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Rajeev Goré1⋆ and Linh Anh Nguyen2

1 The Australian National University and NICTA
Canberra ACT 0200, Australia

Rajeev.Gore@anu.edu.au
2 Institute of Informatics, University of Warsaw

ul. Banacha 2, 02-097 Warsaw, Poland
nguyen@mimuw.edu.pl

Abstract. The description logic SHI extends the basic description logic
ALC with transitive roles, role hierarchies and inverse roles. The known
tableau-based decision procedure [11] for SHI exhibit (at least) NEXP-
TIME behaviour even though SHI is known to be EXPTIME-complete.
The automata-based algorithms for SHI often yield optimal worst-case
complexity results, but do not behave well in practice since good optimi-
sations for them have yet to be found. We extend our method for global
caching in ALC to SHI by adding analytic cut rules, thereby giving the
first EXPTIME tableau-based decision procedure for SHI, and showing
one way to incorporate global caching and inverse roles.

1 Introduction and Motivation

Description logics (DLs) are notational variants of multi-modal logics which
have proved to be important in representing and reasoning about knowledge.
We assume the reader is familiar with the notions of transitive roles, inverse
roles, role hierarchies and TBoxes (global assumptions) in DLs [2].

The decision problem for most of these logics (with global assumptions) is
EXPTIME-hard. The known decision procedures for these logics are tableau-
based, resolution-based or automata-based. In practice, the automata-based
methods do not behave as well as the other methods since good optimisations
for them have not been found to date. For very expressive description logics, the
most successful practical methods are all tableau-based.

Global assumptions or transitive roles can cause the traditional tableau meth-
ods for these logics to contain infinite branches because certain nodes repeat ad
infinitum. The usual solution is to remember certain nodes created along the
current branch using “histories” and to “block” all rules that would re-create an
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exact copy of any remembered nodes [2, 9]. For inverse roles, blocked nodes can
become unblocked, and reblocked later, requiring “dynamic blocking” [11].

The basic description logic ALC extended with transitive roles, inverse roles,
and role hierarchies is called SHI. Horrocks and Sattler [11] gave a NEXPTIME
tableau decision procedure for SHI. In [2], Baader and Sattler wrote: “The point
in designing these algorithms [for SHI] was not to prove worst-case complexity
results, but · · · to obtain ‘practical’ algorithms · · · that are easy to implement
and optimise, and which behave well on realistic knowledge bases. Nevertheless,
the fact that ‘natural’ tableau algorithms for such EXPTIME-complete logics are
usually NEXPTIME-algorithms is an unpleasant phenomenon. · · · Attempts to
design EXPTIME-tableaux for such logics (De Giacomo et al., 1996; De Gia-
como and Massacci, 1996; Donini and Massacci, 1999) usually lead to rather
complicated (and thus not easy to implement) algorithms, which (to the best of
our knowledge) have not been implemented yet.” [2, page 26].

More precisely, the mentioned work of De Giacomo and Massacci [3] gives
only a NEXPTIME tableau decision procedure for propositional dynamic logic
with converse (CPDL) and an informally described transformation of NEXP-
TIME tableaux into an EXPTIME decision procedure for CPDL using the “look
behind analytic cut”. Using analytic cuts to eliminate nondeterminism and re-
duce the complexity from NEXPTIME to EXPTIME is a good idea. But it is
not clear how to eliminate the nondeterminism (of the NEXPTIME decision
procedure for CPDL [3]) using “look behind analytic cut”. Specifically, suppose
we apply an or-rule to a node w and obtain two successor nodes u and v, and
after that we follow the u-branch. If we later “look behind” and add a formula
ϕ to w, then ϕ affects node v. But how to eliminate the or-branching at w ?

Thus, to the best of our knowledge, no “natural and easy to implement” EX-
PTIME tableau decision procedures have been given or implemented for SHI.
Here, we give such a procedure using analytic cuts to “guess the future” so we
never look behind, in unison with our method of sound global caching for ALC [8].

Caching is a crucial optimisation technique for obtaining efficient tableau-
based decision procedures for description logics [10, 5]. Naive use of caching can
be unsound, so complex and difficult to implement methods have been devised
to regain EXPTIME decision procedures for the basic logic ALC [6]. But the
decision procedure given by Donini and Massacci [6] for ALC permanently caches
“all and only unsatisfiable sets of concepts”, and temporarily caches visited nodes
on the current branch, even though this means that “many potentially satisfiable
sets of concepts are discarded when passing from a branch to another branch”.
Even more complicated methods have been suggested for handling inverse roles
and transitive roles, but these require severe restrictions to retain soundness [5].
Our global caching method is based on building a simple and-or graph using a
sound and complete traditional tableau calculus for ALC/SHI.

Our method for transforming our tableau calculus for SHI into an EXP-
TIME decision procedure for SHI is almost the same as that for ALC in our
previous work [8]. The minor differences are some alterations for SHI and that
some of the tableau rules for SHI carry their principal concepts into their de-
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⊤I = ∆I ⊥I = ∅ (¬C)I = ∆I \ CI (r−)I = (rI)−1

(C ⊓ D)I = CI ∩ DI (C ⊔ D)I = CI ∪ DI

(C ⊑ D)I = (¬C ⊔ D)I (C
.
= D)I = ((C ⊑ D) ⊓ (D ⊑ C))I

(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI implies b ∈ CI}

(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI and b ∈ CI}

Fig. 1. Interpretation of Concepts and Roles

nominators (which we need for combining the proofs of completeness of the
calculus with correctness of global caching). The overlap is needed to make this
paper self-contained. The major differences of this paper w.r.t. [8] lie in the use
of the cut rules, and the non-trivial complications necessary to ensure that the
resulting calculus and the algorithm resulting from it are complete.

