Updatable Timed Automata *

Patricia Bouyer!, Catherine Dufourd?, Emmanuel Fleury?, and Antoine Petit!

L LSV, CNRSUMR 8643 & ENS de Cachan,
61, Av. du Président Wilson,
94235 Cachan Cedex, France
Email: { bouyer, petit} @sv. ens- cachan. fr
2 EDF —R&D —Dépt. OSIRIS -1, Av. du Général de Gaulle
92141 Clamart Cedex, France
Email: cat heri ne. duf ourd@df . fr
3 BRICS**, Aaborg University
Fredrik Bajers Ve 7
9220 Aalborg &, Denmark
Email: f | eury@s. auc. dk

Abstract. We investigate extensions of Alur and Dill’s timed automata, based on the possibility to
update the clocks in a more elaborate way than simply reset them to zero. We call these automata
updatable timed automata. They form an undecidable class of models, in the sense that emptiness
checking is not decidable. However, using an extension of the region graph construction, we exhibit
interesting decidable subclasses. In a surprising way, decidability depends on the nature of the clock
constraints which are used, diagonal-free or not, whereas these constraints play identical rolesin timed
automata. We thus describe in a quite precise way the thin frontier between decidable and undecidable
classes of updatable timed automata.

We also study the expressive power of updatable timed automata. It turns out that any updatable au-
tomaton belonging to some decidable subclass can be effectively transformed into an equivalent timed
automaton without updates but with silent transitions. The transformation suffers from an enormous
combinatorics blow-up which seems unavoidable. Therefore, updatable timed automata appear to be a
concise model for representing and analyzing large classes of timed systems.

1 Introduction

Since their introduction by Alur and Dill [AD90,AD94], timed automata are one of the most-studied and
most-established models for real-time systems. Numerous works have been devoted to the “theoretical”
comprehension of timed automata (among them, see [ACD192], [AHV 93], [AFH94], [ACH94], [Wil94],
[HKWT95]). However the major property of timed automata is probably that emptiness checking is a
decidable problem for this model [AD94]. Based on this nice theoretical result, several model-checkers
have been developed (for instance CMC! [LL98], HY TECH? [HHWT95,HHWT97], KRONOS® [Yov97]
and UpPaAL? [LPY97,BLL*98]) and alot of case studies have been treated (see the web pages of the
toals).

* This work has been partly supported by the french RNTL project “Averroes’ and french-indian CEPIPRA project
n°2102 — 1.
** Basic Research in Computer Science (ht t p: / / ww. bri cs. dk), funded by the Danish Nationa Research Foun-
dation.
Thttp://ww. | sv. ens-cachan. fr/~f1/cncweb. ht
Zhttp://ww cad. eecs. ber kel ey. edu/ ~t ah/ HyTech/
Shttp://ww verimag. i mag. fr/ TEMPORI SE/ kr onos/
“http:// ww. uppaal . coml

A lot of work has naturally been devoted to extensions of timed automata, with much interest for classes
whose emptiness problem remains decidable. There are two main (non exclusive) reasons for extending
existing models. First, they can be used to model strictly larger classes of systems and therefore treat
more case studies. They also lead to more compact representations of some systems. Conciseness makes
modelling easier, in the same way advanced programming languages make the writing of programs easier
than with assembly languages.

Considering timed automata, extensions can be obtained in various ways. Recall that in atimed automaton,
atransitionisguarded by aconstraint over aset of variables, called clocks. Thisconstraint hasto be satisfied
in order to enable the transition. Right after thetransition istaken, asubset of clocksisreset to zero. Thisset
of clocks is specified in the label of the transition. The constraints used in Alur and Dill’s original model
alow to compare (the value of) a clock, or the difference between two clocks, with a rational constant.
Note that comparing the sum of two clocks with a constant leads to an undecidable class of automata (see
[AD94] but also [Duf97,BD00] where more precise results on the number of clocks are given). Periodic
clock constraints, as defined in [CGOQ], allow to express properties like "the value of a clock is even" or
"the value of aclock is of theform 0.5 + 3n where n is some integer. The corresponding class of automata
is strictly more powerful than Alur and Dill’s timed automata if silent transitions (or e-transitions) are not
allowed but coincides with the original model otherwise. Note that, contrary to the untimed setting, silent
transitions strictly increase the expressive power of the model (see [BGP96,DGP97] or [BDGP98] for a
survey). Several other exotic extensions have been proposed among which we can mention [DZ98] where
subsets of clocks can be “freezed”.

The aim of the present paper isto investigate an other way to extend the model, with new operations on the
clocks. As we recalled just above, in Alur and Dill’s model, when atransition is taken, a specified subset
of clocksisreset to zero. Our goal isto study more complex updates on clocks, with a particular attention
to the decidability of the emptiness problem and to the expressive power of the corresponding classes of
automata. We will first study "deterministic" updates where a clock can be reset to a given constant, which
does not have to be zero anymore, or to the value of another clock, or more generally to the sum of a
constant and of the value of an other clock. We will then be interested in "non-deterministic" updates,
where a clock can be reset to an arbitrary value greater than some fixed constant. Note that this type of
updates appear sometimes naturally, for example in models of telecommunication protocols (see e.g. the
study of the ABR protocol proposed in [BF99,BFKMOQ3]). In the sequel, we will call the corresponding
automata, updatable timed automata.

It is easy to verify that such updates, even if we only use deterministic ones, lead to an undecidable class
of automata. Indeed, it is easy to simulate a two-counter machine (or Minsky machine) with an updat-
able timed automaton. But it turns out that very interesting subclasses of updatable timed automata can be
proven decidable. A surprising result isthat decidability often depends on the clock constraints — diagonal -
free (i.e. where the only allowed comparisons are between aclock and a constant) or not (where differences
of two clocks can aso be compared with constants). This point makes an important difference with “clas-
sical” (i.e. Alur and Dill’s) timed automata for which it is well-known that these two kinds of constraints
have the same expressive power. We show for instance that updates of the form z := z + 1 lead to an
undecidable class of timed automata if arbitrary clock constraints are allowed but to a decidable class if
only diagonal-free clock constraints are allowed. Note that automata with updates of the form z := =z — 1
always form an undecidable class whatever constraints, diagonal-free or general, are used. We will show
that decidability is often not far from undecidability and we will describe in a quite thin way the frontier
between the two worlds.

Decidability results are obtained through a generalization of the region graph proposed by Alur and Dill.
Given atimed automaton, and using the region graph, afinite automaton can be constructed, which recog-
nizes exactly the untiming of the language recognized by the original timed automaton. Note that the region

graph depends on the class of constraints, diagonal-free or not, and on updates. The main difficulty is then
to prove that a given set of updates is "compatible" (in a sense which will be of course precisely defined
in the paper) with the region graph. This compatibility has to be proven for al updates, not only for resets
aswasthe case in the original model, but also for deterministic and non-deterministic updates as described
previously. We will finally see that the complexity of this decision procedure remains PSPACE-compl ete.

In this paper, we aso study the expressive power of updatable timed automata. We show that they are
not more powerful than classical timed automata in the sense that for any updatable timed automaton, that
bel ongs to some decidabl e subclass, a classical timed automaton (potentially with e-transitions) recognizing
the same language — and even most often bisimilar — can be effectively constructed. However in most cases,
an exponential blow-up seems unavoidable and thus a transformation into a classical timed automaton does
not lead to an efficient decision procedure. This exponential blow-up suggests that we can have much more
concise models if using updatable timed automata than if we only use classical timed automata.

The paper is organized as follows. In section 2, we present basic definitions of timed words, clock con-
straints and updates. Updatable timed automata are defined in section 3 where the emptiness problem is
briefly introduced. Section 4 is devoted to our undecidability results. We first reduce an undecidable prob-
lem on two counter machines to the emptiness problem for a subclass of updatable timed automata. We
then deduce that for several other subclasses of updatable timed automata, emptiness is also undecidable.
In section 5, we first propose a generalization of the region automaton principle first described by Alur and
Dill. We then use this extension to exhibit large subclasses of updatable timed automata for which empti-
nessis decidable, when only diagonal-free clock constraints are used (section 5.2) and then when arbitrary
clock constraints (section 5.3) are used. The question of the expressive power of updatable timed automata
is addressed in section 6. A short conclusion summarizes our results and propose some open questions or
developments.

Thisjournal paper isthe full version corresponding to the two conference papers [BDFP00a,BDFPOOb].

2 Preliminaries

2.1 Timed Words and Clocks

If Z isany set, let Z* (resp. Z*“) be the set of finite (resp. infinite) sequences of elementsin Z. We note
7% = Z* U Z*. We consider as time domain T the set Q* of non-negative rationals or the set R* of
non-negative reals and X as a finite set of actions. A time sequence over T is a finite (or infinite) non
decreasing sequence 7 = (t;)1<; € T*. Atimedword w = (a;,t;)1<; isan element of (X' x T)>, aso
written asapair w = (o, 7), where o = (a;)1<; isawordin ¥ and 7 = (t;)1<; atime sequence in T>
of same length.

We consider afinite set X of variables, called clocks. A clock valuation over X isamappingv : X — T
that assigns to each clock atime value. The set of all clock valuations over X isdenoted TX. Lett € T,
the valuation v + t isdefined by (v + t)(z) = v(z) + t, Vo € X.

2.2 Clock Constraints

Given aset of clocks X, we introduce two sets of clock constraints over X. The most general one, denoted
by C(X), allows to compare a clock or the difference of two clocks with a constant. It is formally defined
by the following grammar:

p n=ax~c|az—y~c| php | Ve
wherez, y € X, c€ Q, ~ € {<,<,=,#,>,>}

We also consider the proper subset of diagonal-free clock constraints where the comparison between two
clocksis not any more allowed. This set is denoted by Cqr (X') and is defined by the grammar:

p u=z~e | pAp | Vo,
WherexGX, CEQand N€{<;§a:77é723>}

Note that thisrestricted set of constraintsis called diagonal-free because constraints of theformx — y ~ ¢
are caled diagonal clock constraints.

Clock constraints are interpreted over clock valuations. The satisfaction relation, denoted as “v = ¢” if
valuation v satisfies the clock constraint ¢, is defined in anatural way for both sets of constraints:

vEx~C if v(z) ~c
viErz—y~cifo(z)—ov(y) ~c
vEp1 Aps ifvEpandu = g
vE @1 Vs ifuE@ orvlE e

2.3 Updates

Clock constraints allow to test the values of the clocks. In order to change these values, we use the notion
of updates which are functions from T to (T~)°. An update hence associates with each valuation a set
of valuations.

In thiswork, werestrict to asmall class of updates, the so-called local updates, constructed in the following
way. We first define a simple update over aclock =z as one of the two following functions:

up = zi~ve | zi~vy+d
wherec,d € Q, y € X and ~ € {<,<,=,#,>,>}

Let v be avaluation and up be a simple update over z. A valuation v’ isin up(v) if v’(y) = v(y) for any
clock y # z and if v/ (z) satisfies:

v(z) ~eAV'(2) >0 if up==z:~c
v(z)~o(y) +dAV(z) >0 if up=z:~y+d

A local update over aset of clocks X isacollection up = (up;)1<i<k Of sSimple updates, where each up;
is a simple update over some clock z; € X (note that it may happen that z; = x; for some ¢ # j). Let
v, v € T™ betwo clock valuations. The valuation v" isin up(v) if for every i, the set up;(v) contains the
valuation v defined by

v () = v ()

v"(y) =wvl(y) forany y+#a;
The terminology “local” comes from the fact that +'(z) only depends on 2 and not on the other values
v'(y).

Example 1. Let us consider the local update up = (z :> y,x :< 7). Let v, v' be two valuations. It holds
that v' € up(v) if v/(z) > v(y) Av'(z) < 7.
Note that up(v) may be empty. For instance, thelocal update (x :< 1,z :> 1) leads to an empty set.

For any set of clocks X, we denote by ¢/ (X) the set of local updates over X. In this paper, we will simply
call updates these local updates. The following subsets of Z/(X) will play an important role in the rest of
the paper.

®P(T¥) denotes the powerset of T.

- Up(X) isthe set of reset updates. A reset update is aloca update up such that each simple update
defining up is of theform = := 0.

- Ueg(X) is the set of “constant” updates, that is the set of updates up such that each simple update
defining up is of theform z := ¢ with ¢ € Q.

- Uger(X) isthe set of deterministic updates. An update up issaid deterministicif for any clock valuation
v, there exists at most one valuation v’ such that v* € up(v). Itisimmediate to check that alocal update
up = (up;)1<i<k iSdeterministic if all simple updates up; are of one of the following form:

1 z:=cwithze XandceQ
2. x:=ywithz,ye X
3. z:=y+cwithz,yc Xandce Q\ {0}

3 Updatable Timed Automata

We now define the central notion of updatable timed automata. As we explain in details below, these
automata extend the classical family of Alur and Dill’s timed automata [AD90,AD94].

3.1 TheModd
An updatable timed automaton over T isatuple A = (X, X, Q, T, I, F, B), where:

— Y isafinite aphabet of actions,

— X isafinite set of clocks

— Q isafinite set of states

- TCQRx[CX)x (FU{e}) xU(X)] x Q isafinite set of transitions
— I C Q isthe subset of initial states

— F C Q isthe subset of final states

— B C Q isthe subset of Blichi-repeated states.

The specia action ¢ iscalled silent action and atransitionin Q x [C(X) x {e} xU(X)] x Q iscalled silent
transition or e-transition.

If C C C(X) isasubset of clock constraints and &/ C U/(X) a subset of updates, the class Uta. (C,U)
denotes the set of all updatable timed automata in which transitions only use clock constraints in C and
updatesin /. The subclass of automatawhich do not use silent transitions is simply written Uta(C,).

Timed automata, as studied in details by Alur and Dill [AD90,AD94], thus correspond to the classes
Uta. (Car(X),Up(X)) and Uta(Car(X),Us(X)) (Where Cqp (X)) and Uy (X) are respectively the set of
diagonal-free clock constraints and reset updates as defined in section 2).

Asfor timed automata, a behavior in an updatable timed automaton is obtained through the notion of paths
and runs. Let us fix for the rest of this part an updatable timed automaton A. A path in A is afinite or
infinite sequence of consecutive transitions:

$1,a1,up1 $2,a2,up2
P=q a1

g ..., where (qi,l,cpi,ai,upi,qi) S 117 Vi>0

The path is said to be accepting if it startsin an initial state (qo € I) and either it isfiniteand it endsin a
final state, or it isinfinite and passesinfinitely often through a Biichi-repeated state.

A run through the path P from the clock valuation vy, with v () = 0 for any clock «, isasequence of the
form:

<(J0,Uo> ;1—1> <Q1,01> j—2> <QQ,U2> cee
1 2

where T = (¢;);>1 iSatime sequence and (v;), > are clock valuations such that:

{Uz'l + (i —ti-1) E i

v; € up; (vi—1 + (ti — ti—1))

Note that any set up;(v;—1 + (¢t; — t;—1)) of arun has to be non empty. In the following, to make the
notations more compact , we will note such arun

©1,a1,up1 $p2,a2,Up2

(90, v0) (g1, v1) (g2, v2) . ..

