL98], HYTECH2 [HHWT95,HHWT97], KRONOS3 [Yov97]
and UPPAAL4 [LPY97,BLL+98]) and a lot of case studies have been treated (see the web pages of the
tools).

� This work has been partly supported by the french RNTL project “Averroes” and french-indian CEPIPRA project
no2102 − 1.
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A lot of work has naturally been devoted to extensions of timed automata, with much interest for classes
whose emptiness problem remains decidable. There are two main (non exclusive) reasons for extending
existing models. First, they can be used to model strictly larger classes of systems and therefore treat
more case studies. They also lead to more compact representations of some systems. Conciseness makes
modelling easier, in the same way advanced programming languages make the writing of programs easier
than with assembly languages.

Considering timed automata, extensions can be obtained in various ways. Recall that in a timed automaton,
a transition is guarded by a constraint over a set of variables, called clocks. This constraint has to be satisfied
in order to enable the transition. Right after the transition is taken, a subset of clocks is reset to zero. This set
of clocks is specified in the label of the transition. The constraints used in Alur and Dill’s original model
allow to compare (the value of) a clock, or the difference between two clocks, with a rational constant.
Note that comparing the sum of two clocks with a constant leads to an undecidable class of automata (see
[AD94] but also [Duf97,BD00] where more precise results on the number of clocks are given). Periodic
clock constraints, as defined in [CG00], allow to express properties like "the value of a clock is even" or
"the value of a clock is of the form 0.5 + 3n where n is some integer. The corresponding class of automata
is strictly more powerful than Alur and Dill’s timed automata if silent transitions (or ε-transitions) are not
allowed but coincides with the original model otherwise. Note that, contrary to the untimed setting, silent
transitions strictly increase the expressive power of the model (see [BGP96,DGP97] or [BDGP98] for a
survey). Several other exotic extensions have been proposed among which we can mention [DZ98] where
subsets of clocks can be “freezed”.

The aim of the present paper is to investigate an other way to extend the model, with new operations on the
clocks. As we recalled just above, in Alur and Dill’s model, when a transition is taken, a specified subset
of clocks is reset to zero. Our goal is to study more complex updates on clocks, with a particular attention
to the decidability of the emptiness problem and to the expressive power of the corresponding classes of
automata. We will first study "deterministic" updates where a clock can be reset to a given constant, which
does not have to be zero anymore, or to the value of another clock, or more generally to the sum of a
constant and of the value of an other clock. We will then be interested in "non-deterministic" updates,
where a clock can be reset to an arbitrary value greater than some fixed constant. Note that this type of
updates appear sometimes naturally, for example in models of telecommunication protocols (see e.g. the
study of the ABR protocol proposed in [BF99,BFKM03]). In the sequel, we will call the corresponding
automata, updatable timed automata.

It is easy to verify that such updates, even if we only use deterministic ones, lead to an undecidable class
of automata. Indeed, it is easy to simulate a two-counter machine (or Minsky machine) with an updat-
able timed automaton. But it turns out that very interesting subclasses of updatable timed automata can be
proven decidable. A surprising result is that decidability often depends on the clock constraints – diagonal-
free (i.e. where the only allowed comparisons are between a clock and a constant) or not (where differences
of two clocks can also be compared with constants). This point makes an important difference with “clas-
sical” (i.e. Alur and Dill’s) timed automata for which it is well-known that these two kinds of constraints
have the same expressive power. We show for instance that updates of the form x := x + 1 lead to an
undecidable class of timed automata if arbitrary clock constraints are allowed but to a decidable class if
only diagonal-free clock constraints are allowed. Note that automata with updates of the form x := x − 1
always form an undecidable class whatever constraints, diagonal-free or general, are used. We will show
that decidability is often not far from undecidability and we will describe in a quite thin way the frontier
between the two worlds.

Decidability results are obtained through a generalization of the region graph proposed by Alur and Dill.
Given a timed automaton, and using the region graph, a finite automaton can be constructed, which recog-
nizes exactly the untiming of the language recognized by the original timed automaton. Note that the region
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graph depends on the class of constraints, diagonal-free or not, and on updates. The main difficulty is then
to prove that a given set of updates is "compatible" (in a sense which will be of course precisely defined
in the paper) with the region graph. This compatibility has to be proven for all updates, not only for resets
as was the case in the original model, but also for deterministic and non-deterministic updates as described
previously. We will finally see that the complexity of this decision procedure remains PSPACE-complete.

In this paper, we also study the expressive power of updatable timed automata. We show that they are
not more powerful than classical timed automata in the sense that for any updatable timed automaton, that
belongs to some decidable subclass, a classical timed automaton (potentially with ε-transitions) recognizing
the same language – and even most often bisimilar – can be effectively constructed. However in most cases,
an exponential blow-up seems unavoidable and thus a transformation into a classical timed automaton does
not lead to an efficient decision procedure. This exponential blow-up suggests that we can have much more
concise models if using updatable timed automata than if we only use classical timed automata.

The paper is organized as follows. In section 2, we present basic definitions of timed words, clock con-
straints and updates. Updatable timed automata are defined in section 3 where the emptiness problem is
briefly introduced. Section 4 is devoted to our undecidability results. We first reduce an undecidable prob-
lem on two counter machines to the emptiness problem for a subclass of updatable timed automata. We
then deduce that for several other subclasses of updatable timed automata, emptiness is also undecidable.
In section 5, we first propose a generalization of the region automaton principle first described by Alur and
Dill. We then use this extension to exhibit large subclasses of updatable timed automata for which empti-
ness is decidable, when only diagonal-free clock constraints are used (section 5.2) and then when arbitrary
clock constraints (section 5.3) are used. The question of the expressive power of updatable timed automata
is addressed in section 6. A short conclusion summarizes our results and propose some open questions or
developments.

This journal paper is the full version corresponding to the two conference papers [BDFP00a,BDFP00b].

2 Preliminaries

2.1 Timed Words and Clocks

If Z is any set, let Z∗ (resp. Zω) be the set of finite (resp. infinite) sequences of elements in Z. We note
Z∞ = Z∗ ∪ Zω. We consider as time domain T the set Q+ of non-negative rationals or the set R+ of
non-negative reals and Σ as a finite set of actions. A time sequence over T is a finite (or infinite) non
decreasing sequence τ = (ti)1≤i ∈ T∞. A timed word ω = (ai, ti)1≤i is an element of (Σ × T)∞, also
written as a pair ω = (σ, τ), where σ = (ai)1≤i is a word in Σ∞ and τ = (ti)1≤i a time sequence in T∞

of same length.
We consider a finite set X of variables, called clocks. A clock valuation over X is a mapping v : X → T

that assigns to each clock a time value. The set of all clock valuations over X is denoted TX . Let t ∈ T,
the valuation v + t is defined by (v + t)(x) = v(x) + t, ∀x ∈ X .

2.2 Clock Constraints

Given a set of clocks X , we introduce two sets of clock constraints over X . The most general one, denoted
by C(X), allows to compare a clock or the difference of two clocks with a constant. It is formally defined
by the following grammar:

ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ | ϕ ∨ ϕ

where x, y ∈ X, c ∈ Q, ∼ ∈ {<,≤,=, 	=,≥, >}
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We also consider the proper subset of diagonal-free clock constraints where the comparison between two
clocks is not any more allowed. This set is denoted by Cdf (X) and is defined by the grammar:

ϕ ::= x ∼ c | ϕ ∧ ϕ | ϕ ∨ ϕ,

where x ∈ X, c ∈ Q and ∼ ∈ {<,≤,=, 	=,≥, >}

Note that this restricted set of constraints is called diagonal-free because constraints of the form x− y ∼ c

are called diagonal clock constraints.

Clock constraints are interpreted over clock valuations. The satisfaction relation, denoted as “v |= ϕ” if
valuation v satisfies the clock constraint ϕ, is defined in a natural way for both sets of constraints:

v |= x ∼ c if v(x) ∼ c

v |= x − y ∼ c if v(x) − v(y) ∼ c

v |= ϕ1 ∧ ϕ2 if v |= ϕ1 and v |= ϕ2

v |= ϕ1 ∨ ϕ2 if v |= ϕ1 or v |= ϕ2

2.3 Updates

Clock constraints allow to test the values of the clocks. In order to change these values, we use the notion
of updates which are functions from TX to P(TX)5. An update hence associates with each valuation a set
of valuations.

In this work, we restrict to a small class of updates, the so-called local updates, constructed in the following
way. We first define a simple update over a clock z as one of the two following functions:

up ::= z :∼ c | z :∼ y + d

where c, d ∈ Q, y ∈ X and ∼ ∈ {<,≤,=, 	=,≥, >}

Let v be a valuation and up be a simple update over z. A valuation v′ is in up(v) if v′(y) = v(y) for any
clock y 	= z and if v′(z) satisfies:{

v′(z) ∼ c ∧ v′(z) ≥ 0 if up = z :∼ c

v′(z) ∼ v(y) + d ∧ v′(z) ≥ 0 if up = z :∼ y + d

A local update over a set of clocks X is a collection up = (upi)1≤i≤k of simple updates, where each upi

is a simple update over some clock xi ∈ X (note that it may happen that xi = xj for some i 	= j). Let
v, v′ ∈ Tn be two clock valuations. The valuation v′ is in up(v) if for every i, the set upi(v) contains the
valuation v′′ defined by {

v′′(xi) = v′(xi)
v′′(y) = v(y) for any y 	= xi

The terminology “local” comes from the fact that v′(x) only depends on x and not on the other values
v′(y).

Example 1. Let us consider the local update up = (x :> y, x :< 7). Let v, v′ be two valuations. It holds
that v′ ∈ up(v) if v′(x) > v(y) ∧ v′(x) < 7.

Note that up(v) may be empty. For instance, the local update (x :< 1, x :> 1) leads to an empty set.

For any set of clocks X , we denote by U(X) the set of local updates over X . In this paper, we will simply
call updates these local updates. The following subsets of U(X) will play an important role in the rest of
the paper.

5 P(TX) denotes the powerset of TX .
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- U0(X) is the set of reset updates. A reset update is a local update up such that each simple update
defining up is of the form x := 0.

- Ucst(X) is the set of “constant” updates, that is the set of updates up such that each simple update
defining up is of the form x := c with c ∈ Q.

- Udet(X) is the set of deterministic updates. An update up is said deterministic if for any clock valuation
v, there exists at most one valuation v′ such that v′ ∈ up(v). It is immediate to check that a local update
up = (upi)1≤i≤k is deterministic if all simple updates upi are of one of the following form:
1. x := c with x ∈ X and c ∈ Q

2. x := y with x, y ∈ X

3. x := y + c with x, y ∈ X and c ∈ Q \ {0}

3 Updatable Timed Automata

We now define the central notion of updatable timed automata. As we explain in details below, these
automata extend the classical family of Alur and Dill’s timed automata [AD90,AD94].

3.1 The Model

An updatable timed automaton over T is a tuple A = (Σ,X,Q, T, I, F,B), where:

– Σ is a finite alphabet of actions,
– X is a finite set of clocks
– Q is a finite set of states
– T ⊆ Q × [C(X) × (Σ ∪ {ε}) × U(X)] × Q is a finite set of transitions
– I ⊆ Q is the subset of initial states
– F ⊆ Q is the subset of final states
– B ⊆ Q is the subset of Büchi-repeated states.

The special action ε is called silent action and a transition in Q× [C(X)×{ε}×U(X)]×Q is called silent
transition or ε-transition.

If C ⊆ C(X) is a subset of clock constraints and U ⊆ U(X) a subset of updates, the class Utaε(C,U)
denotes the set of all updatable timed automata in which transitions only use clock constraints in C and
updates in U . The subclass of automata which do not use silent transitions is simply written Uta(C,U).

Timed automata, as studied in details by Alur and Dill [AD90,AD94], thus correspond to the classes
Utaε(Cdf (X),U0(X)) and Uta(Cdf (X),U0(X)) (where Cdf (X) and U0(X) are respectively the set of
diagonal-free clock constraints and reset updates as defined in section 2).

As for timed automata, a behavior in an updatable timed automaton is obtained through the notion of paths
and runs. Let us fix for the rest of this part an updatable timed automaton A. A path in A is a finite or
infinite sequence of consecutive transitions:

P = q0
ϕ1,a1,up1−−−−−−→ q1

ϕ2,a2,up2−−−−−−→ q2 . . . , where (qi−1, ϕi, ai, upi, qi) ∈ T, ∀i > 0

The path is said to be accepting if it starts in an initial state (q0 ∈ I) and either it is finite and it ends in a
final state, or it is infinite and passes infinitely often through a Büchi-repeated state.
A run through the path P from the clock valuation v0, with v0(x) = 0 for any clock x, is a sequence of the
form:

〈q0, v0〉 a1−−→
t1

〈q1, v1〉 a2−−→
t2

〈q2, v2〉 . . .
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where τ = (ti)i≥1 is a time sequence and (vi)i≥0 are clock valuations such that:{
vi−1 + (ti − ti−1) |= ϕi

vi ∈ upi (vi−1 + (ti − ti−1))

Note that any set upi(vi−1 + (ti − ti−1)) of a run has to be non empty. In the following, to make the
notations more compact , we will note such a run

〈q0, v0〉
ϕ1,a1,up1−−−−−−−→

t1
〈q1, v1〉

ϕ2,a2,up2−−−−−−−→
t2

〈q2, v2〉 . . .

The label of such a run is the timed word w = (a1, t1)(a2, t2) . . . If the path P is accepting, then this
timed word is said to be accepted by A. The set of all timed words accepted by A over the time domain T

is denoted by L(A, T), or simply L(A).

Example 2. Consider the following updatable timed automaton.

p q r

x > 1, a, x :< 2 ∧ y := x + 3 y > 5, b, y := 0

x = 4, c, y :> 0x − y < 2, d, x :< y

A possible (finite) accepting run in this automaton is the following:

〈p, (0, 0)〉 a−−→
1.3

〈q, (0.2, 4.3)〉 b−−→
2.1

〈r, (1, 0)〉 c−−→
5.1

〈q, (4, 3.1)〉 d−−→
9.6

〈p, (7.2, 8.6)〉

Let us explain this run:

– the transition 〈p, (0, 0)〉 a−−→
1.3

〈q, (0.2, 4.3)〉 is possible because after having waited 1.3 units of time,

the value of both x and y is 1.3, thus after the update x :< 2 ∧ y := x + 3, the valuation (0.2, 4.3)
(4.3 = 1.3 + 3) is possible

– the transition 〈q, (0.2, 4.3)〉 b−−→
2.1

〈r, (1, 0)〉 is possible because after having waited 2.1 − 1.3 = 0.8
units of time, the value of x is 1 and the value of y is 0.8, thus after resetting y to 0, we get that the
valuation (1, 0) can be reached

– etc...

Remark 1. In [AD94], Alur and Dill claimed that for any timed automaton in Utaε(C(X),U0(X)) (resp.
Uta(C(X),U0(X))), there exists a timed automaton in Utaε(Cdf (X),U0(X)) (resp. Uta(Cdf (X),U0(X)))
which accepts the same language; the interested reader will find a full proof of this easy fact in [BDGP98].

