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Abstract

Algorithmic scalability is a major concern for any machine learning strategy in this age of ‘big 

data’. A large number of potentially predictive attributes is emblematic of problems in 

bioinformatics, genetic epidemiology, and many other fields. Previously, ExS-TraCS was 

introduced as an extended Michigan-style supervised learning classifier system that combined a 

set of powerful heuristics to successfully tackle the challenges of classification, prediction, and 

knowledge discovery in complex, noisy, and heterogeneous problem domains. While Michigan-

style learning classifier systems are powerful and flexible learners, they are not considered to be 

particularly scalable. For the first time, this paper presents a complete description of the ExS-

TraCS algorithm and introduces an effective strategy to dramatically improve learning classifier 

system scalability. ExSTraCS 2.0 addresses scalability with (1) a rule specificity limit, (2) new 

approaches to expert knowledge guided covering and mutation mechanisms, and (3) the 

implementation and utilization of the TuRF algorithm for improving the quality of expert 

knowledge discovery in larger datasets. Performance over a complex spectrum of simulated 

genetic datasets demonstrated that these new mechanisms dramatically improve nearly every 

performance metric on datasets with 20 attributes and made it possible for ExSTraCS to reliably 

scale up to perform on related 200 and 2000-attribute datasets. ExSTraCS 2.0 was also able to 

reliably solve the 6, 11, 20, 37, 70, and 135 multiplexer problems, and did so in similar or fewer 

learning iterations than previously reported, with smaller finite training sets, and without using 

building blocks discovered from simpler multiplexer problems. Furthermore, ExS-TraCS usability 

was made simpler through the elimination of previously critical run parameters.
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Prediction

1 Introduction

Learning classifier systems (LCSs) are an often overlooked group of rule-based machine 

learning algorithms with a unique and flexible set of features setting them apart from other 
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strategies. Two major genres of LCS algorithms exist, including Michigan-style and 

Pittsburgh-style systems [46]. Michigan-style LCS algorithms are the more traditional of the 

two LCS architectures and are the focus of the present work. Michigan LCS algorithms 

uniquely distribute learned patterns over a population of individually interpretable (IF: 

THEN) rules that are both collaborative and competitive. This allows the algorithm to 

flexibly and effectively describe complex and diverse problem spaces found in behavior 

modeling, function approximation, classification, and data mining. Michigan LCS 

algorithms also apply incremental rather than batch-wise learning, meaning that rules are 

evaluated and evolved one training instance at a time rather than being immediately 

evaluated on the training dataset as a whole. This makes them efficient, and naturally well-

suited to learning different problem niches found in multi-class, latent-class, or 

heterogeneous problem domains [37].

The nature of Michigan LCSs impart them with a number of notable advantages: (1) they are 

model-free and thus do not make assumptions about the data including; the type of 

association (e.g. linear, epistatic, or heterogeneous); the number of predictive attributes; 

noisy or clean signal; balanced or imbalanced classes; how to handle missing data; or 

whether attributes are a mix of both discrete and continuous variables, (2) Individual rules 

are directly interpretable as IF:THEN expressions, (3) they are implicitly multi-objective, 

evolving rules toward maximal accuracy and generality (i.e. rule simplicity) to improve 

predictive performance [46], (4) on their own, they have themes in common with an 

ensemble learning system where individual rules or groups of rules propose different 

solutions within a collective rule population, (5) they are adaptive to changing dataset 

environments, such that parts of a solution can adapt without starting over from scratch, (6) 

by relying on evolutionary computation to explore the search space they offer a practical 

option when deterministic, exhaustive search is intractable, and (7) the algorithm is 

compartmentalized such that individual components can be updated or replaced to handle 

specialized problem domains. Key disadvantages of LCS include (1) the belief that they are 

somewhat more difficult to properly apply, (2) they lack a comparable theoretical 

understanding next to other, well-known machine learning strategies, (3) they are relatively 

computationally demanding and in certain problem domains can take longer to converge on 

a solution, and (4) most implementations to date have a relatively limited scalability.