In Section 2, we recall the notation and semantics of SHI. In Section 3, we
present our tableau calculus for SHI and prove its soundness, and in Section 4,
we prove its completeness. In Section 5, we present a simple EXPTIME decision
procedure for SHI that is based on the calculus and uses global caching and
propagation. In Section 6, we outline further work and conclusions.

2 Notation and Semantics of SHI

Given a finite set RNames of role names, let RNames− = {r− | r ∈ RNames}
be the set of inverse roles. A SHI role is any member of RNames ∪ RNames−.
We use uppercase letters like R and S for SHI roles. For any SHI role R the
inverse role R− = r− if R = r and R− = r if R = r−.

We use A for an atomic concept and use C and D for arbitrary concepts.
Concepts in SHI are formed using the following BNF grammar:

C, D ::= ⊤ | ⊥ | A | ¬C | C ⊓ D | C ⊔ D | C ⊑ D | C
.
= D | ∀R.C | ∃R.C

An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , the domain
of I, and a function ·I , the interpretation function of I, that maps every atomic
concept to a subset of ∆I and every role name to a subset of ∆I × ∆I . The
interpretation function is extended to interpret all SHI concepts and roles as
shown in Figure 1. An interpretation I satisfies a concept C if CI 6= ∅, and
validates C if CI = ∆I . Clearly, I validates C iff it does not satisfy ¬C.

A TBox (of global axioms/assumptions) T is a finite set of concepts. (Tra-
ditionally, C ⊑ D and C

.
= D are not treated as concept constructors, and a

TBox is defined to be a finite set of terminological axioms of the form C ⊑ D
or C

.
= D, where C and D are concepts, but the two definitions are equivalent.)

An interpretation I is a model of T if I validates all concepts in T .
A SHI RBox R is a finite set of role inclusion axioms R ⊑ S and transitivity

axioms R ◦ R ⊑ R for SHI roles R and S satisfying:
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RBox 1: R ⊑ R ∈ R for every SHI-role R,
RBox 2: R ⊑ S ∈ R implies R− ⊑ S− ∈ R,
RBox 3: R ◦ R ⊑ R ∈ R implies R− ◦ R− ⊑ R− ∈ R, and
RBox 4: R ⊑ R′ ∈ R and R′ ⊑ R′′ ∈ R imply R ⊑ R′′ ∈ R.

An interpretation I is a model of R if I validates all axioms in T : that is,
RI ⊆ SI if R ⊑ S ∈ R, and RI ◦ RI ⊆ RI if R ◦ R ⊑ R ∈ R.

We use X , Y for finite sets of concepts. We say that I satisfies X if there
exists d ∈ ∆I such that d ∈ CI for all C ∈ X . Note: by our definition, satisfaction
is defined “locally”, and I satisfies X does not mean that I is a model of X .

We say that (R, T ) entails C, and write (R, T ) |= C, if every model of R
and T validates C. We say that C is satisfiable w.r.t. (R, T ) if some model of R
and T satisfies {C}. Similarly, X is satisfiable w.r.t. (R, T ) if some model of R
and T satisfies X . Observe that (R, T ) |= C iff ¬C is unsatisfiable w.r.t. (R, T ).

For “tableaux” defined in the next section we use also the concept constructor
∀†R.C, where C is a concept without ∀†. A concept ∀†R.C has the same seman-
tics as ∀R.C (i.e. (∀†R.C)I = (∀R.C)I) but its use in tableaux is more restricted

due to S̃f( ) defined as follows. If C is not of the form ∀†R.D then let S̃f(C)
be the set of all sub-concepts of C and sub-concepts of C including themselves,

else let S̃f(C) = S̃f(D). Let S̃f(X) =
⋃

C∈X
S̃f(C) ∪ {⊥} and let S̃fR(X) be

the set S̃f(X) ∪ {∀S.C, ∃S.C | (∀R.C) ∈ S̃f(X) and S ⊑ R ∈ R for some R}.
Note: We now assume that concepts are in negation normal form, where

.
=

and ⊑ are translated away and ¬ occurs only directly before atomic concepts,
treating ∀† as ∀. In SHI, every concept C has a logically equivalent concept
C′ which is in negation normal form. We write C for the negation normal form
of ¬C: thus, ∀†R.D = ∀R.D = ∃R.D and ∃R.D = ∀R.D.

3 A Tableau Calculus for SHI

We consider tableaux w.r.t. (R, T ), where R is a SHI RBox and T is a TBox.
A tableau rule w.r.t. (R, T ) consists of a numerator X and a (finite) list of
denominators Y1, Y2, . . . , Yk, all of which are finite sets of concepts. Such a rule
(ρ) is written in the form

(ρ)
X

Y1 | . . . | Yk

As we shall see later, each rule is read downwards as “if the numerator X
is satisfiable w.r.t. (R, T ), then there exists a denominator Yi which is also
satisfiable w.r.t. (R, T )”. The numerator of each tableau rule contains one or
more distinguished concepts called the principal concepts.