3.2 Aim of The Paper

The following deep result is the core of the theory of timed automata together with its use for modeling real-
time systems. It has been implemented in several tools like CMC [LL98], KRONOS [DOTY96] or UPPAAL

[LPY97]. These tools have been intensively used on numerous case studies [DOY94,JLS96,HSLL97,BBP02].

Theorem 1. [AD90,AD94] The class Utaε(Cdf (X),U0(X)) is decidable.

Remind that a class of automata is said decidable if there exists an algorithm which, taking as an input an
arbitrary automaton of the class, outputs “yes” or “no”, depending on whether the language recognized by
the automaton is empty or not.
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Our goal in this paper is twofold. First, we will study if and how the theorem above can be extended to the
class Utaε(C(X),U(X)) and to interesting subclasses. We will then compare the expressive power of these
subclasses to the expressive power of automata from Utaε(Cdf (X),U0(X)) and Uta(Cdf (X),U0(X)).

As it will turn out, it is necessary to distinguish the cases where only diagonal-free clock constraints are
used and where arbitrary clock constraints are authorized. Recall that on the contrary, any Alur and Dill’s
timed automaton using arbitrary clock constraints can be transformed into an other Alur and Dill’s timed
automaton using only diagonal-free clock constraints (see Remark 1).

4 Undecidability Results

In this section, we first exhibit undecidable classes of updatable timed automata.

Let us first recall briefly that a two counter machine (known sometimes also as a Minsky machine) is a finite
set of labeled instructions over two counters c1 and c2. There are two types of instructions over counters:

- an incrementation instruction of counter x ∈ {c1, c2}:

p : x := x + 1 ; goto q (where p and q are instruction labels)

- a decrementation (or zero-testing) instruction of counter x ∈ {c1, c2}:

p : if x > 0
{

then x := x − 1 ; goto q

else goto r
(where p, q and r are instruction labels)

The machine starts at an instruction labeled by s0 with c1 = c2 = 0 and stops at a special instruction
labeled by HALT. The halting problem for a two counter machine consists in deciding whether the machine
reaches the instruction HALT.

The following result will be the basis of all our undecidability results on updatable timed automata.

Theorem 2. [Min67] The halting problem for two counter machines is undecidable.

Instructions of a two counter machine can easily be simulated by transitions of updatable timed automata.
States of the automaton are the labels of the instructions of the two counter machine. The transformation
can be done in the following way (the unique action a of the alphabet Σ is not represented):

– Incrementation of counter x: p q
z = 0, x := x + 1

– Decrementation of counter x: p

q

r

z = 0 ∧ x ≥ 1, x := x − 1

z = 0 ∧ x = 0

where the new clock z ensures that no time can elapse (there is no time progress assumption). Such a clock
will be used in all constructions presented in this section. More involved constructions could also be done
under the time progress assumption.

Thus, given a two counter machine M, an updatable timed automaton AM ∈ Uta(Cdf (X),U(X)) satis-
fying:

M halts ⇐⇒ L(AM) 	= ∅

can easily be constructed. We thus obtain:
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Proposition 1. Let X be a set of clocks containing at least 3 clocks. Then, the class Uta(Cdf (X),U(X))
of updatable timed automata is undecidable.

Since any class containing an undecidable subclass is obviously itself undecidable, we get immediately the
following corollary:

Corollary 1. Let X be a set of clocks containing at least 3 clocks. Then, the classes Uta(C(X),U(X)),
Utaε(Cdf (X),U(X)) and Utaε(C(X),U(X)) are undecidable.

The previous simulations use updates of both types x := x + 1 and x := x− 1. We will show that if resets
are used, one such type of update is sufficient to build a timed automaton AM as above from a two counter
machine M, and thus obtain undecidability results.

Let us first consider updates of the type x := x − 1, then incrementation of a counter can be simulated as
follows:

Incrementation of counter x:

p s q
z = 1, z := 0 z = 0, y := y − 1z := 0

We claim that a run on this path increases the value of clock x of one time unit and keeps unchanged the
value of clock y. Indeed, in such a run, the tuple of clock values are of the form (with the order x, y, z

from left to right), (α, β, 0) when entering state p, (α + 1, β + 1, 0) when entering state s and (α + 1, β, 0)
when entering state q. In the following, we will represent this by the simple figure below:

p s qz := 0 z = 1, z := 0 z = 0, y := y − 1

0
@ α

β

0

1
A

0
@ α + 1

β + 1

0

1
A

0
@ α + 1

β

0

1
Ax

y

z

The simulation of the decrementation of a counter is identical as the one previously seen. We present it in
a quite different and schematic way as follows:

Decrementation of counter x:

p q

r

x ≥ 1 z = 0, x := x − 1z := 0

x = 0

x

y

z

0
@ α

β

0

1
A

0
@ α

β

0

1
A

0
@ α − 1

β

0

1
A

0
@ 0

β

0

1
A

0
@ α

β

0

1
Ax

y

z

If M is a two counter machine, we can thus construct, as before, a timed automaton AM with only resets
to zero and decrementations of clocks and such that

M halts ⇐⇒ L(AM) 	= ∅

We have thus proven the following result:
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Proposition 2. Let X be a set of clocks containing at least 3 clocks. Let U be a set of updates containing
both U0(X) and {x := x − 1 | x ∈ X}. Then the class Uta(Cdf (X),U) is undecidable.

Remark 2. Note that the previous result can be strengthened because in the construction all reset operations
are performed when the clock we want to reset is 0 or 1, they can thus be replaced by decrementations.

Up to now, all the timed automata constructed for undecidability proofs only have diagonal-free clock
constraints (i.e. constraints in Cdf (X)). In the remainder of this section, some of the constructions we will
make for proving some undecidability results will also use diagonal clock constraints (not in Cdf (X) but in
C(X)), and as a byproduct of the results in section 5, it will appear that in these cases, the classes obtained
by replacing C(X) by Cdf (X) are indeed decidable.

From the constructions above, we can notice that it is no more necessary to simulate a whole two counter
machine in order to prove undecidability results, but that, if resets are allowed, it is sufficient to be able to
simulate executions of the form:

z = 0, x := x − 1

0
@ α

β

0

1
A

0
@ α − 1

β

0

1
Ax

y

z

(	)

We first claim that such an execution can be simulated using only updates from the set U0(X) ∪ {x :=
x + 1 | x ∈ X}. Indeed, consider the (part of) timed automaton below:

p q r s
z = 0, w := 0 x − w = 1, x := 0 x = w ∧ z = 0

w := w + 1 x := x + 1

The sequence of clock valuations for a run along this path can be described by:

p q q r r s· · · · · ·

x

y

z

w

0
BB@

α

β

0

δ

1
CCA

0
BB@

α

β

0

0

1
CCA

0
BB@

α

β

0

ε

1
CCA

0
BB@

0

β

0

α − 1

1
CCA

0
BB@

κ

β

0

α − 1

1
CCA

0
BB@

α − 1

β

0

α − 1

1
CCA

Such a run thus simulates an execution through a transition (	).

Proposition 3. Let X be a set of clocks containing at least 4 clocks. Let U be a set of updates containing
both U0(X) and {x := x + 1 | x ∈ X}. Then the class Uta(C(X),U) is undecidable.

The next undecidability results are obtained thanks to very similar techniques.

Proposition 4. Let X be a set of clocks containing at least 4 clocks. Let U be a set of updates containing
both U0(X) and either

– {x :> 0 | x ∈ X} or
– {x :> y | x, y ∈ X} or
– {x :< y | x, y ∈ X}.

Then the class Uta(C(X),U) is undecidable.
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Proof. As before, we simulate the execution through a transition (	) using parts of timed automata. The
three automata below correspond respectively to the three sets of updates of the proposition:

z = 0, w :> 0 x − w = 1, x :> 0 x = w ∧ z = 0

x

y

z

w

0
BB@

α

β

0

δ

1
CCA

0
BB@

α

β

0

ε

1
CCA

0
BB@

κ

β

0

α − 1

1
CCA

0
BB@

α − 1

β

0

α − 1

1
CCA

z = 0, w :> z x − w = 1, x :> z x = w ∧ z = 0

x

y

z

w

0
BB@

α

β

0

δ

1
CCA

0
BB@

α

β

0

ε

1
CCA

0
BB@

κ

β

0

α − 1

1
CCA

0
BB@

α − 1

β

0

α − 1

1
CCA

z = 0, w :< x x − w = 1, x :< x x = w ∧ z = 0

x

y

z

w

0
BB@

α

β

0

δ

1
CCA

0
BB@

α

β

0

ε

1
CCA

0
BB@

κ

β

0

α − 1

1
CCA

0
BB@

α − 1

β

0

α − 1

1
CCA

Hence, we get the undecidability results announced in the proposition. �
From the above results we can prove some more undecidability results. We summarize all the results in
Table 1.

U0(X) ∪ ... Diagonal-free constraints General constraints
1 x := c, x := y ?
2 x := x + 1 ?
3 x := y + c Undecidable
4 x := x − 1 Undecidable

5 x :< c

?

?
6 x :> c

Undecidable
7 x :∼ y + c

8 y + c <: x :< y + d

9 y + c <: x :< z + d Undecidable

with ∼ ∈ {≤, <, >,≥} and c, d ∈ Q+

Table 1. Undecidability results

Lines 2 and 4 correspond exactly to propositions 3 and 2 respectively. Line 3 is just an extension of Line 2.
The second column of lines 6, 7, 8 and 9 are direct consequences from proposition 4. The remaining case
is the one where we allow diagonal-free clock constraints and updates of the form y + c <: x :< z + d,
as described on line 9. The corresponding model which also allows in addition diagonal clock constraints
is undecidable (see above), we just need to be able to replace diagonal clock constraints by updates of the
form y + c <: x :< z + d. Assume there is a clock constraint x− y < c, its truth or falsity is equivalent to
the existence of a value α taken in the real interval ]x; y + c[. Adding a new clock z, it becomes equivalent
to having an update x <: z :< y + c.

The next section is devoted to the study of classes marked with “?” and we will see that the emptiness
problem is in fact decidable for these remaining classes.
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5 Decidability Results

In this section, we extend the decidability result of Theorem 1 to other subclasses of updatable timed
automata. Recall that the principle of this deep result relies on the construction, for any timed automaton
A, of a finite untimed automaton B accepting exactly the language UNTIME(L(A)) where

UNTIME(L(A)) = {σ ∈ Σ∞ | there exists a time sequence τ s.t. (σ, τ) ∈ L(A)}

The emptiness of L(A) is obviously equivalent to the emptiness of UNTIME(L(A)), so the result follows
from the decidability of the emptiness checking problem for untimed finite automata (see e.g. [HU79]).

We will generalize the construction of Theorem 1. Let us first define the notion of regions and region
graphs.

5.1 Regions and Region Automaton

Let X be a finite set of clocks. We consider a finite partitioning R of TX . For each valuation v ∈ TX , the
unique element of R that contains v is denoted by [v]R. We define the successors of R, Succ(R) ⊆ R, in
the following natural way:

R′ ∈ Succ(R) if ∃v ∈ R, ∃t ∈ T s.t. [v + t]R = R′

We say that such a finite partition is a set of regions whenever the following condition holds:

R′ ∈ Succ(R) ⇐⇒ ∀v ∈ R, ∃t ∈ T s.t. [v + t]R = R′ (		)

This natural condition assesses that the equivalence relation defined by the R partitioning is stable with
time elapsing. Roughly, this means that two equivalent valuations stay equivalent while time is elapsing.
Let us note that this condition is not satisfied by any finite partition of TX as illustrated by the following
counter-example.

Example 3. Let us consider the partition of T2 drawn on the figure
beside. Condition (		) is not satisfied by the gray region. Indeed,
from valuation (0, 5; 1, 8), when time elapses it is possible to reach
the valuation (0, 7; 2) and thus the region defined by the constraints
0 < x < 1 ∧ y = 2. But this region can not be reached from
valuation (0, 5; 1, 1).

0 1 2

1

2

Let U ⊆ U(X) be a finite set of updates. Each update up ∈ U induces naturally a function ûp : R → P(R)
which maps any region R onto the set {R′ ∈ R | up(R)∩R′ 	= ∅}. The set of regions R is said compatible
with U if whenever a valuation v′ ∈ R′ is reachable from a valuation v ∈ R by some ûp then R′ is reachable
from any v ∈ R by the same ûp. Formally, we require:

R′ ∈ ûp(R) =⇒ ∀v ∈ R, ∃v′ ∈ R′ s.t. v′ ∈ up(v) (	 	 	)

Note that this condition has an interpretation similar to the one done for condition (		). Of course these
conditions are related to some kind of bisimulation property, see the remark below.

Remark 3. If the transition relations (↪→up)up on TX are defined by

v ↪→up v′ ⇐⇒ v′ ∈ up(v)

and the relation ρR by
v ρR v′ ⇐⇒ [v]R = [v′]R

then the condition (	 	 	) assesses that ρR is a bisimulation with respect to the relations (↪→up)up.

11



Whenever a set of regions R is compatible with a set of updates U , we define the region graph associated
with R and U as the graph whose set of nodes is R and whose edges are of two distinct types:

R −→ R′ if R′ ∈ Succ(R)
R −→up R′ if R′ ∈ ûp(R)

Example 4. Let us consider the set of four regions R defined by the following equations:

R10 ≤ x < 1
0 ≤ y ≤ 1

x < y


R2 x ≥ 0

0 ≤ y ≤ 1
x ≥ y


R3x > 1

y > 1
x ≥ y


R4x ≥ 0

y > 1
x < y


0 1

1

x

y

R1 R2

R3

R4

It is easy to verify that R is compatible with the set of updates U = {x := 1, y := 0}. The region graph
associated with R and U is represented below on Figure 1.

R1

0 ≤ x < 1

0 ≤ y ≤ 1

x < y

R2

x ≥ 0

0 ≤ y ≤ 1

x ≥ y

R3

x > 1

y > 1

x ≥ y

R4

x ≥ 0

y > 1

x < y

time elapsing

update x := 1

update y := 0

Fig. 1. A simple example of region graph

Finally, let C ⊆ C(X) be a finite set of clock constraints. A set of regions R is said to be compatible with
C if for every clock constraint ϕ ∈ C and for every region R, either R ⊆ ϕ or R ⊆ ¬ϕ.

Let now A = (Σ,X,Q, T, I, F,B) be a timed automaton in some class Uta(C,U) and let R be a family
of regions compatible with C and U . We define the region automaton ΓR(A) associated with A and R, as
the following finite (untimed) automaton:
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– Its set of locations is Q ×R.
• The initial locations are (q0,0) where q0 ∈ I is initial and 0 is the unique region containing the

valuation where all clocks are set to zero
• The final locations are (f,R) where f is final in A and R is any region
• The repeated locations are (r,R) where r is repeated in A and R is any region

– Its transitions are defined by (q,R) a−−→ (q′, R′) if there exists a region R̂ and a transition q
ϕ,a,up−−−−−→ q′

in A such that:
• R −→ R̂ is a transition of the region graph,
• R̂ ⊆ ϕ

• R̂ −→up R′ is a transition of the region graph.

Under conditions (		) and (	 	 	), the region automaton is an interesting abstraction of the original au-
tomaton in the sense that we obtain a result similar to the one of Theorem 1.

Proposition 5. Let A be a timed automaton in Uta(C,U) where C (resp. U) is a finite set of clock con-
straints (resp. of updates). Let R be a set of regions compatible with C and U . Then the finite automaton
ΓR(A) accepts the language UNTIME(L(A)).