Within the LCS literature, scalability and learning speed have been largely synonymous 

targets for improvement [2,27,6,1,17,26,5]. Much of the progress in dealing with scalability 

to date has been made in the development of Pittsburgh-style LCS architectures [2,6,1,17,5]. 

The term scalability can refer to an algorithms ability to handle different types of increased 

size in the training environment. This can include (1) an increasing number of training 

instances (of particular importance to Pittsburgh-style systems, where rule-sets are typically 

repeatedly evaluated on the training dataset as a whole), (2) an increase in the problem 

dimensionality, i.e. the number of attributes required to accurately predict an endpoint 

variable, and (3) an increasing number of total attributes within which the algorithm must 

search for the correct set of predictive attributes.

To date, strategies to improve LCS scalability have included parallelization of the algorithm 

[17,33], more efficient rule representations [1,3,24], more efficient matching [27], running 
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the algorithm as an ensemble where individual runs have access to only a subset of available 

attributes in the dataset [5], extracting and using building blocks from smaller problems 

[23], applying expert knowledge to bias the algorithm towards attribute more likely to be of 

predictive value [43,41], and using windowing mechanisms in Pittsburgh LCSs to learn 

incrementally [2].

In this work we focus on the scalability of Michigan LCS algorithms on problems with an 

increased number of attributes and problem dimensionality. This is an accessible and 

important target for development in the context of the Michigan LCS, where the number of 

training instances in the dataset does not necessarily impact the run-time of the algorithm. 

Handling an increasing number of potentially predictive attributes can be viewed as a feature 

selection challenge where the algorithm must not only identify which attributes are 

important, but the manner in which they are associated with the target endpoint.

Two features of a traditional Michigan LCS intuitively complicate the ability of the 

algorithm to scale up to handle larger numbers of attributes. First, existing algorithms rely 

on the probability of attribute specification (pspec) as a critical run parameter. This parameter 

controls the number of attributes that might be specified in a rule generated by the covering 

mechanism. The covering mechanism is responsible for initializing the rule population. As 

the number of attributes in the dataset becomes large, the optimal setting for this parameter 

becomes difficult or impractical to determine. The most critical consequence of it being set 

too high, is that the rule population will be repeatedly seeded with rules that specify too 

many attribute values and therefore are unlikely to match more than a single training 

instance. This means that useful generalizations will not be found. Beyond covering, the 

genetic algorithm provides the only other source of rule discovery. The second complication 

to scalability involves the nature of crossover and mutation operators within the LCS genetic 

algorithm. Specifically, these mechanisms typically allow the discovery of rules that specify 

any number of attributes in the dataset. While this is maximally unbiased in terms of 

limiting the dimensionality of rules, when we scale up to much larger datasets rules 

regularly emerge that are not only over-specific and over-fit, but that do not match more 

than a single training instance. Consider that in typical LCS rule representations, mutation 

can only flip an attribute from generalized to specified (and vice versa), or it can swap 

between 0,1, or ‘#’ when the classic ternary representation is applied. Given the example 

where a rule with only 2 out of 100 attributes are specified, mutation will be much more 

likely to specify additional attributes in this rule, rather than generalize the two attributes 

already specified (i.e. 2/100 chance of further generalization, and 98/100 chance of further 

specification). Therefore an implicit pressure exists that mutates rules towards having half of 

all attributes in the dataset specified or two thirds specified in the case of a ternary 

representation by random chance. While this might not be problematic for small datasets, as 

the number of attributes increases, the probability that a rule will evolve that is general 

enough to cover more than one training instance will decrease.

To address these issues, the present study explores the use and implementation of a rule 

specificity limit that essentially limits the number of attributes that may be specified within a 

given LCS rule. This limit is automatically determined based on the characteristics of the 

training data before the algorithm begins learning. In this work we introduce both a strategy 
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for determining a reasonable specificity limit and explore a strategy to efficiently utilize this 

limit within the mechanisms of the algorithm responsible for discovering new rules (i.e. 

covering, crossover, and mutation).