2

The label of such arun is the timed word w = (a1,t1)(az,t2) ... If the path P is accepting, then this
timed word is said to be accepted by .A. The set of al timed words accepted by A over the time domain T
is denoted by L(A, T), or simply L(A).

Example 2. Consider the following updatable timed automaton.

z>1,a, 2 :<2ANy:=x+3 y>5b,y:=0

r—y<2d, x:<y x=4,¢c,y:>0

A possible (finite) accepting run in this automaton is the following:

(p,(0,0)) === (¢, (0.2,4.3)) —= (r,(1,0)) — {q,(4,3.1)) —= {p, (7.2,8.6))

Let us explain this run:

— the transition (p, (0, 0)} (q,(0.2,4.3)) is possible because after having waited 1.3 units of time,
the value of both x and y |s 1.3, thus &fter the update = :< 2 Ay := x + 3, the valuation (0.2, 4.3)
(4.3 =1.3 + 3) ispossible

— the transition (g, (0.2, 4.3)) % (r,(1,0)) is possible because after having waited 2.1 — 1.3 = 0.8
units of time, the value of x is 1 and the value of y is 0.8, thus after resetting y to 0, we get that the
valuation (1,0) can be reached

— €fC...

Remark 1. In [AD94], Alur and Dill claimed that for any timed automaton in Uta. (C(X), Uy (X)) (resp.
Uta(C(X),Uy(X))), there existsatimed automaton in Uta. (Cqr (X)), Uy (X)) (resp. Uta(Cyr (X)), Uo(X)))
which accepts the same language; the interested reader will find afull proof of this easy fact in [BDGP98].

3.2 Aim of The Paper

Thefollowing deep result isthe core of the theory of timed automata together with its use for modeling real -
time systems. It has been implemented in several toolslike CMC [LL98], KRONOS[DOTY 96] or UPPAAL
[LPY97]. Thesetools have been intensively used on numerous case studies[DOY 94,JL S96,HSL L 97,BBP02].

Theorem 1. [AD90,AD94] The class Uta. (Cq (X), Up(X)) is decidable.

Remind that a class of automatais said decidable if there exists an algorithm which, taking as an input an
arbitrary automaton of the class, outputs “yes’ or “no”, depending on whether the language recognized by
the automaton is empty or not.

Our goal in this paper istwofold. First, we will study if and how the theorem above can be extended to the
class Uta. (C(X), U (X)) and to interesting subclasses. We will then compare the expressive power of these
subclasses to the expressive power of automata from Uta. (Cqr (X)), Uo (X)) and Uta(Car (X)), Up (X)).

Asit will turn out, it is necessary to distinguish the cases where only diagonal-free clock constraints are
used and where arbitrary clock constraints are authorized. Recall that on the contrary, any Alur and Dill’s
timed automaton using arbitrary clock constraints can be transformed into an other Alur and Dill’s timed
automaton using only diagonal-free clock constraints (see Remark 1).

4 Undecidability Results

In this section, we first exhibit undecidable classes of updatable timed automata.

Let usfirst recall briefly that atwo counter machine (known sometimes also asaMinsky machine) isafinite
set of labeled instructions over two counters ¢; and ¢;. There are two types of instructions over counters:

- an incrementation instruction of counter « € {c1, ca}:
p: x:=x+1; goto ¢ (wherep and g areinstruction labels)
- adecrementation (or zero-testing) instruction of counter « € {cy, ca}:

then x:=x —1; goto ¢

dse goto r (wherep, ¢ and r areinstruction labels)

p:if >0 {

The machine starts at an instruction labeled by sy with ¢; = ¢; = 0 and stops at a specia instruction
labeled by HALT. The halting problemfor atwo counter machine consists in deciding whether the machine
reaches the instruction HALT.

The following result will be the basis of all our undecidability results on updatable timed automata.
Theorem 2. [Min67] The halting problem for two counter machines is undecidable.

Instructions of atwo counter machine can easily be simulated by transitions of updatable timed automata.
States of the automaton are the labels of the instructions of the two counter machine. The transformation
can be done in the following way (the unique action a of the alphabet X' is not represented):

z=0,z:=z+1
— Incrementation of counter x: @ —@

z=0ANz>1l,z:=2—1

— Decrementation of counter x:

z=0Az=0

where the new clock z ensuresthat no time can elapse (there is no time progress assumption). Such a clock
will be used in all constructions presented in this section. More involved constructions could also be done
under the time progress assumption.

Thus, given atwo counter machine M, an updatable timed automaton Ay, € Uta(Cqr(X),U(X)) setis-
fying:
Mhdts < L(Am) #9

can easily be constructed. We thus obtain:

Proposition 1. Let X be a set of clocks containing at least 3 clocks. Then, the class Uta(Cyr (X)), U(X))
of updatable timed automata is undecidable.

Since any class containing an undecidable subclassis obviously itself undecidable, we get immediately the
following corollary:

Corollary 1. Let X be a set of clocks containing at least 3 clocks. Then, the classes Uta(C(X), U (X)),
Uta.(Cqr(X),U(X)) and Uta. (C(X),U (X)) are undecidable.

The previous simulations use updates of both typesz := x 4+ 1 and z := x — 1. We will show that if resets
are used, one such type of updateis sufficient to build atimed automaton A, as above from atwo counter
machine M, and thus obtain undecidability results.

Let usfirst consider updates of the type « := x — 1, then incrementation of a counter can be simulated as
follows:

Incrementation of counter x:

Z:Oﬂ Z:17Z:0:ﬂ220,y:y—1 :
®) (s ON

We claim that a run on this path increases the value of clock = of one time unit and keeps unchanged the
value of clock y. Indeed, in such a run, the tuple of clock values are of the form (with the order =, y, =
from left to right), («, 3, 0) when entering state p, (o + 1, 5+ 1, 0) when entering state s and (« + 1, 3,0)
when entering state ¢. In the following, we will represent this by the simple figure below:

a+1
B+1
0
The simulation of the decrementation of a counter isidentical as the one previously seen. We present it in

aquite different and schematic way as follows:

Decrementation of counter x:

If M isatwo counter machine, we can thus construct, as before, atimed automaton A, with only resets
to zero and decrementations of clocks and such that

Mhdts < L(Am) #9

We have thus proven the following result:

Proposition 2. Let X be a set of clocks containing at least 3 clocks. Let ¢/ be a set of updates containing
both 4y (X) and {z := « — 1 | « € X }. Thenthe class Uta(Cq4s (X), U) isundecidable.

Remark 2. Notethat the previousresult can be strengthened because in the construction all reset operations
are performed when the clock we want to reset is 0 or 1, they can thus be replaced by decrementations.

Up to now, al the timed automata constructed for undecidability proofs only have diagonal-free clock
constraints (i.e. constraintsin C4r (X)). In the remainder of this section, some of the constructions we will
make for proving some undecidability results will also use diagonal clock constraints (not in C4r(X) but in
C(X)), and as abyproduct of the resultsin section 5, it will appear that in these cases, the classes obtained
by replacing C(X) by C4(X) areindeed decidable.

From the constructions above, we can notice that it is no more necessary to simulate a whole two counter
machine in order to prove undecidability results, but that, if resets are allowed, it is sufficient to be able to
simulate executions of the form:

i@ Z:O’x::x_l'Oj)

We first claim that such an execution can be simulated using only updates from the set 2 (X) U {x :=
x+ 1]z € X}. Indeed, consider the (part of) timed automaton below:

wi=w+1 r:=x+1
z=0,w:zOQx—w:l,x:zOQx:w/\zzo
®) () () ()

The sequence of clock valuations for arun aong this path can be described by:

00 b) o

Such arun thus simulates an execution through atransition (x).
Proposition 3. Let X be a set of clocks containing at least 4 clocks. Let I/ be a set of updates containing
both (X)) and {x := = + 1 | 2 € X }. Thenthe class Uta(C(X),U) isundecidable.

g vwe 8
> ow R
cowR

ow &

The next undecidability results are obtained thanks to very similar techniques.
Proposition 4. Let X be a set of clocks containing at least 4 clocks. Let I/ be a set of updates containing
both ¢, (X') and either

—{x:>0]zeX}or
—{x>y|z,ye X}or
—{r:<y|z,ye X}

Then the class Uta(C(X),U) is undecidable.

Proof. As before, we simulate the execution through a transition (x) using parts of timed automata. The
three automata below correspond respectively to the three sets of updates of the proposition:

O z=0,w:>0ﬂ l’—w=1,$:>0ﬂ x:w/\zzoo
NN

g0 L))

z2=0, w:>z r—w=1 z:>z — —
O))) ﬂx—wAZ—OO

/ NN
a—1
0
a—1

[SERSINSI
n O wR
| o@ =&

g ne 8
/)

x «@ « K a—1
z 0 0 0 0
w 5 € a—1 a—1
Hence, we get the undecidability results announced in the proposition. O

From the above results we can prove some more undecidability results. We summarize all the results in
Table 1.

Up(X) U ... Diagonal-free constraints General constraints
1 ri=cr =Yy ?
2 r:=x+1 ?
3 Ti=y+c Undecidable
4 ri=zx—1 Undecidable
5 r:<c ?
6 T:>c ”
! rivyte Undecidable
8 lyt+cec<iz:<y+d
9 [y+e<iz:i<z+d Undecidable

with~ € {<, <, >, >}andc, d € QF
Table 1. Undecidability results

Lines 2 and 4 correspond exactly to propositions 3 and 2 respectively. Line 3isjust an extension of Line 2.
The second column of lines 6, 7, 8 and 9 are direct consequences from proposition 4. The remaining case
is the one where we allow diagonal-free clock constraints and updates of the form y + ¢ <: x :< z + d,
as described on line 9. The corresponding model which also alows in addition diagonal clock constraints
is undecidable (see above), we just need to be able to replace diagonal clock constraints by updates of the
formy + ¢ <: x :< z + d. Assumethereisaclock constraint = — y < ¢, itstruth or falsity is equivalent to
the existence of avalue « taken in thereal interval |z; y + ¢[. Adding anew clock z, it becomes equivalent
to havinganupdate x <: z :< y + c.

The next section is devoted to the study of classes marked with “?’ and we will see that the emptiness
problem isin fact decidable for these remaining classes.

10

5 Decidability Results

In this section, we extend the decidability result of Theorem 1 to other subclasses of updatable timed
automata. Recall that the principle of this deep result relies on the construction, for any timed automaton
A, of afinite untimed automaton BB accepting exactly the language UNTIME(L(.A)) where

UNTIME(L(A)) = {0 € X*° | thereexistsatime sequence 7 s.t. (o, 7) € L(A)}

The emptiness of L(.A) is obviously equivalent to the emptiness of UNTIME(L(.A)), so the result follows
from the decidability of the emptiness checking problem for untimed finite automata (see e.g. [HU79]).

We will generalize the construction of Theorem 1. Let us first define the notion of regions and region
graphs.

5.1 Regionsand Region Automaton

Let X beafinite set of clocks. We consider afinite partitioning R of TX. For each valuation v € T, the
unique element of R that contains v is denoted by [v]z . We define the successors of R, Succ(R) C R, in
the following natural way:

R eSucc(R)ifweR, FHteTst.[v+tjg =R
We say that such afinite partition is a set of regions whenever the following condition holds:
R €Succ(R) <= YweR, IHteTstv+tjr =R (%%)

This natural condition assesses that the equivalence relation defined by the R partitioning is stable with
time elapsing. Roughly, this means that two equivalent valuations stay equivalent while time is elapsing.
Let us note that this condition is not satisfied by any finite partition of TX asillustrated by the following
counter-example.

Example 3. Let us consider the partition of T2 drawn on the figure
beside. Condition (xx) is not satisfied by the gray region. Indeed,
from vauation (0, 5; 1, 8), when time elapsesit is possible to reach
thevaluation (0, 7; 2) and thus the region defined by the constraints
0 < z < 1Ay = 2. But this region can not be reached from
valuation (0,5;1,1).

LetYd C U(X) beafinite set of updates. Each update up € U induces naturally afunctionup : R — P(R)
which mapsany region R ontotheset { R’ € R | up(R)NR’ # @}. Theset of regions R is said compatible
with?{ if whenever avaluationv’ € R’ isreachablefromavaluationv € R by someup then R’ isreachable
fromany v € R by the same up. Formally, we require:

R €eup(R) = Yv € R, 3" € R st.v' € up(v) (x* %)

Note that this condition has an interpretation similar to the one done for condition (xx). Of course these
conditions are related to some kind of bisimulation property, see the remark below.

Remark 3. If the transition relations (<), ON TX are defined by
Vo ¥ = V' € up(v)

and therelation pr by
vpr v = [v]r = [V]r

then the condition (x * *) assesses that pr IS abisimulation with respect to the relations (<) up-

11

Whenever a set of regions R is compatible with a set of updates i/, we define the region graph associated
with R and U/ as the graph whose set of nodesis R and whose edges are of two distinct types:

R— R if R € Succ(R)
R —., R if R € up(R)

Example 4. Let us consider the set of four regions R defined by the following equations:

R1 R2 35 R4
0<r<l1 x>0 x>1 x>0
0<y<l1 0<y<l1 y>1 y>1

T <y T>y T >y T <y

0 1 x
It is easy to verify that R is compatible with the set of updatesi/ = {z := 1,y := 0}. The region graph
associated with R and U is represented below on Figure 1.

——— timeelapsing

s updatex =1

- ——-» updatey:=0

Fig. 1. A simple example of region graph
Finaly, let C C C(X) be afinite set of clock constraints. A set of regions R is said to be compatible with
C if for every clock constraint ¢ € C and for every region R, either R C p or R C —.
Letnow A = (X, X,Q,T, I, F, B) be atimed automaton in some class Uta(C,) and let R be afamily

of regions compatible with C and /. We define the region automaton I'z (A) associated with A and R, as
the following finite (untimed) automaton:

12

— Itsset of locationsis @ x R.
e Theinitial locations are (¢o, 0) where o € I isinitial and 0 is the unique region containing the
valuation where all clocks are set to zero
e Thefinal locationsare (f, R) where f isfinal in A and R isany region
e Therepeated locations are (r, R) where r isrepeated in A and R is any region
— Itstransitionsare defined by (¢, R) = (¢, R') if there exists aregion 1t and atransition ¢ —22*2, ¢/
in A such that:
e R — Risatransition of the region graph,
° }A% Co
e R —up R’ isatransition of the region graph.

Under conditions (xx) and (x = x), the region automaton is an interesting abstraction of the original au-
tomaton in the sense that we obtain aresult similar to the one of Theorem 1.

Proposition 5. Let .4 be a timed automaton in Uta(C,U) where C (resp. i) is a finite set of clock con-
straints (resp. of updates). Let R be a set of regions compatible with C and ¢{/. Then the finite automaton
I'r (A) accepts the language UNTIME(L(.A)).