Proof. Assume that A = (Σ,Q, T, I, F,R,X).
Let us take a run in A

〈q0, v0〉
ϕ1,a1,up1−−−−−−−→

t1
〈q1, v1〉

ϕ2,a2,up2−−−−−−−→
t2

· · ·

For i ≥ 0, let us define Ri = [vi]R and R̂i = [vi + ti+1 − ti]R. It holds that R̂i ∈ Succ(Ri) and, since
vi+1 ∈ upi+1(vi + ti+1), Ri+1 ∈ ûpi(R̂i). Moreover, vi + ti+1 |= ϕi+1 and since R is compatible with
C, we deduce that R̂i ⊆ ϕi+1. Therefore, from the definition,

〈q0, R0〉 a1−−→ 〈q1, R1〉 a2−−→ · · ·

is an accepting path of ΓR(A). Hence UNTIME(L(A)) ⊆ L(ΓR(A)) holds.
Conversely, let us consider a run in ΓR(A),

〈q0, R0〉 a1−−→ 〈q1, R1〉 a2−−→ · · ·

We set v0 = 0 and assume that we have already constructed sequences (vi)0≤i<n and (ti)1≤i<n such that
vi ∈ Ri and such that the following is a run of A

〈q0, v0〉
ϕ1,a1,up1−−−−−−−→

t1
〈q1, v1〉 · · ·

ϕi−1,ai−1,upi−1−−−−−−−−−−−→
ti−1

〈qi−1, vi−1〉

Since 〈qi−1, Ri−1〉 ai−−→ 〈qi, Ri〉 is a transition of ΓR(A), there exists by definition a region R̂ and a
transition (qi−1, ϕi, ai, upi, qi) in A such that

– Ri−1 −→ R̂ is a transition of the region graph,
– R̂ ⊆ ϕi

– R̂ −→upi
Ri is a transition of the region graph.

From vi−1 ∈ Ri−1 and the fact that the set of regions R satisfies (		), it follows that there exists some
ti ∈ T such that vi−1 + ti − ti−1 ∈ R̂. Now, from the hypothesis that R is compatible with upi, we deduce
that there exists some valuation vi such that vi ∈ upi(vi−1 + ti − ti−1). Hence the following is a path in A

〈q0, v0〉
ϕ1,a1,up1−−−−−−−→

t1
〈q1, v1〉 · · ·

ϕi−1,ai−1,upi−1−−−−−−−−−−−→
ti−1

〈qi−1, vi−1〉
ϕi,ai,upi−−−−−−−→〈qi, vi〉

Therefore, we construct by induction a path in A,

〈q0, v0〉
ϕ1,a1,up1−−−−−−−→

t1
〈q1, v1〉 · · · 〈qi−1, vi−1〉

ϕi,ai,upi−−−−−−−→
ti

〈qi, vi〉 · · ·

We thus have L(ΓR(A)) ⊆ UNTIME(L(A)) which concludes the proof of this proposition. �
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Since the emptiness checking problem for untimed (Büchi or with a finite acceptance condition) automaton
is decidable (see e.g. [HU79]), the previous proposition leads to the next theorem.

Theorem 3. Let C (resp. U) be a finite set of clock constraints (resp. of updates). Assume there exists a set
of regions R such that R is compatible with C and U , then the class Uta(C,U) is decidable.

This theorem is of course fundamental, but it does not exhibit any real decidable class of updatable automata
for which we can decide emptiness. Indeed, we need to construct sets of clock constraints C and sets of
updates U , together with sets of regions R such that R is compatible with both C and U .

As mentioned before, we quickly had the intuition that diagonal-free and general clock constraints do not
lead to the same (un)decidability properties. This is the reason why we proceed by distinguishing classes
of updatable timed automata according to the type of constraints, diagonal-free or not.

First we need a lemma claiming that we can restrict our investigations to updatable timed automata which
use integer (and not rational) constants only. The result is a trivial extension of a remark proposed and
proven by Alur and Dill for classical timed automata (cf lemma 4.1, page 15 of [AD94]).

Lemma 1. Let A be a timed automaton and let λ be a positive rational constant. Let λA be the timed
automaton obtained by replacing all the constants µ of the clock constraints or the updates of A by the
product λµ. Then the language L(λA) equals λL(A) where λL(A) = {(ai, λti)i≥0 | (ai, ti)i≥0 ∈ L(A)}.

Hence, given a timed automaton A and a constant λ ∈ Q+, the emptiness of L(A) is equivalent to the one
of L(λA). But if we consider the lcm m of all the constants used by A, the automaton mA deals only with
integer constants. Hence, when considering emptiness, we can assume without loss of generality that all
the constants appearing in (updatable) timed automata are integers. We will do such an assumption for the
rest of this section.

5.2 Decidable Classes of Diagonal-Free Updatable Timed Automata

In this section, we consider diagonal-free clock constraints only, on a set of clocks X . We first construct a
set of regions suitable for these constraints. For each clock x ∈ X , we consider an integer constant cx and
we define the set of intervals:

Ix = {[c] | 0 ≤ c ≤ cx} ∪ {]c; c + 1[| 0 ≤ c < cx} ∪ {]cx; +∞[}

Now let α be a tuple ((Ix)x∈X ,≺) where:

– ∀x ∈ X , Ix ∈ Ix

– ≺ is a total preorder6 on X0 = {x ∈ X | Ix is an interval of the form ]c; c + 1[}

The region associated with α is defined as the following set of valuations:{
| ∀x ∈ X, v(x) ∈ Ix and

v ∈ TX |
| ∀x, y ∈ X0, x ≺ y ⇐⇒ frac(v(x)) ≤ frac(v(y))

}

In the sequel, we will refer to this set as “the region α”.

Remark 4. The finite set R(cx)x∈X
of all such regions forms a partition of TX . Note that it is exactly (with

slightly distinct notations) the set of regions used by Alur and Dill in their seminal paper [AD94]. Hence
the following lemma, which claims that this set verifies the condition (		), is not an original result and we
prove it here only for the sake of completeness.

6 Recall that a preorder is a reflexive and transitive relation. If in addition this preorder is antisymmetric, it is an order.
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Lemma 2. The set R(cx)x∈X
is a set of regions.

Proof. Assume that α = ((Ix)x∈X ,≺). If for all x, Ix =]cx; +∞[, then obviously

∀v ∈ α,∀t ∈ T, v + t ∈ α

and thus Succ(α) = {α}. Otherwise, there exists at least a region α′ 	= α such that α′ ∈ Succ(α).
Among these regions we define the “closest” region to α, i.e. the region αSucc such that

– αSucc ∈ Succ(α), and
– ∀v ∈ α,∀t ∈ T, if v + t 	∈ α then ∃t′ ≤ t such that v + t′ ∈ αSucc.

The region αSucc = ((I ′x)x∈X ,≺′) can be characterized as follows. Let Z = {x ∈ X | Ix is of the form [c]}.
We distinguish two cases:

1. If Z 	= ∅, then

– I ′x =


Ix if x 	∈ Z

]c; c + 1[ if x ∈ Z and Ix = [c] with 0 ≤ c < cx

]cx; +∞[ if x ∈ Z and Ix = [cx]
– x ≺′ y if either x ≺ y or Ix = [c] with 0 ≤ c < cx and I ′y is of the form ]d; d + 1[

2. If Z = ∅, let M be the set of maximal elements of ≺, i.e.

M = {x ∈ X0 | ∀z ∈ X0, x ≺ z =⇒ z ≺ x}

Then,

– I ′x =
{

Ix if y 	∈ M

[c + 1] if x ∈ M and Ix =]c; c + 1[ with 0 ≤ c < cx

– ≺′ is the restriction of ≺ to {x ∈ X | I ′x is of the form ]d; d + 1[}

We claim now that
∀v ∈ α, ∃t ∈ T such that v + t ∈ αsucc

Indeed, let v be a valuation in α,

1. If Z 	= ∅, then let τ = min ({1 − frac(v(x)) | Ix is of the form ]c; c + 1[}). Then the valuation v+ 1
2τ

is in the region αsucc.
2. If Z = ∅, then let τ = 1 − frac(v(x)) for any x ∈ M . Then the valuation v + τ is in αsucc.

Now, we get by an immediate induction that the set R(cx)x∈X
verifies condition (		) which achieves the

proof of the lemma. �

Example 5. As an example, assume we have only two clocks x

and y with the constants cx = 3 and cy = 2. Then, the set of
regions associated with those constants is described in the figure
beside.
The dark gray region is defined by Ix =]1; 2[, Iy =]0; 1[, and
x ≺ y and y 	≺ x.

The immediate successor region of this (dark) gray region is de-
fined by Ix =]1; 2[ and Iy = [1] (drawn as a thick line). The
other successor regions are drawn in light gray.

0 1 2 3 x

1

2

y

The sets of regions we consider is now defined, the following result about their compatibility with sets of
diagonal-free clock constraints is immediate.
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Proposition 6. Let C ⊆ Cdf (X) be such that for any clock constraint x ∼ c of C, it holds that c ≤ cx. Then
the set of regions R(cx)x∈X

is compatible with C.

Note that the result does not hold anymore for an arbitrary set of constraints included in C(X). For instance,
in the example above, the region ((]3;+∞[, ]2;+∞[), ∅) is neither included in x−y ≤ 1 nor in x−y ≥ 1.

We now investigate the compatibility of R(cx)x∈X
and sets of updates U . We first consider the case of

simple updates. Recall that a simple update (cf section 2.3) is an update of the form z :∼ c or z :∼ y + c

where y and z are clocks, ∼ ∈ {<,≤,=,≥, >} and c is an (integer) constant. Note that even if the set
R(cx)x∈X

is the one used by Alur and Dill (cf Remark 4), its compatibility with all the updates distinct
from resets (i.e. of the form x := 0) is not proven yet.

Lemma 3. Let R(cx)x∈X
be a set of regions. This set of regions is compatible with any simple update z :∼ c

such that c ≤ cz and with any simple update z :∼ y+c such that cz ≤ cy +c, with ∼∈ {=, 	=, <,>,≤,≥}.

Proof. Assume that α = ((Ix)x∈X ,≺) is a region of R(cx)x∈X
. Recall that ≺ is thus a total preorder

on X0 = {x ∈ X | Ix is an interval of the form ]c; c + 1[}. Let up be a simple update over z. We first
characterize the regions of ûp(α).

Let α′ = ((I ′x)x∈X ,≺′) (where ≺′ is a total preorder on X ′
0). Then α′ is in ûp(α) if I ′x = Ix for all x 	= z

and:

if up is z: ∼ c: I ′z can be any interval of Iz which intersects {γ ∈ T | γ ∼ c} and

– either I ′z is of the form [d] or ]cz; +∞[ and thus

• X ′
0 = X0 \ {z}

• ≺′=≺ ∩(X ′
0 × X ′

0)

– either I ′z is of the form ]d; d + 1[ and thus

• X ′
0 = X0 ∪ {z}

• ≺′ is any total preorder on X ′
0 which coincides with ≺ on X ′

0 \ {z}.

if up is z: ∼ y+c with c ∈ Z: I ′z can be any interval of Iz such that there exists a ∈ I ′z , b ∈ Iy with

a ∼ b + c and

– either I ′z is of the form [d] or ]cz; +∞[

• X ′
0 = X0 \ {z}

• ≺′=≺ ∩(X ′
0 × X ′

0)

– either I ′z is of the form ]d; d + 1[,

• X ′
0 = X0 ∪ {z}
∗ If y 	∈ X0, ≺′ is any total preorder on X ′

0 which coincides with ≺ on X ′
0 \ {z}.

∗ If y ∈ X0, then we have to take care of the relative values of frac(v′(y)) and frac(v′(z))
when (Iy + c) ∩ I ′z 	= ∅:

· either (Iy + c)∩ I ′z = ∅ and ≺′ is any total preorder on X ′
0 which coincides with ≺ on

X0 \ {z}
· either (Iy + c) ∩ I ′z 	= ∅

Note that from the inequality cz ≤ cy + c, this condition implies that Iy + c ⊆ I ′z .

In that case, ≺′ is any total preorder on X ′
0 which coincides with ≺ on X ′

0 \ {z} and

verifies:

16



· z ≺′ y and y ≺′ z if ∼ is =
· z ≺′ y and y 	≺′ z if ∼ is <

· z ≺′ y if ∼ is ≤
· y ≺′ z if ∼ is ≥
· z 	≺′ y and y ≺′ z if ∼ is >

· (z ≺′ y and y 	≺′ z) or (z 	≺′ y and y ≺′ z) if ∼ is 	=

From this construction, it is now easy to check that condition (	 	 	) holds i.e. that for any v ∈ α and any
α′ ∈ ûp(α), there exists v′ ∈ α′ ∩ up(v). Indeed, since up is a local update over z, v′(x) = v(x) for all
x 	= z and we just have to define v′(z).

1. If z 	∈ X ′
0, then

(a) If I ′z = [c], v′(z) is of course set to c.
(b) If I ′z =]cz;∞[, since Iy + c ⊆ I ′z , v(y) + c belongs to the open interval ]cz;∞[. Hence, whatever

∼ in {=, 	=, <,≤, >,≥}, there exists some value α such that α ∼ v(y) + c.We thus set v′(z)α
2. if z ∈ X ′

0, then
(a) If x ≺′ z and z ≺′ x for some x, then v′(z) = d + frac(v′(x)) with I ′z =]d; d + 1[
(b) If, for any clock x, either x 	≺′ z or z 	≺′ x, then v′(z) = d + τ with I ′z =]d; d + 1[ and

max{frac(v′(x)) | x ≺′ z} < τ < min{frac(v′(x)) | z ≺′ x}

Note that since the time domain is assumed to be dense, there always exists (an infinity of) such τ .

In all cases, it holds v′ ∈ α′ ∩ up(α) and the lemma is proven. �

Example 6. Let us consider the case where X = {x, y}, and
the constants cx and cy are given by cx = 3 and cy = 2. The
set of regions Rcx,cy

is represented on the figure beside. The
image of the region R0, Ix =]1, 2[, Iy =]0, 1[, x ≺ y by the
update x :> y + 2 is composed of three regions, namely:

– Region R1: I ′x =]2; 3[, I ′y =]0; 1[ and y ≺′ x

– Region R2: I ′x = [3], I ′y =]0; 1[

– Region R3: I ′x =]3;+∞[, I ′y =]0; 1[ 0 1 2 3 x

1

2

y R0

R1

R2

R3

Consider now a local update up = (upi)1≤i≤k where each upi is a simple update over some clock xi. Let
also R(cx)x∈X

be a set of regions as defined above. It could happen that each upi is compatible with this
set of regions whereas up itself is not compatible any more. Indeed, let us define X = {x, y, z}, cx = 2,
cy = cz = 1, α((]2;∞[, ]1;∞[, {1}), ∅) and α′((]2;∞[, ]1;∞[, ]1;∞[), ∅). Finally, let up1 be the update
z :< x and up2 be the update z :> y. It is obvious that

∀v′ ∈ α′,∃v1, v2 ∈ α s.t. v1 ∈ up1(v) and v2 ∈ up2(v)

However the two valuations (2.3, 1.1, 1) and (2.3, 3.4, 1) both belong to α and (2.3, 1.1, 1.8) is in α′ ∩
up((2.3, 1.1, 1)) whereas up((2.3, 3.4, 1)) = ∅.

