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The majority of transcriptome sequencing (RNA-seq) expression studies in plants remain underutilized and inaccessible due to
the use of disparate transcriptome references and the lack of skills and resources to analyze and visualize these data. We have
developed expVIP, an expression visualization and integration platform, which allows easy analysis of RNA-seq data combined
with an intuitive and interactive interface. Users can analyze public and user-specified data sets with minimal bioinformatics
knowledge using the expVIP virtual machine. This generates a custom Web browser to visualize, sort, and filter the RNA-seq
data and provides outputs for differential gene expression analysis. We demonstrate expVIP’s suitability for polyploid crops and
evaluate its performance across a range of biologically relevant scenarios. To exemplify its use in crop research, we developed a
flexible wheat (Triticum aestivum) expression browser (www.wheat-expression.com) that can be expanded with user-generated
data in a local virtual machine environment. The open-access expVIP platform will facilitate the analysis of gene expression data
from a wide variety of species by enabling the easy integration, visualization, and comparison of RNA-seq data across
experiments.

The global demand for staple crops is predicted to
double by 2050 (FAO, 2009; Tilman et al., 2011), which
will require an annual increase in yield of approxi-
mately 2.4% (Ray et al., 2013). However, currently,
yields of the major crops maize (Zea mays), rice (Oryza
sativa), wheat (Triticum aestivum), and soybean (Glycine
max) are increasing only at 1.6%, 1%, 0.9%, and 1.3% per
year, respectively (Ray et al., 2013). The advent of the
genomics era represents a great opportunity to accel-
erate the pace of yield increase in staple crops, for ex-
ample, by facilitating novel breeding strategies (Heffner
et al., 2009) and providing unprecedented numbers of
genetic markers (Bevan and Uauy, 2013). In particular,
transcriptome sequencing (RNA-seq) is a widely

adopted genomics approach in crops due to its rela-
tively low cost (Wang et al., 2009), its suitability for
nonmodel organisms (Ekblom and Galindo, 2011),
and the multiple downstream applications of the data
generated. These features have driven the generation
of a wealth of expression data with over 9,000 RNA-
seq samples currently available at public repositories,
such as the National Center for Biotechnology Infor-
mation (NCBI)/ENA for the major agricultural crops
(Table I).

Although several public databases containing gene
expression data for plant species exist (Lawrence et al.,
2007; Ouyang et al., 2007; Dash et al., 2012), these re-
sources do not make full use of the expression data
available in SRAs, frequently relying on a subset of
experiments or microarray data. Similarly, pipelines
have been proposed to allow the reanalysis of expres-
sion data that provide useful functionality but limit the
number of samples that can be analyzed (D’Antonio
et al., 2015), have limited visualization outputs (Fonseca
et al., 2014), or require the user to process their own data
before uploading to a visualization tool (Nussbaumer
et al., 2014). In most cases, visualization tools are static
and do not allow meaningful comparison of data. In
addition, many studies used disparate transcriptome
assemblies or annotations that hinder the possibility to
compare results across different biological samples
(Gillies et al., 2012; Pfeifer et al., 2014). Thus, despite the
significant investment in RNA-seq studies across the
major agricultural crops, these data remain largely
underutilized and inaccessible to the majority of
breeders and biologists due to the lack of common
platforms and resources to analyze the data.
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We have developed expVIP (expression Visualiza-
tion and Integration Platform), an adaptable platform
to create a gene expression interface for any species
with a transcriptome assembly available. We provide
a user-friendly virtual machine implementation
allowing breeders and biologists to access this re-
source on a desktop personal computer. expVIP takes
an input of RNA-seq reads (from single or multiple
studies), quantifies expression per gene using the fast
pseudoaligner kallisto (Bray et al., 2015), and creates a
database containing expression and sample informa-
tion. This platform allows comparisons across studies,
and the output is viewable as a Web browser interface
with intuitive and interactive filtering, sorting, and
export options.
We have implemented expVIP on wheat to demon-

strate its potential to be applied to crop species. In
particular, our analysis of wheat data demonstrates the
pipeline’s ability to handle data from polyploid species,
a key aspect for agricultural research, since many of the
world’s major crops are polyploid or have undergone
recent whole-genome duplication events (Bevan and
Uauy, 2013; Table I). In the case of wheat, we rean-
alyzed 418 RNA-seq samples from 16 studies including
diverse developmental time courses, tissues, pathogen
infections, and abiotic stresses.We conducted a series of
analyses to demonstrate its utility for candidate gene
characterization and its potential to compare across
independent studies and generate novel hypotheses.
Using expVIP, we developed a wheat expression
browser (www.wheat-expression.com) as a community

resource to access publicly available wheat RNA-seq
data.

RESULTS

Pipeline for Expression Analysis and Browser Interface

We developed expVIP (Fig. 1), which pseudoaligns
and quantifies short reads fromRNA-seq experiments to
detect and visualize gene expression data through a
user-friendly interface. expVIP requires three input files:
the RNA-seq reads, a reference transcriptome, and the
metadata from the RNA-seq studies. Since the reference
transcriptome is user specified, expVIP can facilitate the
analysis of RNA-seq data from any species and can
use custom reference sequences. expVIP is available
in two formats from Github: (1) the source code and
(2) a virtual machine implementation that allows easy
use of the pipeline and data display from a desktop
machine without requiring bioinformatics expertise
(see “Materials and Methods”).

To illustrate the uses and flexibility of expVIP, we
have implemented it to create a wheat gene expression
browser (www.wheat-expression.com; Supplemental
Text S1), which until now has been lacking in this im-
portant crop species. This browser can be used directly
with the available wheat expression data, or users can
add their own wheat RNA-seq reads to place their data
within a wider context of previously published studies.
Similar gene expression browsers can be easily devel-
oped for any species using the virtual machine or
source code.

Global Analysis in Wheat: Validation of Methods

Weused expVIP to analyze 16wheat gene expression
studies from the SRA across a range of tissues, devel-
opmental stages, and stress conditions (Table II). In
total, these included 418 individual samples containing
over 11 billion reads, of which 7.4 billion mapped to the
reference International Wheat Genome Sequencing
Consortium (IWGSC) genemodels fromEnsemblPlants
containing 103,274 genes (Supplemental Table S1). The
median number of reads per study was 213 million,
with 137 million reads mapped per study.