Proof. Assumethat A= (X,Q,T,I,F, R, X).
Letustakearunin A

¥1,a1,up1 $2,02,Uup2
B ST T iE

<q1, U1>
to

(90, v0)

For i > 0, let us define R; = [v;]x and f%: = [v; + tiy1 — ti]%. It holds that E € Succ(R;) and, since
Vit1 € upH_l(vi + t,’+1), Ri11 € @L(Rz) Moreover, v; + tit1 ': ©it1 and since R is Compatiblewith
C, wededucethat R; C ;1. Therefore, from the definition,

(g0, Ro) — {(q1, Ry) —2 -+

is an accepting path of I’z (A). Hence UNTIME(L(A)) C L(I'r(A)) holds.
Conversely, let usconsider arunin I'z (A),
(g0, Ro) = (q1, Ry) 2 -+
We set vy = 0 and assume that we have already constructed sequences (v;)o<i<n and (t;)1<i<n such that
v; € R; and such that the following isarun of A

$1,a1,UpP1 Pi—1,0i—1,UPi—1

<Q1701>"' <Qi—1,11¢—1>

1 ti—1

(qo,vo)

Since (g;—1, Ri—1) —2> (g;, R;) is a transition of I’z (.A), there exists by definition a region R and a
transition (Qi—ly ©i, Ai, UP;, Q1) in A such that

-Rioy — R isatransition of the region graph,
- }E € @i
— R —,, R; isatranstion of the region graph.

From v;_; € R;_; and the fact that the set of regions R satisfies (xx), it follows that there exists some
t; € Tsuchthat v; 1 +t;, —t;_1 € R. Now, from the hypothesisthat R iscompatible with up;, we deduce
that there exists some valuation v; such that v; € up;(v;—1 +t; —t;_1). Hence thefollowing isapathin A

Pi—1,A5—1,UPi—1 Pi,Qq,UPq

$Y1,01,up1 <qi717vi,1>4><%7“i>

<QO7710> t—> <CI17U1>"' ;
1 i—1

Therefore, we construct by induction apath in A,

(g0, v0) % {q1,v1) -+ (gi-1,vi-1) %a:fupi (qi, vi) -+
We thus have L(I'r(A)) C UNTIME(L(.A)) which concludes the proof of this proposition. O

13

Since the emptiness checking problem for untimed (Btichi or with afinite acceptance condition) automaton
isdecidable (see e.g. [HU79]), the previous proposition leads to the next theorem.

Theorem 3. Let C (resp. U) be afinite set of clock constraints (resp. of updates). Assume there exists a set
of regions R such that R is compatible with C and ¢/, then the class Uta(C,) is decidable.

Thistheoremisof course fundamental, but it does not exhibit any real decidable class of updatable automata
for which we can decide emptiness. Indeed, we need to construct sets of clock constraints C and sets of
updates U/, together with sets of regions R such that R is compatible with both C and /.

As mentioned before, we quickly had the intuition that diagonal-free and general clock constraints do not
lead to the same (un)decidability properties. This is the reason why we proceed by distinguishing classes
of updatable timed automata according to the type of constraints, diagonal-free or not.

First we need alemma claiming that we can restrict our investigations to updatable timed automata which
use integer (and not rational) constants only. The result is a trivial extension of a remark proposed and
proven by Alur and Dill for classical timed automata (cf lemma 4.1, page 15 of [AD94]).

Lemmal. Let A be a timed automaton and let A be a positive rational constant. Let A.A be the timed
automaton obtained by replacing all the constants p of the clock constraints or the updates of A by the
product Au:.. Thenthelanguage L(AA) equals \L(.A) where \L(.A) = {(ai, Ati)i>o | (ai,t:)i>0 € L(A)}.

Hence, given atimed automaton .4 and aconstant A € Q, the emptiness of L(.A) is equivalent to the one
of L(AA). Butif we consider thelcmm of al the constants used by A, the automaton m.4 deals only with
integer constants. Hence, when considering emptiness, we can assume without loss of generality that all
the constants appearing in (updatable) timed automata are integers. We will do such an assumption for the
rest of this section.

5.2 Decidable Classes of Diagonal-Free Updatable Timed Automata

In this section, we consider diagonal-free clock constraints only, on a set of clocks X. We first construct a
set of regions suitable for these constraints. For each clock 2 € X, we consider an integer constant ¢, and
we define the set of intervals:

T, ={[d] 0<c<c}U{leie+1]] 0 < e < e} U{]eg; +00[}
Now let o beatuple ((1,;)zex, <) wWhere:

-VeeX, I, €T,
— < isatotal preorder® on Xy = {z € X | I, isaninterval of theform]c; c + 1[}

The region associated with « is defined as the following set of valuations:
v e TX Vo e X, v(z) € I, and
Vz,y € Xo, ¢ <y <= frac(v(z)) < frac(v(y))

In the sequel, we will refer to thisset as“theregion o”.

Remark 4. Thefiniteset R, ., of al such regionsformsapartition of T*. Note that it is exactly (with
slightly distinct notations) the set of regions used by Alur and Dill in their seminal paper [AD94]. Hence
the following lemma, which claims that this set verifies the condition (xx), is not an original result and we
prove it here only for the sake of completeness.

® Recall that a preorder isareflexive and transitive relation. If in addition this preorder is antisymmetric, it is an order.

14

Lemma?2. ThesetR . isa set of regions.

w)meX

Proof. Assumethat o = ((I;)zex, <). If foral «, I, =]c,; +o0[, then obviously
Ywea,Vte T, o+t e

and thus Succ(a) = {a}. Otherwise, there exists at least a region o’ # « such that o/ € Succ(a).
Among these regions we define the “ closest” region to «, i.e. the region asycc such that

— asyce € Succ(a), and
—-YweaVteT, ifo+tgathendt’ <t¢suchthatv+ ¢ € asycc.

Theregion asyce = ((I,)zex, <') canbecharacterized asfollows. Let Z = {x € X | I, isof theform[c]}.
We distinguish two cases:

1. If Z # o, then

I, ife &7

—I_,’ﬁ—{]c;c—i-l[ifeeZand I, =[cwith0 <c<c,
Jew; +ool if x € Zand I, = [c,]

—x <"y ifetherz <yorl, = [c]with0 < c < ¢, and I} isof theform |d; d + 1]

2. If Z = @, let M bethe set of maximal elementsof <, i.e.

M={xeXy|VzeXp, <2 = z=<za}

Then,

o I, ifyeg M

T \e+1] ifre Mand I, =|c;c+ 1[with0 < c < ¢,

— <’istheredtriction of < to {x € X | I isof theform |d;d + 1[}

We claim now that
Yo € a, 3t € T suchthat v +t € agyee

Indeed, let v be avaluationin «,

1. If Z # @, thenlet 7 = min ({1 — frac(v(z)) | I, isof theform]c; c + 1[}). Thenthevaluation v+ 57
isintheregion agycc-

2. If Z =o,thenlet 7 = 1 — frac(v(z)) for any x € M. Then the valuation v + 7iSiN agyee-

Now, we get by an immediate induction that the set R .,), Verifies condition (xx) which achieves the
proof of the lemma. O

Example 5. As an example, assume we have only two clocks
and y with the constants ¢, = 3 and ¢, = 2. Then, the set of

\ | [
regions associated with those constants is described in the figure Y } : :
beside. \ | [
The dark gray region is defined by I, =]1;2[, I, =]0;1[, and 2

r<yandy £ x.

The immediate successor region of this (dark) gray region is de-
fined by I, =]1;2[and I, = [1] (drawn as a thick line). The
other successor regions are drawn in light gray.

|_\
NTTONT DT T T
AN
N
| N
|
‘
N'
AN
AN
N
o
|
|
|
|

o
[N
N

The sets of regions we consider is now defined, the following result about their compatibility with sets of
diagonal-free clock constraintsisimmediate.

15

Proposition 6. Let C C Cqr(X) be such that for any clock constraint « ~ ¢ of C, it holdsthat ¢ < ¢,. Then
the set of regions R (..., is compatible with C.

Note that the result does not hold anymore for an arbitrary set of constraintsincluded in C(X). For instance,
in the example above, theregion ((]3; +oc[,]2; +o0]), @) isneither includedinz —y < 1norinz—y > 1.

We now investigate the compatibility of R .., ., and sets of updates /. We first consider the case of
simple updates. Recall that a simple update (cf section 2.3) is an update of the form z :~ cor z :~ y + ¢
where y and z are clocks, ~ € {<,<,=,>,>} and c is an (integer) constant. Note that even if the set
R(c,).ex ISthe one used by Alur and Dill (cf Remark 4), its compatibility with all the updates distinct
from resets (i.e. of the form x := 0) is not proven yet.

Lemma3. LetR(.,),., beasetof regions. Thisset of regionsis compatible with any smple update 2 :~ ¢
suchthat ¢ < ¢, and with any simpleupdate z :~ y+csuchthat ¢, < ¢, +c, with~e {=,#, <, >, <, >}

Proof. Assume that o = ((I;).ex, <) isaregion of R, ... Recal that < is thus a total preorder
on Xy = {& € X | I, isaninterval of theform|ec; ¢ + 1[}. Let up be a simple update over z. We first
characterize the regions of up(«).

Let o/ = ((I})zex,<") (Wwhere <" isatotal preorder on X(). Then o/ isinup(«) if I, = I, foral x # =
and:

if upisz ~ c: I, canbeany interval of Z, whichintersects {y € T | v ~ ¢} and
— either I/ isof theform [d] or]c,; +o00[and thus
o Xj=Xo\{}
o <'==<N(X)x X))
— either I isof theform |d; d + 1] and thus
o X|=XoU{z}
e <’ isany total preorder on X{, which coincideswith < on X/, \ {z}.

ifupisz ~ y+cwithc e Z: I’ can be any interval of Z, such that there exists a € I, b € I, with
a~b+cand
— either I isof theform [d] or |c,; 400
o X =Xo\{z}
o =< N(X)x X))
— either I/ isof theform |d; d + 1],
o X\ =XqU{z}
« Ify & Xy, <" isany total preorder on X which coincides with < on X{ \ {z}.
x If y € X, then we have to take care of the relative values of frac(v’'(y)) and frac(v'(z))
when (I, + ¢) NI, # @:
- dther (I, +¢)N I, = @ and <’ isany total preorder on X, which coincides with < on
Xo\ {z}
- dther (I, +e)NI, # @
Note that from the inequality ¢. < ¢, + ¢, this condition implies that I, + ¢ C I..
In that case, <’ is any total preorder on X, which coincides with < on X \ {z} and
verifies:

16

cz='yandy < 2z if ~is=

cz=<'yandy A 2z if ~is<
2=y if ~is<
sz A yandy < z if ~is>

(z<'yandy £ 2)or(z A yandy <" z) if~is#

From this construction, it is now easy to check that condition (x x x) holdsi.e. that for any v € « and any
o' € up(a), there exists v’ € o/ N up(v). Indeed, since up is alocal update over z, v'(z) = v(x) for all
x # z and we just have to define v’ (z).

1 If z ¢ X{, then
(@ If I, = [¢],v'(#) isof course set to c.
(b) If I, =]c.;00], since I, + ¢ C I, v(y) + ¢ belongs to the open interval]c.; oo[. Hence, whatever
~in{=,#,<, <, >, >}, there exists some value o such that o ~ v(y) + c.Wethus set v'(2)«
2. if z € X, then
(@ If z <" zand z <’ z for somez, then v/(2) = d + frac(v'(x)) with I =]d;d + 1]
(b) If, for any clock z, either = £ z or z £’ x, thenv'(z) = d + 7 with I, =|d;d + 1] and

max{frac(v'(z)) | <" 2} < 7 < min{frac(v’(z)) | z <" z}
Note that since the time domain is assumed to be dense, there always exists (an infinity of) such 7.

Inall cases, it holds v’ € o Nup(a) and the lemmais proven. O

Example 6. Let us consider the case where X = {z,y}, and
the constants ¢, and ¢, aregiven by ¢, = 3 and ¢, = 2. The

Y |
set of regions R, ., is represented on the figure beside. The }
image of the region Ry, I, =|1,2[,I, =]0,1[,z < y by the \

. : i 2L
update x :> y + 2 is composed of three regions, namely: |
|
— Region R: I, =|2;3[, I =)0; 1[and y <’ « 1k
~ Region Ry: I/, = [3], I, =]0; 1] L
0

— Region R3: I, =]3; +ocl, I, =]0; 1]

Consider now alocal update up = (up;)1<i<, Where each up; isasimple update over some clock z;. Let
also Ry.,),.x e aset of regions as defined above. It could happen that each up; is compatible with this
set of regions whereas up itself is not compatible any more. Indeed, let us define X = {z,y, 2z}, ¢, = 2,
ey =c. =1, a((]2; 00[,]1; 00[, {1}), @) and o/ ((]2; o0[, |1; o0[,]1; o0[), @). Finally, let up; be the update
z :< z and up, bethe update z :> y. It is obvious that

Vo' € o, Fvy, vy € ast. vy € upy(v) and vy € ups(v)

However the two valuations (2.3,1.1,1) and (2.3, 3.4, 1) both belong to « and (2.3,1.1,1.8) isin o/ N
up((2.3,1.1,1)) whereas up((2.3,3.4,1)) = @.

Therefore, in order to get local updates compatible with the sets of regions of theform R .., ., we need
to restrict the local updates we consider. From the counterexample just above, it appears that a given clock
can not be set to an interval in which the lower and upper bounds depend on two distinct clocks. Moreover,
from lemma 3, we need to restrict the constants that are used by the simple updates. This naturally leads to
the following definition:

17

Definition 1. Let (c;).ex be integer constants. The set U(..,), . iS constituted of updates of the form
up = /¢ x up. Where, for each clock » € X, up, isalocal update over the clock x defined by one of the
four following abstract grammars:

—det, == zi=c | xz:=2+4+d

withz € X,¢,d€Z,c<cyandc, <c,+d
—inf, == z:<c | x:<z+d | inf, Ainf,

with <€ {<,<},z€ X,¢c,d€Z,c<cyandec, <c,+d
—sup, == x:>c | x:>z+d | sup, Asup,

with>e {>,>},z€ X,¢,d€Z,c<cyandec, <c.+d
—int, == z:€(¢;d) | x:€(sz+d) | z:€(z+5d) | v:€ (z+;2+d)

where (and) areeither [or |, z isaclock, ¢, ¢/, d,d’ areinZ,
e, <cpcp<c,+dande, <c,+c

Thebasisof anupdate up = A, x up. of Uy, isintuitively theset Y of clocks which can be modified
by the update up. Formally, this set Y is defined through its complement:

X\Y ={z¢€ X |up,isequa to z := z}

Thefirst step for proving the compatibility of R .y, ., and¥.,), . isgiven by thefollowing lemma. Its
proof isvery similar to the one of lemma 3 and therefore | eft to the reader.

Lemmad4. Let R(.,),. beaset of regions. This set of regions is compatible with any local update of
Ue,)..x Whichbasisisreduced to asingle clock {z}.