Therefore, in order to get local updates compatible with the sets of regions of the form R(cx)x∈X
, we need

to restrict the local updates we consider. From the counterexample just above, it appears that a given clock
can not be set to an interval in which the lower and upper bounds depend on two distinct clocks. Moreover,
from lemma 3, we need to restrict the constants that are used by the simple updates. This naturally leads to
the following definition:
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Definition 1. Let (cx)x∈X be integer constants. The set U(cx)x∈X
is constituted of updates of the form

up =
∧

x∈X upx where, for each clock x ∈ X , upx is a local update over the clock x defined by one of the
four following abstract grammars:

– detx ::= x := c | x := z + d

with z ∈ X , c, d ∈ Z, c ≤ cx and cx ≤ cz + d

– infx ::= x :� c | x :< z + d | infx ∧ infx
with �∈ {<,≤}, z ∈ X , c, d ∈ Z, c ≤ cx and cx ≤ cz + d

– supx ::= x :� c | x :> z + d | supx ∧ supx

with �∈ {>,≥}, z ∈ X , c, d ∈ Z, c ≤ cx and cx ≤ cz + d

– intx ::= x :∈ (c; d) | x :∈ (c; z + d′) | x :∈ (z + c′; d) | x :∈ (z + c′; z + d′)
where ( and ) are either [ or ], z is a clock, c, c′, d, d′ are in Z,

c, c′ ≤ cx, cx ≤ cz + d′ and cx ≤ cz + c′

The basis of an update up =
∧

x∈X upx of U(cx)x∈X
is intuitively the set Y of clocks which can be modified

by the update up. Formally, this set Y is defined through its complement:

X \ Y = {z ∈ X | upz is equal to z := z}

The first step for proving the compatibility of R(cx)x∈X
and U(cx)x∈X

is given by the following lemma. Its
proof is very similar to the one of lemma 3 and therefore left to the reader.

Lemma 4. Let R(cx)x∈X
be a set of regions. This set of regions is compatible with any local update of

U(cx)x∈X
which basis is reduced to a single clock {x}.

We can now state our main result concerning the compatibility of sets of regions and sets of updates, in the
case of diagonal-free updatable timed automata.

Proposition 7. Let (cx)x∈X be integer constants. Then the set of regions R(cx)x∈X
is compatible with the

set of updates U(cx)x∈X
.

Proof. Let α = ((Iy)y∈X ,≺), α′ = ((I ′y)y∈X ,≺′) be two regions of R(cx)x∈X
and up be an update of

U(cx)x∈X
such that α′ ∈ ûp(α) i.e. there exists some valuations v ∈ α and v′ ∈ α′ such that v′ ∈ up(v).

For any clock x, let vx be the valuation defined by:

vx(y) =
{

v(y) if y 	= x

v′(x) if y = x

and let αx = ((I(x)
y )y∈X ,≺(x)) be the (unique) region of R(cx)x∈X

containing vx.

Now let w be a valuation in α. From lemma 4, R(cx)x∈X
is compatible with upx, thus, for any clock x,

there exists some valuation wx ∈ upx(w) ∩ αx. We now define the valuation w′ by setting

w′(y) = wy(y) for any clock y

From the definition of a local update, it turns out that w′ ∈ up(w). We claim that w′ ∈ α′, too. Indeed, for
any clock y, w′(y) = wy(y) ∈ I

(y)
y = I ′y. It remains to show that the sequence frac(w′(x))x∈X verifies

the conditions given by the preorder ≺′. To this purpose, it is sufficient to prove that the preorder ≺′ (which
is given, a priori, by the valuation v′) can be defined from ≺ and the sequence (≺(x))x∈X .

From the constructions given in lemma 3, which can be extended to prove lemma 4, it is easy to check that
the preorder ≺′ can be computed as follows.
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Let X ′ be a disjoint copy of the set of clocks X . We first define a sequence (≺(x))x∈X of preorders on the
set X ∪X ′. Intuitively ≺(x) is obtained from ≺(x) by simply replacing the clock x by its copy x′. Formally

∀y, z ∈ X \ {x}, y ≺(x) z if y ≺(x) z

∀y ∈ X \ {x}, y ≺(x) x′ if y ≺(x) x

∀y ∈ X \ {x}, x′ ≺(x) y if x ≺(x) y

We then define ≺ as the union of all the ≺(x). It is clear that ≺ is still a preorder on X ∪ X ′. Now, ≺′ can
be obtained from ≺ by first restricting it to X ′ × X ′ and then transforming each clock x′ into its copy x.
And we thus get that w′ ∈ α′.

We thus have proven that if α′ ∈ ûp(α), then for any valuation w ∈ α, there exists a valuation w′ ∈
up(w) ∩ α′. Condition (	 	 	) is thus satisfied. �

From Theorem 3 and propositions 6 and 7, we get immediately the next theorem which is our main (effec-
tive) result concerning decidability of diagonal-free updatable automata.

Theorem 4. Let – C ⊆ Cdf (X) be a finite set of diagonal-free clock constraints,

– for any clock x, cx be an integer constant such that, for any constraint x ∼ c of C, it
holds c ≤ cx,

– U ⊆ U(cx)x∈X
be a finite set of updates.

Then the class Uta(C,U) is decidable.

This theorem is not yet sufficient for deciding, given an arbitrary (diagonal-free) timed automaton A,
whether its emptiness can be decided using a region automaton construction. If we can find constants
(cx)x∈X such that any update used in A is in U(cx)x∈X

and any constraint x ∼ c used in A satisfies c ≤ cx,
then the emptiness of A can be checked using a region automaton construction. We finally now describe a
procedure which gives a sufficient condition for the existence of such constants (cx)x∈X .

Let C ⊆ Cdf (X) be a set of diagonal-free clock constraints and let U ⊆ U(X) be a set of updates such that

up =
∧

x∈X

upx ∈ U =⇒ for all x, upx ∈ {detx, infx, supx, intx} where: (♦df )

– detx ::= x := c | x := z + d

with z ∈ X , c ∈ N and d ∈ Z

– infx ::= x :� c | x :< z + d | infx ∧ infx
with �∈ {<,≤}, z ∈ X , c ∈ N and d ∈ Z

– supx ::= x :� c | x :> z + d | supx ∧ supx

with �∈ {>,≥}, z ∈ X , c ∈ N and d ∈ Z

– intx ::= x :∈ (c; d) | x :∈ (c; z + d′) | x :∈ (z + c′; d) | x :∈ (z + c′; z + d′)
where ( and ) are either [ or ], z is a clock and c, c′, d, d′ are in Z

If the Diophantine system of linear inequations on variables (cx)x∈X

{c ≤ cx | x ∼ c ∈ C or x :∼ c ∈ U} ∪ {cz ≤ cy + c | z :∼ y + c ∈ U} (Sdf )

has a solution, then U ⊆ U(cx)x∈X
and C is compatible with R(cx)x∈X

, and therefore, applying Theorem 4,
the class Uta(C,U) of updatable timed automata is decidable.

Note that if all the constants c appearing in the updates x :∼ y + c are positive, then the system (Sdf )
always has a solution. Otherwise, from the results of [Dom91], the existence of a solution is decidable.
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Remark 5. We have shown in section 4 that updates of the form z := z − 1 lead to an undecidable class of
automata, whatever are the types of constraints used in the automata. Note that, fortunately, this is not in
contradiction with the results above. Indeed, when dealing with such updates, the Diophantine system (Sdf )
contains inequations of the form cz ≤ cz − 1 and has therefore no solution.

Complexity. As for timed automata (see [AD94]), decidability of emptiness for a class of updatable timed
automata verifying hypotheses of Theorem 4 is a PSPACE-complete problem; and the proof is quite similar.

Recall that for classical (untimed) automata (accepting finite or infinite sequences), decidability of the
emptiness is NLOGSPACE-complete. The non deterministic on-the-fly algorithm consists in starting from
an initial state q0, to guess a new state q and to verify whether there is a transition from q0 to q, which can
be done without any additional space (just looking at the automaton). The algorithm continues by guessing
a new state q′ and by verifying the existence of a transition between q and q′, and so on until a final state is
reached. Therefore, besides the automaton, only two states have to be stored. Since a state can be coded in
logarithmic space, we get that the emptiness problem is in NLOGSPACE (the proof of completeness can be
found in any book on Complexity Theory).

Let now A be an updatable timed automaton in some class Uta(C,U) and R be a set of regions satisfying
the hypotheses of Theorem 4. As explained, the emptiness of L(A) can be checked by testing the emptiness
on the untimed region automaton ΓR(A). If we apply the algorithm recalled above and if we want to
compute its complexity, we have to compute the space needed to encode a state of ΓR(A). Such a state
is a pair (q,R) where q is a (discrete) state of A and R a region of R(cx)x∈X

. For encoding a region, it is
sufficient to store, for each clock, two integers (the bounds of the interval where the clock is supposed to
be) and, for each pair of clocks, a boolean which indicates whether the first clock is before the second in
the preorder defining the region, or not.

Therefore, a state of ΓR(A) can be encoded in polynomial space and emptiness of updatable timed au-
tomata, when belonging to a decidable class as described previously, is in PSPACE. Since these decidable
classes contain in particular Alur and Dill’s timed automata, we get immediately the PSPACE-hardness and
thus the PSPACE-completeness.

5.3 Decidable Classes of General Updatable Timed Automata

We now investigate classes of updatable timed automata where general constraints are used. As we have
noticed just after proposition 6, diagonal constraints are not compatible with sets of regions defined in the
previous subsection. For example, if we deal with two clocks x and y, the region x > 3 ∧ y > 2 is neither
included in x − y ≤ 1, nor in x − y > 1. We have thus to define new sets of regions.

To this purpose we consider for each pair of clocks (y, z) in X an integer constant dy,z and we define the
set

Jy,z = {] −∞;−dz,y[}
∪ {[d] | −dz,y ≤ d ≤ dy,z}
∪ {]d; d + 1[ | −dz,y ≤ d < dy,z}
∪ {]dy,z; +∞[}

The region defined by a tuple α = ((Ix)x∈X , (Jx,y)x,y∈X ,≺) where

- ∀x ∈ X, Ix ∈ Ix,

- ∀(y, z) ∈ X∞, Jy,z ∈ Jy,z , where X∞ denotes the set {(y, z) ∈ X2 | Iy or Iz is non bounded}
- ≺ is a total preorder on X0 = {x ∈ X | Ix is an interval of the form ]c; c + 1[}
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is the following subset of TX :
| ∀x ∈ X, v(x) ∈ Ix,|

v ∈ TX | ∀x, y ∈ X0, it holds that x ≺ y ⇐⇒ frac(v(x)) ≤ frac(v(y)),|
| ∀(y, z) ∈ X∞, v(y) − v(z) ∈ Jy,z|


The finite set R(cx)x∈X ,(dy,z)y,z∈X

of all such regions forms a partition of TX . By a proof very similar to
the one of lemma 2, it is easy to verify that this set of regions also satisfies condition (		), i.e. that the
following lemma holds:

Lemma 5. The set R(cx)x∈X ,(dy,z)y,z∈X
is a set of regions.

Example 7. Assume that we have only two clocks x and y and
that the maximal constants are cx = 3 and cy = 2, with clocks
constraints x − y ∼ 0 and x − y ∼ 1. Then, the set of regions
associated with those constants is described in the figure beside.
The gray region is defined by Ix =]3;+∞[, Iy =]2;+∞[ and
−1 < y − x < 0 (i.e. Jy,x is ] − 1; 0[).

0 1 2 3 x

1

2

y

Once again, the compatibility of this set of regions with sets of clock constraints is easy and immediate.

Proposition 8. Let C ⊆ C(X) be such that for any clock constraint x ∼ c of C, we have c ≤ cx and for any
clock constraint x − y ∼ c in C, we have −dy,x ≤ c ≤ dx,y . Then the set of regions R(cx)x∈X ,(dy,z)y,z∈X

is compatible with C.

As in the diagonal-free case, we now introduce a set of updates which depends on the constants (cx)x∈X

and (dy,z)y,z∈X . They will be defined in such a way that they will be compatible with the set of regions we
have just defined. Note that from the undecidability results of section 4, we have to restrict drastically the
set of updates we use if we want to preserve the decidability.

Example 8. For example, if we consider the incrementation
update y := y+1 and the set of regions depicted on the figure
beside, the images of the region R1 are the regions R1, R2

and R3. But we can not reach region R1 (resp. R2, resp. R3)
from every point of region R1. Thus, this set of regions is not
compatible with the update y := y + 1.
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Definition 2. Let (cx)x∈X , (dy,z)y,z∈X be integer constants. The set U(cx)x∈X ,(dy,z)y,z∈X
of local updates

consists of the updates of the form up =
∧

x∈X upx where, for each clock x ∈ X , upx is a local update of
one of the following forms:

– x :� c with �∈ {=, <,≤}, z ∈ X , c ∈ N, c ≤ cx and, for any clock y, cy ≥ c + dy,x

– x := y with y ∈ X , and cx ≤ cy and, for any clock z, dz,x ≤ dz,y , dx,z ≤ dy,z

As claimed by the following proposition, this set of updates and the set of regions previously defined are
suitable for handling updatable timed automata with general clock constraints.

Proposition 9. Let (cx)x∈X , (dy,z)y,z∈X be integer constants. Then the set of regions R(cx)x∈X ,(dy,z)y,z∈X

is compatible with the set of updates U(cx)x∈X ,(dy,z)y,z∈X
.
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Proof. As in the case of diagonal-free updatable timed automata, we first deal with the particular case of
simple updates.

Assume that α = ((Ix)x∈X , (Jx,y)x,y∈X ,≺) where ≺ is a total preorder on X0 and assume also that up is
a simple update over z, then the region α′ = ((I ′x)x∈X , (J ′

x,y)x,y∈X ,≺′) (where ≺′ is a total preorder on
X ′

0) is in ûp(α) if and only if I ′x = Ix for all x 	= z, J ′
x,y = Jx,y for all x, y 	= z and:

if up is z: ∼ c, I ′z can be any interval of Jz which intersects {γ ∈ T | γ ∼ c} and

– either I ′z is of the form [d] and thus

• X ′
0 = X0 \ {z}

• ≺′=≺ ∩(X ′
0 × X ′

0)

• X ′
∞ = {(x, y) ∈ X∞ | (x 	= z ∧ y 	= z) or (x = z ∧ Iy =]cy;∞[) or (Ix =]cx;∞[∧y = z)

and ∀(x, y) ∈ X ′
∞,

∗ J ′
x,y = Jx,y if x 	= z and y 	= z

∗ J ′
x,z =]dx,z;∞[ .

Note that if v is a valuation such that cx < v(x) and v(z) � c with �∈ {=, <,≤}, then

cx−c < v(x)−v(z). Thus, from the hypothesis cx ≥ c+dx,z , we get dx,z < v(x)−v(z).

∗ J ′
z,y =] −∞;−dz,y[ .

Note that if v is a valuation such that cy < v(y) and v(z) � c with �∈ {=, <,≤}, then

v(z)−v(y) < c−cy . Thus, from the hypothesis cy ≥ c+dz,y , we get v(z)−v(y) < −dz,y .