We found that 99% of genes (102,259) had at least one
read mapping to them, and 85% of genes (88,528) were
expressed in at least one sample at over 2 transcripts per
million (tpm), which has been advocated as the cutoff
for real expression over noise (Wagner et al., 2013).
Using this cutoff, on average, 34% of genes (35,549)
were expressed per sample, with a minimum expres-
sion of 11% of genes (10,899) at 20 DPA in the starchy
endosperm and a maximum of 48% of genes (50,224)
expressed in the spike at anthesis.

We found that, across all samples, there was a weak
(adjusted r2 = 0.07), albeit significant (P = 1.48 3 1028),
relationship between the number of mapped reads and
the number of genes expressed. This indicates that,

Table I. Publicly available RNA sequencing samples in the NCBI short
read archive (SRA) for the top 10 crops based on production (FAO,
2015) and additional agricultural species (as of August 5, 2015)

Ploidy levels and evidence of recent whole-genome duplication
(WGD) events are shown.

Species (Common Name)

Samples in the

SRA Database

Ploidy

(Recent WGD)

Saccharum officinarum
(sugarcane)

46 83/103

Zea mays (maize) 3,514 23 (WGD)
Oryza sativa (rice) 1,264 23
Triticum aestivum (wheat) 799 63
Solanum tuberosum (potato) 337 43
Manihot esculenta (cassava) 61 23
Glycine max (soybean) 972 23 (WGD)
Beta vulgaris (sugar beet) 32 23
Solanum lycopersicum

(tomato)
830 23

Hordeum vulgare (barley) 269 23
Musa acuminata (banana) 73 23/33 (WGD)
Sorghum bicolor (sorghum) 128 23
Brassica spp. (field mustard

and oilseed rape)
835 23/43

Phaseolus vulgaris
(common bean)

106 23

Gossypium hirsutum
(cotton)

468 43

Vitis vinifera (grape) 448 23
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although our samples varied widely in their number of
mapped reads (1.1–63.6 million), this did not limit
comparisons between studies (Supplemental Fig. S1).

We investigated whether, despite coming from di-
verse studies, tissue-specific expression patterns could
be detected. We found that, in general, expression
profiles were similar between samples from the same
tissue (Fig. 2). For example, grain samples (Fig. 2, red)
originating from seven independent studies were
found in one main group and leaf and stem samples
(Fig. 2, green) from nine studies largely belonged to two
groups. However, in some cases, samples from differ-
ent tissues clustered together, including root samples,
which grouped with leaf/stem and spike samples. To
further examine the expression patterns of genes in

different tissues, we identified the 10 most highly
expressed genes in grain and leaves (Supplemental
Table S2). We found that, in the grain, six out of the 10
most highly expressed genes encode components of
gluten, which is the principal storage protein in wheat
grain (Shewry, 2009). In the leaves, several of the most
highly expressed genes are related to photosynthesis
(Andersson and Backlund, 2008). These results indicate
that our data analysis reflects the expected gene ex-
pression profiles and supports combining of data from
diverse studies.

Accurate Read Mapping Enables Homeologue Specificity

Many crop species are polyploids that contain closely
related homeologous genomes, which share highly
similar nucleotide sequences within coding regions.
This poses a challenge for assigning short reads to the
correct gene copy (homeologue). To assess whether
kallisto could correctly assign reads to the relevant
homeologue, we used a unique genetic resource avail-
able inwheat: nullitetrasomic lines (Sears, 1954). Normal
bread wheat contains three copies of most genes, one on
each of the A, B, and D homeologous chromosomes, and
these genes share over 95% identity in coding sequences
(Krasileva et al., 2013). In nullitetrasomic lines, one
chromosome is specifically deleted (nulli) and compen-
sated by an additional copy of a homeologous chromo-
some (tetra). Nullitetrasomic lines for chromosome 1 had
been sequenced previously (SRP028357), and we used
the data in our analysis.

For this analysis, we selected only genes present as
three homeologous copies on group 1 chromosomes,
with at least one homeologue expressed at over 2 tpm in
the wild type (2,645 genes in shoots and 3,445 genes in
roots). We compared the expression of genes located on

Table II. SRA studies analyzed with expVIP

Study Identifier Summary Total Reads Mapped Reads and Percentage Reference

DRP000768 Phosphate starvation in roots and shoots 118,053,746 84,529,715 (72%) Oono et al. (2013)
ERP003465 Fusarium head blight-infected spikelets 1,827,362,091 1,357,197,955 (74%) Kugler et al. (2013)
ERP004505 Grain tissue-specific developmental time course 873,709,556 475,184,621 (54%) Pfeifer et al. (2014)
SRP004884 Flag leaf down-regulation of GPC 209,427,573 121,855,143 (58%) Cantu et al. (2011)
SRP013449 Grain tissue-specific developmental time course 132,702,451 82,417,257 (62%) Gillies et al. (2012)
SRP017303 Stripe rust-infected seedlings 33,361,836 13,732,210 (41%) Cantu et al. (2013)
SRP022869 Septoria tritici-infected seedlings 100,582,632 63,155,877 (63%) Yang et al. (2013)
SRP028357 Shoots and leaves of nullitetra

group 1 and group 5
3,304,500,117 2,258,692,000 (68%) Leach et al. (2014)

SRP029372 Grain tissue-specific developmental time course 101,477,759 17,525,439 (17%) Li et al. (2013)
SRP038912 Comparison of stamen, pistil, and pistilloidy

expression
217,315,378 153,009,134 (70%) Yang et al. (2015)

SRP041017 Stripe rust and powdery mildew infection
time course

395,463,786 272,228,560 (69%) Zhang et al. (2014)

SRP041022 Developmental time course of synthetic hexaploid 134,641,113 84,583,556 (63%) Li et al. (2014)
ERP008767 Grain tissue-specific expression at 12 DPA 45,213,827 26,420,708 (58%) Pearce et al. (2015)
SRP045409 Drought and heat stress time course in seedlings 921,578,806 533,928,182 (58%) Liu et al. (2015)
ERP004714 Developmental time course of cv Chinese Spring 1,536,051,415 1,066,712,760 (69%) Choulet et al. (2014)
SRP056412 Grain developmental time course with the 4A

dormancy quantitative trait locus
1,875,916,011 808,809,053 (43%) Barrero et al. (2015)