We can now state our main result concerning the compatibility of sets of regions and sets of updates, in the
case of diagonal-free updatable timed automata.

Proposition 7. Let (c,).cx beinteger constants. Then the set of regions R,
set of updates /(.

is compatible with the

rzeX

z)IEX "

Proof. Let o = ((I)yex, <), = ((I,)yex,=<") be two regions of R(.,),. and up be an update of
Ue,),x Suchthat o/ € up(a) i.e. there exists some valuations v € o and v € o' such that v’ € up(v).
For any clock z, let v, bethe valuation defined by:

_Joly) ify#a
va(y) = {v’(m) ify=xa
and let o, = ((I§"),ex, <) bethe (unique) region of R containing v,.

Ca)weX

Now let w be avaluation in . From lemma 4, R(.,), ., iscompatible with up,, thus, for any clock z,

there exists some vauation w,, € up,(w) N «,.. We now define the valuation w’ by setting
w'(y) = w,(y) for any clock y

From the definition of alocal update, it turns out that w’ € up(w). We claim that w’ € o/, too. Indeed, for
any clock y, w'(y) = wy(y) € Iéy) = I;,. It remains to show that the sequence frac(w’(z)).cx verifies
the conditions given by the preorder <’. To this purpose, it is sufficient to prove that the preorder <’ (which
is given, apriori, by the valuation ") can be defined from < and the sequence (<*)) ¢ x.

From the constructions given in lemma 3, which can be extended to prove lemma4, it is easy to check that
the preorder <’ can be computed as follows.

18

Let X’ beadigoint copy of the set of clocks X . We first define a sequence (?(”))zex Of preorderson the
set X U X', Intuitively 2@ s obtained from <(®) by simply replacing the clock x by itscopy . Formally

Vy,z€ X\ {z},y 2@ 2 ify <@ 2
Vye X\ {z}, y=a ify <@ g
vye X\ {z}, o=@ yifz <@ y

We then define < as the union of all the X\, Itis clear that =< is still apreorder on X U X’. Now, <’ can
be obtained from =< by first restricting it to X’ x X’ and then transforming each clock z’ into its copy z.
And we thus get that w’ € o'.

We thus have proven that if o/ € up(«), then for any valuation w € «, there exists a valuation v’ €
up(w) N a’. Condition (x * *) is thus satisfied. O

From Theorem 3 and propositions 6 and 7, we get immediately the next theorem which is our main (effec-
tive) result concerning decidability of diagonal-free updatable automata.

Theorem 4. Let — C C Cqr(X) beafinite set of diagonal-free clock constraints,

— for any clock x, ¢, be an integer constant such that, for any constraint x ~ ¢ of C, it
holdsc < ¢,

- U CU,),. beafinite set of updates.
Then the class Uta(C,) is decidable.

This theorem is not yet sufficient for deciding, given an arbitrary (diagonal-free) timed automaton A,
whether its emptiness can be decided using a region automaton construction. If we can find constants
(cz)zex suchthat any update used in Aisinif.,), ., and any constraint z ~ c used in A satisfiesc < c,,
then the emptiness of .A can be checked using a region automaton construction. We finally now describe a
procedure which gives a sufficient condition for the existence of such constants (¢,) e x-

Let C C Cqp(X) beaset of diagonal-free clock constraintsand let &/ C U/(X') be aset of updates such that

up =\ up, €U = foralz, up, € {det,,inf,, sup,, int, } where: (&ar)
zEX
—det, == x:=c| x:=2z+d
withz € X,ce Nandd € Z
—inf, == x:<c | x:<z+d | inf, Ainf,
with<e {<,<},z€ X,ce Nandd € Z
—sup, = x:>c | x:>z+d| sup, Asup,
with>e {>,>},z€ X,ce Nandd € Z
—int, = z:€(c;d) | z:€(gz+d) | v:€(z+5d) | v:€(z+52+d)

where (and) areeither [or], zisaclock and ¢, ¢/, d,d’ arein Z

If the Diophantine system of linear inequations on variables (¢,) .e x
{c<cplez~ceCorr:i~celUtU{c, <cy+cl|lzi~y+celd} (Sar)

hasasolution, theni/ C U,), ., and C iscompatiblewith R .,
the class Uta(C,) of updatable timed automata is decidable.

and therefore, applying Theorem 4,

reXx?

Note that if all the constants ¢ appearing in the updates = :~ y + ¢ are positive, then the system (Syy)
always has a solution. Otherwise, from the results of [Dom91], the existence of a solution is decidable.

19

Remark 5. We have shown in section 4 that updates of the form z := z — 1 lead to an undecidable class of
automata, whatever are the types of constraints used in the automata. Note that, fortunately, thisis not in
contradiction with the results above. Indeed, when dealing with such updates, the Diophantine system (S)
contains inequations of the form ¢, < ¢, — 1 and has therefore no solution.

Complexity. Asfor timed automata (see [AD94]), decidability of emptiness for a class of updatable timed
automata verifying hypotheses of Theorem 4 is a PSPACE-complete problem; and the proof is quite similar.

Recall that for classical (untimed) automata (accepting finite or infinite sequences), decidability of the
emptiness is NLOGSPACE-complete. The non deterministic on-the-fly algorithm consists in starting from
aninitial state qq, to guess anew state ¢ and to verify whether there is atransition from ¢, to ¢, which can
be done without any additional space (just looking at the automaton). The algorithm continues by guessing
anew state ¢’ and by verifying the existence of atransition between ¢ and ¢/, and so on until afinal stateis
reached. Therefore, besides the automaton, only two states have to be stored. Since a state can be coded in
logarithmic space, we get that the emptiness problemisin NLOGSPACE (the proof of completeness can be
found in any book on Complexity Theory).

Let now A be an updatable timed automaton in some class Uta(C, i) and R be a set of regions satisfying
the hypotheses of Theorem 4. As explained, the emptinessof L(.A) can be checked by testing the emptiness
on the untimed region automaton I'z (A). If we apply the algorithm recalled above and if we want to
compute its complexity, we have to compute the space needed to encode a state of I’z (A). Such a state
isapair (¢, R) where ¢ is a (discrete) state of A and R aregion of R(.,), .. For encoding aregion, it is
sufficient to store, for each clock, two integers (the bounds of the interval where the clock is supposed to
be) and, for each pair of clocks, a boolean which indicates whether the first clock is before the second in
the preorder defining the region, or not.

Therefore, a state of I’z (A) can be encoded in polynomial space and emptiness of updatable timed au-
tomata, when belonging to a decidable class as described previously, isin PSPACE. Since these decidable
classes contain in particular Alur and Dill’s timed automata, we get immediately the Pspace-hardness and
thus the PSPACE-compl eteness.

5.3 Decidable Classes of General Updatable Timed Automata

We now investigate classes of updatable timed automata where general constraints are used. As we have
noticed just after proposition 6, diagonal constraints are not compatible with sets of regions defined in the
previous subsection. For example, if we deal with two clocks = and y, theregionz > 3 Ay > 2 isneither
includedinz —y < 1,norinx —y > 1. We have thus to define new sets of regions.

To this purpose we consider for each pair of clocks (y,) in X an integer constant d,, . and we define the
set

s7y,z - {] — & _dz,y[}
UAld] | —d-y <d<dy.}
U{ld;d+1[| —d.y <d<dy.}
U {]dy,z§ +OO[}

The region defined by atuple o = (1) e x, (Jo,y)zyex, <) Where

-Vee X, I, €T,
- V(y,2) € Xoo, Jy,» € Ty, Where X, denotesthe set {(y,z) € X? | I, or I, isnon bounded}
- < isatotal preorder on Xy = {z € X | I, isaninterval of theform]c; c + 1[}

20

isthe following subset of T

‘ Ve € X, v(x) € I,
veTX ‘ Yz, y € X, itholdsthat z <y <= frac(v(x)) < frac(v(y)),
‘ V(y,z) € X007 U(y) - ’U(Z) € Jy,z

Thefinite set R(c,),cx.(d,..),.cx Of al such regions forms a partition of T*. By a proof very similar to
the one of lemma 2, it is easy to verify that this set of regions also satisfies condition (xx), i.e. that the
following lemma holds:

Lemmabs. Theset R, isa set of regions.

Jeex,(dy,)y zex

Example 7. Assume that we have only two clocks z and y and Y } } })‘// ///
that the maximal constants are ¢, = 3 and ¢, = 2, with clocks } } } e : y
constraintsz — y ~ 0 and z — y ~ 1. Then, the set of regions 2Ly
associated with those constantsis described in the figure beside. | 7 | // | ///}
The gray region is defined by I, =]3;+o00[, I, =]2;+o00[and 1 ‘177%77‘%7;‘}7777
—l<y—az<0(.eJyis]—1;0). R R e

v _bk__ L ____

0 1 2 3 x
Once again, the compatibility of this set of regions with sets of clock constraintsis easy and immediate.

Proposition 8. Let C C C(X) be such that for any clock constraint 2z ~ ¢ of C, we have ¢ < ¢, and for any
clock constraint z — y ~ cinC, we have —d, , < ¢ < d,,. Thenthe set of regions R ..), (d
is compatible with C.

y,z)y,zGX

As in the diagonal-free case, we now introduce a set of updates which depends on the constants (¢,) e x
and (d,)y, .cx- They will be defined in such away that they will be compatible with the set of regionswe
have just defined. Note that from the undecidability results of section 4, we have to restrict drastically the
set of updates we use if we want to preserve the decidability.

Example 8. For example, if we consider the incrementation Y } } })‘// R
updatey := y+1 and the set of regions depicted on thefigure } } } e :
beside, the images of the region R; are the regions Ry, Rs 2Lyl Ro
and R3. But we can not reach region Ry (resp. Rs, resp. Rs) } 7 } /// } /// }
from every point of region R;. Thus, this set of regionsisnot I T S R’y
1 1 7/ 7/

compatible with theupdatey := y + 1. L/,,LQ,L/:,L,,,,

0 1 2 3 T

Definition 2. Let (c;)zex, (dy,2)y,-ex beinteger constants. The st U(c,), c v (d, ..),..cx Of local updates
consists of the updates of the formup = A .« up, where, for each clock = € X, up, isalocal update of
one of the following forms:

—z:<dewithge {=<,<},z€ X,ce N, c<¢,and, for anyclocky, ¢, > c+d, »
—z:=ywithy € X,andc, < ¢, and, for anyclockz,d. » < d. y, dz . < dy -

As claimed by the following proposition, this set of updates and the set of regions previously defined are
suitable for handling updatabl e timed automata with general clock constraints.

Proposition 9. Let (cz)rex; (dy,-)y,zex beinteger constants. Thentheset of regionsR ..,), . 4
is compatible with the set of updates /.

y,Z)y,zeX

a:)zEXv(dy,z)y,zeX '

21

Proof. Asin the case of diagonal-free updatable timed automata, we first deal with the particular case of

simple updates.
Assumethat o = ((I3)zex, (Joy)eyex, <) Where < isatotal preorder on X, and assume also that up is

asimple update over z, then the region o’ = ((1})zex, (J;,)zyex, <') (Where <" isatotal preorder on

Xp)isinup(a) ifandonly if I} = I, foral x # 2, J; , = J,, fordl z,y # z and:

if upisz ~ c, I canbeany interval of 7, whichintersects{y € T | v ~ ¢} and
— either I isof the form [d] and thus
o X =Xo\{z}
o <'=<nN(X}Hx X)
o X ={(z,y) e X | (x# 2Ny #2)0r (x =21, =]cy;00]) Or (I =|cg; 00[A\y = 2)
andV(z,y) € XL,
* Sy, =Jeyifr#zandy # 2
* J;’z =|dy ;00 .
Note that if v isavaluation such that ¢, < v(z) and v(z) < ¢ with <€ {=, <, <}, then
¢y —c < v(z)—v(z). Thus, fromthe hypothesisc,, > c+d, ., wegetd, . < v(z)—v(z).
* Jé’y =] —00;—d, 4] .
Note that if v is avaluation such that ¢, < v(y) and v(z) < ¢ with <€ {=, <, <}, then
v(z)—v(y) < c—cy. Thus, fromthe hypothesisc, > c¢+d. ,,, wegetv(z)—v(y) < —d. .
— dither I/ isof theform |d; d + 1] and thus
o X\ =XqU{z}
e <’ isany total preorder on X, which coincideswith < on X{ \ {z}
o Xl ={(z,y) e X | (x# 2Ny #2)0r (x=2AI, =|cy;00[) O (I =|cg;00[A\y = 2)
andV(z,y) € X._,
* Jﬂlmy =Jyyifo#zandy # 2
* Jg’hz =l|dy, ; 00l
* J;’y =] — 005 —d. 4.
ifupisz ~vy, letusfirst define I7.
—ifI, =1[d], I, = [d]ifd < ¢, I, =]c.; oo[otherwise
—if I, =]d; d + 1[, I, =]d; d + 1]if d < ¢, I =]c,; 00] otherwise
— if I, =]ey; 00], I, =]e,; oof (since by hypothesisc, < ¢,)
Now
— dither I/ isof theform [d] (and thus I, = [d] from what precedes)
o X|=XoU{z}
o =< N(X)x X))
o X! ={(z,2) e X |(x#2zND #2)0r (& =2ATy =]cy;00[) Or (I, =]cg; 0[Nz’ =
2)}
andV¥(z,z') € X/,
* Jp = Jpw ifr#Fzanda’ £ 2
* J;yx/ isthe uniqueinterval of 7, ,» which contains J .
Note that unicity comes from the hypothesisthat d. .+ < d, .
* ‘]a/c,z isthe unique interval of 7, . which contains .J, ..
Note that unicity comes from the hypothesisthat d,. . < d ,

22

— dither I] isof theform|d; d + 1] (and thus I,, =]d; d + 1], too)

o Xé = Xo U {Z}
e <’ isany total preorder on X/, which coincides with < on X/, \ {z} and such that = <’ y and
y =<'z
e Theset X andtheintervals J; ., are defined asin the previous case I = [d]
— either I isof theform e, ; oo
o Xo=Xo\{z}
o </=<N(X{x X))

o X, =XooU{(z,2),(2,2) |z € X}and J, ,, = J, . if v # zandz’ # 2. Thecomputation
of J. , (and J;, ,) requiresto distinguish several cases depending of the form of 7, and I,

1. I, = [f], I, = [g]. Then
[g_f] if—d:r:}zgg_fgdz,x
sz = {]dz,xvoo[If dz,w < g — f
]_OO; _dx,z[Ifg f<_d;c,z
2. I = [f], Iy =lg; g + 1[. Then
]g_f_17g f[lf—da:,zgg_f_1<dz,x
J;,r:{]dzm7oo[ifdz,Igg_f_l
] — 00; —dy | ifg—f—1<—d,.