– either I ′z is of the form ]d; d + 1[ and thus

• X ′
0 = X0 ∪ {z}

• ≺′ is any total preorder on X ′
0 which coincides with ≺ on X ′

0 \ {z}
• X ′

∞ = {(x, y) ∈ X∞ | (x 	= z ∧ y 	= z) or (x = z ∧ Iy =]cy;∞[) or (Ix =]cx;∞[∧y = z)
and ∀(x, y) ∈ X ′

∞,

∗ J ′
x,y = Jx,y if x 	= z and y 	= z

∗ J ′
x,z =]dx,z;∞[.

∗ J ′
z,y =] −∞;−dz,y[.

if up is z: ∼ y, let us first define I ′z .

– if Iy = [d], I ′z = [d] if d ≤ cz , I ′z =]cz;∞[ otherwise

– if Iy =]d; d + 1[, I ′z =]d; d + 1[ if d < cz , I ′z =]cz;∞[ otherwise

– if Iy =]cy;∞[, I ′z =]cz;∞[ (since by hypothesis cz ≤ cy)

Now

– either I ′z is of the form [d] (and thus Iy = [d] from what precedes)

• X ′
0 = X0 ∪ {z}

• ≺′=≺ ∩(X ′
0 × X ′

0)

• X ′
∞ = {(x, x′) ∈ X∞ | (x 	= z ∧ x′ 	= z) or (x = z ∧ Ix′ =]cx′ ;∞[) or (Ix =]cx;∞[∧x′ =

z)}
and ∀(x, x′) ∈ X ′

∞,

∗ J ′
x,x′ = Jx,x′ if x 	= z and x′ 	= z

∗ J ′
z,x′ is the unique interval of Jz,x′ which contains Jz,x′ .

Note that unicity comes from the hypothesis that dz,x′ ≤ dy,x′

∗ J ′
x,z is the unique interval of Jx,z which contains Jx,z .

Note that unicity comes from the hypothesis that dx,z ≤ dx,y
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– either I ′z is of the form ]d; d + 1[ (and thus Iy =]d; d + 1[, too)

• X ′
0 = X0 ∪ {z}

• ≺′ is any total preorder on X ′
0 which coincides with ≺ on X ′

0 \ {z} and such that z ≺′ y and

y ≺′ z

• The set X ′
∞ and the intervals J ′

x,x′ are defined as in the previous case I ′z = [d]

– either I ′z is of the form ]cz;∞[

• X ′
0 = X0 \ {z}

• ≺′=≺ ∩(X ′
0 × X ′

0)

• X ′
∞ = X∞∪{(x, z), (z, x) | x ∈ X} and J ′

x,x′ = Jx,x′ if x 	= z and x′ 	= z. The computation

of J ′
z,x (and J ′

x,z) requires to distinguish several cases depending of the form of Ix and Iy

1. Ix = [f ], Iy = [g]. Then

J ′
z,x =


[g − f ] if − dx,z ≤ g − f ≤ dz,x

]dz,x;∞[ if dz,x < g − f

] −∞;−dx,z[ if g − f < −dx,z

2. Ix = [f ], Iy =]g; g + 1[. Then

J ′
z,x =


]g − f − 1; g − f [ if − dx,z ≤ g − f − 1 < dz,x

]dz,x;∞[ if dz,x ≤ g − f − 1
] −∞;−dx,z[ if g − f − 1 < −dx,z

3. Ix = [f ], Iy =]cy;∞[. Then

J ′
z,x is the unique interval of Jz,x which contains Jy,x.

Note that unicity comes from the hypothesis that dz,x ≤ dy,x and dx,z ≤ dx,y

4. Ix =]f ; f + 1[, Iy = [g].
This case is identical to case 2 above.

5. Ix =]f ; f + 1[, Iy =]g; g + 1[. Then

J ′
z,x =



If x ≺ y ∧ y ≺ x then [g − f ] when − dx,z ≤ g − f ≤ dz,x

]dz,x;∞[ when dz,x < g − f

] −∞;−dx,z[ when g − f < −dx,z

If x ≺ y ∧ y 	≺ x then ]g − f ; g − f + 1[ when − dx,z ≤ g − f < dz,x

]dz,x;∞[ when dz,x ≤ g − f

] −∞;−dx,z[ when g − f < −dx,z

If x 	≺ y ∧ y ≺ x then ]g − f − 1; g − f [ when − dx,z ≤ g − f − 1 < dz,x

]dz,x;∞[ when dz,x ≤ g − f − 1
] −∞;−dx,z[ when g − f − 1 < −dx,z

6. Ix =]f ; f + 1[, Iy =]cy;∞[. This case is identical to case 3 above.

7. Ix =]cx;∞[. This case is identical to case 3 above.

From this construction, it is easy to prove, in a similar way than for lemma 3, that condition (	 	 	) holds
for simple updates.

The extension to local updates of U ⊆ U(cx)x∈X ,(dy,z)y,z∈X
(under the hypotheses of the proposition) is

obtained by a technique similar to the one used in proposition 7. ��
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R1 R2 R3 R4 R0 Example 9. Consider the regions depicted on the left. We want to
compute the updating successors of the region R0 by the update
x :< 2. The four updating successors are drawn on the figure. Their
equations are:

– Region R1: I ′x = [0] and I ′y =]2;+∞[

– Region R2: I ′x =]0; 1[, I ′y =]2;+∞[ and Jy,x =]1;+∞[

– Region R3: I ′x = [1] and I ′y =]2;+∞[

– Region R4: I ′x =]1; 2[, I ′y =]2;+∞[ and Jy,x =]1;+∞[

Our main effective result concerning the decidability of general updatable automata is given by the follow-
ing theorem. Its proof follows immediately from Theorem 3 and propositions 8 and 9.

Theorem 5. Let C ⊆ C(X) be a finite set of general clock constraints such that:

– for every clock x, a constant cx such that for any constraint x ∼ c in C, c ≤ cx,

– for every pair of clocks (x, y), a constant dx,y such that for any constraint x − y ∼ c in C, c ≤ dx,y ,

and let U ⊆ U(cx)x∈X ,(dx,y)x,y∈X
be a set of updates. The class Uta(C,U) is then decidable.

Like for Theorem 4, if we want to apply the previous theorem to a given updatable timed automaton A, we
need to find (if they exist) some constants (cx)x∈X and (dx,y)x,y∈X for which the updates and constraints
of A satisfy the hypothesis of this theorem. Let us now describe a procedure which ensures the existence
of such constraints.

Let C ⊆ C(X) be a finite set of arbitrary constraints and let U ⊆ U(X) be a finite set of updates such that:

up =
∧

x∈X upx ∈ U =⇒ ∀x ∈ X, upx ∈ {x := c, x :< c, x :≤ c | c ∈ N}
∪ {x := y | y ∈ X} (♦gen)

If the Diophantine system of linear inequations on the variables (cx)x∈X and (dx,y)x,y∈X

{c ≤ maxx | x ∼ c ∈ C}
∪ {c ≤ maxx,y | x − y ∼ c ∈ C}
∪ {c ≤ maxx, maxz ≥ c + maxz,x | x :< c or x :≤ c or x := c ∈ U , and z ∈ X}
∪ {maxx ≤ maxy, maxz,y ≥ maxz,x, maxx,z ≤ maxy,z | x := y ∈ U and z ∈ X}

(Sgen)

has a solution, then U ⊆ U(cx)x∈X ,(dx,y)x,y∈X
and C is compatible with R(cx)x∈X ,(dx,y)x,y∈X

. And thus,
from Theorem 5, the class Uta(C,U) is decidable.

It is easy to verify that the system (Sgen) always has a solution. We thus get the following theorem:

Theorem 6. Let C ⊆ C(X) be a finite set of arbitrary constraints and let U be a finite set of updates
defined as in (♦gen). Then the class Uta(C,U) of updatable timed automata is decidable.

Remark 6. From the undecidability results of the previous section, this theorem is the most general we
can expect when dealing with general clock constraints. Nevertheless, under precise conditions, we could
refine the results and exhibit decidable subclasses which use updates not of the form (♦gen). For instance,
let (cx)x∈X , (dy,z)y,z ∈ X be constants. The set of regions R(cx)x∈X ,(dy,z)y,z∈X is compatible with, for
examples, updates like:

– z := y + c as soon as cz ≤ cy + c and for each clock x, dx,z ≤ dx,y − c and dz,x ≤ dy,x + c

– z :> c as soon as c ≤ cz and for each clock x, cz − cx ≥ dz,x

However, we will not give details of these refinements, if one is needed for a special model, then the
previous proof can be extended.
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Complexity. As in the diagonal-free case (see the end of section 5.2), emptiness for decidable classes
of updatable timed automata with arbitrary clock constraints, as characterized in Theorem 5, is PSPACE-
complete. Indeed, a region from a set of the form R(cx)x∈X ,(dy,z)y,z∈X can still be encoded in polynomial
space.

5.4 Conclusion and Discussion

Table 2 summarizes the undecidability and decidability results obtained in the two previous sections. In
order to have a global and readable picture, we do not recall the precise conditions on the constants given
in the hypotheses of our two main theorems 4 and 5, under which decidability is ensured.

U0(X) ∪ ... Diagonal-free constraints General constraints
1 x := c, x := y PSPACE-complete
2 x := x + 1 PSPACE-complete
3 x := y + c Undecidable
4 x := x − 1 Undecidable

5 x :< c

PSPACE-complete

PSPACE-complete
6 x :> c

Undecidable
7 x :∼ y + c

8 y + c <: x :< y + d

9 y + c <: x :< z + d Undecidable

with ∼ ∈ {≤, <, >,≥} and c, d ∈ Q+

Table 2. Decidability results

It is worth to notice that, contrary to the case of Alur and Dill’s timed automata, considering diagonal-free
clock constraints or arbitrary clock constraints do not lead to similar decidability results.

Note also that differences between decidable and undecidable classes are sometimes tricky. Among these
differences, let us mention for instance the following facts:

– when only diagonal-free clock constraints are used, decrementation leads to undecidable classes whereas
incrementation leads to decidable classes (see lines 2 and 4)

– when arbitrary clock constraints are used, both decrementations and incrementations lead to undecid-
able classes (see also lines 2 and 4)

– non-deterministic updates of the form x :< c always lead to decidable classes whereas updates of the
form x :> c lead to decidable classes only when diagonal-free clock constraints are used (see lines 5
and 6)

– non-deterministic updates of the form x+ c :< z :< y + d always lead to undecidable classes whereas
updates of the form y + c <: z :< y + d lead to decidable classes if diagonal-free clock constraints are
used (see lines 8 and 9)

6 Expressiveness of Updatable Timed Automata

Now that we have described precisely the frontier between undecidability and decidability, it becomes
natural and interesting to study the expressiveness of the decidable subclasses and compare them with
the expressiveness of timed automata and timed automata with ε-transitions (or silent actions), as defined
originally by Alur and Dill ( [AD90,AD94], see section 3.1).
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We start by defining some criteria to compare automata in section 6.1. We then prove that ε-transitions are
unavoidable if we want to express the languages recognized by updatable timed automata using classical
timed automata, see section 6.2. We then study the easier case of updatable automata using deterministic
updates in section 6.3 and the general case in section 6.4.

6.1 Several Equivalence Relations

We recall in this section several known criteria to compare automata.

Language equivalence. The simplest criterium to compare automata is the equality of the accepted lan-
guages. Two timed automata are said language equivalent whenever they accept the same timed language.
We extend this definition to families of timed automata ; two families of timed automata, say Aut1 and Aut2,
are language equivalent whenever every timed automaton from one of the families is language equivalent
to an automaton of the other family. We then write Aut1 ≡	 Aut2.
For example, it is well known that diagonal constraints can be removed from timed automata without
changing the expressiveness of the model (see Remark 1). With the formalism presented above, it can be
written as

Uta(Cdf (X),U0(X)) ≡	 Uta(C(X),U0(X)) .

Transition systems and similarity. Language equivalence does not provide any information about the
internal structure of the automata, contrary to similarity. To define similarity, we first need to recall the
notion of transition systems.

Definition 3. A transition system is a tuple T = (S, Γ, s0,−→) where S is a set of states, Γ is a finite or
infinite alphabet, s0 ∈ S is the initial state and −→⊆ S × Γ × S is a set of transitions.

If T is such a transition system, an execution in T is a sequence of consecutive transitions

s0
α1−−→ s1

α2−−→ s2 . . .

where for every i > 0, si−1
αi−−→ si is a transition of T .

The similarity [Par81,Mil89] defines step to step a correspondance between two transition systems. A
transition system T = (S, Γ, s0,−→) simulates a transition system T ′ = (S′, Γ, s′0,−→′) if there exists a
relation � ⊆ S × S′ such that:

INITIALIZATION: ∀s0 ∈ S0, ∃s′0 ∈ S′
0 s.t. s0 � s′0

PROPAGATION:
(TRANSFER)

if s1 � s′1 and s1
e−→ s2 then there exists s′2 ∈ S′

s.t. s′1
e−→′s′2 and s2 � s′2

Such a relation is called a simulation relation. If the relation �−1 defined by

x �−1 y ⇐⇒ y � x

is also a simulation relation, then � is a bisimulation relation.

Timed transition systems are particular transition systems where the alphabet contains actions correspond-
ing to time elapsing.

Definition 4. A timed transition system on the alphabet Σ and the time domain T is a transition system
T (S, Γ, s0,−→) where Γ is the set Σ ∪{ε}∪{ε(d) | d ∈ T} and the transition −→ satisfies the following
properties:
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– TEMPORAL DETERMINISM: for all the states s, s′, s′′ of S and for every d ∈ T, if s
ε(d)−−−→ s′ and

s
ε(d)−−−→ s′′, then s′ = s′′.

– TIME ADDITIVITY: for all the states s, s′′ of S and for all d1, d2 ∈ T, if s
ε(d1+d2)−−−−−−→ s′′, then there

exists s′ ∈ S such that s
ε(d1)−−−−→ s′ and s′

ε(d2)−−−−→ s′′.
– 0-DELAY: for all the states s, s′ ∈ S, s

ε(0)−−−→ s′ if and only if s = s′.

The three conditions that we just described are classical when we consider process algebra like TCCS [Yi90,Yi91].

If T is such a timed transition system, a delay execution is an execution of the form

s0
α1−−→ s1

α2−−→ s2 . . .
αn−−−→ sn

such that n ≥ 0, for every 1 ≤ i ≤ n, αi = ε or αi = ε(di) for some di ∈ T.

If T = (S, Γ, s0,−→) is a timed transition system, we define the abstract transition system associated with
T by Tabs = (S, Γ, s0,=⇒) where

s
a=⇒ s′ if a 	= ε and there exists s′′ ∈ S, s

ε−→∗
s′′ a−−→ s′

s
ε(d)
=⇒ s′ if


there exists a delay execution

s = s0
α1−−→ s1

α2−−→ s2 . . .
αn−−−→ sn = s′

such that d =
∑

{di | αi = ε(di)}

where the relation
ε−→∗

represents the reflexive and transitive closure of
ε−→. The transition system Tabs

abstracts silent actions of T . The relation
ε−→∗

thus corresponds to
ε(0)
=⇒. Note also that the relation

a=⇒
only abstracts silent actions that can be done before action a.