We write X ; Y for X ∪ Y , and X ; C for X ∪ {C}.
The tableau calculus CSHI for SHI is shown in Figure 2. The rules (⊓), (⊔),

(H), (H†), (cut∀), (cutB), and (cut5) are static rules, while (∃R) is a transitional
rule. Note that we include the principal concept of the static rules in their
denominators. Thus, the numerator of any static rule is a subset of every one of
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(⊥)
X ; C ; C

⊥
(⊓)

X ; C ⊓ D

X ; C ⊓ D ; C ; D
(⊔)

X ; C ⊔ D

X ; C ⊔ D ; C | X ; C ⊔ D ; D

(H)
X ; ∀R.C

X ; ∀R.C ; ∀S.C
if S ⊑ R ∈ R (H†)

X ; ∀†R.C

X ; ∀†R.C ; ∀†S.C
if S ⊑ R ∈ R

(cut∀)
X

X ; ∀R.C | X ; ∃R.C
if ∀R.C ∈ fSfR(X ∪ T )

(cutB)
X

X ; C | X ; C ; ∀†R−.∃R.C
if ∀R.C ∈ fSfR(X ∪ T )

(cut5)
X

X ; ∀R.C | X ; ∃R.C ; ∀†R−.∃R.C
if ∀R.C ∈ fSfR(X ∪ T )
and R ◦ R ⊑ R ∈ R

(∃R)
X ; ∃R.C

transR(X, R) ; C ; T
where

transR(X, R) = {D | ((∀S.D ∈ X) ∨ (∀†S.D ∈ X)) ∧ (R ⊑ S ∈ R)}
∪ {∀S.D ∈ X | (R ⊑ S ∈ R) ∧ (S ◦ S ⊑ S ∈ R)}
∪ {∀†S.D ∈ X | (R ⊑ S ∈ R) ∧ (S ◦ S ⊑ S ∈ R)}

Fig. 2. Tableau Rules w.r.t. (R, T ) for Calculus CSHI

its denominators. The subscripts in (cutB) and (cut5) are names of the modal
axioms (B) : ϕ → 23ϕ and (5) : 3ϕ → 23ϕ, from which they are derived.

A set X is closed w.r.t. a tableau rule if applying that rule to X gives back
X as one of the denominators. We implicitly assume that a static rule is applied
to X only when X is not closed w.r.t. that rule and treat this as an (additional)
condition for applying the rule. Consequently, the rules (H) and (H†) require
that S 6= R and the static rules with two denominators are applicable only if
both denominators are different from their numerator.

A CSHI-tableau (tableau, for short) for X w.r.t. (R, T ) is a tree with root
(X ; T ) whose nodes carry finite sets of concepts obtained from their parent nodes
by instantiating a CSHI-tableau rule w.r.t. (R, T ) with the proviso that: if a
child s carries a set Y and no rule is applicable to Y or Y has already appeared
on the branch from the root to s then s is an end node.

Remark 1. Note that the rules guarantee that T is contained in every world of
the model under construction to ensure that T is globally satisfied as required,
and to allow a simpler presentation of the rules.

A branch in a tableau is closed if its end node carries only ⊥. A tableau is
closed if every one of its branches is closed. A tableau is open if it is not closed.

A finite set X of concepts is consistent w.r.t. (R, T ) if every tableau for X
w.r.t. (R, T ) is open. If some tableau for X w.r.t. (R, T ) is closed then X is
inconsistent w.r.t. (R, T ).
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Calculus CSHI is sound if for every SHI RBox R, every TBox T , and every
finite set X of concepts, X is satisfiable w.r.t. (R, T ) implies X is consistent
w.r.t. (R, T ). It is complete if for every SHI RBox R, every TBox T , and every
finite set X of concepts, X is consistent w.r.t. (R, T ) implies X is satisfiable
w.r.t. (R, T ).

Example 1. Let R be the smallest RBox satisfying the conditions adopted for
RBoxes and containing S ◦ S ⊑ S and S ⊑ R. We give below a closed CSHI
tableau for C ⊓ ∃S.∃S.∀R−.C w.r.t. (R, ∅), in which a superscript ∗ marks the
principal concept of a rule application except the cut rules. As shown later,
CSHI is sound, hence every model of R validates C ⊑ ∀S.∀S.∃R−.C.

C ⊓∗ ∃S.∃S.∀R−.C

C; ∃S.∃S.∀R−.C

C; ∃S.∃S.∀R−.C; C
⊥

C; ∃S.∃S.∀R−.C; C; ∀†
∗
R.∃R−.C

C; ∃∗S.∃S.∀R−.C; C; ∀†R.∃R−.C; ∀†S.∃R−.C

∃∗S.∀R−.C; ∃R−.C; ∀†S.∃R−.C

∀R−.C; ∃R−.C; ∀†S.∃R−.C
⊥

A tableau rule w.r.t. (R, T ) is sound if it has the property that if the numer-
ator is satisfiable w.r.t. (R, T ) then so is one of the denominators.

Lemma 1. The calculus CSHI is sound.

Proof. The calculus CSHI is sound because all rules of CSHI are sound.

Let the closure Cl(R, T , X) be the set

{D, ∀†R.D | D ∈ S̃fR(X ∪ T ) and R is a SHI-role appearing in (R, T , X)}.

Let n be the size of (R, T , X), i.e. the sum of the lengths of the concepts of

X ∪ T and the lengths of the assertions of R. Then the size of S̃fR(X ∪ T ) is
O(n2) and the size of Cl(R, T , X) is O(n3). Note that if a concept C appears
in a tableau for X w.r.t. (R, T ) then C ∈ Cl(R, T , X): calculus CSHI thus has
the analytic superformula property [7].