Figure 1. Implementation of expVIP. User inputs are highlighted in
green. Downstream differential gene expression analysis (blue) can
be performed on expVIP outputs, which are preformatted for this use.
External programs are in rectangles, document symbols represent inputs
and outputs, the trapezoid represents the visualization interface, and
the cylinder represents the expVIP relational database.
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chromosomes 1A, 1B, and 1D between wild-type and
nullitetrasomic lines (Fig. 3). In wild-type plants, aver-
age gene expression was quite even between the three
homeologous genomes (36.6%, 30.9%, and 32.5% for A,
B, andD in shoots and 33.4%, 32.3%, and 34.4% for A, B,

and D in roots). Similarly, in nullitetrasomic lines for
the homeologue, which was present with two copies (as
in the wild type), expression was 34% of total in shoots
and 33.8% in roots. In contrast, expression of the
homeologue that was deleted in the nullitetrasomic

Figure 2. Similarity of expression profiles between
samples (columns), with replicate samples aver-
aged and excluding samples from nullitetrasomic
lines. One thousand randomly selected genes
are represented, one gene per row. Only genes
expressed in at least one sample over 2 tpm were
used. Colors on the dendrogram indicate the tissues
from which samples originate: grain (red), spike
excluding grain (blue), leaves/stem (green), and
roots (gray).

Figure 3. Expression of genes with three homeologous
copies on chromosome 1 in nullitetrasomic wheat
lines in shoots and roots. Genotypes for chromo-
some 1 are indicated by colored squares: A ge-
nome in green, B genome in blue, and D genome
in purple. Squares listed at bottom (+) indicate
extra copies (tetra); the absence of squares indi-
cates deletion (nulli) of the entire chromosome.

Plant Physiol. Vol. 170, 2016 2175
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lines was strongly decreased to 5.9% and 5.3% of total in
shoots and roots, respectively. Expression of the homeo-
logue thatwas presentwith four copies (23 thewild type)
rose to 60.1% and 60.9% of total for shoots and roots,
respectively. These results demonstrate that, even in the
extreme casewhere expression from one homeologue has
been abolished completely by chromosomal deletion,
our pipeline can accurately distinguish from which
homeologue gene expression originated. Analysis of a
manually curated set of 52 tetraploid wheat homeologues
showed that they share 97.3% 6 1.2% DNA sequence
identity and that the distance between adjacent variants
decreases exponentially, with an average separation of
approximately 38 bp. This determines that 8% of single-
nucleotide polymorphisms (SNPs) between A and B
genome homeologous are over 100 bp apart (Krasileva
et al., 2013). This would prevent reads containing these
widely spaced SNPs from being unambiguouslymapped
to one homeologue, explaining why we observe a resid-
ual level of expression from the deleted chromosome in
the nullitetrasomic lines.

Comparison of kallisto with bowtie2 Combined
with eXpress

Since kallisto is a newly released pseudoalignment
tool for the quantification of RNA-seq data, we com-
pared its performance with a more conventional RNA-
seq quantification pipeline using bowtie2 and eXpress.
We found that kallisto and bowtie2 had very similar
overall alignment rates (62.7% and 63.4%, respectively;
Supplemental Table S1). kallisto identified slightly
more genes as expressed in at least one sample at over 2
tpm: 88,528 compared with the 87,842 genes identified
by bowtie2 + eXpress. As an assessment of accuracy, we
compared their performance using the nullitetrasomic
wheat lines described previously. We found that kallisto
was slightly more accurate than bowtie2 + eXpress: on
average, kallisto assigned 5.6% of total gene expression
to have originated from the deleted chromosome,
whereas bowtie2 + eXpress assigned 7% of total gene
expression (Supplemental Table S3). These results sup-
port the use of kallisto, given its fast running times and
high accuracy (Bray et al., 2015).

Powerful Visualization and Data Integration Platform

expVIP is highly flexible, as it allows the user to
supply metadata to classify samples according to dif-
ferent categories (based on their biological question),
which are then uploaded into the database. The visu-
alization interface allows users to group, filter, sort, and
download their data according to the categories speci-
fied in the metadata. This design provides control over
precise categories to be used in the database, and the
visualization interface will adjust accordingly. For ex-
ample, we classified the expression data at www.
wheat-expression.com by broad and specific categories

for age, tissue, disease/abiotic stress, and variety
(Supplemental Tables S1 and S4). This hierarchical
structure allows users to group data for an initial high-
level assessment and then open up data into specific
samples, analogous to main effects and simple effects
in statistical analyses (Supplemental Table S4). This
structure can be modified as required by users by sim-
ply modifying the metadata input file or by providing a
different nomenclature for classification, such as Plant
Ontology temporal and anatomy accession identifiers
(Avraham et al., 2008). We describe below how this
visualization interface can be used to facilitate research.

Candidate Gene Function Prediction

Fine-mapping frequently results in a candidate gene
list within a defined genetic interval. Understanding
gene expression patterns can help narrow down this list
but typically requires the development of homeologue-
specific quantitative PCR (qPCR) primers, which is
challenging and time consuming in polyploids. Using
the wheat expression browser, we are now able to
rapidly investigate in silico candidate gene expression
patterns.

For example, a physical contig containing seven can-
didate genes for grain preharvest sprouting resistance
was published recently (Barrero et al., 2015). Therefore,
we organized and sorted the data based on the tissue
origin of the RNA-seq sample. We displayed the ex-
pression data for the six candidate genes in this region
with genome annotation either as a heatmap (Fig. 4A) or
individual bar graphs (Fig. 4B). We find that one gene is
expressed at very low levels below 2 tpm in all tissues
(Traes_4AL_DD1B27086.2) and that three genes aremost
highly expressed in roots (Traes_4AL_9A01E952D.1,
Traes_4AL_1C557F688.1, and Traes_4AL_65DF744B71.3),
with very little expression in the grain, where genes
involved in precocious germination would be ex-
pected. Two closely related genes show expression
solely in the grain: Traes_4AL_BFAB568BF.1 and
Traes_4AL_F99FCB25F.1, with the latter having much
higher expression.