As a timed transition system is a particular transition system, the notion of similarity defined before can be
applied.

Strong and weak (bi)similarity. An updatable timed automaton A(Q,X,Σε, I, F,R, T ) defines in a
natural way two timed transition systems:

– the transition system T (A) = (Q × TX , Σε, T, (q0,0),−→) where the transition relation −→ is
defined by:{

(q, v)
ε(d)−−−→ (q, v + d)

(q, v) a−−→ (q′, v′) if there exists q
ϕ,a,up−−−−−→ q′ ∈ T s.t. v |= ϕ and v′ ∈ up(v)

– the abstract transition system Tabs(A) defined as previously from T (A).

Of course, if A is a timed automaton without silent actions, T (A) and Tabs(A) are identical.

An updatable timed automaton A strongly simulates an other updatable timed automaton B, and we will
note A �s B, whenever T (A) simulates T (B). We say that A and B are strongly bisimilar, and we will
note A ≡s B, whenever there exists a bisimulation relation ≡ such that T (A) ≡ T (B).

An updatable timed automaton A weakly simulates7 another updatable timed automaton B, and we will
note A �w B, whenever Tabs(A) simulates Tabs(B). We say that A and B are weakly bisimilar, and we
note A ≡w B, whenever there exists a bisimulation relation ≡ such that Tabs(A) ≡ Tabs(B).

7 Note that this definition of weak simulation is quite different from the usual one because, as said before, the tran-
sition relation

a
=⇒ only abstracts silent actions that can be done before the other actions, whereas, in the classical

definition, the transition relation abstracts all the silent actions, i.e. those that can be done before or after the real
actions.
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Remark 7. Of course, two strongly bisimilar updatable timed automata are also weakly bisimilar. If a
bisimulation relation preserves the final and repeated states, two strongly or weakly bisimilar automata are
language equivalent.

We close these preliminaries by a technical result ensuring that we can restrict our study to updatable timed
automata where all constants appearing in the constraints or in the updates are integer.
Let A be an updatable timed automaton and λ a constant. We denote by λA the timed automaton in
which all the constants appearing in the constraints or the updates of A are multiplied by λ. The proof of
the following lemma follows the one of lemma 4.1 page 15 in [AD94] which claims a similar result for
language equivalence within timed automata.

Lemma 6. Let A and B be two timed automata and λ ∈ Q+∗ a constant. Then

A �w B ⇐⇒ λA �w λB and A �s B ⇐⇒ λA �s λB

Hence, in the rest of this section, we may assume that only integer constants are used.

We have now all the comparison tools that will be useful in our next study of the expressiveness of decidable
subclasses of updatable timed automata.

6.2 ε-Transitions are Necessary

We first prove that ε-transitions are necessary to express the decidable fragment of updatable timed au-
tomata described in section 5. Let us consider the timed automaton A with silent actions described by the
following picture:

q0 q1

x = 1
a

x := 0
0 < x < 1, b

x = 1, ε, x := 0

There is no classical timed automaton without silent action accepting the same timed language asA [BDGP98].
We will prove that there exists an updatable timed automaton with general constraints and updates of the
form x := c or x :< c (c integer) which recognizes the timed language L(A). This timed language can be
described by:

(ai, ti)i≥1 ∈ L ⇐⇒ ∀i ≥ 1,


ti = i and ai = a

or
ti ∈]i − 1; i[ and ai = b

An execution in this automaton can thus be represented by the following scheme:

a

0 1

a b

2

b

3 4

a

expressing that a actions can be performed each time unit, but not if a b has been performed during the last
unit of time.

This timed language is recognized by the updatable timed automaton B on the following picture:
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q2

x := 1
1 < x < 2

b

x := x − 1

x = 2
a

x := 1

where the clock x is set to 1 when first entering state q2.
By considering for example the bisimulation relation

R =
{

((q0, v), (q2, v + 1)) | v ∈ T{x}
}
∪

{
((q1, v), (q2, v)) | v ∈ T{x}

}
it is easy to see that A and B are weakly bisimilar, and thus L(A) = L(B).

In section 4, we noticed that adding the decrementation of clocks to the classical model leads in general to
undecidability. However, in this precise case, clock x is bounded by 2, we will thus be able to transform au-
tomaton B into an updatable timed automaton belonging to some decidable class as described in section 5.
Let us indeed consider the following automaton D:

p0 p1 p2 p3

1 < x < 2
x = y − 1

, b, y :< 1

1 < y < 2
y = x − 1

, b, x :< 1

1 < y < 2, b, x :< 1

1 < x < 2, b, y :< 1

x = y − 1
x = 2

, a, x := 1

y = 2
y = x − 1

, a, y := 1

x = 2, a, x := 1

y = 2, a, y := 1

x := 1

Claim: D recognizes precisely the timed language L(A) = L(B).

Proof. We start by describing in an informal manner how D behaves. A state p0 or p3 can be reached only
if an a has just been performed and a state p1 or p2 can be reached only if a b has just been performed. The
values of x and y are both 1 when reaching state p0 or p3 (an easy verification can be done by analyzing
the transitions arriving in these states). From any of these two states, a sequence of a’s, one at each time
unit, can be performed. Moreover, state p1 or p2 can be reached when an action b is performed, before one
time unit has passed.

To prove that L(B) = L(D), we transform the automaton B in the following way. We first add a “hole”

(state q3) with a unique transition leading to q3, namely the transition q2
0<x<1, b−−−−−−−→ q3. We denote by Bm

the resulting automaton. It can be depicted as:

q2

1 < x < 2
b

x := x − 1

x = 2
a

x := 1

q3

0 < x < 1, b
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We then define the relation R′ by:

R′ = {(q2, α), (p0, (α + 1, α + 1)) | 0 ≤ α ≤ 1} ∪ {(q2, α), (p3, (α + 1, α + 1)) | 0 ≤ α ≤ 1}
∪ {((q2, α), (p2, (α + 1, α))) | 0 < α ≤ 1} ∪ {((q2, α), (p1, (α, α + 1))) | 0 < α ≤ 1}
∪ {((q3, α), (p2, (β, α))) | α > 0 and β 	= α + 1} ∪ {((q3, α), (p2, (α, β))) | α > 0 and β 	= α + 1}

The transfer property is satisfied in a trivial way. The relation R′ is thus a bisimulation relation and the
automata D and Bm are bisimilar. Moreover, B and Bm obviously recognize the same timed language. �

We thus get the following theorem:

Theorem 7. The decidable subclass of updatable timed automata which use general clock constraints (as
described in Section 5.3) is strictly more expressive (for the language equivalence ≡	) than classical timed
automata without ε-transitions.

6.3 Expressiveness of Deterministic Updates

We start our expressiveness study by considering deterministic updates only. Recall that these updates,
defined in section 2.3, are built using simple updates of one of the following form:

1. x := c with x ∈ X and c ∈ N

2. x := y with x, y ∈ X

3. x := y + c with x, y ∈ X and c ∈ Z \ {0}

Recall that thanks to Lemma 6, we assume, without loss of generality, that constants are in N and Z (we do
not need to consider constants in Q).
In a first step, we consider simple updates of one of the forms 1 or 2. The fact that updatable timed au-
tomata using such updates and classical timed automata are language equivalent is often considered as a
"folklore" result. However, we did not find any proof of this result in the literature. Hence, and for the
sake of completeness, we propose a complete proof.

If U is a set of simple deterministic updates, we denote by Lu(U) the set of updates which can be written
as

∧
x∈X upx where upx ∈ U for every x ∈ X .

Theorem 8. Let U ⊆ Lu ({x := d | x ∈ X and d ∈ N} ∪ {x := y | x, y ∈ X}) be a set of updates. Let
A ∈ Uta(C(X),U) (resp. A ∈ Utaε(C(X),U)). There exists a timed automaton B ∈ Uta(C(X),Ucst(X))
(resp. B ∈ Utaε(C(X),Ucst(X))) such that A ≡s B.

Remind (see section 2.3) that Ucst(X) denotes updates to constants, that is updates of the form x := c.

Proof. Let A = (Q,X,Σ, I, F,R, T ) be a timed automaton in Uta(C(X),U). We construct a timed au-
tomaton B = (Q′,X,Σ, I ′, F ′, R′, T ′) in Uta(C(X),Ucst(X)) such that A ≡s B.

Assume that X = {x1, . . . , xn}. We set:

– Q′ = Q × XX ,
– I ′ = I × {Id} where Id is the identity of X ,
– F ′ = F × XX

– R′ = R × XX .

Intuitively, in a state (q, σ) (with q ∈ Q and σ ∈ XX ), the value of clock x is stored in the clock σ(x). We
now just have to define the set of transitions T ′ of B.

Let us consider a transition q
ϕ,a,up−−−−−→ q′ of A and a state (q, σ) of B. We associate the function up :

X −→ X ∪ N to up, where up(x) is:
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– d whenever x := d is part of the update up,
– y whenever x := y is part of the update up,
– x in all other cases (the update is thus implicitely x := x).

In B, there will be a transition

(q, σ)
ϕ′,a,up′
−−−−−−→ (q′, σ′)

such that:

– If up(x) ∈ X , then σ′(x) = σ ◦ up(x). If up(x) 	∈ X , it is a bit more complicated. Some clocks
are not used (it means that they do not correspond to any of the σ′(x) already defined). We choose
some of these clocks in order to define the σ′(x) which are not already defined, i.e. the σ′(x) such that
up(x) 	∈ X . More formally, we have:

#{x ∈ X | up(x) ∈ X} ≥ #{up(x) | x ∈ X and up(x) ∈ X}

and thus
#{x ∈ X | up(x) 	∈ X} ≤ #(X \ {up(x) | x ∈ X and up(x) ∈ X})

We can thus consider an injective application ι defined on the set {x ∈ X | up(x) 	∈ X} onto the set
X \ {up(x) | x ∈ X and up(x) ∈ X} and we can set σ′(x) = ι(x) if up(x) 	∈ X .

– ϕ′ is defined by ϕ[x ← σ(x)]8

– up′ is defined by
∧

x∈X and up(x) �∈X σ′(x) := up(x)

We define the relation R on (Q × TX) × ((Q × XX) × TX) by

{(〈q, v̂〉, 〈(q, σ), v〉) | q ∈ Q, σ ∈ XX , v ∈ TX , v̂ ∈ TX and v̂ = v ◦ σ}

The construction has been done precisely for R to be a bisimulation relation.
Note that the same construction can be done for timed automata having ε-transitions as well (in which case
they are taken as normal actions) because automaton B does not have proper ε-transitions. �

We illustrate the previous construction on the following example.

Example 10. Consider the automaton on the left of the figure below.

p q

ψ, b, y := 0

p q

ϕ, a

p q

ϕ, a

p q

ψ, b, x := 0

Ax,y = A Ax,x
[y ∼ c ← x ∼ c]

Ay,y

[x ∼ c ← y ∼ c]
Ay,x

[x ∼ c ← y ∼ c]
[y ∼ c ← x ∼ c]

A

ψ, b

x := 0

ψ, b

x := 0

ϕ, a

ϕ, ap q

ψ, b, y := 0

ϕ, a, x := y

8 The notation ϕ[x ← σ(x)] is for the formula ϕ in which the variable x is replaced by σ(x).
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The construction described in the proof of the previous theorem applies to A and leads to the automaton
drawn in the figure above, on the right (which consists of four copies of the original automaton, one for
each application from the set {x, y} onto the set {x, y}). In the copy Ah1,h2 of A, the value of x is stored in
the clock h1 whereas the value of y is stored in the clock h2. A constraint x ∼ c must thus to be replaced by
a constraint h1 ∼ c, as indicated on the figure. To illustrate the use of the ι injection: in state q of automaton
Ay,y , y has to be reset to zero, but y is the reference for clock x (σ(x) = y), we thus need to store the
new value of y in a clock which plays no role, thus in x. In this case, ι(y) = x, and thus σ′(x) = y and
σ′(y) = x. That’s why the transition goes to state p of automaton Ay,x. These two automata are strongly
bisimilar.

We now pursue the study of updatable timed automata with deterministic updates by looking at the case
wheresimple updates are of the form x := d.

Theorem 9. Let A ∈ Uta(C(X),Ucst(X)) (resp. A ∈ Utaε(C(X),Ucst(X))). There exists a timed au-
tomaton B ∈ Uta(C(X),U0(X)) (resp. B ∈ Utaε(C(X),U0(X))) such that A ≡s B.

Proof. Let A be a timed automaton in Uta(C(X),Ucst(X)). Recall that from lemma 6, we assume without
loss of generality that any update of U is in fact of the form {x := d | x ∈ X and d ∈ Z}.

We construct an automaton B in Uta(C(X),U0(X)), strongly bisimilar to A. For every tuple α = (αx)x∈X

in ZX such that for every clock x, x := αx is a clock constraint appearing in A, we construct a copy of the
automaton A, that we denote by Aα. Intuitively, in the automaton Aα, the value of the clock x is what the
value should be in A decremented by αx (α corresponds to a shift of the clocks, comparing with what their
values should be in the initial automaton).

If q
ϕ,a,up−−−−−→ q′ is a transition of A, for every α, there will be a transition qα

ϕα,a,upα−−−−−−−→ q′α′ where:

– ϕα = ϕ[x ← x + αx],
– upα = up[x := 0 instead of x := c],
– α′

x = c if x := c is part of the update up, α′
x = αx otherwise.

There are finitely many tuples α = (αx)x∈X , we thus only build finitely many copies of the initial automa-
ton. We denote byB the union of all these automataAα. The automatonB is obviously in Uta(C(X),U0(X)).

We define the relation R between the states of the transition system associated with A and the states of the
transition system associated with B as:

(q, v)R(qα, vα) ⇐⇒ v = vα + α

The relation R is trivially a bisimulation relation, which concludes the proof.

Like above, automaton B has no proper ε-transition, hence the same construction also holds for automata
in Utaε(C(X),Ucst(X)). �

We now illustrate the construction of the proof on the following example.

Example 11. Let us consider the automaton A drawn below, on the left. The previous construction gives
the automaton on the right: here, we only need two copies of the automaton because the maximal constant
for x is 1 whereas the maximal constant for y is 0.
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p q

y > 0, a, x := 1

x − y < 2, c, y := 0

b,

x := 0

A

p(0,0) q(0,0)

A(1,0)

b,

x := 0

p(1,0) q(1,0)

b,

x := 0
y > 0, a, x := 0

y > 0,

a, x := 0

x − y < 1, c, y := 0

A(0,0)

x − y < 2, c, y := 0

If we consider now an updatable timed automaton which uses both updates of the forms x := y and x := d,
we can apply first the construction described in the proof of Theorem 8 and then the construction described
in the proof of Theorem 9 to get a bisimilar classical timed automaton. We thus get the following result.

Corollary 2. Let C ⊆ C(X) be a set of clock constraints, and let

U ⊆ Lu ({x := d | x ∈ X and d ∈ Q} ∪ {x := y | x, y ∈ X})

Let A ∈ Uta(C,U) (resp. A ∈ Utaε(C,U)). There exists a timed automaton B ∈ Uta(C(X),U0(X)) (resp.
B ∈ Utaε(C(X),U0(X))) such that A ≡s B.