3. I = [f], Iy =]cy; 0c[. Then

J. . istheuniqueinterval of 7. , which contains J, .

Note that unicity comes from the hypothesisthat d. , < d, , andd, . < d, ,
4 L =If; f+1[I, = [g]-

Thiscaseisidentical to case 2 above.
5 I, =|f; f+1[, I, =|g;g + 1[. Then

Ifz<yAy <z then [g— f] when —d, . <g—f<d.,
| w3 00] whend, , <g—f
| — 005 —dy | wheng — f < —dy .
Ifze<yAyAxzthen]g— fig—f+1 when —d, ., <g—f<d.s
Jiw = Jd. ,MOO[whend. , <g— f
] — o0; — [wheng — f < —d, .
Ifz AyAy<azthen]g—f—1,9g—f[when —d, . <g—f—-1<d,,
]zm7 [Whendz?zﬁg_f_l
] 003 dI7Z[Wheng - f -1< _dw,z

L, =f; f + 1], I, =]ey; oo[. Thiscaseisidentical to case 3 above.
7. I, =|cg; 00[. Thiscaseisidentical to case 3 above.

From this construction, it is easy to prove, in a similar way than for lemma 3, that condition (x x x) holds
for simple updates.

The extension to local updates of U/ C U.,), «,(a

(under the hypotheses of the proposition) is

y~2)y,26X

obtained by atechnique similar to the one used in proposition 7. O

23

Example 9. Consider the regions depicted on the left. We want to

y | Yy 4 compute the updating successors of the region Ry by the update
: /)| y 2 :< 2. The four updating successors are drawn on the figure. Their
77 i .
, ; equations are:
2\ A _/7\%7/7\%7777
[[[[— i - 1 _19.
A A Reg?on Ry: I, = [0] and I, =]2; +o00]
} //} //} // } — Region Ry: I, =]0; 1], I, =]2; +oo[and J, » =|1; +oo]
0277117721773%7777 — Region R3: I; = [1] and I}, =]2; +oo|
X

Region Ry: I, =]1;2[, I, =|2; +oo[and J, » =]1; +o0]

Our main effective result concerning the decidability of general updatable automata s given by the follow-
ing theorem. Its proof follows immediately from Theorem 3 and propositions 8 and 9.

Theorem 5. Let C C C(X) beafinite set of general clock constraints such that:
— for every clock x, a constant ¢,, such that for any constraint x ~ cinC, ¢ < ¢,

— for every pair of clocks (z,y), a constant d,, ,, such that for any constraintz —y ~ ¢inC, ¢ < d, ,,

andlettd CUe,), x4 be a set of updates. The class Uta(C, i) is then decidable.

l~y)m,y€X

Likefor Theorem 4, if we want to apply the previous theorem to a given updatable timed automaton A, we
need to find (if they exist) some constants (¢,).ecx and (d,). yex for which the updates and constraints
of A satisfy the hypothesis of this theorem. Let us now describe a procedure which ensures the existence
of such constraints.

Let C C C(X) beafinite set of arbitrary constraintsand let &/ C U/(X) be afinite set of updates such that:

up = Nyexupz €U = Ve e X, up, € {z:=c,x:<c,x:<c|ceN}

If the Diophantine system of linear inequations on the variables (¢,) e x and (ds y)z ye x
{c <max, |x~ceC(C}
U {c<max,,|z—y~ceC(C} (Soon)
U {¢<max,, max, > c+max,, |z :<corz:<corzx:=c €U, andz € X} gen
U {max, < max,, max,, > max, ,, max, . <max, . |z:=ycldadz € X}
has a solution, then U C U.,). . (du.,)e.,cx dNd C is compatible with R..). .« (d..,)..,cx - AN thus,

from Theorem 5, the class Uta(C, i) is decidable.
Itis easy to verify that the system (S,.,,) aways has a solution. We thus get the following theorem:

Theorem 6. Let C C C(X) be a finite set of arbitrary constraints and let ¢/ be a finite set of updates
defined asin ({4¢,). Then the class Uta(C,) of updatable timed automata is decidable.

Remark 6. From the undecidability results of the previous section, this theorem is the most general we
can expect when dealing with general clock constraints. Nevertheless, under precise conditions, we could
refine the results and exhibit decidable subclasses which use updates not of the form (<> 4.,,). For instance,
let (cz)zex, (dy,2)y,- € X beconstants. The set of regions R.). . x.(d,..),.ex 1S compatible with, for
examples, updates like:

— z:=y+cassoonasc, < ¢, + candforeachclock z, d, . < d,, —candd, , < dy, +c
— z:>cassoonasc < ¢, andfor eachclock x, ¢, — ¢, > d,

However, we will not give details of these refinements, if one is needed for a specia model, then the
previous proof can be extended.

24

Complexity. As in the diagonal-free case (see the end of section 5.2), emptiness for decidable classes
of updatable timed automata with arbitrary clock constraints, as characterized in Theorem 5, is PSPACE-
complete. Indeed, aregion from aset of theform R ., d,..),.-cx cantill be encoded in polynomial
space.

mEX-,(

5.4 Conclusion and Discussion

Table 2 summarizes the undecidability and decidability results obtained in the two previous sections. In
order to have a global and readable picture, we do not recall the precise conditions on the constants given
in the hypotheses of our two main theorems 4 and 5, under which decidability is ensured.

Up(X) U ... Diagonal-free constraints General constraints

1 ri=c,ri=y PsPacE-complete

2 r:=x+1 PspacE-complete

3 ri=y-+c Undecidable

4 ri=x—1 Undecidable

5 r:<c PsPacE-complete

(75 p INZ _T_ - PsPACE-complete .
Undecidable

8 ly+c<iz:<y+d

9 lyt+cec<iz:<z+d Undecidable

with~ € {<,<,>,>}andc, d € Q*
Table 2. Decidahility results

It isworth to notice that, contrary to the case of Alur and Dill’s timed automata, considering diagonal-free
clock constraints or arbitrary clock constraints do not lead to similar decidability results.

Note also that differences between decidable and undecidable classes are sometimes tricky. Among these
differences, let us mention for instance the following facts:

— when only diagonal-free clock constraints are used, decrementation |eadsto undecidable classeswhereas
incrementation leads to decidable classes (see lines 2 and 4)

— when arbitrary clock constraints are used, both decrementations and incrementations lead to undecid-
able classes (see dso lines 2 and 4)

— non-deterministic updates of the form x :< ¢ always lead to decidable classes whereas updates of the
form z :> ¢ lead to decidable classes only when diagonal-free clock constraints are used (see lines 5
and 6)

— non-deterministic updates of theform x + ¢ :< z :< y + d always lead to undecidable classes whereas
updates of theformy + ¢ <: z :< y + d lead to decidable classesif diagonal-free clock constraints are
used (seelines 8 and 9)

6 Expressivenessof Updatable Timed Automata

Now that we have described precisely the frontier between undecidability and decidability, it becomes
natural and interesting to study the expressiveness of the decidable subclasses and compare them with
the expressiveness of timed automata and timed automata with e-transitions (or silent actions), as defined
originaly by Alur and Dill ([AD90,AD94], see section 3.1).

25

We start by defining some criteria to compare automata in section 6.1. We then prove that e-transitions are
unavoidable if we want to express the languages recognized by updatable timed automata using classical
timed automata, see section 6.2. We then study the easier case of updatable automata using deterministic
updates in section 6.3 and the general casein section 6.4.

6.1 Several Equivalence Relations

We recall in this section several known criteriato compare automata.

Language equivalence. The simplest criterium to compare automata is the equality of the accepted lan-
guages. Two timed automata are said language eguivalent whenever they accept the same timed language.
We extend this definition to families of timed automata ; two families of timed automata, say Aut; and Aut,,
are language equivalent whenever every timed automaton from one of the families is language equivalent
to an automaton of the other family. We then write Aut; =, Auts.

For example, it is well known that diagonal constraints can be removed from timed automata without
changing the expressiveness of the model (see Remark 1). With the formalism presented above, it can be
written as

Uta(Ca (X),Up (X)) = Uta(C(X),Up(X)) .

Transition systems and similarity. Language equivalence does not provide any information about the
internal structure of the automata, contrary to similarity. To define similarity, we first need to recall the
notion of transition systems.

Definition 3. Atransition systemisatuple7 = (S, 1, s9, —) where S isa set of states, I" isa finite or
infinite alphabet, sy € S istheinitial stateand —C S x I" x S isa set of transitions.

If 7 issuch atransition system, an execution in 7 is a sequence of consecutive transitions
[e5] Qg
S) —> 81 —— S2...

wherefor every i > 0, s;_1 —— s; isatransition of 7.

The similarity [Par81,Mil89] defines step to step a correspondance between two transition systems. A
transition system 7 = (5, I, s, —) simulates atransition system 7' = (', I', s, —') if there exists a
relation = C S x S’ such that:

INITIALIZATION: Vsg € Sp, 3s(, € S{ St. s0 = s

PROPAGATION: if 51 5= s} and s; — s, then there exists s, € S’
(TRANSFER) st. s} —'sh and sy = sl

Such arelation is called asimulation relation. If the relation = defined by
rE'y &= yrx

isalso asimulation relation, then 3= is a bisimulation relation.

Timed transition systems are particular transition systems where the a phabet contains actions correspond-
ing to time elapsing.

Definition 4. A timed transition system on the alphabet 3 and the time domain T is a transition system
T(S, I, sg,—)where"istheset YU {c}U{e(d) | d € T} and thetransition — satisfies the following
properties:

26

. d
— TemporAL DETERMINISM: for all the states s, s, s” of S and for every d € T, if s RGN s’ and

d
se(—)>s”,thens’:s”.

— Time ADDITIVITY: for all the states s, s” of S and for all di,d, € T, if s
exists ' € S suchthat s <, and &' %20, o

— 0-DELAY: for all the states s, s’ € S, s <O, ¢ifand onlyifs = ¢'.

di+d
_elhtd2) o then there

Thethree conditionsthat wejust described are classical when we consider processalgebralike TCCS[Yi90,Yi91].

If 7 issuch atimed transition system, a delay execution is an execution of the form

(e %) a2 Qn
So 51 So... Sn

suchthat n > 0, forevery 1 <i <mn, a; = e or o; = €(d;) for somed; € T.
If 7 = (S, I,s0, —) isatimed transition system, we define the abstract transition system associated with
T by Taps = (S, I, s9, =) where
s=% s if a#candthereexistss” € S, s — " 5 s
there exists a delay execution
Se(:d;é‘/ if {s=8590 58 —2569... 22y g, =5

suchthat d = S°{d; | a; = €(d;)}

where the relation " represents the reflexive and transitive closure of —=. The transition system Zaps

abstracts silent actions of 7. The relation " thus corresponds to @ Note also that the relation =%
only abstracts silent actions that can be done before action a.

Asatimed transition system is a particular transition system, the notion of similarity defined before can be
applied.

Strong and weak (bi)similarity. An updatable timed automaton A(Q, X, Y., I, F, R, T) definesin a
natural way two timed transition systems:

— the transition system 7(A) = (Q x TX,X.,T,(qo,0), —) where the transition relation — is
defined by:
e(d)
{(w) D (gt d)
a,up

(q,v) = (¢, v)) if thereexists ¢ =2 ¢/ € T'st.v = p and v’ € up(v)

— the abstract transition system Zans(.A) defined as previously from 7'(A).
Of course, if A isatimed automaton without silent actions, 7 (A) and 7aps(.A) areidentical.

An updatable timed automaton A strongly simulates an other updatable timed automaton 3, and we will
note A =, B, whenever 7 (A) simulates 7 (BB). We say that .A and B are strongly bisimilar, and we will
note A =, B, whenever there exists abisimulation relation = such that 7 (A) = 7 (B).

An updatable timed automaton A weakly simulates’ another updatable timed automaton 3, and we will
note A =, B, whenever Ta,s(A) simulates Tons(B). We say that A and B are weakly bisimilar, and we
note A =,, BB, whenever there exists a bisimulation relation = such that Taps(A) = Taps(B).

7 Note that this definition of weak simulation is quite different from the usual one because, as said before, the tran-
sition relation == only abstracts silent actions that can be done before the other actions, whereas, in the classical
definition, the transition relation abstracts all the silent actions, i.e. those that can be done before or after the real
actions.

27

Remark 7. Of course, two strongly bisimilar updatable timed automata are also weakly bisimilar. If a
bisimulation relation preserves the final and repeated states, two strongly or weakly bisimilar automata are
language equivalent.

We close these preliminaries by atechnical result ensuring that we can restrict our study to updatable timed
automata where all constants appearing in the constraints or in the updates are integer.

Let A be an updatable timed automaton and A a constant. We denote by A\ A the timed automaton in
which all the constants appearing in the constraints or the updates of A are multiplied by A. The proof of
the following lemma follows the one of lemma 4.1 page 15 in [AD94] which claims a similar result for
language equival ence within timed automata.

Lemma®6. Let A and B betwo timed automata and A € Q™* a constant. Then
Az, B = M=, B and A=,8B < MM =, \B

Hence, in the rest of this section, we may assume that only integer constants are used.

We have now all the comparison toolsthat will be useful in our next study of the expressiveness of decidable
subclasses of updatable timed automata.

6.2 e-Transitionsare Necessary

We first prove that e-transitions are necessary to express the decidable fragment of updatable timed au-
tomata described in section 5. Let us consider the timed automaton A with silent actions described by the
following picture:

Thereisno classical timed automaton without silent action accepting the same timed language as.4A [BDGP98].
We will prove that there exists an updatable timed automaton with general constraints and updates of the
formz := c or z :< ¢ (c integer) which recognizes the timed language L(.A). This timed language can be
described by:

ty;:iandai:a
(ai7ti)i21 el <= Vi>1, or
t; E]z—l,z[andal:b

An execution in this automaton can thus be represented by the following scheme:

+ y— }

oT e

a b b
1

AT

2 3

expressing that a actions can be performed each time unit, but not if ab has been performed during the last
unit of time.

Thistimed language is recognized by the updatabl e timed automaton 5 on the following picture:

28

where the clock = is set to 1 when first entering state ¢-.
By considering for example the bisimulation relation

R ={((g0,v), (@2, 0+ 1)) [v € T U {((@1,0), (g2,0)) | v € T

itiseasy to seethat A and B are weakly bisimilar, and thus L(.A) = L(B).

In section 4, we noticed that adding the decrementation of clocks to the classical model leadsin general to
undecidability. However, in this precise case, clock x isbounded by 2, we will thus be able to transform au-
tomaton 55 into an updatabl e timed automaton belonging to some decidable class as described in section 5.
Let usindeed consider the following automaton D:

l<z<2,by:<1

l<y<2, b xz:<1

Claim: D recognizes precisely the timed language L(A) = L(B).

Proof. We start by describing in an informal manner how D behaves. A state py or p3 can be reached only
if an a has just been performed and a state p; or p» can be reached only if ab hasjust been performed. The
values of = and y are both 1 when reaching state p, or ps (an easy verification can be done by analyzing
the transitions arriving in these states). From any of these two states, a sequence of «’s, one at each time
unit, can be performed. Moreover, state p; or ps can be reached when an action b is performed, before one
time unit has passed.