Previously, we developed an Extended Supervised Tracking and Classifying System 

(ExSTraCS) as a promising platform to address supervised learning problem domains 

dealing with classification, prediction, and/or knowledge discovery [41]. Specifically, we 

were interested in developing and applying this algorithm to the domain of bioinformatics 

and genetic epidemiology. A typical problem in this domain involves the identification and 

modeling of predictive single nucleotide polymorphisms (SNPs) that have a complex and 

noisy relationship with a disease endpoint of interest. Complexity in this domain refers to an 

unknown number of predictive attributes, the potential for epistasis (i.e. gene-gene 

interactions), and genetic heterogeneity, where individual (or sets of) attributes are 

independently predictive of the same disease phenotype (i.e. class). In the present study we 

assess the scalability of ExSTraCS 1.0 to accommodate an increasing number of potentially 

predictive attributes (20, 200, and 2000) across a diverse spectrum of complex simulated 

datasets. We also introduce and similarly evaluate ExSTraCS 2.0 which implements our 

proposed rule specificity limit, new approaches to expert knowledge guided covering and 

mutation mechanisms, and the addition of Tuned ReliefF (TuRF)[28] with one minor 

alteration. TuRF was designed to improve the quality of expert knowledge scores on data 

with a larger number of noisy attributes when combined with one of the four attribute 

scoring algorithms included in ExSTraCS. Beyond our complex genetic simulation studies 

we also evaluate ExSTraCS 2.0 on a spectrum of multiplexer datasets scaling up from the 6-

bit to 135-bit version of this benchmark problem.

In the following sections we describe the ExSTraCS algorithm in detail, outline the 

experimental evaluation, present results and discussion, and draw conclusions.

2 Methods

In this section, we describe the ExSTraCS algorithm and it’s mechanisms in detail, 

highlighting features that are new to version 2.0. If you are new to LCS algorithms, this 

section will hopefully provide a clear and complete account of how this type of algorithm 

works. If you are familiar with LCS algorithms we refer readers below to specific 

subsections that may be of particular interest. For a brief overview of the ExSTraCS 

algorithm, see subsection 2.1.2. At the end of this section we have outlined our strategy for 

evaluating ExSTraCS performance and scalability including a description of simulated 

datasets, performance metrics, and statistical analysis.

The primary update to ExSTraCS 2.0 involves the rule specificity limit. Determination of 

this limit within adaptive data management is covered in subsection 2.1.4. The inclusion of 

the rule specificity limit has required us to adapt how expert knowledge is applied within the 

covering mechanism (see subsection 2.1.9). Application of this limit within genetic 

algorithm operators (mutation, and crossover) and the development of a new EK mutation 

scheme is covered in subsection 2.1.13. Also, to improve the quality of expert knowledge 

scores generated using the built-in attribute weighting algorithms (discussed later) we have 
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added the TuRF wrapper algorithm [28] to ExSTraCS as part of the preprocessing expert 

knowledge discovery (see subsection 2.1.5). Lastly, we have added a new optional output 

file giving users the ability to view the predictions made by ExSTraCS on a testing data (see 

subsection 2.1.17). For each testing instance in the data this output includes the class 

prediction as well as the vote sum for each possible class. These vote sums may be utilized 

as fuzzy predictions, Bayesian class probabilities, or estimates of prediction confidence on 

given testing instances.

2.1 ExSTraCS Algorithm

The Extended Supervised Tracking and Classifying System (ExSTraCS) [41] was 

implemented as a platform for ongoing Michigan LCS development designed specifically to 

address single-step, supervised learning problems, dealing with data mining, classification, 

prediction, and knowledge discovery. In particular, development of this algorithmic platform 

is geared towards problems characterized by complex patterns of association (e.g. multi-

factor epistasis and heterogeneity), the integration of different data types (e.g. systems 

biology), and ‘big data’ (i.e. large-scale data and analyses). ExSTraCS was implemented to 

accommodate datasets with 2 or more balanced/imbalanced endpoints (i.e. classes), with 

continuous or discrete attributes, and allowing for missing data points without requiring data 

imputation.