We now consider the whole set of deterministic udpates and we will generalize the previous results. From
the decidability results of section 5, we know that for general updatable timed automata, deterministic
updates of the form x := y + c can not always be replaced by resets. We thus need to restrict ourselves to
diagonal-free timed automata with particular classes of updates. Note that the proof of the next theorem is
much more involved than the proofs of the two previous theorems and that its results can not be considered
any more as "folfklore".

Recall that the system (Sdf ) of linear inequations associated with a set of constraints and a set of updates
has been defined at the end of section 5.2, page 19.

Theorem 10. Let C ⊆ Cdf (X) be a set of diagonal-free clock constraints and

U ⊆ Lu ({x := d | x ∈ X and d ∈ N} ∪ {x := y + d | x, y ∈ X and d ∈ Z})

a set of deterministic updates such that the system (Sdf ) of linear inequations associated with C and U
has at least a solution. Let A ∈ Uta(C,U) (resp. A ∈ Utaε(C,U)). There exists an automaton B ∈
Uta(Cdf (X),U0(X)) (resp. B ∈ Utaε(Cdf (X),U0(X))) such that A ≡s B.

Proof. Let A be a timed automaton in Uta(C,U). We build a timed automaton B in Uta(C(X),U ′) where
U ′ ⊆ Lu ({x := d | x ∈ X and d ∈ N} ∪ {x := y | x, y ∈ X}) which will be strongly bisimilar to A.
Applying Corollary 2 will give the proof.

We consider integer constants (maxx)x∈X , solutions of the system (Sdf ) (see page 19) for the automaton
A. For every α = (αx)x∈X ∈ ZX such that for every clock x, αx ≤ maxx + 1, for every state q of A,
we consider a copy qα of q. Intuitively, in the state qα, the value of the clock x will be the value this clock
should have in q, minus αx (α can be seen as a shift of the clocks w.r.t. their values in the initial automaton).

If q
ϕ,a,up−−−−−→ q′ is a transition of A, we add a transition qα

ϕα,a,upα−−−−−−−→ q′α′ , for every α with:
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– ϕα = ϕ[x ← x + αx],
– upα = up[x := y instead of x := y + c],

– α′
x =

{
αy + c if x := y + c update of up

0 if x := c update of up
If the value of α′

x computed in this way satisfies that α′
x > maxx, then we update α′

x to
maxx + 1.
We say that α′ is obtained from α in an elementary way thanks to the update up.

The number of tuples α = (αx)x∈X ∈ ZX such that for every clock x, αx ≤ maxx +1 is infinite. We did
thus construct, for every state q, an infinite number of copies. However, we will prove that, from the initial
states indexed by (0, . . . , 0), only a finite number of such states are reachable.

It is of course sufficient to prove that the set of tuples α such that a state qα is reachable, is lower bounded.
Assume that it is not the case. There exists a sequence of tuples (α(i))i≥0 such that α(0) = (0, . . . , 0), and
for every i, α(i+1) is obtained from α(i) in an elementary way thanks to an update upi, and moreover, the
sequence (α(i)

x )i≥0 tends to −∞ (for a given clock x). By definition of U , every upi can be written in the
form: ∧

x∈X1

x := dx ∧
∧

x∈X2

cx<0

x := yx + cx ∧
∧

x∈X3

cx≥0

x := yx + cx

with X1, X2 and X3 disjoint sets. We thus set

up′i :=
∧

x∈X2

cx<0

x := yx + cx

and we define the sequence (β(i))i≥0 with:{
β(0) = α(0)

β(i+1) is obtained in an elementary way from β(i) thanks to up′i

It is easy to verify that the sequence (β(i))i≥0 is decreasing, and non-stationary (for the natural order on

the tuples of integers) because (α(i)
x )i≥0 tends to −∞ for some clock x.

Let z1 be a clock such that the sequence (β(i)
z1 )i≥0 tends to −∞. There exists at least an update of the form

z1 := z2 + c1 belonging to U (thus with c1 < 0) such that the sequence (β(i)
z2 )i≥0 also tends to −∞. In this

way, we can construct a sequence of clocks (zp)p≥1 such that:

– there exists an update zp := zp+1 + cp in U (with cp < 0),

– for every p ≥ 1, the sequence (β(i)
zp )i≥0 tends to −∞.

The set of clocks is finite, there exists thus p < q such that zp = zq. However, the constants (maxx)x∈X

are solutions of the system (Sdf ), page 19 and this system contains in particular the inequations

maxzp
≤ maxzp+1 + cp with cp < 0

...
maxzq−1 ≤ maxzq

+ cq−1 with cq−1 < 0

In particular the constant maxzp
= maxzq

has to satisfy maxzp
< maxzp

, which is not possible.

Thus we have proven that the set of states qα which are reachable is finite. We denote by B the automaton
we just constructed. This automaton belongs to Uta(C(X),U ′).
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We define the relation R as follows, between the states of the transition system associated with A, and the
states of the transition system associated with B:

(q, v)R(qα, vα) ⇐⇒
{

v and vα + α are equivalent for the region equivalence R(maxx)x∈X

v(x) ≤ maxx =⇒ v(x) = vα(x) + αx for every x ∈ X

We will prove that R is a bisimulation relation.

Let us assume that (q, v)R(qα, vα) and that (q, v) a−−→ (q′, v′). It means that there exists a transition
q

ϕ,a,up−−−−−→ q′ in A such that v |= ϕ and v′ = up(v). In B, there is a transition qα
ϕα,a,upα−−−−−−−→ q′α′ . We set

v′
α′ = upα(vα) and we will prove that (q′, v′)R(q′α′ , v′).

• if x is a clock such that x := c belongs to up, then x := c also belongs to upα.
Thus, v′α′(x) = c = v′(x) and α′

x = 0.
• if x is a clock such that x := y + c belongs to up, then x := y also belongs to upα,

• Assume that v′(x) ∈ Ix with Ix ≤ maxx (i.e. that Ix =]d − 1; d[ or [d] with d ≤ maxx).
We want to show that v′(x) = v′

α′(x) + α′
x. To this aim, we compute

v′
α′(x) + α′

x = vα(y) + α′
x because x := y belongs to upα

We distinguish two cases:
1. If α′

x ≤ maxx, we then get that

v′
α′(x) + α′

x = vα(y) + αy + c

However, we have that (q, v)R(qα, vα) and v(y) ≤ maxy (because v′(x) = v(y)+c ≤ maxx

and maxx ≤ maxy + c), thus

v′
α′(x) + α′

x = v(y) + c = v′(x)

2. If α′
x > maxx, it means that αy + c > maxx. However,

v′(x) = v(y) + c = vα(y) + αy + c > maxx

It is of course not possible because we did assume that v′(x) ≤ maxx.
• Assume that v′(x) > maxx. We distinguish two cases:

1. If α′
x > maxx, then v′α′(x) + α′

x > maxx.
2. If α′

x ≤ maxx, then v′α′(x) + α′
xvα(y) + αy + c. There are also two cases:

(i) if vα(y) + αy ≤ maxy , then

v′
α′(x) + α′

x = v(y) + c = v′(x) > maxx

(ii) if vα(y) + αy > maxy , then as maxx ≤ maxy +c, we get that v′α′(x) + α′
x > maxx.

In all cases, we have seen that v′α′(x) + α′
x > maxx, and that is precisely what we wanted.

• the change between up and upα keeps the relative order of the fractional parts.

We thus get that (q′, v′)R(q′α′ , v′
α′). The reverse is very similar.

We did thus exhibit a bisimulation relation between A and B. �

Remark 8. Up to the (un)decidability results (cf section 4), we cannot extend the previous result to timed
automata that also use diagonal clock constraints, because this leads to an undecidable model. It is interest-
ing to understand why the previous proof cannot be extended and thus where the diagonal-free hypothesis
is fundamental. In order to have a finite number of copies of each state, we set the value maxx +1 to α′

x

whenever the computed value is greater than maxx +1. This change does not disturb the truth or the falsity
of diagonal-free clock constraints, but can change the truth or the falsity of diagonal clock constraints.

Example 12. In this case also, we consider a simple example. The two automata drawn on figure 2 are
strongly bisimilar. The one on the right results from the construction described above, taking as initial
automaton the one on the left. The maximal constants are maxx = 0 and maxy = 1.
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p q

y > 1, a, x := y + 1

b, y := 0

p(1,0) q(1,0)

y > 1, a, x := y

b, y := 0

p(0,0) q(0,0)

b, y := 0

y > 1, a, x := y

Fig. 2. Two strongly bisimilar automata

6.4 Expressiveness of Non-Deterministic Updates

We now study the general case of non-deterministic updates. From the example of section 6.2, it is false to
say that any updatable timed automaton with non-deterministic updates is strongly equivalent to a classical
timed automaton. We will thus concentrate our efforts on weak similarity. We will prove that any updatable
timed automaton with non-deterministic updates, from a decidable class, is weakly bisimilar to a timed
automaton with ε-transitions. But, as it will appear, the constructions are much more technical than in the
case of deterministic updates. We first deal with diagonal-free automata.

Construction for diagonal-free clock constraints. We propose a normal form for diagonal-free updatable
timed automata. Let (maxx)x∈X be a family of integer constants. In what follows we only consider clock
constraints x ∼ c with c ≤ maxx. As defined in section 5.2, we set:

Ix = {[c] | 0 ≤ c ≤ maxx} ∪ {]c; c + 1[| 0 ≤ c < maxx} ∪ {]maxx;∞[}

A clock constraint ϕ is said to be total if ϕ is a conjunction
∧

x∈X(x ∈ Ix) where for each clock x, Ix is
an element of Ix. Any diagonal-free clock constraint bounded by the constants (maxx)x∈X is equivalent
to a disjunction of total clock constraints.

We also define
I ′

x = {]c; c + 1[| 0 ≤ c < maxx} ∪ {]maxx;∞[}

An update upx is said elementary if it is of one of the following forms:

– x :∈ Ix with Ix ∈ Ix,
– x := y + c ∧ x :∈ I ′x with I ′x ∈ I ′

x and maxx ≤ maxy + c,

–
(∧

y∈H x :< y + c ∧ x :∈ I ′x
)

with H ⊆ X , I ′x ∈ I ′
x and ∀y ∈ H , maxx ≤ maxy + c,

–
(∧

y∈H x :> y + c ∧ x :∈ I ′x
)

with H ⊆ X , I ′x ∈ I ′
x and ∀y ∈ H , maxx ≤ maxy + c.

An elementary update upx is compatible with a total constraint
∧

x∈X(x ∈ Ix) if:

– Iy + c ⊆ I ′x whenever upx is x := y + c ∧ x :∈ I ′x,
– for any y ∈ H , Iy + c ⊆ I ′x whenever upx is ((

∧
y∈H x :∼ y + c) ∧ x :∈ I ′x) and I ′x = Ix.

Definition 5. Let (maxx)x∈X be integer constants and let A be a timed automaton in Uta(Cdf (X),U(X)).
We say that A is in normal form for the constants (maxx)x∈X whenever for every transition q

ϕ,a,up−−−−−→ q′

of A, the following holds:

36



– ϕ is a total clock constraint,
– up =

∧
x∈X upx where for every clock x, upx is an elementary update, compatible with ϕ.

Applying classical rules of propositional calculus and splitting the transitions, we easily obtain the normal
form for diagonal-free updatable timed automata (recall that we restrict here our work to updates defined
by (♦df ), page 19):

Proposition 10. Let C be a set of diagonal-free clock constraints and U be a set of updates defined by
the grammar (♦df ). We assume that the system (Sdf ) has a solution, (maxx)x∈X . Any timed automaton of
Uta(C,U) is strongly bisimilar to a timed automaton of Uta(Cdf (X),U(X)) which is in normal form for
the constants (maxx)x∈X .

Before stating our main result about the expressiveness of diagonal-free updatable timed automata, let us
try to illustrate the difficulties and the techniques that we will use on two toy examples.

Example 13. Consider the following automaton:

x < 2, a, x :< 1 x = 1, b

The timed language recognized by this automaton is {(a, t)(b, t′) | 0 ≤ t < 2 and 0 < t′ − t < 1}.
The previous automaton can be weakly simulated by the following automaton, which only has deterministic
updates:

x < 2, a, zx := 0 zx < 1, ε, x := 1 x = 1, b

The non-deterministic update of the first automaton has been replaced by a silent action. The clock zx which
has been added represents the fractional part of x and thus checks whether it does not become bigger than
1.

Example 14. Let us consider the following automaton:

y < 1, a

x :< y ∧ y := 0
x = 2, b

The timed language recognized by this automaton is {(a, t)(b, t′) | t < 1 and t′ > 2}.
A first (wrong) idea is to perform the transformation above:

y < 1, a

zx := 0 ∧ y := 0
zx < 1, ε

x := 1 ∧ zx := 0
x = 2, b

However the transformation is not correct. This automaton accepts for example the timed word (a, 0.5)(b, 1.8),
which is not recognized by the initial automaton.
To avoid this problem, we can add a new clock, wx,y which aims at keeping in mind that, when x has been
updated, the value of x was less than the value of y. This leeds to the following automaton:
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y < 1, a

zx := 0 ∧ wx,y := zy ∧ y := 0
wx,y > 1 ∧ zx < 1, ε

x := 1 ∧ zx := 0
x = 2, b

When the second transition is taken, the value of x is set to 1 (this transition is chosen at a non-determinisc
date), and to ensure that the value of y was greater than x, we add the constraint wx,y > 1. The clock wx,y

thus stores the value of y when an update x :< y is done in the original automaton. Clock y can then be
reset safely, information on the old value of x and thus on the difference x − y is stored in wx,y . It is easy
to verify that this automaton recognizes the same timed language as the initial automaton.

We will generalize the constructions of these two examples to prove the next theorem on the expressiveness
of updatable automata with non-deterministic updates and diagonal-free clock constraints.

Theorem 11. Let C be a set of diagonal-free clock constraints and U be a set of updates defined by the
grammar (♦df ). We assume in addition that the system (Sdf ) has a solution for C and U . Let A ∈ Uta(C,U)
(resp. A ∈ Utaε(C,U)). There exists an automaton B ∈ Utaε(Cdf (X),U0(X)) such that B �w A and
A ≡	 B.

Proof. Thanks to lemma 6 and proposition 10, we assume that all constants appearing in A are integers
and that A is in normal form for some constants (maxx)x∈X .
A clock x is said fixed if the last update for x was either of the form x := c or (x := y + c ∧ x :∈ I ′x)
where the clock y was itself fixed. A clock which is not fixed is said floating. The terminology “floating”
comes from the fact that the value of a floating clock is not precisely known, we only know the interval of
the form ]d; d + 1[ to which it belongs.
The transformation algorithm constructs (a lot of) copies of the original automaton A, by adding suitable
clocks, transforming the transitions and adding silent actions in order to go from one copy to another.

Adding clocks.

For any clock x in X , we define a clock zx which intuitively represents the fractional part of x.
For any pair of clocks (x, y), we also define two clocks, wx,y and w′

x,y , which will compare the fractional
parts of x and y. Let X be the set of these 2|X|2 additional clocks. We will explain their precise roles along
the construction.

Duplication of the original automaton.

Let us consider a subset Y of X , that corresponds intuitively to the floating clocks, and a partial order ≺
defined on Y , which represents the relative order of the fractional parts of the clocks in Y .
Moreover, for any clock y of Y , we define an interval Iy , of the form ]d; d + 1[ with 0 ≤ d < maxy . The
clock y will be supposed to be in the interval Iy .
Finally, we consider a subset Z of X , whose role will be explained below.