To prove that L(B) = L(D), we transform the automaton B in the following way. We first add a “hole”

(state g;) with a unique transition leading to g3, namely the transition g —="~"" 4. We denote by 5,
the resulting automaton. It can be depicted as:
r=2 l<ax<?2
a b
z:=1 rz=x—1
0<z<1,0b

29

We then define the relation R’ by:

R' = {(g2,0),(po,(a+1,a+1)) | 0<a<1}U{(g,), (p3,(a+1,a+1)) |0 <a <1}
U{((g2,), (p2, (@ +1,0))) | 0 < <1} U{((g2, @), (p1, (, @ +1))) | 0 < < 1}
U{((gs;), (p2, (B;@))) [a>0and § # a+ 1} U{((g3, @), (p2, (@, 8))) |« > 0and 3 # o + 1}

The transfer property is satisfied in a trivial way. The relation R’ is thus a bisimulation relation and the
automata D and B,,, are bisimilar. Moreover, 5 and B3,,, obviously recognize the same timed language. [J

We thus get the following theorem:

Theorem 7. The decidable subclass of updatable timed automata which use general clock constraints (as
described in Section 5.3) is strictly more expressive (for the language equivalence =) than classical timed
automata without e-transitions.

6.3 Expressiveness of Deterministic Updates

We start our expressiveness study by considering deterministic updates only. Recall that these updates,
defined in section 2.3, are built using simple updates of one of the following form:

1 z:=cwithze Xandce N
2. x:=ywithz,ye X
3 z:=y+cwithz,yec XandceZ\ {0}

Recall that thanks to Lemma 6, we assume, without loss of generality, that constantsarein N and Z (we do
not need to consider constantsin Q).

In afirst step, we consider simple updates of one of the forms 1 or 2. The fact that updatable timed au-
tomata using such updates and classical timed automata are language equivalent is often considered as a
"folklore" result. However, we did not find any proof of this result in the literature. Hence, and for the
sake of completeness, we propose a complete proof.

If U isaset of simple deterministic updates, we denote by L u(U) the set of updates which can be written
as N\, x up. Whereup, € U forevery = € X.

Theorem 8. LetUf C Lu({z:=d |z € X andd e NfU{z =y |z, y € X}) be a set of updates. Let
A e Uta(C(X),U) (resp. A € Uta.(C(X),U)). There exists a timed automaton B € Uta(C(X), Uest(X))
(resp. B € Uta.(C(X),Ucs(X))) such that A =, B.

Remind (see section 2.3) that U« (X) denotes updates to constants, that is updates of the form x := c.

Proof. Let A = (Q, X, X, I, F,R,T) be atimed automaton in Uta(C(X),U). We construct a timed au-
tomaton B = (Q', X, X, I', F', R, T") in Uta(C(X),U(X)) such that A =, B.

Assumethat X = {x1,...,z,}. Weset:

- Q' =Qx XX,
— I' =1 x {ld} whereld isthe identity of X,
- F'=FxX¥X
- R =Rx XX,

Intuitively, in astate (¢, o) (withg € Q and o € XX), the value of clock z is stored in the clock o (z). We
now just have to define the set of transitions 7" of .

Let us consider a transition ¢ =2, ¢/ of A and a state (¢, o) of B. We associate the function @p :

X — X UNto up, whereup(z) is.

30

— d whenever = := d is part of the update up,
— y whenever x := y ispart of the update up,
— x in all other cases (the update is thusimplicitely z := x).

In B, there will be atransition
(¢,0) === (¢, 0")
such that:
— If up(x) € X, then o/(z) = o oup(z). If up(z) € X, it is abit more complicated. Some clocks
are not used (it means that they do not correspond to any of the o’(x) aready defined). We choose

some of these clocksin order to define the o’ () which are not already defined, i.e. the o’(x) such that
up(xz) ¢ X. Moreformally, we have:

#{z € X |up(z) € X} > #{up(z) | » € X andup(z) € X'}

and thus
#{z € X |up(z) ¢ X} < # (X \{up(z) | z € X andup(z) € X})

We can thus consider an injective application . defined onthe set {x € X | up(z) ¢ X} onto the set
X\ {up(z) |z € X andup(z) € X} andwecanset o' (x) = v(z) if up(z) & X.
— ¢ isdefined by ¢z «— o(z)]®
— up’ isdefined by A\, c x and ap(a)gx o (%) = up(x)
We define therelation R on (Q x TY) x ((Q x X*) x TX) by
{((0,0),((¢,0),0)) [g€ Q, 0 € X¥, v eT*, e T¥ and¥=voo}

The construction has been done precisely for R to be a bisimulation relation.
Note that the same construction can be done for timed automata having e-transitions aswell (in which case
they are taken as normal actions) because automaton 5 does not have proper e-transitions. O

Weillustrate the previous construction on the following example.

Example 10. Consider the automaton on the left of the figure below.

Al’ay = "4' Aaz,x
[y ~c—z~(
N ;/'/;?’"_--"";4'\”\:'-%\\\ 1/)7 b T 4,0; a
@) @O . @ D
. N 1/}, b,y:: r:=0 \\‘~‘\‘_ ——’,/’//
Y, a, =Y < (AT A [-
OO T
A @ @O @
B L b =0
Ayay Ay,x

8 The notation [z «— o(x)] isfor the formula ¢ in which the variable z is replaced by o ().

31

The construction described in the proof of the previous theorem applies to A and leads to the automaton
drawn in the figure above, on the right (which consists of four copies of the original automaton, one for
each application fromthe set {x, y} onto the set {x, y}). Inthe copy A, 5, of A, thevalueof = isstored in
the clock h; whereasthe value of y isstored inthe clock hs. A constraint = ~ ¢ must thusto be replaced by
acongtraint h, ~ ¢, asindicated on thefigure. Toillustrate the use of the . injection: in state ¢ of automaton
Ay 4, y has to be reset to zero, but y is the reference for clock = (o(x) =), we thus need to store the
new value of y in a clock which plays no role, thusin z. In this case, «(y) = «, and thus ¢’ (2) = y and
o'(y) = . That's why the transition goes to state p of automaton A, . These two automata are strongly
bisimilar.

We now pursue the study of updatable timed automata with deterministic updates by looking at the case
wheresimple updates are of the form z := d.

Theorem 9. Let A € Uta(C(X),U(X)) (resp. A € Uta.(C(X),U(X))). There exists a timed au-
tomaton B € Uta(C(X), Uy (X)) (resp. B € Uta.(C(X),Uy(X))) such that A =, B.

Proof. Let A beatimed automatonin Uta(C(X),Us(X)). Recal that from lemma 6, we assume without
loss of generality that any update of ¢/ isin fact of theform {z :=d |z € X and d € Z}.

We construct an automaton 53 in Uta(C (X)), Uy (X)), strongly bisimilar to A. For every tuplea = (o) e x
in ZX such that for every clock z, = := o, isaclock constraint appearing in A, we construct a copy of the
automaton A, that we denote by A,,. Intuitively, in the automaton A, the value of the clock z iswhat the
value should bein A decremented by o, (« corresponds to a shift of the clocks, comparing with what their

values should be in the initial automaton).

If ¢ p,a,up Pas@Upa

¢’ isatransition of A, for every «, there will be atransition ¢, ————— ¢/,, where:

— Yo =plr — v+ aal,
— up,, = uplzr = 0instead of x := ¢],
— o, = cif 2 := cispart of the update up, o/, = «,, otherwise.

There arefinitely many tuplesa = (a,.).c x, wethusonly build finitely many copies of theinitial automa-
ton. We denote by 5 the union of al these automata.A,, . The automaton B isobviously in Uta(C(X), Uy (X)).

We define therelation R between the states of the transition system associated with .4 and the states of the
transition system associated with 5 as:

(¢, V)R(Ga, Vo) <= V=104 +
Therelation R istrivialy abisimulation relation, which concludes the proof.
Like above, automaton 55 has no proper e-transition, hence the same construction also holds for automata
in Uta. (C(X), Uest(X)). O

We now illustrate the construction of the proof on the following example.

Example 11. Let us consider the automaton .4 drawn below, on the left. The previous construction gives
the automaton on the right: here, we only need two copies of the automaton because the maximal constant
for x is 1 whereas the maximal constant for y is0.

32

y>0,a, z:=1

() O
x:=0

r—y<2 ¢ y:=0

If we consider now an updatabl e timed automaton which uses both updates of theformsz := y and x := d,
we can apply first the construction described in the proof of Theorem 8 and then the construction described
in the proof of Theorem 9 to get a bisimilar classical timed automaton. We thus get the following result.

Corollary 2. Let C C C(X) bea set of clock constraints, and let
UCLu({z:=d|zeXanddecQ}U{z:=y |z, ye X})

Let A € Uta(C,U) (resp. A € Uta.(C,U)). There exists a timed automaton 5 € Uta(C(X),Uo (X)) (resp.
B e Uta.(C(X),Up(X))) suchthat A =, 5.

We now consider the whole set of deterministic udpates and we will generalize the previous results. From
the decidability results of section 5, we know that for general updatable timed automata, deterministic
updates of the form = := y + ¢ can not aways be replaced by resets. We thus need to restrict ourselves to
diagonal-free timed automata with particular classes of updates. Note that the proof of the next theorem is
much more involved than the proofs of the two previous theorems and that its results can not be considered
any more as " folfklore".

Recall that the system (S4r) of linear inequations associated with a set of constraints and a set of updates
has been defined at the end of section 5.2, page 19.

Theorem 10. Let C C Cq4¢(X) be a set of diagonal-free clock constraints and
UCLu{z:=d|zeXanddeN}U{z:=y+d|x, yec Xandd € Z})

a set of deterministic updates such that the system (Sq¢) of linear inequations associated with C and U/
has at least a solution. Let A € Uta(C,U) (resp. A € Uta.(C,U)). There exists an automaton B €
Uta(Cyp (X)), U (X)) (resp. B € Uta.(Car(X),Up(X))) such that A =, B.

Proof. Let .A be atimed automaton in Uta(C,). We build atimed automaton BB in Uta(C(X),U’) where
U C Lu{z:=d|rze Xandd e N} U{z:=y |z, y € X}) which will be strongly bisimilar to .A.
Applying Corollary 2 will give the proof.

We consider integer constants (max,).c x, solutions of the system (Sqr) (see page 19) for the automaton
A. For every a = (a,)zex € Z% such that for every clock z, o, < max, + 1, for every state ¢ of A,
we consider acopy q, of ¢. Intuitively, in the state ¢, the value of the clock x will be the value this clock
should havein ¢, minus «,. (o can be seen asashift of the clocksw.r.t. their valuesin theinitial automaton).

If ¢ 24, ¢ isatransition of A, we add atransition ¢, —=*""* ¢ ,, for every o with:

33

— Yo = Plr — T+ ayl,
— upa:up[x ;:yinsteadofx:=y+c},
e _{aercifx;:ercupdateofup

00 if x := c update of up
If the value of o/, computed in this way satisfiesthat o/, > max,, then we update o, to
max, + 1.

We say that o’ is obtained from « in an elementary way thanks to the update up.

thus construct, for every state ¢, an infinite number of copies. However, we will prove that, from theinitial
states indexed by (0, . .., 0), only afinite number of such states are reachable.

The number of tuples o = (a,),ex € Z* such that for every clock z, a, < max, +1 isinfinite. We did

Itisof course sufficient to prove that the set of tuples « such that a state ¢, isreachable, islower bounded.
Assume that it is not the case. There exists a sequence of tuples (a(?));>, such that o(®) = (0,...,0), and
for every i, at1) is obtained from o(*) in an elementary way thanks to an update up,, and moreover, the
sequence (a;’“)izo tendsto —oo (for agiven clock z). By definition of ¢/, every up; can be written in the
form:

/\ T :=dy; N\ /\ T =Yy +Cp A /\ T =Yy +

X
reX1 rEXo r€X3

<0 Ce >0

with X1, Xs and X3 digjoint sets. We thus set

/o —
up; = /\ T =Yg + Cy
reXs
<0

and we define the sequence (5,0 with:

6(0) = a(o)
B0+ s obtained in an elementary way from 3() thanks to up)

It is easy to verify that the sequence (ﬁ(i))@o is decreasing, and non-stationary (for the natural order on

the tuples of integers) because (agi))i>o tendsto —oo for some clock z.

Let z; beaclock such that the sequence (é?)izo tendsto —oo. There exists at least an update of the form
21 1= 29 + ¢ belonging to U (thuswith ¢; < 0) such that the sequence (ﬁg))izo also tendsto —oo. Inthis
way, we can construct a sequence of clocks (z,),>1 such that:

— there exists an update z,, := z,4+1 + ¢, inU (with ¢, < 0),

— for every p > 1, the sequence (§:))Z-20 tends to —oo.
The set of clocksisfinite, there exists thus p < ¢ such that z, = z,. However, the constants (max,,) e x
are solutions of the system (Sqy), page 19 and this system contains in particular the inequations

max;, < max.,., +¢, Withe, <0

max,, , <max., +cq-1 Withe, 1 <0
In particular the constant max., = max., hasto satisfy max. < max. , whichisnot possible.

Thus we have proven that the set of states ¢, which are reachable is finite. We denote by 15 the automaton
we just constructed. This automaton belongsto Uta(C(X),U").

34

We define the relation R as follows, between the states of the transition system associated with A, and the
states of the transition system associated with /5:

vand v, + o are equivalent for the region equivalence R (ax,)
v(z) <max, = v(z) =v.(z)+a, forevery z € X

(0.0 RM00r00) = {
We will provethat R isabisimulation relation.

a

Let us assume that (¢, v)R(ga,vs) and that (¢,v) — (¢’,v). It means that there exists a transition
©@,a,up Pa,a,UP /
¢/, We set

g ———— ¢ in Asuchthat v = ¢ and v’ = up(v). In BB, thereis atransition g,
vl = upa(ve) and wewill provethat (¢/, v)R(q.,,v").

e if x isaclock suchthat x := ¢ belongsto up, then x := ¢ aso belongsto up,,.
Thus, v/, (z) = ¢ = v'(z) and o, = 0.
e if zisaclock suchthat x := y + ¢ belongsto up, then x := y aso belongsto up,,,
e Assumethat v'(z) € I, with I, < max, (i.e that I, =]d — 1;d[or [d] with d < max_).
We want to show that v’ (z) = v, (z) + «,. To this aim, we compute

vl (z) + o, = va(y) + o, because z := y belongs to up,,

We distinguish two cases:
1. If o, < max,, we then get that

Vi (7) + 0 = va(y) +ay +c
However, we havethat (¢, v)R(qa, vo) and v(y) < max, (becausev’(x) = v(y)+c < max,
and max, < max, + c), thus

Vo () + 0 = v(y) + ¢ =0 (2)
2. If o/, > max,, it meansthat o, + ¢ > max,. However,
v'(x) = v(y) + ¢ = va(y) + oy + ¢ > max,

Itisof course not possible because we did assume that v’ (z) < max,,.
e Assumethat v'(z) > max,. We distinguish two cases:
1 If &, > max,, then v/, (z) + o/, > max,.
2. If o/, < max,, thenv/,(x) + o/, va(y) + o, + c. There are also two cases:
(i) if vo(y) + oy < max,, then

vh(x) + o, = v(y) + ¢ ='(x) > max,

(i) if vo(y) + @y > max,, then asmax, < max, +c, we get that v/, (z) + o/, > max,.
In all cases, we have seen that v/, (z) + o/, > max,, and that is precisely what we wanted.
o the change between up and up,, keeps the relative order of the fractional parts.