2.1.1 Background—The ExSTraCS algorithm [41] is descended from a lineage of 

Michigan LCS algorithms founded primarily on the architecture of XCS [48], the most well-

known and best-studied LCS algorithm to date. The UCS algorithm [9] replaced XCS’s 

reinforcement learning scheme with a supervised learning strategy to deal explicitly with 

single-step problems such as classification and data mining. Previously, we compared select 

Michigan and Pittsburgh-style LCS algorithms and found that UCS showed particular 

promise when applied to complex biomedical data mining problems with patterns of 

epistasis and heterogeneity [38,39]. UCS inspired a series of algorithmic extensions that 

better adapted the LCS algorithmic framework to the needs of complex noisy 

epidemiological data mining problems [37,43,35]. These extensions, along with a flexible 

and efficient rule representation [3] and a handful of other useful features, were merged 

within the ExSTraCS framework [41]. The combination of these features served to further 

improve performance over a range of metrics detailed in section 2.2.2.

2.1.2 Overview—Here we provide a brief overview of the ExSTraCS algorithm. The 

diagram in Figure 1 sequentially outlines the flow of ExSTraCS including a pre-processing 

stage (A), the core incremental learning steps of the algorithm (B), and a post-processing 

stage (C). It should be noted upfront that major features of this algorithm can be optionally 

turned on or off including the pre and post-processing mechanisms. In this schematic, ovals 

indicate algorithmic mechanisms, bordered squares indicate sets of either data or classifiers/

rules, items in green are rule discovery mechanisms, items in orange are traditional LCS 

mechanisms, items in blue indicate mechanisms that are unique to ExSTraCS, and items 

with a (*) indicate mechanisms that have been updated or added in ExSTraCS 2.0.
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Following along with Figure 1, ExSTraCS begins with a data pre-processing stage (A). The 

algorithm takes as input, a configuration file and a finite training dataset that includes 

attributes and a single class endpoint variable. Adaptive data management determines and 

stores key characteristics of the dataset for later use. Next, expert knowledge (EK) attribute 

weights may be loaded or generated from the training data using one of the four included 

attribute weighting algorithms. Weights are utilized by the discovery mechanisms to favor 

the exploration of rules that specify attributes with higher weights. Attributes with higher 

weights should be more likely to be useful in discriminating between class/endpoints. After 

pre-processing, the core incremental learning cycle (B) repeats through the following 10 

steps until a maximum number of learning iterations (Imax) is reached. (1) A single training 

instance is taken from the dataset without replacement. (2) The training instance is passed to 

a population [P] of classifiers that is initially empty. A classifier is a simple IF/THEN rule 

comprised of a condition (i.e. specified attribute states), and what is traditionally referred to 

as an action (i.e. the class, also referred to as the endpoint or phenotype). Note that herein, 

the terms classifier and rule are used interchangeably. (3) A match set [M] is formed, that 

includes any classifier in [P] that has a condition matching the training instance. (4) [M] is 

divided into a correct set [C] and an incorrect set [I] based on whether each classifier 

specified the correct or incorrect class phenotype. (5) If, after steps 3 and 4, [C] is empty, 

covering applies expert knowledge to intelligently generate a matching and ‘correct’ 

classifier that is added to [M] and [C]. (6) For every classifier in [P], a number of parameters 

are maintained and updated throughout the learning process. Classifier parameters (e.g. 

fitness) are updated for classifiers within [C] and [I]. (7) Subsumption provides a direct 

generalization pressure that can merge overlapping rules in [C]. A similar subsumption 

mechanism is also applied to new classifiers generated by the genetic algorithm (GA). (8) 

Classifiers in [C] are used to update attribute tracking scores for the current training 

instance. These scores can be fed back into the GA to bias discovery toward useful attribute 

combinations. (9) The GA uses tournament selection to pick two parent classifiers from [C] 

based on fitness (i.e. a niche GA) and generates two offspring classifiers which are added to 