To further define the expression patterns, we dis-
played the age and specific tissue of the samples.
This filtering and dynamic sorting is available in
both heat map and bar graph modes. Focusing on
Traes_4AL_F99FCB25F.1 displayed as a bar graph
(Fig. 5A), we see that this gene is most highly
expressed during the latter stages of grain develop-
ment, consistent with a role in grain dormancy im-
position, and that expression is strongest in whole
grain and mostly absent in seed coat and endosperm
tissues (Fig. 5B), suggesting that expression might
originate from the embryo. The color code of the graph
dynamically alters to reflect the most recent category
selected by the user. The two candidate genes high-
lighted by this analysis (Traes_4AL_BFAB568BF.1 and
Traes_4AL_F99FCB25F.1) were recently shown to act
as positive regulators of dormancy (Barrero et al.,
2015).
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Identification of Stable Reference Genes

To compare gene expression levels, a widely used
method is qPCR, which requires stably expressed ref-
erence genes across all samples being compared. The
integrated data available from expVIP allow quick
analysis to identify potential novel reference genes. To
identify reference genes suitable for wheat across di-
verse tissues, developmental stages, and stress and

disease conditions, we included 321 out of the total 418
wheat samples included at www.wheat-expression.com
(we excluded 97 samples that were from nullitetrasomic
samples to avoid bias against the missing chromosomes
in those samples). We found that 3,170 genes were
expressed at over 2 tpm in all 321 samples.We calculated
the coefficient of variation as a measure of the stabil-
ity of expression across all samples. These varied from

Figure 4. A simple search on www.
wheat-expression.com reveals gene
expression patterns of six candidate
genes within a quantitative trait lo-
cus region for preharvest sprouting.
The data may be displayed as a heat
map for all six genes simultaneously
(A), with the intensity of the blue
color indicating the expression level
[log2(tpm)]. Alternatively, each gene
may be displayed individually as a
bar graph (B) in tpm. The display
was configured to average data
according to the high-level tissue;
hence, all samples coming from
spike (red), grain (blue), leaves/
shoots (green), and roots (purple)
are averaged according to their re-
spective categories. Genes are or-
dered from lowest expressed (left
[A] and top [B]) to highest expressed
(right [A] and bottom [B]). Note that
axes in B are not equal because
expVIP recalculates the axis for
each gene individually.

Plant Physiol. Vol. 170, 2016 2177
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32.7% for themost stable gene to 318% for the least stable
gene, with the median coefficient of variation being
61.6% (Fig. 6A; Supplemental Table S5).We investigated
whether genes commonly used as reference genes in
qPCR were stably expressed in our samples. We found
that 1,736 genes were more stably expressed than 13
commonly used reference genes (Yan et al., 2003; Tenea
et al., 2011; Qi et al., 2012; Fig. 6A; Supplemental Table
S6), seven of which were not expressed in all samples at
over 2 tpm (Fig. 6A). We selected the 20 most stable
genes (Fig. 6B) and found a much narrower range of
variation in expression levels compared with the com-
monly used reference genes (Fig. 6C). These stably
expressed genes had a range of different functions, in-
cluding ubiquitin-mediated protein degradation, DNA
binding, and signal transduction (Table III).

To test whether these newly identified stable genes
could be used in qPCR as reference genes, we designed
homeologue-specific primers for five genes. The effi-
ciencies ranged from 93.3% to 97.1% (Table IV). To test
the stability of these primers, we extracted RNA and
synthesized complementary DNA (cDNA) from a di-
verse range of 30 conditions (Supplemental Table S7),
including various tissues, developmental stages, vari-
eties, and disease/stress conditions. We found that all
five genes had low coefficients of variation using qPCR
(4.4%–8.4%), suggesting that they are suitable for use as

reference genes (Table IV). We found that the coeffi-
cients of variation measured by qPCR were lower than
those found by RNA-seq analysis. This may be due to
the qPCR using a smaller panel of samples (30 condi-
tions) compared with the 321 samples included in the
RNA-seq analysis. Furthermore, the qPCR analysis
used more homogeneous sample extraction methods
than the RNA-seq samples, which were from a diverse
range of studies carried out in different laboratories,
which might have introduced extra variability.

The five novel genes tested had equivalent stability to
five of the most stable commonly used reference genes
across the 30 conditions tested (6.8%6 1.7% and 6.4%6

1.4%, respectively; Supplemental Table S8). The com-
monly used reference genes were originally identified
in flag leaves (Tenea et al., 2011) and had lower coeffi-
cients of variation (3% 6 1%) than the novel genes
(5.5% 6 2.3%) in this tissue. However, in the grain, the
novel reference genes had much lower coefficients of
variation (2.7% 6 0.5%) than the commonly used ref-
erence genes (6.6% 6 2.5%), indicating that, under
specific sets of conditions, these novel reference genes
outperform current reference genes. The strong stability
in grain samples may reflect the origin of samples used
to identify the novel reference genes: 147 out of the 321
samples used originated from grains. These results in-
dicate that the expVIP platform can help to identify

Figure5. ExpressionofTraes_4AL_F99FCB25F.1
in grains categorized by age (A) and age and
tissue (B). The colors represent age (A) or tissue
(B): the color coding of the graph is determined
by themost recent category clickedby theuser.
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stably expressed genes for use in qPCR, which can
be tailored to individual needs either across different
tissues or focusing on a particular tissue of interest.

Comparative Analyses to Generate Novel Biological Insights

expVIP allows easy integration of data for differential
gene expression analysis. Using the output from kallisto,
we used its companion tool sleuth (Pimentel et al., 2015)
to identify genes that were differentially expressed in
disease and stress conditions compared with control
conditions. For this analysis, we included all samples
from seedling stage wheat leaves that had replicates.

These included two different SRA studies, which com-
prised samples from 12 different conditions (Table V; for
details, see Supplemental Table S1).

In order to find genes that are differentially expressed
in multiple conditions, we used a relaxed threshold to
identify differentially expressed genes (q , 0.05). In
total, 53% of genes (54,207 genes) were differentially
expressed in at least one stress condition compared
with the control. The number of differentially expressed
genes varied from 2,018 genes after 48 h of stripe rust
infection to 34,221 genes after 6 h of combined drought
and heat stress (Fig. 7A). In general, the abiotic stresses
caused more genes to be differentially expressed than

Figure 6. Stability of gene expression between
samples. A, Coefficient of variation for genes that
are expressed at over 2 tpm in all samples. Com-
monly used reference genes are indicated by
crosses (x), and reference genes in red are not
expressed at over 2 tpm in all samples. B and C,
Expression of the 20 most stably expressed genes
(B) and 13 commonly used reference genes (C)
across 321 wheat samples belonging to 16 studies
indicated on the x axis. The expression level of
each gene in a sample is relative to the average
expression level of this gene across all samples.
Abbreviations are as follows: elongation factor
1-b (EF1b), eukaryotic translation initiation fac-
tor 4B (EIF4B), cylophilin A (CYP18-2), and
glyceraldehyde 3-phosphate dehydrogenase
(GAPDH).
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under disease conditions (on average, 27,212 compared
with 6,429 genes), and in abiotic stress, more genes
were up-regulated than down-regulated, whereas the
reverse pattern was observed in disease conditions.