Wethus get that (¢, v')R(q),,v.,.). Thereverseisvery similar.

We did thus exhibit a bisimulation relation between A and 5. O

Remark 8. Up to the (un)decidability results (cf section 4), we cannot extend the previous result to timed
automata that also use diagonal clock constraints, because thisleads to an undecidable model. It isinterest-
ing to understand why the previous proof cannot be extended and thus where the diagonal -free hypothesis
is fundamental. In order to have a finite number of copies of each state, we set the value max, +1 to o,
whenever the computed value is greater than max,, +1. This change does not disturb the truth or the falsity
of diagonal-free clock constraints, but can change the truth or the falsity of diagonal clock constraints.

Example 12. In this case aso, we consider a simple example. The two automata drawn on figure 2 are
strongly bisimilar. The one on the right results from the construction described above, taking as initial
automaton the one on the left. The maximal constants are max, = 0 and max,, = 1.

35

y>1,a, z:=y+1

y>1,a, z:=y

Fig. 2. Two strongly bisimilar automata

6.4 Expressiveness of Non-Deter ministic Updates

We now study the general case of non-deterministic updates. From the example of section 6.2, it isfalseto
say that any updatabl e timed automaton with non-deterministic updatesis strongly equivalent to aclassical
timed automaton. We will thus concentrate our efforts on weak similarity. We will prove that any updatable
timed automaton with non-deterministic updates, from a decidable class, is weakly bisimilar to a timed
automaton with e-transitions. But, asit will appear, the constructions are much more technical than in the
case of deterministic updates. We first deal with diagonal-free automata.

Construction for diagonal-freeclock constraints. We propose anormal form for diagonal-free updatable
timed automata. Let (max,).cx beafamily of integer constants. In what follows we only consider clock
constraints x ~ ¢ with ¢ < max,. Asdefined in section 5.2, we set:

Z, ={[c] | 0 < ¢ <max,} U{]¢;c+ 1] 0 < ¢ < max, } U {Jmax,; co[}

A clock constraint ¢ is said to be total if isaconjunction A .y (z € I.,) where for each clock z, I, is
an element of Z,.. Any diagonal-free clock constraint bounded by the constants (max.,).cx IS equivalent
to adigunction of total clock constraints.

We also define
I!. = {]c;c+ 1[] 0 < ¢ < max, } U {]Jmax,; oo[}

An update up,. issaid elementary if it is of one of the following forms:

x:€ I, withl, € Z,,
—z:=y+cAz:€ I withl] € 7/ and max, < max, +c,
= (Ajewz <y+enaie) with H C X, I € T, and ¥y € H, max, < max, +c,

_ (/\yeHx:>y+c/\x:€ Ig’c) with H C X, I, € 7/ and Vy € H, max, < max, + c.

An elementary update up,. is compatible with atotal constraint A (z € I,,) if:

zeX

— I, + ¢ C I, whenever up, isz :=y+cAz:€ 1,
—foranyy € H, I, + ¢ C I whenever up, is (A ey @ i~y +c) Az €) and [} = I,.

Definition 5. Let (max,),cx beinteger constantsand let A be atimed automaton in Uta(Cqs (X),U(X)).
We say that A isin normal form for the constants (max,),cx whenever for every transition ¢ =2, ¢/
of A, the following holds:

36

— pisatotal clock constraint,
- up = A\, x up, Wherefor every clock z, up, isan elementary update, compatible with (.

Applying classical rules of propositional calculus and splitting the transitions, we easily obtain the normal
form for diagonal-free updatable timed automata (recall that we restrict here our work to updates defined

by ($ar), page 19):

Proposition 10. Let C be a set of diagonal-free clock constraints and U/ be a set of updates defined by
the grammar ($4¢). We assume that the system (Sq¢) has a solution, (max,).c x. Any timed automaton of
Uta(C,U) is strongly bisimilar to a timed automaton of Uta(Cqs (X),U(X)) which isin normal form for
the constants (max;)¢ x-

Before stating our main result about the expressiveness of diagonal-free updatable timed automata, let us
try to illustrate the difficulties and the techniques that we will use on two toy examples.

Example 13. Consider the following automaton:

@ r<2 a, x:<1 m x=1,b @
A/

The timed language recognized by this automaton is {(a, t)(b,t') |0 <t < 2and0 < ¢’ —t < 1}.
The previous automaton can be weakly simulated by the foll owing automaton, which only has deterministic
updates:

4’Qx<2,a,zx:20mzw<l,€,x::1m x=1,0b O—>
N> A/

The non-deterministic update of the first automaton has been replaced by asilent action. The clock z, which
has been added represents the fractional part of = and thus checks whether it does not become bigger than
1.

Example 14. Let us consider the following automaton:

@ y<l1, a m r=20 _O_,
r:<yANy:=0 U

The timed language recognized by this automaton is {(a, t)(b,t') | t < 1 and t’ > 2}.
A first (wrong) ideaisto perform the transformation above:

@ y<la /7 =<le /) o=2) @
Zz =0Ay:=0 U r:=1Az,:=0 U

However thetransformation is not correct. Thisautomaton accepts for examplethetimed word (a, 0.5)(b, 1.8),
which is not recognized by the initial automaton.

To avoid this problem, we can add a new clock, w,, ,, which aims at keeping in mind that, when 2 has been
updated, the value of = was less than the value of y. Thisleeds to the following automaton:

37

@ y<1,a mww7y>l/\zw<1,€mx2’b'©_>
zmzzkoLy::zy/\y::OU r:=1ANz:=0 __/

When the second transition is taken, the value of x isset to 1 (thistransition is chosen at a non-determinisc
date), and to ensure that the value of y was greater than «, we add the constraint w,, ,, > 1. The clock w, ,
thus stores the value of y when an update = :< y is done in the origina automaton. Clock y can then be
reset safely, information on the old value of = and thus on the difference « — y is stored in w ,,. It is easy
to verify that this automaton recognizes the same timed language as the initial automaton.

We will generalize the constructions of these two examplesto prove the next theorem on the expressiveness
of updatable automata with non-deterministic updates and diagonal-free clock constraints.

Theorem 11. Let C be a set of diagonal-free clock constraints and ¢/ be a set of updates defined by the
grammar ({q). Weassumein addition that the system (S4¢) hasa solutionfor C and /. Let A € Uta(C, i)
(resp. A € Uta.(C,U)). There exists an automaton B € Uta.(Cqp(X),Uy (X)) such that B 3=, A and
.A =/ B.

Proof. Thanks to lemma 6 and proposition 10, we assume that all constants appearing in A are integers
and that A isin normal form for some constants (max;),cx -

A clock z is said fixed if the last update for - was either of theformz := cor (x :=y+c Az :€ I)
where the clock y was itself fixed. A clock which is not fixed is said floating. The terminology “floating”
comes from the fact that the value of afloating clock is not precisely known, we only know the interval of
the form]d; d + 1] to which it belongs.

The transformation algorithm constructs (a lot of) copies of the original automaton A, by adding suitable
clocks, transforming the transitions and adding silent actions in order to go from one copy to another.

Adding clocks.

For any clock = in X, we define aclock z, which intuitively represents the fractional part of x.

For any pair of clocks (z,y), we aso define two clocks, w,. ,, and w, ,,, which will compare the fractional
partsof x and y. Let X bethe set of these 2| X |? additional clocks. Wewill explain their precise roles along

the construction.

Duplication of the original automaton.

Let us consider a subset Y of X, that corresponds intuitively to the floating clocks, and a partial order <
defined on Y, which represents the relative order of the fractional parts of the clocksin Y.

Moreover, for any clock y of Y, we define an interval I,, of the form |d; d + 1[with 0 < d < max,,. The
clock y will be supposed to bein theinterval 1,,.

Finally, we consider asubset Z of X, whose role will be explained below.

For any tuple 7 = ((I)yev, <, Z), we construct acopy A of the automaton .A. On each transition of A,
we add the clock constraint
/\ yelyA /\ ze <1

yey zeX
Some such constraints are trivially equivalent to “False”, in which case the corresponding transition can be
erased.
We denote by T the set of al the tuples + described above.

Fixed clocks.

When the fractional part of afixed clock reaches the value 1, we stay in the same copy of the automaton.
To ensure this, in every copy A, with 7 = ((,),ev, <, Z), we add on each state and for every clock
x € X \Y,alooplabelled by (z, =1, ¢, z, :=0).

38

Floating clocks.

We can fix some floating clocks withs a silent action. Of course, a clock can be fixed only by reaching
an integer value. Among the floating clocks, the first ones which will reach first the upper bound of their
interval are those maximal for the preorder. Formally, let A, with 7 = ((I,)yev, <, Z) and let M be the
set of maximal elements for <. For any state g of A, we construct an e-transition leading to the copy of ¢
in the automaton A, such that 7" = ((I,)yey’, <', Z’) where:

—Y\ M
<'=<NY’"xY’)
7 = Z\{wmyy,w_;_’y | z € M}

Thise-transition is labelled by the clock constraint

/\ (Wg,y > 1) A /\ (wg,, <1)A /\ (zy < 1)

xeM, ww,yEZ rzeM, 11);1yEZ yey
and the update
/\ y = sup(ly)
yeM

where sup(1,,) represents the upper bound of 7., i.e. d + 1if I, =|d;d + 1].

The existence of aclock w; ,, (resp. w;, ,) showsthat an updateof theformz :< y+c (resp. z :> y+c) has
been used previoudly. The clock constraint w,. , > 1 (resp. w;, , < 1) ensures that we did redlly simulate
such an update.

M odification of the transitions.

We consider a copy A, with 7 = ((I)yev, <, Z) and atransition (¢-, ¢, a, up, ¢..) of this copy. This
transition will be repl aced by atransition (¢, ¢, a, up, ¢-) where ¢~ isthe state, corresponding to ¢/ in an
other copy A; with 7(1, v)yev =, Z) which will be made precise below.

The components Y, (I)
updates appearing in up.
The new update up up will onIy be defined thanks to deterministic updates (of theformz ;= corz := y+).
Inmally,wesetY Y, Iy =I,foreveryy e Y, < =<, up = gandZ = Z.

yev = and up will be built inductively by considering one after the other the

Before listing all the possible updates, we explain the role of the set Z, which has not been precised yet.
Assume that the clock x has been updated thanks to = :< y + ¢ where y is a fixed clock. The clock «
becomes floating. We use the clock z,. in order to store the fractional part of a, we reset this clock to zero.
We also need to keep in mind the current value of the fractional part of y, stored until now “in” the clock
zy. AS z, must stay less than z,, z, must reach 1 before z, does. Of coursg, if the clock ¥ is not updated,
this can be checked using the clock z,, but if the clock y isaso updated, or is updated before z, reaches 1,
the old value of z, will be forgotten. We thus add the clock w, , to the set Z and we set w,, , := z,. The
clock wy, ,, will keep in mind the old value of z,,, whatever the clock y becomes. The property that we now
need to check is that w, , > 1. Therole of the clocks w;w issimilar, but they are used for the updates of
theform = :> y + ¢, where y isafixed clock. The condition * z,, reachesthe value 1 before z,” is checked
thanks to the clock constraint w;, , < 1. Example 14 illustrates the use of these clocks,

As said before, we now list al the possible values for the updates:
o if up, isx := ¢, wejust need to consider x as afixed clock:
?H?\{JC},ZHZ\{U}IU,U};U lye Xhup—upAz:=cNzy:=0

o ifup,isx:€ I,

39

1. if I =]cy; 400, then
Y Y\ {2}, Z — Z\{way,w), |y € X}, Up — WpAx:=cy+ 1Az =0
2. if I =)c; ¢ + 1], then
Y —YU {z}, Z — 2\{wm,y,w;7y | y € X}, X isatotal preorder compatible with
Zontheset Y\ {2}, up «— up A zp :=0
—ifupyisz:=y+cAhx:€l,
1 ifyey,
oV =V \{a},
© 2 Z\{wsyu, |y X)
® UD — UDAT =Y+ CAzy =2
2. ifyey,
e if I/ isbounded,
LY YU {z},
7= 2\ {wpy,)y, |y € XY,
- =y and y =,
L =1,
S UP = UP N 2y 1= Ty
e if I’ isnot bounded, i.e. I/ =]c,; +o0f,
2 7= 2\ {wpy,)y, |y € XD,
SUP — UPANT =y + LA 2z 1= 2y
. ifupxis(/\yeHx:<y+c)Ax:eI;,wesetﬂl:HmYandHQ:H\Yand
o if I’ is bounded,

LY =Y u{z},
: 22(2\{wx,y7w;,y|y€X})U{wx,y|y€H2}v
-x?yandy;émifyeHl,
SUp — Up A 2z = 0NN e, Way = 2y
o if I iS]cy; +oo,
Y =Y\ {z},
7= (Z\{wy)y |y € X}),
SUP — UPAT = cCp + 1A 25 := 0.

o if up, iS(/\yeHx:>y+c) ANzl ,weset Hy=HNY and H, = H\Y and
e if I isbounded,

LY =Y u{a},
cZ=(Z\{wy), |ye XY U{wl, |y € Ha),
Cy=a andm;éyifyeHl,

40

. o ;L
S UPp —Up N zg =0 A /\yEH2 Wy 7= 2y

o if Il is]cy; +00],
=P\ o),
 Z=(Z\{way,w}, |y € X}),

CUP —UPp AT =y + 1A 2, := 0.

It remainsto prove that the resulting automaton weakly simulatesthe initial automaton and that, in addition,
it recognizes the same timed language.

We now define arelation R, which will be asimulation relation. Roughly, a state of the original automaton
will be in relation with all the copies of this state in the copies of the automaton. The set of states of the
timed transition system associated with A is Q x T, whereas the set of states of the transition system
associated with 5 is:

{¢- | e Qandr € T} x TX HzlzeX}uz

We define the relation 3= by

‘Vy €Y, v(y) € [and0 < v'(z,) <1,

‘ Vy € X \ Y, etherv(y) = v'(y) or (v(y) > ¢, and v’ (y) > ¢,),
= (g, 0"), (g, 0)) ‘ y1 < y2 = frac(v(y1)) < frac(v(y2)),

‘ Wyy € Z = frac(v(z)) < v'(wa,y)

| andw,, €Z = frac(v(z)) > v'(w;).

It iseasy but tiresometo provethat = isasimulation relation and that the automaton 5 recognizes the same
timed language as the initial automaton.