[P]. The GA includes two discover operators; uniform crossover and mutation. (10) Lastly, 

whenever the size of [P] is greater than the specified maximum (N), a deletion mechanism 

selects a rule and either decrements the numerosity of the rule (if there are multiple copies), 

or removes it from [P] entirely (if it is the last copy). After all learning iterations have 

completed, rule compaction is applied as a post-processing step (C) to remove poor and/or 

redundant rules from [P] to yield [Pc]. After completion, the ExSTraCS output may be used 

to make class predictions or evaluated and visualized to facilitate knowledge discovery.

2.1.3 Input—See ‘Input’ in (A) of Figure 1. At minimum, ExSTraCS requires a 

configuration file and a training dataset to run. The configuration file is a formatted (.txt) file 

which specifies algorithm run parameters. A detailed overview of all run parameters and 

instructions for running the algorithm are included in the ExSTraCS Users Guide [36]. Two 

run parameters that are particularly important to successful performance include the 

maximum rule population size (N), and the maximum number of learning iterations (Imax). 

The training data constitutes the ‘environment’ within which ExSTraCS seeks to learn. The 

training data file should be a tab-delimited (.txt) file, where the first row includes column 
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headers (i.e. identifiers for attributes, the class variable, and instance identifiers, if 

available). Any missing values in the dataset should have a standard unique designation.

2.1.4 Adaptive Data Management—See ‘Adaptive Data Management’ in (A) of Figure 

1. The adaptive data management (ADM) component was originally designed to facilitate 

ease of use, improve learning efficiency, and automatically adapt ExSTraCS to learn on 

datasets that might include either discrete or continuous attributes [41]. ADM will load and 

format training (and optionally testing) data, simultaneously identifying key characteristics 

including: number of attributes, number of instances, the location of the endpoint variable 

column, and (optionally) the location of the instance identifiers column. Upon loading, the 

order of the training instances is randomized once in preparation for learning. This avoids 

any potential bias that might be introduced by the initial ordering of the data. ADM 

automatically identifies and stores which attribute variables to treat as discrete, and which to 

treat as continuous. It does this by counting the number of unique state values for each 

attribute, and checks if this value is greater than a user defined run parameter 

(discreteAttributeLimit). If continuous, the maximum and minimum values are stored, for 

use in limiting evolved attribute ranges within rules.

In this work we have added the calculation of a rule specificity limit to the ADM. The rule 

specificity limit (RSL) is simply the maximum number of attributes that may be specified 

within a given rule. Essentially this limits the dimensionality of a given rule, or the 

maximum order of interaction that it can specify. In the context of our genetic 

epidemiological problem of interest, an RSL of 7 means that the ExSTraCS algorithm has 

the flexibility to search for up to a 7-way epistatic interaction. RSL removes some of the 

algorithm’s flexiblity, in that it adds the assumption that the underlying pattern of 

association does not require more than, for example, 7 unique attribute states to be specified 

together in order to make an accurate prediction. Importantly, the RSL does not limit the 

number of total attributes that can be involved in the overall prediction model. For instance, 

even with RSL of 5, ExSTraCS can easily solve the 6-bit multiplexer problem, wherein 6 

attributes are critical to the overall solution, but optimal rules only specify 3 attributes. Keep 

in mind that with LCS algorithms, the entire rule population is collectively the prediction 

‘model’.

Rather than pick an arbitrary value for RSL we have implemented a simple, naive approach 

to automatically set the RSL to a reasonable, functional value. This strategy is based on the 

concept of power, where we want to estimate whether we have a sufficient number of 

training instances to detect an interaction of order n (i.e. an n-way interaction). We pick a 

value for RSL such that we prevent the search for n-way interactions that we have little to no 

hope of detecting, given the number of training instances (ι) available in our dataset. We 

estimate this cutoff by comparing ι to the number of unique attribute state combinations (ψ) 

for a given n-way interaction.