Remark 2. Our cut rules ensure that the contents of an expanded node do not
have to be changed by a successor node containing an inverse role. For (inverse-
free) simpler logics like ALC, our method requires no cut rules.3

4 Completeness

4 5

3 What about the Calvanese et al paper on eliminating inverse roles at the beginning?
4 What about the comment that some of the cut rules are not correct, and that they

require more work?
5 What about the comment that transitive roles are not mapped to transitive rela-

tions?
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4.1 Proving Completeness via Model Graphs

We prove completeness of our calculus via model graphs following [13, 7, 12]. A
model graph is a tuple 〈∆, τ, C, E〉, where: ∆ is a finite set; τ is a distinguished
element of ∆; C is a function that maps each element of ∆ to a set of concepts;
and E is a function that maps each role name to a binary relation on ∆. A model
graph 〈∆, τ, C, E〉 is saturated if every x ∈ ∆ satisfies:

1. if C ⊓ D ∈ C(x) then {C, D} ⊆ C(x),
2. if C ⊔ D ∈ C(x) then C ∈ C(x) or D ∈ C(x),
3. if (∀R.C ∈ C(x) or ∀†R.C ∈ C(x)) and E(R)(x, y) holds then C ∈ C(y),
4. if ∃R.C ∈ C(x) then there exists y ∈ ∆ with E(R)(x, y) and C ∈ C(y).

A saturated model graph 〈∆, τ, C, E〉 is consistent if no x ∈ ∆ has a C(x)
containing ⊥ or containing a pair C, C for some concept C. Given a model graph
M = 〈∆, τ, C, E〉, the interpretation corresponding to M is the interpretation
I = 〈∆, ·I〉 where AI = {x ∈ ∆ | A ∈ C(x)} for every atomic concept A and
RI = E(R) for every role name R.

Lemma 2. If I is the interpretation corresponding to a consistent saturated
model graph 〈∆, τ, C, E〉, then for every x ∈ ∆ and C ∈ C(x) we have x ∈ CI .

Proof. By induction on the structure of C.

Given a SHI RBox R, a TBox T , and a finite set X of concepts consistent
w.r.t. (R, T ), we construct a model of R and T that satisfies X by construct-
ing a consistent saturated model graph 〈∆, τ, C, E〉 such that the corresponding
interpretation is a model of R, X ⊆ C(τ), and T ⊆ C(x) for every x ∈ ∆.

4.2 Saturation

For a finite set X ⊇ T of concepts that is consistent w.r.t. (R, T ), a set Y of
concepts is called a saturation of X w.r.t. (R, T ) if Y is a maximal set consistent
w.r.t. (R, T ) that is obtainable from X (as a leaf node) by applications of the
static rules.

Lemma 3. Let X be a finite set of concepts consistent w.r.t. (R, T ), and Y
a saturation of X w.r.t. (R, T ). Then X ⊆ Y ⊆ Cl(R, T , X) and Y is closed
w.r.t. the static rules. Furthermore, there is an effective procedure that constructs
such a set Y from X and (R, T ).

Proof. It is clear that X ⊆ Y ⊆ Cl(R, T , X). Observe that if a static rule is
applicable to Y , then one of the corresponding instances of the denominators is
consistent w.r.t. (R, T ). Since Y is a saturation of X w.r.t. (R, T ), it is closed
w.r.t. the static rules.

We construct a saturation of X w.r.t. (R, T ) as follows: let Y := X ; while a
static rule is applicable to Y and has a corresponding denominator instance Z
which is consistent w.r.t. (R, T ) and strictly contains Y , set Y := Z. At each
iteration, Y ⊂ Z ⊆ Cl(R, T , X), so this process always terminates. Clearly, the
resulting set Y is a saturation of X w.r.t. (R, T ).

7



Algorithm 1

Input: a SHI RBox R, a TBox T , and a finite set X of concepts,
where X is consistent w.r.t. (R, T ).

Output: a model graph M = 〈∆, τ, C, E〉.

1. For an arbitrary node name τ , let ∆ := {τ}, and E ′(R) := ∅ for every role name R.
Let C(τ ) be a saturation of X ∪ T w.r.t. (R, T ) and mark τ as unexpanded.

2. While ∆ contains unexpanded elements, take one, say x, and do:
(a) For every concept ∃R.C ∈ C(x):

i. Let Y = transR(C(x),R) ∪ {C} ∪ T be the result of applying rule (∃R)
to C(x), and let Z be a saturation of Y w.r.t. (R, T ).

ii. If there is a (proxy) y ∈ ∆ with C(y) = Z then add pair (x, y) to E ′(R);
iii. Else add a new element y with C(y) := Z to ∆, mark y as unexpanded,

and add the pair (x, y) to E ′(R).
(b) Mark x as expanded.

3. Let E be the least extension of E ′ that satisfies the conditions E(R−) = (E(R))−1

for every role name R and the assertions of R.

Fig. 3. Constructing a Model Graph (Using Limited Caching)

4.3 Constructing Model Graphs

Figure 3 contains an algorithm for constructing a model graph. Algorithm 1
assumes that X is consistent w.r.t. (R, T ) and constructs a model of R and
T that satisfies X . Algorithm 1 always terminates because each x ∈ ∆ has a
unique finite set C(x), which is a subset of the finite set Cl(R, T , X), so eventually
Step 2(a)ii always finds a proxy.

Lemma 4. Let R be a SHI RBox, T a TBox, and X a finite set of concepts
consistent w.r.t. (R, T ). Let M = 〈∆, τ, C, E〉 be the model graph constructed
by Algorithm 1 for (R, T , X), and I be the interpretation corresponding to M .
Then I is a model of R and T that satisfies X.