We found that the majority of genes were differen-
tially expressed in multiple conditions (Fig. 7B), indi-
cating that transcriptional responses to different
stresses are shared. Comparing between abiotic and
disease stress, we found that 38% (20,553 genes) of
differentially expressed genes were found in both cases.
We detected enrichment for 32 Gene Ontology (GO)
terms among the genes differentially expressed in 10 or
more abiotic and disease conditions (false discovery
rate [FDR] , 0.05; Supplemental Tables S9 and S10).
Nineteen of these related to biological processes rather

than molecular function or cellular compartment (Table
VI). The two most strongly enriched GO terms
(GO:0018298 and GO:0009765) were related to chloro-
phyll a/b-binding proteins, whereas the third most
strongly enrichedGO term (GO:0006457; protein folding)
included three HSP90 family heat shock proteins, three
calreticulin/calnexin proteins, and three cyclophilin-type
peptidyl-prolyl cis-trans-isomerase domain-containing
proteins. Evidence was also found for the regulation of
gene expression, and 14 transcription factors were dif-
ferentially expressed across 10 or more conditions, in-
cluding members of the NAC, MYB, basic-Leu zipper,
zinc finger, and AP2/ERF families. Many of these large
gene families have been shown in plants to be involved in
abiotic and biotic stress responses (Singh et al., 2002;

Table III. Twenty most stably expressed genes across all 321 wheat samples

Ensembl Transcript Identifier

Mean Expression

Level (tpm)

Coefficient

of Variation (%) Putative Functiona

Traes_1DS_18F13A3DD.1 13 33 RING zinc finger domain superfamily protein
Traes_5AS_019ECA143.1b 13 33 Ion channel
Traes_7BL_46880A4FE.1 8 33 Ser/Thr protein kinase
Traes_6DS_4092ABCFB.1 7 34 Uncharacterized protein
Traes_6DS_BE8B5E56D.1b 24 34 Ser/Thr protein kinase
Traes_6AS_90A5682D3.1 21 34 Ser/Thr protein kinase
Traes_1AL_968B97E50.1b 15 34 ATP-dependent zinc metalloprotease FTSH8
Traes_2AS_C407071E4.2 9 34 WRKY family transcription factor family protein
Traes_4BS_F96B8575F.1 6 34 Uncharacterized protein
Traes_4DL_A3860F7BD.1 9 35 DEAD box ATP-dependent RNA helicase38
Traes_1BL_0CB993ADF.2 10 35 VHS and GAT domain-containing protein
Traes_7DL_DAC78932E.1 9 35 DGCR14-related
Traes_7DL_21CCF6E42.2 9 35 GCIP-interacting family protein
TRAES3BF019300030CFD_t1 14 35 Uncharacterized protein
Traes_1BL_5FFF3DBA5.1 15 35 Ubiquitin family protein
Traes_5DL_4A0A6443E.1 12 35 Uncharacterized protein
Traes_4AL_8CEA69D2E.1b 31 35 Ubiquitin-conjugating enzyme
Traes_7AL_EA6F4FFDE.2 13 35 Zinc finger protein
Traes_4BS_4AD56C4F8.2b 13 36 Uncharacterized protein
Traes_5BL_6E4024365.1 9 36 Gal oxidase/Kelch repeat superfamily protein

aFor genes that were not annotated in wheat, putative functions were assigned by orthology to rice, maize, and Arabidopsis genes according to
EnsemblPlants.

bGene stability tested by qPCR.

Table IV. Homeologue-specific primers designed for five of the most stably expressed genes identified from 321 wheat samples

The stability of the expression of these five genes was tested across 30 independent conditions, including different tissues, developmental stages,
varieties, and disease infection (for details, see Supplemental Table S7).

Ensembl Transcript Identifier Primer Sequences (59–39) Primer Efficiency (%) Coefficient of Variation (%)

Traes_4AL_8CEA69D2E.1 CGGGCCCGAAGAGAGTCT 97.1 7.1
ATTAACGAAACCAATCGACGGA

Traes_4BS_4AD56C4F8.2 TCGTTGCTTGAGGAAAATG 93.7 8.2
CATGACCGTCTTATTTATGGCA

Traes_1AL_968B97E50.1 TTTGCACAGTATGTACCAAATGAG 95.0 5.8
TCTTCCAATCAAAACCTCCTCT

Traes_5AS_019ECA143.1 TCTAAATGTCCAGGAAGCTGTTA 96.0 4.4
CCTGTGGTGCCCAACTATT

Traes_6DS_BE8B5E56D.1 CATGCTCTGGGATTTATCCAT 93.3 8.4
CTGGATCATTTCCGGTGC
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Feller et al., 2011; Nakashima et al., 2012), but this joint
analysis identified precise candidates in wheat based on
available experimental data that can be further charac-
terized.
We identified nine genes that were differentially

expressed in all 12 conditions. Examining the ex-
pression of these genes in the wheat expression
browser gives further insight into their expression
patterns across all 16 studies. For example, the
ortholog of the endosomal targeting BRO1 gene
Traes_2AL_2DFED03C9.2 is strongly up-regulated in
abiotic stress conditions (Fig. 8A, purple bar), and
opening up the data to look into individual stresses,
we find that it is not up-regulated in phosphorous
starvation (Fig. 8B, purple bars labeled P-10d).
Traes_2AL_2DFED03C9.2 is down-regulated in the
majority of disease conditions (Fig. 8B, yellow bars),
except in the spike infected with Fusarium graminearum
(Fig. 8B, yellow bars labeled fu30h–fu50h) and after
6 d of stripe rust infection (Fig. 8B, yellow bars la-
beled sr6+d). This visualization also shows that
Traes_2AL_2DFED03C9.2 is expressed in all tissues
(roots, leaves/stems, spikes, and grains) and is not re-
stricted to seedling leaves, the tissue from which it was
identified by our analysis. Selecting the homeologue
option allows the expression of homeologous genes to
be examined side by side (Fig. 8C). In this case, all
three homeologues show a similar pattern of expres-
sion in the various samples, and all three homeologues
are differentially expressed in 11 or 12 abiotic stress
and disease conditions. The expVIP visual interface
also allows individual studies to be selected; in this
case, the two original studies also can be displayed on
their own to visualize the differences identified by
sleuth (Supplemental Fig. S2).