(1)
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The value ψ is calculated using the average number of unique discrete states (ε) across 

attributes in the training data. For reference, the multiplexer problem has an ε of 2 (every 

attribute can either have a value of 0 or 1), and the SNP data explored in this paper has an ε 

of 3 (every attribute can have one of three genotypic states; 0, 1, or 2). For simplicity, if an 

attribute is continuous-valued, we count the variable as having two states when calculating 

ε. Notably, this study only explores discrete-valued datasets, therefore another approach to 

calculating ε in the presence of continuous attributes may improve performance.

RSL is selected by sequentially increasing n until ι < ψ. When this occurs, RSL= n. This 

comparison between ι and ψ essentially seeks to determine when the ‘curse of 

dimensionality’ [31] might spread training instances so thinly over the interaction model, 

that if we assume the data is uniformly distributed over all combinations, we would have no 

more than one training instance per attribute combination. If this were the case, we would 

have not have sufficient power to identify that model to be predictive. While it is very 

unlikely that the training data would be uniformly distributed in this way, this comparison 

provides a convenient, liberal, and data-driven strategy to pick the RSL. We do not claim 

that this strategy for selecting RSL is optimal, but instead we seek to demonstrate that the 

use of a reasonable RSL improves performance and scalability. Table 1 gives calculations of 

ψ for different combinations of n and ε. Using this table, we can see that for SNP datasets 

(with an ε of 3 and ι = 1440) ExS-TraCS will use a RSL of 7, or in other words it will be 

limited to searching for up to a 7-way pure, strict epistatic interaction between SNP 

attributes [45]. For comparison, consider that very few epidemiological investigations ever 

consider interactions of an order larger than 3 or 4 [30] due to the outrageous computational 

demands of traditional exhaustive methodologies.

RSL replaces the need for the pspec parameter which has been used in most Michigan LCS 

algorithms to determine the probability that individual attributes might be specified during 

covering. Additionally, pspec was used in ExSTraCS 1.0 to transform expert knowledge 

scores into probabilities if expert knowledge covering was activated [41]. The 

implementation of RSL also eliminates the need for two additional parameters (EKmax, and 

EKdop), previously required for the logistic transformation of expert knowledge scores into 

probabilities that could be used by the algorithm [43, 41]. For user flexibility, we have 

added an optional parameter to ExSTraCS 2.0 that will override the automated RSL 

calculation, allowing the user to directly specify their own RSL. Overall, the ADM improves 

efficiency, makes ExSTraCS more user friendly, and paves the way for future algorithmic 

enhancements.

2.1.5 Expert Knowledge Discovery—See ‘Expert Knowledge Discovery’ in (A) of 

Figure 1. Expert knowledge (EK) is essentially an external bias introduced to the algorithm 

that encourages learning to more frequently explore attributes that have a better chance to be 

useful in predicting the class endpoint of interest. When EK is applied, rules will tend to be 

generated that cover parts of the search space believed to be of greater importance. Notably, 

the utility of EK is only as good as the quality of the information driving the weights.

Previous work explored the utilization of EK within the UCS algorithm [43]. The results 

indicated that EK, utilized as probabilistic weights for specifying attributes in rules, 
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significantly sped up learning when applied to covering, but yielded inconsistent success 

when applied to the mutation operator. Specifically, while EK mutation significantly 

improved key metrics like testing accuracy and the power to find underlying predictive 

attributes, it harmed the ability to fully characterize underlying heterogeneity. This was 

attributed to the global pressure of EK scores (always active in the genetic algorithm) adding 

consistent bias towards specifying attributes with the highest EK scores, but a lesser bias 

towards predictive attributes with a weaker signal. ExSTraCS 1.0 incorporated the EK 

covering strategy as described in that earlier work. In order to effectively scale up 

ExSTraCS 2.0 to handle larger numbers of attributes, we have introduced a new strategy to 

incorporate expert knowledge into both covering and the mutation operator described further 

in sections 2.1.9 and 2.1.13.