Proof. We first show that M is a consistent saturated model graph. It is sufficient
to show that for every x, y ∈ ∆, if (∀R.C ∈ C(x) or ∀†R.C ∈ C(x)) and E(R)(x, y)
holds then C ∈ C(y). We prove the following stronger assertion:

For all x, y ∈ ∆ and all SHI-roles R and S: if ∀R.C ∈ C(x)
(resp. ∀†R.C ∈ C(x)) and E(S)(x, y) and S ⊑ R ∈ R then (i) C ∈ C(y),
and (ii) ∀R.C ∈ C(y) (resp. ∀†R.C ∈ C(y)) if R ◦ R ⊑ R ∈ R.

We prove this assertion by induction on the number of steps needed to de-
rive E(S)(x, y) during Step 3 of Algorithm 1. Suppose that ∀R.C ∈ C(x) (resp.
∀†R.C ∈ C(x)), S ⊑ R ∈ R, and E(S)(x, y) holds. There are the following cases
to consider:

1. The assertion trivially holds for the base case when E ′(S)(x, y) holds. Thus
we created y as an S-successor for x in order to fulfil some eventuality ∃S.D ∈
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C(x). But when constructing y, the rule (∃R) puts C ∈ C(y) since S ⊑ R
and ∀R.C ∈ C(x) (resp. ∀†R.C ∈ C(x)). Similarly, it puts ∀R.C ∈ C(y) (resp.
∀†R.C ∈ C(y)) if R ◦ R ⊑ R ∈ R.

2. Case E(S)(x, y) is derived from E(S′)(x, y) and S′ ⊑ S ∈ R. Since S ⊑ R ∈
R by assumption, we have that S′ ⊑ R ∈ R by RBox 4. The derivation
of E(S′)(x, y) is shorter by one step, so it falls under the induction hypoth-
esis (by putting S′ for S in the statement of the assertion). The desired
conclusions follow immediately.

3. Case E(S)(x, y) is derived from E(S)(x, z), E(S)(z, y), and S ◦ S ⊑ S ∈ R.
Assume that ∀R.C ∈ C(x) (the case ∀†R.C ∈ C(x) is similar). Since S ⊑ R
and ∀R.C ∈ C(x), the rule (H) would have put ∀S.C ∈ C(x). Applying the
inductive hypothesis to E(S)(x, z) (and putting S for R in the statement of
the assertion), we obtain that ∀S.C ∈ C(z) since S ◦ S ⊑ S ∈ R. Applying
the inductive hypothesis to E(S)(z, y) (and putting S for R in the statement
of the assertion), we obtain that C ∈ C(y). If R ◦ R ⊑ R ∈ R then, by the
inductive assumption, ∀R.C ∈ C(z), and ∀R.C ∈ C(y).

4. Case E(S)(x, y) is derived from E(S−)(y, x). There are two subcases:
(a) Case ∀R.C ∈ C(x). By the (H) rule, ∀S.C ∈ C(x). If C /∈ C(y) then, by

the (cutB) rule, C ∈ C(y) and ∀†S−.∃S.C ∈ C(y). Applying the inductive
assumption to E(S−)(y, x) (and putting S− for both S and R in the
statement of the assertion) gives us that ∃S.C ∈ C(x). But {∃S.C, ∀S.C}
is an inconsistent subset of C(x), contradicting the consistency of C(x),
hence C ∈ C(y). If R ◦ R ⊑ R ∈ R and ∀R.C /∈ C(y) then, by the
(cut5) rule, ∃R.C ∈ C(y) and ∀†R−.∃R.C ∈ C(y), and by the inductive
assumption, together with E(S−)(y, x) and S− ⊑ R− ∈ R it implies that
∃R.C ∈ C(x), which contradicts ∀R.C ∈ C(x).

(b) Case ∀†R.C ∈ C(x). There are two subcases since we can create such a
∀†R-concept using only the rules (cutB) and (cut5):

(cutB): Then C = ∃R−.D with D ∈ C(x), and ∀R−.D ∈ S̃fR(X ∪ T ).
Suppose that C /∈ C(y), i.e. ∃R−.D /∈ C(y). Then, by the rule (cut∀),
∀R−.D ∈ C(y). By RBox 2, we have S− ⊑ R− ∈ R from S ⊑ R ∈
R. Since ∀R−.D ∈ C(y) and S− ⊑ R− ∈ R and E(S−)(y, x), by
the inductive assumption, D ∈ C(x), which contradicts D ∈ C(x).
Therefore C ∈ C(y).
Suppose that R ◦ R ⊑ R ∈ R and ∀†R.C /∈ C(y), i.e. ∀†R.∃R−.D /∈
C(y). By RBox 3, we have R− ◦ R− ⊑ R− ∈ R too. Then, by the
(cut5) rule, ∀R−.D ∈ C(y). Analogously as for the previous para-
graph, it follows that D ∈ C(x), which contradicts D ∈ C(x). There-
fore, R ◦ R ⊑ R ∈ R implies ∀†R.C ∈ C(y).