DISCUSSION

Highly Accurate Pipeline

A major challenge in the analysis of RNA-seq data,
particularly in polyploid crop species, is the assignment
of short reads to the correct copy of a gene. Using

nullitetrasomic wheat lines, we have shown that kallisto
as implemented through expVIP accurately assigns
reads to the correct homeologue. The visualization in-
terface makes expression data across a wide range of
conditions easily available, enabling researchers and
breeders to rapidly check the expression patterns of in-
dividual homeologues. This will allow a more precise
understanding of gene regulation beyond the broad
general trends usually reported in wheat with non-
homeologue-specific qPCR primers. The ability to
query homeologue-specific expression data will also
complement growing knowledge about sequence di-
versity between homeologues. A recent genome-wide
analysis between landraces and elite varieties sug-
gested that, during domestication, positive selection
was usually restricted to an advantageous mutation
within a single homeologue (Jordan et al., 2015). This
highlights that understanding of homeologue-specific
variation in both sequence and expression will be fun-
damental for future advances in wheat improvement.

Utility for Functional Genomic Research in Wheat

Until recently, marker availability had been a major
constraint in wheat research; however, developments

Figure 7. Differentially expressed genes (q, 0.05) in abiotic stress and
disease conditions. A, Numbers of up-regulated genes (black bars) and
down-regulated genes (gray bars) in individual stress conditions. D,
Drought; H, heat; DH, drought and heat combined; PM, powdery
mildew; SR, stripe rust. B, Number of genes that are differentially
expressed in multiple abiotic stress and disease conditions.

Table V. Samples used to compare gene expression responses to
abiotic and biotic stresses

Study Age Conditions Replicates

SRP041017 7 d Stripe rust, 24 h 3
Stripe rust, 48 h 3
Stripe rust, 72 h 3
Powdery mildew, 24 h 3
Powdery mildew, 48 h 3
Powdery mildew, 72 h 3

SRP045409 7 d Drought stress, 1 h 2
Drought stress, 6 h 2
Heat stress, 1 h 2
Heat stress, 6 h 2
Drought and heat stress, 1 h 2
Drought and heat stress, 6 h 2

Plant Physiol. Vol. 170, 2016 2181

expVIP: Flexible Analysis/Visualization of RNA-seq

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lp

h
y
s
/a

rtic
le

/1
7
0
/4

/2
1
7
2
/6

1
1
4
3
0
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://www.plantphysiol.org/cgi/content/full/pp.15.01667/DC1


in SNP- and sequence-based genotyping have removed
these limitations (Borrill et al., 2015). The focus has now
shifted toward the understanding of gene function,
which is being accelerated by the availability of a
draft reference genome (International Wheat Genome
Sequencing Consortium, 2014) and next-generation
sequencing-enabled mapping approaches (Ramirez-
Gonzalez et al., 2015). The availability of a compre-
hensive gene expression visualization platform in
wheat will facilitate the functional characterization of
genes by providing researchers with information re-
garding where they might be acting. We have demon-
strated that the expression browser rapidly delivers
information about tissue-specific expression patterns
and can help narrow down candidate genes within
mapping intervals through both heat-map and single-
gene analyses. Furthermore, we have used these data to
propose genes with high stability across awide range of
conditions that might represent better reference genes
for qPCR than those traditionally used, particularly in
grains.

Opportunities for Meta-Analysis

Using the data generated by expVIP for wheat, we
compared between samples from a diverse range of
abiotic stress and disease conditions, leveraging the
unified analysis platform. We found that slightly more
genes were up-regulated than down-regulated in abiotic
stresses, whereas in disease conditions, the opposite
pattern was observed: this contrasts with a previous
meta-analysis of rice abiotic and biotic stress microarray
experiments, where 60% of differentially express genes
were down-regulated under abiotic stress and 60% of
differentially expressed genes were up-regulated under
biotic stress (Shaik and Ramakrishna, 2014). These re-
sults may be different because the rice analysis included
additional stress conditions that might have influenced
overall trends, microarrays having an incomplete gene
complement, or biological differences between species.
expVIP will facilitate the meta-analysis of RNA-seq ex-
periments, which has been difficult so far due to non-
unified methods of analysis, in contrast to microarray

Figure 8. Example of gene expression vi-
sualization using expVIP for the gene
Traes_2AL_2DFED03C9.2, with samples
grouped according to their High level
stress-disease (A),Traes_2AL_2DFED03C9.2,
with additional categorization of samples
including lower level Stress-disease and High
level tissue (B), andTraes_2AL_2DFED03C9.2
and its B and D homeologues, which are dif-
ferentially expressed in 11 and 12 abiotic and
disease conditions, respectively (C). The data
shown here include expression data from all
studies, not just the studies examined for dif-
ferential expression. Samples are ordered by
their High level stress-disease status: none
(green), disease (yellow), abiotic (purple), and
transgenic (orange).
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experiments, which have been better catalogued and
compared (Zimmermann et al., 2004; Parkinson et al.,
2007; Wagner et al., 2013). Although differences were
seen between abiotic and disease transcriptional re-
sponses, 38% of differentially expressed genes were
identified in both abiotic and disease conditions, which
is similar to the proportion identified in a comparison of
gene expression in rice of drought and bacterial re-
sponses (39% shared genes; Shaik and Ramakrishna,
2013).
Themajority of genes differentially expressed in 10 or

more stress conditions did not show the same direction
of expression change in all stresses. For example, three
homeologues of an endosome-targeting BRO1 gene
(Traes_2AL_2DFED03C9.2, Traes_2BL_7141904F2.1,
and Traes_2DL_39A6CF612.1) were up-regulated in
abiotic stresses and down-regulated in disease condi-
tions. Manipulating endosomal trafficking by over-
expressing a RAB5 GTPase in Arabidopsis (Arabidopsis
thaliana) enhanced salt-stress tolerance (Ebine et al.,
2012), and endocytic trafficking is also known to be
important for disease resistance (Teh andHofius, 2014),
indicating that BRO1 represents a candidate gene
to manipulate abiotic stress and disease responses.
Several transcription factors from diverse families
are also up- and down-regulated in stress condi-
tions; for example, the NAC transcription factor
Traes_5BL_4497A137C.1 is up-regulated in response to
abiotic stress and during early stripe rust infection but
down-regulated later during stripe rust and powdery
mildew infection. Analogously, the basic helix-loop-helix
(bHLH) transcription factor Traes_5DL_2A286B481.1 is
up-regulated during the first 1 h of drought, heat, and
drought combined with heat stress, but after 6 h in all
three conditions it is down-regulated, suggesting a

specific temporal role. In Arabidopsis, bHLH92, the
ortholog of Traes_5DL_2A286B481.1, is also induced by
abiotic stresses, but its up-regulation is maintained at
both 6 and 24 h (Jiang et al., 2009). The ability to com-
bine studies from multiple environmental conditions
will allow novel hypothesis generation to deepen our
understanding of conserved and divergent responses to
abiotic and biotic stresses.