The source of EK is ultimately up to the user. ExS-TraCS can load a formatted file including 

custom EK scores for each attribute in the dataset, or generate EK scores directly from the 

training data using one of four Relief-based attribute weighting algorithms implemented into 

ExSTraCS. These include ReliefF [25], SURF [19], SURF* [20], and MultiSURF [18]. Each 

of these algorithms have been coded to allow for both discrete and continuous attributes. 

Relief-based algorithms are based on the assumption that by comparing training instances 

that are maximally similar (neighbors), we can derive potentially predictive information by 

focusing on attributes in these neighboring rules that have different states (e.g. different 

genotypes). Figure 2 illustrates this core concept. In this example we have a pair of training 

instances that are considered to be neighbors since their attributes states are similar (i.e. all 

but two attributes in this example have identical states (either A, B, or C). In this example 

the two instances belong to different classes (0 and 1), referred to as a ‘miss’. A miss 

between neighboring instances, means that attributes with different states will increase their 

respective scores by 1 (i.e. more likely to be predictive of class). If instead, both neighboring 

instances had the same class, referred to as a ‘hit’, then attributes with different states will 

get a decrease in score of 1 (i.e. less likely to be predictive of class). Relief-based algorithms 

are fast, and proficient at assigning higher weights to attributes with simple main effects, 

lower order epistatic interactions, and/or simple patterns of heterogeneity [19,20,18,43,41]. 

By default, ExSTraCS applies MultiSURF to discover EK, as it is the newest and most 

powerful of the algorithms. We refer readers to respective citations above for a complete 

description of each algorithm.

New to ExSTraCS, is the addition of Tuned-ReliefF (TuRF) [28,19]. TuRF is essentially a 

wrapper algorithm that can be applied to any of the four Relief-based algorithms to improve 

performance on datasets with larger numbers of attributes. The application of TuRF is 

particularly important in noisy problem domains, such as the one we consider in this paper. 

TuRF runs the chosen Relief-based algorithm repeatedly, each time systematically removing 

the worst attributes (TuRF_Percent), and re-estimating Relief algorithm weights in their 

absence. See [28] for a detailed description of the original algorithm. TuRF was originally 

conceived as a strategy to filter out the worst attributes and yield useful scores for the top 

remaining attributes. Within ExSTraCS we want to allow all attributes in the dataset an 

opportunity to be considered in rules. Therefore, in order to provide all attributes with scores 

and accurately reflect which attributes were removed earlier or later, we have made one 
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alteration to the TuRF algorithm. As TuRF progressively removes TuRF_Percent of all 

attributes with each re-estimation cycle, it keeps track of which attributes each time. When 

the maximum number of re-estimation cycles ( ) is reached, we calculate the 

difference between the highest and lowest scores (diff) of the remaining attributes. We then 

step backwards from the most recent set of removed attributes to the first. Beginning with 

the lowest score from best set of remaining attributes, each step we assign all attributes in 

the respective group a further discounted score than the mimimum thus far. This discount is 

1% of diff. This way we can assign scores to all attributes and preserve useful information 

about the hierarchy of removed attribute scores. The ADM has been updated to manage the 

progressive removal of attributes for the TuRF wrapper.

Once raw EK scores have been loaded or discovered, a simple transformation is performed 

to ensure that all scores are within the range (0–1). This replaces the more complicated 

logistic transformation proposed in [43].

2.1.6 Rule Population—See (1) and (2) of Figure 1. This section begins a discussion of 

the incremental core algorithm that repeats over the course of learning. ExSTraCS will 

repeatedly cycle through all instances in the training data until Imax is reached. While the 

order of training instances were randomized when the dataset was loaded, ExSTraCS will 

cycle through these instances repeatedly in the same order. Preliminary analyses suggested 

that there was no benefit to repeated randomizations of the training instance order (data not 

shown). Within an iteration, a single training instance is passed to the rule population [P] 

which is the set of all unique rules. [P] is governed by a maximum population size parameter 

(N). When too many rules exist in the population the deletion mechanism is activated at the 

end of the iteration.