(cut5): Then C = ∃R−.D with ∃R−.D ∈ C(x), ∀R−.D ∈ S̃fR(X ∪ T )
and R− ◦ R− ⊑ R− ∈ R.
Suppose C /∈ C(y), i.e. ∃R−.D /∈ C(y). Then ∀R−.D ∈ C(y) by the
rule (cut∀). By the inductive hypothesis, it follows that ∀R−.D ∈
C(x), which contradicts ∃R−.D ∈ C(x). Therefore C ∈ C(y).
Suppose ∀†R.C /∈ C(y), i.e. ∀†R.∃R−.D /∈ C(y). Then ∀R−.D ∈
C(y) by the (cut5) rule. By the inductive assumption, it follows that
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∀R−.D ∈ C(x), which contradicts ∃R−.D ∈ C(x). Therefore ∀†R.C ∈
C(y).

By the construction of M , the corresponding interpretation I is a model of
R, and we have that X ⊆ C(τ) and T ⊆ C(x) for every x ∈ ∆. Hence, by
Lemma 2, I is a model of R and T that satisfies X .

The following theorem immediately follows from Lemmas 1 and 4.

Theorem 1. The calculus CSHI is sound and complete.

5 A Simple EXPTIME Decision Procedure for SHI

The naive decision procedure for SHI that explores tableaux in the usual way
requires double exponential6 time because each branch in a tableau may have an
exponential length, meaning that the whole tableau (tree) may have a double-
exponential number of nodes. Algorithm 1 also runs in double exponential time
because of the computation of saturations (using naive tableaux).

By simulating the creation of saturations and checking whether the resulting
model graph is consistent, it is easy to alter Algorithm 1 so that it explicitly
checks, rather than assumes, that X is consistent w.r.t. (R, T ). Simulating the
creation of (a candidate for) a saturation is done nondeterministically in linear
time. Since Cl(R, T , X) has size O(n3), the constructed model graph has size

2O(n3). So the resulting algorithm for checking whether X is consistent w.r.t.
(R, T ), where R is a SHI RBox and T is a TBox T , runs in NEXPTIME.

In Figure 4 we present an EXPTIME decision procedure for SHI which
directly uses the tableau rules of CSHI to create an and-or graph as follows.

A node in the constructed and-or graph is a record with three attributes:

content: the set of concepts carried by the node

status: {unexpanded, expanded, sat, unsat}
kind: {and-node, or-node}

To check whether a given finite set X is satisfiable w.r.t. (R, T ), where R is
a SHI RBox and T is a TBox, the content of the initial node τ with status
unexpanded is X ∪T . The main while-loop continues processing nodes until the
status of τ is determined to be in {sat, unsat}, or until every node is expanded,
whichever happens first.

Inside the main loop, Steps (2b) to (2f) try to apply one and only one of the
tableau rules in the order (⊥), (⊓), (H), (H†), (⊔), (cut∀), (cutB), (cut5), (∃R) to
the current node v. The set D contains the contents of the resulting denominators
of v. If the applied tableau rule is (⊓) or (H) or (H†) then v has one denominator
in D; if the applied rule is (⊔) or (cut∀) or (cutB) or (cut5) then v has two
denominators in D; otherwise, each concept ∃R.C ∈ v.content contributes one
appropriate denominator to D. At Step (2g), for every denominator in D, we
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Algorithm 2

Input: a SHI RBox R, a TBox T , and a finite set X of concepts
Output: an and-or graph G = 〈V, E〉 with τ ∈ V as the initial node such that

τ.status = sat iff X is satisfiable w.r.t. (R, T )

1. create a new node τ with τ.content := X ∪ T and τ.status := unexpanded;
let V := {τ} and E := ∅;

2. while τ.status /∈ {sat, unsat} and we can choose an unexpanded node v ∈ V do:
(a) D := ∅;
(b) if no CSHI-tableau rule is applicable to v.content then v.status := sat

(c) else if (⊥) is applicable to v.content then v.status := unsat

(d) else if (⊓) or (H) or (H†) is applicable to v.content giving denominator Y then
v.kind := and-node, D := {Y }

(e) else if (⊔) or (cut∀) or (cutB) or (cut5) is applicable to v.content giving de-
nominators Y1 and Y2 (both different from v.content) then

v.kind := or-node, D := {Y1, Y2}
(f) else

i. v.kind := and-node,
ii. for every ∃R.C ∈ v.content, apply (∃R) to v.content giving denominator

transR(v.content, R) ∪ {C} ∪ T and add this denominator to D;
(g) for every denominator Y ∈ D do

i. if some (proxy) w ∈ V has w.content = Y then add edge (v, w) to E
ii. else let w be a new node, set w.content := Y , w.status := unexpanded,

add w to V , and add edge (v, w) to E;
(h) if (v.kind = or-node and one of the successors of v has status sat)

or (v.kind = and-node and all the successors of v have status sat) then
v.status := sat, propagate(G,v)

(i) else if (v.kind = and-node and one of the successors of v has status unsat)
or (v.kind = or-node and all the successors of v have status unsat) then

v.status := unsat, propagate(G,v)
(j) else v.status := expanded;

3. if τ.status /∈ {sat, unsat} then
for every node v ∈ V with v.status 6= unsat, set v.status := sat;

Fig. 4. A Simple EXPTIME Decision Procedure for SHI

create the required successor in the graph G only if it does not yet exist in the
graph: this step merely mimics Algorithm 1 and therefore uses global caching.

In Algorithm 2, a node that contains both C and C for some concept C
becomes an end-node with status unsat (i.e. unsatisfiable w.r.t. (R, T )). A node
to which no tableau rule is applicable becomes an end-node with status sat (i.e.
satisfiable w.r.t. (R, T )).