Application to a Range of Species

We demonstrate that expVIP can be used to reanalyze
studies using a common reference, allowing accurate
and easy comparison between data from different
sources.We applied our pipeline to polyploidwheat and
generated an open-access expression browser (www.
wheat-expression.com). However, the expVIP pipeline
and browser interface can be implemented readily into
other species to facilitate functional gene characteriza-
tion. This is especially relevant given the speed with
which genomics is progressing: the best reference ge-
nomes and transcriptomes change constantly, making it
difficult to compare between RNA-seq studies that have
used different references. This problem is also exempli-
fied in more mature systems such as rice, where two
different genome annotations are widely used: Rice
Annotation Project gene models and Michigan State
University gene models (Ohyanagi et al., 2006; Ouyang
et al., 2007). Although these annotations share many
similar genes, they cannot be compared directly. expVIP
facilitates the rapid reanalysis of data sets that were
originally evaluated with different reference sequences
to enable such comparisons on a common set of gene
models (Supplemental Text S2).

Table VI. Enriched biological processes in genes differentially expressed in 10 or more abiotic and disease conditions

GO Accession No. Term

Percentage

of Differentially

Expressed Genes

Percentage

of Transcriptome FDR

GO:0018298 Protein-chromophore linkage 4.0 0.1 3.00E-09
GO:0009765 Photosynthesis, light harvesting 4.0 0.2 5.20E-05
GO:0006457 Protein folding 5.2 0.7 0.0011
GO:0009651 Response to salt stress 2.9 0.2 0.0041
GO:0006970 Response to osmotic stress 2.9 0.2 0.0066
GO:0065007 Biological regulation 17.8 8.2 0.014
GO:0065008 Regulation of biological quality 5.7 1.5 0.034
GO:0045449 Regulation of transcription 10.3 4.1 0.041
GO:0009889 Regulation of biosynthetic process 10.3 4.3 0.044
GO:0010556 Regulation of macromolecule biosynthetic process 10.3 4.3 0.044
GO:0031326 Regulation of cellular biosynthetic process 10.3 4.3 0.044
GO:0019219 Regulation of nucleobase, nucleoside, nucleotide,

and nucleic acid metabolic process
10.3 4.3 0.044

GO:0051171 Regulation of nitrogen compound metabolic process 10.3 4.3 0.044
GO:0080090 Regulation of primary metabolic process 10.3 4.5 0.048
GO:0006355 Regulation of transcription, DNA dependent 9.8 4.1 0.048
GO:0030001 Metal ion transport 4.0 0.9 0.048
GO:0051252 Regulation of RNA metabolic process 9.8 4.1 0.048
GO:0009628 Response to abiotic stimulus 4.6 1.2 0.048
GO:0010468 Regulation of gene expression 10.3 4.5 0.048
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The flexible expVIP metadata structure can accommo-
date formal ontologies such as Plant Ontology accession
identifiers, which can be linked through established
parent-child relationships. This is immediately possible for
the temporal and anatomical components of ontologies
that are well described and documented (Avraham et al.,
2008). However, although ontologies for stress treatments
(abiotic and biotic) have been proposed (Walls et al., 2012),
they are not commonly implemented. Looking forward,
the use of a common platform such as expVIP to analyze
RNA-seq data from multiple species will facilitate cross-
species comparisons of gene expression betweenorthologs.
Orthologous relationships between genes for multiple
plant species are well established (Rouard et al., 2011;
Goodstein et al., 2012; Bolser et al., 2015), and they will
become increasingly precise as additional genomes are
sequenced. Thiswould allow the inclusion of an additional
species category within the visualization interface to com-
pare the expression of orthologs across multiple species.
However, this will require the research community to im-
prove and engage more actively with the use of ontologies
to describe the origin of diverse RNA-seq samples.

The availability of expVIP as a virtual machine
will facilitate its application to any species with a
transcriptome reference. expVIP is based on the light-
weight pseudoaligner kallisto (which we have shown
to perform as well if not more accurately that bowtie2 +
eXpress), which will allow rapid analysis on a desktop
machine without the need for bioinformatics infra-
structure. This opens up intuitive and interactive data
visualization of gene expression data to researchers
using both unpublished and publicly available data.

CONCLUSION

The pipeline and visualization interface we have de-
velopedwill open up the analysis of gene expression data
fromawide variety of species to researchers and breeders.
Our application towheat gene expression data provides a
community resource that will aid the functional analysis
of wheat genes for their use in research and breeding
programs. Moving into the future, the volume of RNA-
seq expression datawill only increase, and the value from
reanalysis and integration of data cannot be under-
estimated. This is especially relevant given the frequent
release of improved reference genomes, which, while
welcomed, poses a challenge when comparing RNA-seq
data that have been aligned to previous releases. This
open-access platform makes a first step toward enabling
the easy integration, visualization, and comparison of
RNA-seq data across experiments.

MATERIALS AND METHODS

Data Preparation

Reads

Wedownloaded thewheat (Triticum aestivum) gene expression data from the

SRA database at NCBI available on August 12, 2015. Study ERP004714 was

incomplete and missing the required metadata in the SRA, so the data were

downloaded directly from https://urgi.versailles.inra.fr/files/RNASeqWheat/.

For consistency of analysis, we only included data sets generated using RNA-seq

on the Illumina platform, both paired and single-end reads. We excluded small

RNA studies and studies with fewer than 50 million total reads. The SRA studies

included in this analysis are listed in Table II with a short description (full details

are given in Supplemental Table S1).

Reference

The wheat transcriptome reference was downloaded from EnsemblPlants

release 26 (Choulet et al., 2014; International Wheat Genome Sequencing

Consortium, 2014).