The automaton which has been constructed only has deterministic updates and diagonal-free clock con-
straints. We finally use Corollary 2 to conclude the proof of theorem 11. O

Example 15. Consider the timed automaton below:

Y, a, T :>c

v, b, x=d

The transformation of the proof builds the automaton depicted on figure 3 (in this case, no clock wy, , or
wy, ,, is needed). This construction suffers from an important combinatorics explosion, we thus only draw
asmall part of the resulting automaton, it should be sufficient for understanding the construction.

Let us describe this automaton. There is only one clock x. One copy for each interval Jo; o + 1] (with
¢ < o < max,) isneeded. The transition going up on the right of the figure represents the fact that clock
2 has reached the upper bound of interval Jo; o + 1] whereit was floating. Thistransition can betakenina
non-deterministic way, it thus fix a posteriori the value clock = had after the update « :> ¢. Loops on the
upper automaton represent when the value for = through the update x :> ¢ istaken as an integer value or a
value greater than the maximal constant (in which case, the precise value is not important, we just need to
know that it is bigger than max,., thus we set it arbitrarly to max, +1.

41

Y, a, T:=maxy + 1 p, a, T :=aWitha > ¢

A
Ze < 1A, zz < 1, €,
,a, 2g =0
b, x:=d v r:=a+1
|/ \‘
| |
| |
| |
| |
|
| @ @ |
| |
|
\ Inv(z, < 1) K Aa:e]oc;a-i-l[
B e -7 with ¢ < a < max,

[x ~ e « True/False]

Fig. 3. Removing the non-deterministic updates

Construction for general clock constraints. We consider now updatable timed automata with general
clock constraints. As in the previous section, we define a normal form for these automata. \We consider
againthesetsZ,, 7., J..,, defined in sections 5.2 and 5.3. We will say that a clock constraint

/\ r el A /\ =Y € Jpy
zeX z,yeX

istotal whenever for every clock z, I, € 7, and for @l clocks z,y € X, J, , € J,,,- Wewill say that an
update up,. for the clock x is strictly elementary whenever it is of one of the following forms:
— x:=cwith0 < ¢ < max,,
—x:e Iwith I € 7!/ (I isthe set {Jc; ¢ + 1[] 0 < ¢ < max, }),
—(z=yAz:el)withl, € T].
A strictly elementary update up,. is compatible with atotal clock constraint

/\ rel, A /\ =Y € Joy
reX z,yeX

if I, C I, assoon asup, isz ==y Ax :€ I.

Definition 6. Let ((max,).cx, (max,)z yex) be atuple of constants and let A be a timed automaton
in Uta(C(X),U(X)). Aissaidto beinnormal form for the constants ((maxy) e x, (maxy y)z yex) if for
every transition ¢ =", ¢/ of A:

42

— p isatotal clock constraint, and
— up = N\, x up, Withfor every clock z, up,, isa strictly elementary update, compatible with ¢.

Applying the classical rules of the propositional calculus and splitting the transitions, we obtain the nor-
mal form for the timed automata with general clock constraints (recall that updates are restricted to the
definition & e, Page 24).

Proposition 11. Let C be a set of general clock constraints and let I/ be a set of updates generated by the
grammar ($g4en). We assume that the system (S,.,,) has a solution, ((maxy)zex, (Maxy) yex). Every
automaton in Uta(C,U) is strongly bisimilar to an automaton in Uta(C(X),U (X)) which is in normal
formfor the constants ((max;)zcx, (Maxy 4)z yex)-

When we are interested in decidable subclasses of timed automata with general clock constraints, we must
restrict the set of updates which we consider. Aswill be established in the following theorem, the decidable
timed automata can be weakly simulated by classical timed automata with silent actions.

Theorem 12. Let C be a set of general clock constraints and I/ be a set of updates generated by the gram-
mar ($gen). Let A be an automaton in Uta(C,U). There exists an automaton 5 in Uta. (C(X),Uy(X))
suchthat B =, Aand A =, B.

The proof is similar to the one of theorem 11, and is even simpler since we do not have updates of the form
xi~y+ce(with~ e {<, < > >1).
6.5 Summary of the Expressiveness Results

In this section, we proved the expressiveness results which are summarized in Table 3 (TA represents
the class Uta(C(X),Uy (X)) whereas TA. represents the class Uta.(C(X),Uy(X)). The sign >, means
“strictly more expressive” (from alanguage point of view).

Up(X) U ... Diagonal-free constraints General constraints

1 Ti=c,ri=Y =; TA
2 ri=x+1 =, TA
3 r=y+c Turing
4 r:=x—1 Turing
5 x:<c >, TA, TA:
6 :

x:>c TAE
7 r:~y+c .

Turing

8 ly+c<iz:<y+d
9 lyt+c<iax:<z+4+d Turing

with~ € {<, <, >, >}andc, d € QF
Table 3. Expressiveness results

The updatable timed automata model is thus not much more expressive than classical timed automata. The
transformation of a (decidable) updatable timed automaton into a classical timed automaton with silent
actions suffers from a big combinatorics blow-up, thus updates appear to provide a synthetic way to rep-
resent timed behaviours. We do not know whether some simpler transformation exists, but the preliminary
examples 13, 14 and 15 let usthink that it is rather improbable that it exists.

43

7 Conclusion

In this paper, we studied a natural extension of Alur and Dill’s timed automata, based on the possibility to
update clocks in amore elaborate way than simply reset them to zero. Our results concern both decidability
results (summarized in table 2, page 25) and expressiveness properties (summarized in table 3, page 43).

Our work lets open some mostly theoretical questions about updatable timed automata. For example, one
could be interested in the following questions:

— Isit possible to transform an updatabl e timed automaton into an equival ent traditional timed automaton
in asimpler way than the one presented in section 6?

— Is it sometimes unavoidable to use e-transitions when transforming updatable timed automata into
equivalent timed automata? If so, when can we do so?

However, from our point of view, the main interest of thiswork isto provide a sound theoretical framework
for the use of updatabl e timed automata as a model in real case studies (if that was necessary, arecent paper
[Bou03] has recalled how much these theoretical frameworks were necessary to tools). Indeed, updatable
timed automata allow to represent in a concise way systems which can not be modelled in a natural way
by timed automata. We also proved that analyzing these models can be done in a complexity not higher
than the one of classical timed automata. Subclasses of updatable timed automata have been implemented
in the tool UPPAAL. Their implementation uses a technique inspired by our Diophantine inequations sys-
tems [BBFLO3].

Acknowledgements: We would like to thank Béatrice Bérard for her careful reading of the paper and her
comments.

References

[ACDT92] Rajeev Alur, Costas Courcoubetis, David Dill, Nicolas Halbwachs, and Howard Wong-Toi. An imple-
mentation of three algorithms for timing verification based on automata emptiness. In Proc. 13th |IEEE
Real-Time Systems Symposium (RTSS 92), pages 157-166. | EEE Computer Society Press, 1992.

[ACH94] Rajeev Alur, Costas Courcoubetis, and Thomas A. Henzinger. The observational power of clocks. In
Proc. 5th International Conference on Concurrency Theory (CONCUR' 94), volume 836 of Lecture Notes
in Computer Science, pages 162—177. Springer, 1994.

[AD90] Rajeev Alur and David Dill. Automatafor modeling real-time systems. In Proc. 17th International Collo-
quium on Automata, Languages and Programming (ICALP’ 90), volume 443 of Lecture Notesin Computer
Science, pages 322—-335. Springer, 1990.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer Science (TCS),
126(2):183-235, 1994.

[AFH94] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. A determinizable class of timed automata. In Proc.
6th International Conference on Computer Aided \erification (CAV’94), volume 818 of Lecture Notes in
Computer Science, pages 1-13. Springer, 1994.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Vardi. Parametric real-time reasoning. In Proc. 25th
Annual ACM Symposium on the Theory of Computing (STOC’ 93), pages 592—601. ACM, 1993.

[BBFLO3] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen. Static guard analysis in timed
automata verification. In Proc. 9th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2003), volume 2619 of Lecture Notes in Computer Science, pages 254—
277. Springer, 2003.

[BBP02] Béatrice Bérard, Patricia Bouyer, and Antoine Petit. Analysing the PGM protocol with UPPAAL. In Proc.
2nd Workshop on Real-Time Tools (RT-TOOLS 02), 2002. Proc. published as Technical Report 2002-025,
Uppsala University, Sweden.

[BDOQ] Béatrice Bérard and Catherine Dufourd. Timed automata and additive clock constraints. Information
Processing Letters (IPL), 75(1-2):1-7, 2000.

[BDFPOO4] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Are timed automata updat-
able? In Proc. 12th International Conference on Computer Aided Verification (CAV’ 2000), volume 1855
of Lecture Notesin Computer Science, pages 464—479. Springer, 2000.

[BDFPOOb] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Expressiveness of updatable
timed automata. In Proc. 25th International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2000), volume 1893 of Lecture Notesin Computer Science, pages 232—242. Springer, 2000.

[BDGP98] Béatrice Bérard, Volker Diekert, Paul Gastin, and Antoine Petit. Characterization of the expressive power
of silent transitionsin timed automata. Fundamenta Informaticae, 36(2—3):145-182, 1998.

[BF99] Béatrice Bérard and Laurent Fribourg. Automated verification of a parametric real-time program: the ABR
conformance protocol. In Proc. 11th International Conference on Computer Aided Verification (CAV' 99),
volume 1633 of Lecture Notesin Computer Science, pages 96-107. Springer, 1999.

[BFKMO3] Béatrice Bérard, Laurent Fribourg, Francis Klay, and Jean-Francois Monin. A compared study of two
correctness proofs for the standardized algorithm of abr conformance. Formal Methods in System Design,
22(1):59-86, 2003.

[BGP96] Béatrice Bérard, Paul Gastin, and Antoine Petit. On the power of non-observable actionsin timed automata.
In Proc. 13th Annual Symposium on Theoretical Aspects of Computer Science (STACS 96), volume 1046
of Lecture Notesin Computer Science, pages 257—268. Springer, 1996.

[BLL™98] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, Wang Yi, and Carsten Weise. New gen-
eration of UPPAAL. In Proc. International Workshop on Software Tools for Technology Transfer (STTT’ 98),
BRICS Notes Series, pages 43-52, 1998.

[BouO3] Patricia Bouyer. Untameable timed automatal In Proc. 20th Annual Symposium on Theoretical Aspects
of Computer Science (STACS 03), volume 2607 of Lecture Notes in Computer Science, pages 620-631.
Springer, 2003.

[CGOOQ] Christian Choffrut and Massimiliano Goldwurm. Timed automata with periodic clock constraints. Journal
of Automata, Languages and Combinatorics (JALC), 5(4):371-404, 2000.

[DGP97] Volker Diekert, Paul Gastin, and Antoine Petit. Removing e-transitions in timed automata. In Proc. 14th
Annual Symposium on Theoretical Aspects of Computer Science (STACS 97), volume 1200 of Lecture
Notes in Computer Science, pages 583-594. Springer, 1997.

[Dom91] Eric Domenjoud. Solving systems of linear diophantine equations: An algebraic approach. In Proc. 16th
International Symposium on Mathematical Foundations of Computer Science (MFCS 91), volume 520 of
Lecture Notes in Computer Science, pages 141-150. Springer, 1991.

[DOTY96] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. Thetool KRONOS. In Proc. Hybrid
Systems 11: \erification and Control (1995), volume 1066 of Lecture Notes in Computer Science, pages
208-219. Springer, 1996.

[DOY94] Conrado Daws, Alfredo Olivero, and Sergio Yovine. Verifying et-lotos programs with KRONOS. In Proc.
7th International Conference on Formal Description Techniques (FORTE' 94), pages 227-242. Chapman
& Hall, 1994,

[Duf97] Catherine Dufourd. Une extension d'un résultat d’indécidabilité pour les automates temporisés. In Proc.
9th Rencontres Francophones du Parallélisme (RenPar’ 97), 1997.

[DZ98] Frangois Demichelis and Wieslaw Zielonka. Controlled timed automata. In Proc. Sth International Con-
ference on Concurrency Theory (CONCUR' 98), volume 1466 of Lecture Notesin Computer Science, pages
455-469. Springer, 1998.

[HHWT95] ThomasA. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A user guideto HYTECH. In Proc. 1st Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 95),
volume 1019 of Lecture Notes in Computer Science, pages 41-71. Springer, 1995.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model-checker for hybrid
systems. Journal on Software Tools for Technology Transfer (STTT), 1(1-2):110-122, 1997.

[HKWT95] ThomasA. Henzinger, Peter W. Kopke, and Howard Wong-Toi. The expressive power of clocks. In Proc.
22nd International Colloquium on Automata, Languages and Programming (ICALP’ 95), volume 944 of
Lecture Notes in Computer Science, pages 417—-428. Springer, 1995.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal modeling and analysis of an
audio/video protocol: An industrial case study using UPPAAL. In Proc. 18th IEEE Real-Time Systems
Symposium (RTSS 97), pages 2-13. IEEE Computer Society Press, 1997.

45

[HU79]

[JLS96]

[LL9g]

[LPY97]

[Milgg]

[Min67]
[Par81]

[Wil94]

[Yio0]

[Yiol]

[Yov97]

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

Henrik E. Jensen, Kim G. Larsen, and Arne Skou. Modelling and analysis of a collision avoidance protocol
using sPIN and UPPAAL. In Proc. 2nd SPIN Verification Workshop on Algorithms, Applications, Tool Use,
Theory. American Mathematical Society, 1996.

Frangois Laroussinie and Kim G. Larsen. Cmc: A tool for compositional model-checking of real-time
systems. In Proc. IFIP Joint International Conference on Formal Description Techniques & Protocol
Soecification, Testing, and Verification (FORTE-PSTV' 98), pages 439-456. Kluwer Academic, 1998.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Journal of Software Tools for
Technology Transfer (STTT), 1(1-2):134-152, 1997.

Robert Milner. Communication and Concurrency. Prentice Hall International, 1989.

Marvin Minsky. Computation: Finite and Infinite Machines. Prentice Hall International, 1967.

David Park. Concurrency and automata on infinite sequences. In Proc. 5th Conference on Theoretical
Computer Science (TCS 81), volume 104 of Lecture Notesin Computer Science, pages 167—183. Springer,
1981.

Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed automata.
In Proc. 3rd International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 94), volume 863 of Lecture Notesin Computer Science, pages 694—715. Springer, 1994.

Wang Yi. Real-time behaviour of asynchronous agents. In Proc. 1st International Conference on Theory of
Concurrency (CONCUR 90), volume 458 of Lecture Notesin Computer Science, pages 502-520. Springer,
1990.

Wang Yi. A Calculus of Real-Time Systems. PhD thesis, Chalmers University of Technology, Goéteborg,
Sweden, 1991.

Sergio Yovine. KRONOS: A verification tool for real-time systems. Journal of Software Tools for Technol-
ogy Transfer (STTT), 1(1-2):123-133, 1997.

46