On the other hand, an application of (⊔) or (cut∀) or (cutB) or (cut5) to a
node v causes v to be an or-node, while an application of (⊓) or (H) or (H†) or
(∃R) to a node v causes v to be an and-node. Steps (2h) and (2i) try to compute

6 Or is it co-2NEXPTIME as claimed by one of the reviewers?
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Procedure propagate(G,v)
Parameters: an and-or graph G = 〈V, E〉 and v ∈ V with v.status ∈ {sat, unsat}
Returns: a modified and-or graph G = 〈V, E〉

1. queue := {v};
2. while queue is not empty do
3. (a) extract x from queue;

(b) for every u ∈ V with (u, x) ∈ E and u.status = expanded do

i. if (u.kind = or-node and one of the successors of u has status sat)
or (u.kind = and-node and all the successors of u have status sat) then

u.status := sat, queue := queue ∪ {u}
ii. else if (u.kind = and-node and one of the successors of u has status unsat)

or (u.kind = or-node and all the successors of u have status unsat) then
u.status := unsat, queue := queue ∪ {u};

Fig. 5. Propagating Satisfiability and Unsatisfiability Through an And-Or Graph

the status of such a non-end-node v using the kind (or-node/and-node) of v and
the status of the successors of v, treating unsat as irrevocably false and sat

as irrevocably true.
If these steps cannot determine the status of v as sat or unsat, then its

status is set to expanded. But if these steps do determine the status of a node v
to be sat or unsat, this information is itself propagated to the predecessors of
v in the and-or graph G via the routine propagate(G, v), explained shortly.

The main loop ends when the status of the initial node τ becomes sat or
unsat or all nodes of the graph have been expanded. In the latter case, all nodes
with status 6= unsat are given status sat (effectively giving the status open to
tableau branches which loop).

The procedure propagate used in the above algorithm is specified in Figure 5.
As parameters, it accepts an and-or graph G and a node v with (irrevocable)
status sat or unsat. The purpose is to propagate the status of v through the
and-or graph and alter G to reflect the new information.

Initially, the queue of nodes to be processed contains only v. While the queue
is not empty: a node x is extracted; the status of x is propagated to each prede-
cessor u of x in an appropriate way; and if the status of u becomes (irrevocably)
sat or unsat then u is inserted into the queue for further propagation.

This construction thus uses both caching and propagation techniques.

Proposition 1. Algorithm 2 runs in EXPTIME.

Proof. Let G = 〈V, E〉 be the graph constructed by Algorithm 2 for (R, T , X)
and n be the size of the input, i.e. the sum of the lengths of the concepts of
X ∪ T and the lengths of the assertions of R.

For every v ∈ V , we have that v.content ⊆ Cl(R, T , X), hence the size of
v.content is O(n3). For every v, v′ ∈ V , if v 6= v′ then v.content 6= v′.content.

Hence V contains 2O(n3) nodes. Every v ∈ V is expanded (by Steps (2a)–(2j))
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only once and such a task takes 2O(n3) time units without counting the execu-
tion time of the procedure propagate. When v.status becomes sat or unsat,
the procedure propagate executes 2O(n3) basic steps directly involved with v.
Hence the total time of the executions of propagate is of rank 2O(n3). The time
complexity of Algorithm 2 is therefore of rank 2O(n3).

Lemma 5. It is an invariant of Algorithm 2 that for every v ∈ V :

1. if v.status = unsat then
– v.content contains both C and C for some concept C,
– or v.kind = and-node and there exists (v, w) ∈ E such that w 6= v and

w.status = unsat,
– or v.kind = or-node and for every (v, w) ∈ E, w.status = unsat;

2. if v.status = sat then
– no CSHI-tableau rule is applicable to v.content,
– or v.kind = or-node and there exists (v, w) ∈ E with w.status = sat,
– or v.kind = and-node and for every (v, w) ∈ E, w.status = sat.

(Since a static rule is applied to X only when X is not closed w.r.t. the rule, if
v.kind = or-node and (v, w) ∈ E then w 6= v since w.content 6= v.content.)

Proof. Lemma 5(1) clearly holds since these are the only three ways for a node
to get status unsat. For Lemma 5(2) there is the possibility that the node gets
status sat via Step 3 of Algorithm 2.

For a contradiction, assume that v.status becomes sat because of Step 3 of
Algorithm 2 and that all three clauses of the “then” part of Lemma 5(2) fail:

1. First, the rule assumed to be applicable to v.content cannot be the (⊥)-rule
as this would have put v.status = unsat, contradicting our assumption that
v.status = sat. Thus the rule must be one of the remaining rules, meaning
that v.kind = or-node or v.kind = and-node after this rule application.

2. Second, if v.kind = or-node then v must have two successors created by one
of the rules (⊔), (cut∀), (cutB), (cut5), since this is the only way for a node
to have v.kind = or-node. If neither successor has status sat then they
must both have status unsat. But Algorithm 2 and procedure propagate
always ensure that unsat is propagated whenever it is found. As soon as the
unsat status of the latter of these two children is found, the ensuing call
to propagate would have ensured that v.status = unsat, contradicting our
assumption that v.status = sat.

3. Third, if v.kind = and-node then v has at least one successor w (say) with
(v, w) ∈ E. If w.status 6= sat, then we must have w.status = unsat. But
again, as soon as w gets status unsat, procedure propagate would ensure that
v.status = unsat too, contradicting our assumption that v.status = sat.