For any tuple τ = ((Iy)y∈Y ,≺, Z), we construct a copy Aτ of the automaton A. On each transition of Aτ ,
we add the clock constraint ∧

y∈Y

y ∈ Iy ∧
∧

x∈X

zx < 1

Some such constraints are trivially equivalent to “False”, in which case the corresponding transition can be
erased.
We denote by T the set of all the tuples τ described above.

Fixed clocks.

When the fractional part of a fixed clock reaches the value 1, we stay in the same copy of the automaton.
To ensure this, in every copy Aτ with τ = ((Iy)y∈Y ,≺, Z), we add on each state and for every clock
x ∈ X \ Y , a loop labelled by (zx = 1, ε, zx := 0).
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Floating clocks.

We can fix some floating clocks withs a silent action. Of course, a clock can be fixed only by reaching
an integer value. Among the floating clocks, the first ones which will reach first the upper bound of their
interval are those maximal for the preorder. Formally, let Aτ with τ = ((Iy)y∈Y ,≺, Z) and let M be the
set of maximal elements for ≺. For any state q of Aτ , we construct an ε-transition leading to the copy of q

in the automaton Aτ ′ such that τ ′ = ((Iy)y∈Y ′ ,≺′, Z ′) where:
Y ′ = Y \ M

≺′=≺ ∩(Y ′ × Y ′)

Z ′ = Z \ {wx,y, w′
x,y | x ∈ M}

This ε-transition is labelled by the clock constraint∧
x∈M, wx,y∈Z

(wx,y ≥ 1) ∧
∧

x∈M, w′
x,y∈Z

(w′
x,y < 1) ∧

∧
y∈Y

(zy < 1)

and the update ∧
y∈M

y := sup(Iy)

where sup(Iy) represents the upper bound of Iy, i.e. d + 1 if Iy =]d; d + 1[.
The existence of a clock wx,y (resp. w′

x,y) shows that an update of the form x :< y+c (resp. x :> y+c) has
been used previously. The clock constraint wx,y ≥ 1 (resp. w′

x,y < 1) ensures that we did really simulate
such an update.

Modification of the transitions.

We consider a copy Aτ with τ = ((Iy)y∈Y ,≺, Z) and a transition (qτ , ϕ, a, up, q′τ ) of this copy. This
transition will be replaced by a transition (qτ , ϕ, a, ûp, q′bτ ) where q′bτ is the state, corresponding to q′τ in an
other copy Abτ with τ̂(Îy)y∈bY , ≺̂, Ẑ) which will be made precise below.

The components Ŷ , (Îy)y∈bY , ≺̂ and ûp will be built inductively by considering one after the other the
updates appearing in up.
The new update ûp will only be defined thanks to deterministic updates (of the form x := c or x := y + c).
Initially, we set Ŷ = Y , Îy = Iy for every y ∈ Y , ≺̂ =≺, ûp = ∅ and Ẑ = Z.

Before listing all the possible updates, we explain the role of the set Z, which has not been precised yet.
Assume that the clock x has been updated thanks to x :< y + c where y is a fixed clock. The clock x

becomes floating. We use the clock zx in order to store the fractional part of x, we reset this clock to zero.
We also need to keep in mind the current value of the fractional part of y, stored until now “in” the clock
zy . As zx must stay less than zy , zy must reach 1 before zx does. Of course, if the clock y is not updated,
this can be checked using the clock zy , but if the clock y is also updated, or is updated before zy reaches 1,
the old value of zy will be forgotten. We thus add the clock wx,y to the set Z and we set wx,y := zy . The
clock wx,y will keep in mind the old value of zy , whatever the clock y becomes. The property that we now
need to check is that wx,y ≥ 1. The role of the clocks w′

x,y is similar, but they are used for the updates of
the form x :> y + c, where y is a fixed clock. The condition “zx reaches the value 1 before zy” is checked
thanks to the clock constraint w′

x,y < 1. Example 14 illustrates the use of these clocks.

As said before, we now list all the possible values for the updates:

• if upx is x := c, we just need to consider x as a fixed clock:

Ŷ ← Ŷ \ {x}, Ẑ ← Ẑ \ {wx,y, w′
x,y | y ∈ X}, ûp ← ûp ∧ x := c ∧ zx := 0

• if upx is x :∈ I ′x,
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1. if I ′x =]cx; +∞[, then

Ŷ ← Ŷ \ {x}, Ẑ ← Ẑ \ {wx,y, w′
x,y | y ∈ X}, ûp ← ûp ∧ x := cx + 1 ∧ zx := 0

2. if I ′x =]c; c + 1[, then

Ŷ ← Ŷ ∪ {x}, Ẑ ← Ẑ \ {wx,y, w′
x,y | y ∈ X}, ≺̂ is a total preorder compatible with

≺̂ on the set Ŷ \ {x}, ûp ← ûp ∧ zx := 0
– if upx is x := y + c ∧ x :∈ I ′x,

1. if y 	∈ Y ,

• Ŷ ← Ŷ \ {x},

• Ẑ ← Ẑ \ {wx,y, w′
x,y | y ∈ X}

• ûp ← ûp ∧ x := y + c ∧ zx := zy

2. if y ∈ Y ,

• if I ′x is bounded,

· Ŷ ← Ŷ ∪ {x},

· Ẑ ← Ẑ \ {wx,y, w′
x,y | y ∈ X},

· x≺̂y and y≺̂x,

· Îx = I ′x,

· ûp ← ûp ∧ zx := xy

• if I ′x is not bounded, i.e. I ′x =]cx; +∞[,

· Ŷ ← Ŷ \ {x},

· Ẑ ← Ẑ \ {wx,y, w′
x,y | y ∈ X},

· ûp ← ûp ∧ x := cx + 1 ∧ zx := zy

• if upx is
(∧

y∈H x :< y + c
)
∧ x :∈ I ′x, we set H1 = H ∩ Y and H2 = H \ Y and

• if I ′x is bounded,

· Ŷ = Ŷ ∪ {x},

· Ẑ = (Ẑ \ {wx,y, w′
x,y | y ∈ X}) ∪ {wx,y | y ∈ H2},

· x≺̂y and ŷ	≺x if y ∈ H1,

· ûp ← ûp ∧ zx := 0 ∧
∧

y∈H2
wx,y := zy .

• if I ′x is ]cx; +∞[,

· Ŷ = Ŷ \ {x},

· Ẑ = (Ẑ \ {wx,y, w′
x,y | y ∈ X}),

· ûp ← ûp ∧ x := cx + 1 ∧ zx := 0.

• if upx is
(∧

y∈H x :> y + c
)
∧ x :∈ I ′x, we set H1 = H ∩ Y and H2 = H \ Y and

• if I ′x is bounded,

· Ŷ = Ŷ ∪ {x},

· Ẑ = (Ẑ \ {wx,y, w′
x,y | y ∈ X}) ∪ {w′

x,y | y ∈ H2},

· y≺̂x and x̂	≺y if y ∈ H1,
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· ûp ← ûp ∧ zx := 0 ∧
∧

y∈H2
w′

x,y := zy .

• if I ′x is ]cx; +∞[,

· Ŷ = Ŷ \ {x},

· Ẑ = (Ẑ \ {wx,y, w′
x,y | y ∈ X}),

· ûp ← ûp ∧ x := cx + 1 ∧ zx := 0.

It remains to prove that the resulting automaton weakly simulates the initial automaton and that, in addition,
it recognizes the same timed language.

We now define a relation R, which will be a simulation relation. Roughly, a state of the original automaton
will be in relation with all the copies of this state in the copies of the automaton. The set of states of the
timed transition system associated with A is Q × TX , whereas the set of states of the transition system
associated with B is:

{qτ | q ∈ Q and τ ∈ T} × TX∪{zx|x∈X}∪Z

We define the relation � by

� =



| ∀y ∈ Y, v(y) ∈ Iy and 0 ≤ v′(zy) ≤ 1,|
| ∀y ∈ X \ Y, either v(y) = v′(y) or (v(y) > cy and v′(y) > cy),|
| y1 ≺ y2 =⇒ frac(v(y1)) ≤ frac(v(y2)),((qτ , v′), (q, v)) |
| wx,y ∈ Z =⇒ frac(v(x)) < v′(wx,y)|
| and w′

x,y ∈ Z =⇒ frac(v(x)) > v′(w′
x,y).


It is easy but tiresome to prove that � is a simulation relation and that the automaton B recognizes the same
timed language as the initial automaton.

The automaton which has been constructed only has deterministic updates and diagonal-free clock con-
straints. We finally use Corollary 2 to conclude the proof of theorem 11. �

Example 15. Consider the timed automaton below:

p q

ψ, b, x := d

ϕ, a, x :> c

The transformation of the proof builds the automaton depicted on figure 3 (in this case, no clock wx,y or
w′

x,y is needed). This construction suffers from an important combinatorics explosion, we thus only draw
a small part of the resulting automaton, it should be sufficient for understanding the construction.

Let us describe this automaton. There is only one clock x. One copy for each interval ]α;α + 1[ (with
c < α ≤ maxx) is needed. The transition going up on the right of the figure represents the fact that clock
x has reached the upper bound of interval ]α;α + 1[ where it was floating. This transition can be taken in a
non-deterministic way, it thus fix a posteriori the value clock x had after the update x :> c. Loops on the
upper automaton represent when the value for x through the update x :> c is taken as an integer value or a
value greater than the maximal constant (in which case, the precise value is not important, we just need to
know that it is bigger than maxx, thus we set it arbitrarly to maxx +1.
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p q

ψ, b, x := d

p q

Inv(zx < 1)

ϕ, a, zx := 0
zx < 1, ε,

x := α + 1

zx < 1 ∧ ψ,

b, x := d

ϕ, a, x := α with α > cϕ, a, x := maxx + 1

Ax∈]α;α+1[

with c < α ≤ maxx

A

[x ∼ e ← True/False]

Fig. 3. Removing the non-deterministic updates

Construction for general clock constraints. We consider now updatable timed automata with general
clock constraints. As in the previous section, we define a normal form for these automata. We consider
again the sets Ix, I ′

x, Jx,y defined in sections 5.2 and 5.3. We will say that a clock constraint∧
x∈X

x ∈ Ix ∧
∧

x,y∈X

x − y ∈ Jx,y

is total whenever for every clock x, Ix ∈ Ix and for all clocks x, y ∈ X , Jx,y ∈ Jx,y . We will say that an
update upx for the clock x is strictly elementary whenever it is of one of the following forms:

– x := c with 0 ≤ c ≤ maxx,
– x :∈ I ′′x with I ′′x ∈ I ′′

x (I ′′
x is the set {]c; c + 1[| 0 ≤ c < maxx}),

– (x := y ∧ x :∈ I ′x) with I ′x ∈ I ′
x.

A strictly elementary update upx is compatible with a total clock constraint∧
x∈X

x ∈ Ix ∧
∧

x,y∈X

x − y ∈ Jx,y

if Iy ⊆ I ′x as soon as upx is x := y ∧ x :∈ I ′x.

Definition 6. Let ((maxx)x∈X , (maxx,y)x,y∈X) be a tuple of constants and let A be a timed automaton
in Uta(C(X),U(X)). A is said to be in normal form for the constants ((maxx)x∈X , (maxx,y)x,y∈X) if for
every transition q

ϕ,a,up−−−−−→ q′ of A:
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– ϕ is a total clock constraint, and
– up =

∧
x∈X upx with for every clock x, upx is a strictly elementary update, compatible with ϕ.

Applying the classical rules of the propositional calculus and splitting the transitions, we obtain the nor-
mal form for the timed automata with general clock constraints (recall that updates are restricted to the
definition ♦gen, page 24).

Proposition 11. Let C be a set of general clock constraints and let U be a set of updates generated by the
grammar (♦gen). We assume that the system (Sgen) has a solution, ((maxx)x∈X , (maxx,y)x,y∈X). Every
automaton in Uta(C,U) is strongly bisimilar to an automaton in Uta(C(X),U(X)) which is in normal
form for the constants ((maxx)x∈X , (maxx,y)x,y∈X).

When we are interested in decidable subclasses of timed automata with general clock constraints, we must
restrict the set of updates which we consider. As will be established in the following theorem, the decidable
timed automata can be weakly simulated by classical timed automata with silent actions.

Theorem 12. Let C be a set of general clock constraints and U be a set of updates generated by the gram-
mar (♦gen). Let A be an automaton in Uta(C,U). There exists an automaton B in Utaε(C(X),U0(X))
such that B �w A and A ≡	 B.

The proof is similar to the one of theorem 11, and is even simpler since we do not have updates of the form
x :∼ y + c (with ∼ ∈ {<,≤,≥, >}).

6.5 Summary of the Expressiveness Results

In this section, we proved the expressiveness results which are summarized in Table 3 (TA represents
the class Uta(C(X),U0(X)) whereas TAε represents the class Utaε(C(X),U0(X)). The sign >	 means
“strictly more expressive” (from a language point of view).

U0(X) ∪ ... Diagonal-free constraints General constraints
1 x := c, x := y ≡s TA
2 x := x + 1 ≡s TA
3 x := y + c Turing
4 x := x − 1 Turing

5 x :< c

TAε

>� TA, TAε

6 x :> c

Turing
7 x :∼ y + c

8 y + c <: x :< y + d

9 y + c <: x :< z + d Turing

with ∼ ∈ {≤, <, >,≥} and c, d ∈ Q+

Table 3. Expressiveness results

The updatable timed automata model is thus not much more expressive than classical timed automata. The
transformation of a (decidable) updatable timed automaton into a classical timed automaton with silent
actions suffers from a big combinatorics blow-up, thus updates appear to provide a synthetic way to rep-
resent timed behaviours. We do not know whether some simpler transformation exists, but the preliminary
examples 13, 14 and 15 let us think that it is rather improbable that it exists.
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7 Conclusion

In this paper, we studied a natural extension of Alur and Dill’s timed automata, based on the possibility to
update clocks in a more elaborate way than simply reset them to zero. Our results concern both decidability
results (summarized in table 2, page 25) and expressiveness properties (summarized in table 3, page 43).

Our work lets open some mostly theoretical questions about updatable timed automata. For example, one
could be interested in the following questions:

– Is it possible to transform an updatable timed automaton into an equivalent traditional timed automaton
in a simpler way than the one presented in section 6?

– Is it sometimes unavoidable to use ε-transitions when transforming updatable timed automata into
equivalent timed automata? If so, when can we do so?

However, from our point of view, the main interest of this work is to provide a sound theoretical framework
for the use of updatable timed automata as a model in real case studies (if that was necessary, a recent paper
[Bou03] has recalled how much these theoretical frameworks were necessary to tools). Indeed, updatable
timed automata allow to represent in a concise way systems which can not be modelled in a natural way
by timed automata. We also proved that analyzing these models can be done in a complexity not higher
than the one of classical timed automata. Subclasses of updatable timed automata have been implemented
in the tool UPPAAL. Their implementation uses a technique inspired by our Diophantine inequations sys-
tems [BBFL03].

Acknowledgements: We would like to thank Béatrice Bérard for her careful reading of the paper and her
comments.
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