Metadata

Experimentmetadatawere downloaded from the SRAand supplemented by

manual curation from the associated publications. This manual curation was

used to define the factors that were used for the classification of studies in the

visualization interface. For the wheat expression browser, we defined factors as

study, age, tissue, variety, and stress-disease treatment. These factors were

grouped at a high level and also at the individual level to allow more meaningful

comparisons (Supplemental Table S4). The homeologues of each gene were

extracted from EnsemblCompara release 26 (Vilella et al., 2009) and added as

metadata to the genes. Detailed documentation on how to load metadata into

expVIP is available online (https://github.com/homonecloco/expvip-web/wiki).

Expression Analysis

We implemented an initial sample quality control using fastQC (version

0.10.1; Andrews, 2010), which reports the fastQC quality files for the user to

assess. Wheat gene expression quantification was carried out using kallisto

version 0.42.3 (Bray et al., 2015) and the wheat transcriptome described pre-

viously. For paired-end reads, kallisto was run using default parameters with

100 bootstraps (-b 100). For single-end reads, kallisto was run using 100 boot-

straps (-b 100) in the single-end read mode (–single), and the average fragment

length used was 150 bp (-l 150) with an SD of 50 (-s 50); these values were taken

as an average of reported fragment lengths for the studies included. For com-

parison, a more traditional analysis (not included in expVIP) was carried out

where reads were aligned to the IWGSC transcriptome version 2.26 using

bowtie2 (version 2.2.4) using the parameters recommended by eXpress (Roberts

and Pachter, 2013): output in sam format (-S), maximum insert size of 800 bp

(-X 800), and unlimited multimappings (-a). Counts per gene and tpm were

calculated using eXpress version 1.5.1 using the default parameters except that

sequence-specific biases were ignored (-no-bias-correct) due to some samples

having too few fragments to accurately learn bias parameters, so the bias correc-

tionwas turnedoff for all samples tomaintain a uniform treatment across samples.

Differential gene expression analysis was carried out on the kallisto output

abundance files using sleuth (Pimentel et al., 2015). Default settings were used,

except that the maximum bootstraps considered was 30 (max_bootstrap = 30).

For the integrated disease and stress analysis, each sample was compared with

the control sample from the study fromwhich it originated. Geneswith an FDR-

adjusted P (q) , 0.05 were considered differentially expressed.

Visualization Interface

The outputs from kallisto were merged into two separate files: the raw es-

timated counts and tpm for all samples. Those files were loaded into anMySQL

5.5 relational database along with a Web server using the framework Ruby on

Rails 4.2. expVIP is released as a Biogem (Bonnal et al., 2012). The visualization

of the expression is implemented as a BioJS (Corpas et al., 2014) component,

using the Web development frameworks D3v3, jQuery 2.1, and jQuery-UI 1.11.

Availability of expVIP

The source code to prepare and set up the expVIP database and graphical

interface are available in Github: https://github.com/homonecloco/expvip-

web. The BioJS component to visualize the expression data are available at

the BioJS registry: http://biojs.io/d/bio-vis-expression-bar. The expVIP vir-

tual machine, the data displayed in the Web interface, and the detailed docu-

mentation are available on the wiki page https://github.com/homonecloco/

expvip-web/wiki.
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qPCR Analysis of Reference Gene Stability

Tissue samples were collected in liquid nitrogen for a range of tissues, de-

velopmental stages, varieties, and disease conditions (Supplemental Table S7).

All plants were grown in greenhouses in soil under 16-h-light/8-h-dark, 20°C

day/12°C night conditions, except cv Maris Huntsman seedlings, which were

grown on moist filter paper in petri dishes in the dark at 20°C. Frozen samples

were ground to a fine powder, and RNA was extracted using TRI Reagent

(Sigma) according to the manufacturer’s instructions, except for grain samples,

which were extracted according to a phenol-based method (Box et al., 2011)

with the addition of 20% (v/v) Plant RNA Isolation Aid (Ambion) to the RNA

extraction buffer. RNA samples were diluted to 250 ng mL21, treated with RQ1

DNase (Promega), and reverse transcribed using Moloney murine leukemia

virus (Invitrogen) according to the manufacturer’s instructions. qPCR was

carried out using LightCycler 480 SYBR Green I Master Mix (Roche) with each

primer at a final concentration of 0.25 mM and 0.05 mL of cDNA in a 10-mL re-

action using 384-well plates. The qPCR program run on the LightCycler 480

(Roche) was as follows: preincubation at 95°C for 5 min; 45 amplification cycles

of 95°C for 10 s, 58°C for 10 s, and 72°C for 20 s with the final melt-curve step

cooling to 60°C and then heating to 97°C with five reads per 1°C as the temper-

ature increased. For all sample/primer combinations, melt curves were inspected

to have only a single product. Crossing thresholds were calculated using the

second derivative method provided in the LightCycler 480 SW 1.5 software

(Roche). Primer efficiencies were calculated using a serial dilution of cDNA.

Analysis of GO Term Enrichment

GO term enrichment was calculated using Singular Enrichment Analysis

provided by agriGO (Du et al., 2010) using default settings. Thegenesdifferentially

expressed in 10, 11, and 12 abiotic and disease conditions were supplied as the

query list, alongwithGO terms downloaded fromEnsemblPlants biomart (release

26). The entire IWGSC version 2.26 transcriptome was used as the reference using

GO terms downloaded from EnsemblPlants biomart.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Comparison of the number of genes expressed

per sample and the number of mapped reads.

Supplemental Figure S2. Demonstration of filtering within the expVIP

interface.

Supplemental Table S1. Detailed wheat metadata per sample.

Supplemental Table S2. Ten most highly expressed genes in wheat grain

and leaf tissues.

Supplemental Table S3. Comparison of the accuracy of kallisto and

bowtie2 using nullitetrasomic wheat lines.

Supplemental Table S4. Structure of wheat RNA-seq metadata for www.

wheat-expression.com.

Supplemental Table S5.Means, SD, and covariance of transcript expression

across 321 wheat samples.

Supplemental Table S6. Stability of reference gene expression across 321

wheat samples.

Supplemental Table S7. Samples used to test the stability of expression of

qPCR primers.

Supplemental Table S8. Comparison of coefficients of variation between

five novel reference genes and five commonly used reference genes

across 30 conditions.

Supplemental Table S9. GO term enrichment among genes expressed

under stress and disease conditions.

Supplemental Table S10. Genes differentially expressed in 10 stress

conditions, fold change, and function.

Supplemental Text S1. Tutorial for expVIP graphic interface (Wheat Ex-

pression Browser example).

Supplemental Text S2. Application of expVIP to rice allows the integration

of previous studies.
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