Lemma 6. Let G = 〈V, E〉 be the graph constructed by Algorithm 2 for
(R, T , X). For every v ∈ V , if v.status = unsat then v.content is inconsis-
tent w.r.t. (R, T ).
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Proof. Using Lemma 5, we can construct a closed tableau w.r.t. (R, T ) for
v.content by induction on the way v depends on its successors and by copy-
ing nodes so that the resulting structure is a (tree) tableau rather than a graph.

Let G = 〈V, E〉 be the graph constructed by Algorithm 2 for (R, T , X). For
v ∈ V with v.status = sat, we say that v0 = v, v1, . . . , vk with k ≥ 0 is a
saturation path of v in G if for each 1 ≤ i ≤ k, we have vi.status = sat, the
edge E(vi−1, vi) was created by an application of a static rule, and vk.content
is closed w.r.t. the static rules. Observe that if v0, . . . , vk is a saturation path of
v0 in G then v0.content ⊆ . . . ⊆ vk.content.

By Lemma 5, if v.status = sat then there exists a saturation path of v in G.

Lemma 7. Let G = 〈V, E〉 be the graph constructed by Algorithm 2 for
(R, T , X). If τ.status = sat then every tableau for X w.r.t. (R, T ) is open.

Proof. Let T be an arbitrary tableau for X w.r.t. (R, T ). We maintain a current
node cn of T that will follow edges of T to pin-point an open branch of T .
Initially we set cn to be the root of T . We also keep a (finite) saturation path
σ of the form σ0, . . . , σk for some σ0 ∈ V and call σ the current saturation path
in G. At the beginning, set σ0 := τ and let σ be a saturation path for σ0 in G:
such a saturation path exists since τ.status = sat. We maintain the invariant
cn.content ⊆ σk.content, where cn.content is the set carried by cn.

Remark 3. By the definition of saturation path, σk.status = sat. The invariant
thus implies that the rule (⊥) is not applicable to cn.

Clearly, the invariant holds at the beginning since σ0 = τ and τ.content =
cn.content and σ0.content ⊆ σk.content. Depending upon the rule applied to cn
in the tableau T , we maintain the invariant by changing the value of the current
node cn of T and possibly also the current saturation path σ in G:

1. Case the tableau rule applied to cn is a static rule. Since cn.content ⊆
σk.content and σk.content is closed w.r.t. the static rules, cn has a successor
u in T with u.content ⊆ σk.content. By setting cn := u, the invariant is
maintained without changing σ.

2. Case the tableau rule applied to cn is the transitional rule (∃R) with principal
concept ∃R.D, and the successor is u ∈ T .
By the invariant, ∃R.D ∈ σk.content. So there must be a node w ∈ V such
that the edge E(σk, w) was created by the application of (∃R) to σk.content
with ∃R.D as the principal concept. Thus, u.content ⊆ w.content by the
form of the (∃R)-rule. Moreover, σk is an and-node with σk.status = sat,
hence w.status 6= unsat, meaning that w.status = sat. Setting cn := u and
setting σ to be a saturation path of w in G maintains the invariant.

By Remark 3, the branch formed by the instances of cn is an open branch of T .

Theorem 2. Let R be a SHI RBox, T a TBox, and X a finite set of concepts.
Let G = 〈V, E〉 be the graph constructed by Algorithm 2 for (R, T , X), with
τ ∈ V as the initial node. Then X is satisfiable w.r.t. (R, T ) iff τ.status = sat.
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Proof. By Lemmas 6 and 7, X is consistent w.r.t. (R, T ) iff τ.status = sat since
τ.content = X ∪ T . Since the calculus CSHI is sound and complete, it follows
that X is satisfiable w.r.t. (R, T ) iff τ.status = sat.

Corollary 1. Algorithm 2 is an EXPTIME decision procedure for SHI.

Proof. The EXPTIME complexity is established by Proposition 1.

6 Further Work and Conclusions

To the best of our knowledge, we have given the first EXPTIME tableau-based
decision procedure for SHI. The two essential features which allow our decision
procedure to have EXPTIME complexity are the analytic “future guessing” cut
rules in combination with global caching.

Cut rules are usually considered expensive in tableau calculi because of their
exponential nature and because their “blind guessing” produces nondeterminism.
Although the “blind guessing” aspect is still prevalent in our cut rules, global
caching means that an application of a cut rule in our and-or graph creates only
an or-node, deterministically in polynomial time in the size of the graph, but
does not require us to make two copies of the current and-or graph. Nor does it
require us to later “determinise” the effects of “look behind with cut” as queried
in the introduction. Indeed, by building a “use-check” into our procedure, and
exploring the left branch of a cut rule first, we can avoid exploration of the right
branch if the cut formula is not used in closing the left branch. Whether our
method can be turned into practical EXPTIME decision procedures requires
further investigation, but it obeys the basic principle that practical algorithms
should be easy to implement and optimise.

Soundness of global caching for SHI was not previously proved and was
really an open problem. The idea of using analytic cut rules to reduce the com-
plexity from NEXPTIME to EXPTIME was introduced in [3], but the “future
guessing” form of our analytic cut rules is important and fundamentally different
from the “look behind analytic cut” of [3].

Our decision procedure for SHI is simple and easy to implement. Moreover,
most known optimisation techniques for DL decision procedures are applicable
since they are already incorporated into our decision procedure for ALC in [8],
and it is easy to show that they transfer to our decision procedure for SHI.

Observe that the transformation of our CSHI calculus into an EXPTIME
decision procedure for SHI is highly independent of the details of the calculus.
The proof of the correctness of the transformation is also highly modular w.r.t.
the calculus. We intend to formulate both at a more abstract level to apply our
method for global caching to other modal and description logics.
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