Here, we discuss rules and how they are represented within ExSTraCS. Rules in LCS 

algorithms follow an IF/THEN format, where the ‘IF’ represents a condition (i.e. to what 

attribute states does the rule apply?), and the ‘THEN’ represents what is traditionally 

referred to as the action (i.e. the class, endpoint, or phenotype). A given rule is only 

applicable to data instances that it’s condition matches, and can only adopt a single class 

endpoint as it’s action. For these reasons, an individual LCS rule can never be useful as a 

predictive model on it’s own.

In earlier work with LCS algorithms, (UCS [38], AF-UCS [37], and UCS-EK [43]) we 

applied a quaternary knowledge representation very similar to what had been used in other 

traditional LCS algorithms. This representation was applied to handle the genetic SNP 

datasets of our problem domain, where discrete genetic SNP attributes each had three 

possible states (0, 1, or 2). Figure 3 gives an example of this representation. Assuming that 

each value in the list is an attribute (A), and attribute order is zero-based numbering, the 

quaternary rule can be interpreted as follows [IF: (A1 = 2) and (A4 = 0) and (A6 = 1) and 

(A7 = 2), THEN: Class = 1]. Notice how the rule ignores the instance state values of any 

attribute with a ‘#’. This representation relied on the use of wild-cards (given by ‘#’) to 

indicate when the state of a given attribute could have any value (i.e. the attribute was 

generalized). Instead, ExS-TraCS adopts a mixed discrete-continuous attribute-list (DCAL) 

knowledge representation (see Figure 3) that permits attributes to be discrete and/or 
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continuous-valued. The mixed representation example can be interpreted as follows [IF: (A1 

= 2) and (A4 = 0) and (0.4 ≤ A6 ≤ 0.7) and (A7 = ‘high’), THEN: Class = 1]. Notice that this 

representation accommodates instance state values that are integer, floats, or text. This 

strategy is largely similar to the one proposed by Bacardit in [3] which combined the 

attribute-list knowledge representation (ALKR), designed for continuous attributes, with the 

GABIL discrete attribute representation [16]. ALKR only stores attributes that are specified. 

This significantly reduces run time in both matching and attribute tracking [41]. This feature 

is particularly important in datasets with a large number of non-predictive attributes. 

ExSTraCS preserves the ALKR representation but avoids the GABIL representation in favor 

of a simpler but less generalizable strategy for representing discrete attribute states. In 

particular, a discrete attribute specified in the ‘attribute reference’ list (which stores the 

reference location for that attribute) can only have a single specified state value (0, 1, or 2) 

within the ‘rule condition’ (which stores the actual state value specified for that attribute). 

Differently, the GABIL representation allows multiple state values to be specified for a 

given attribute (e.g. the instance attribute state can have a value of either 0 or 2). While this 

may be advantageous for evolving a maximally compact rule-set, this approach is not in-line 

with the global approach to knowledge discovery proposed in [42] which relies on predictive 

attributes being specified more often across rules in the greater population. Additionally, the 

ExSTraCS representation yields individual rules that are arguably easier to interpret (i.e. 

there is less ambiguity within the IF/THEN statement) and they are likely to be more 

accurate individual predictors since they uniquely capture a more specific set of attribute 

states. The DCAL knowledge representation adopted by ExSTraCS has been applied within 

the covering, mutation, and crossover operators as described in [3].

A number of rule parameters are maintained and updated for each rule in the population over 

the course of learning. Table 2 summarizes these parameters including a brief description of 

what they are, how they’re used, and when, if ever, there values are updated. The most 

important of these are accuracy, fitness, and numerosity. Accuracy, in the context of an LCS 

rule, is quite different than training or testing accuracy of the algorithm as a whole. Rule 

accuracy is calculated to be the proportion of instances in which a rule predicted the correct 

class out of those instances that the rule was able to match. To understand this further, 

consider that a rule could have a condition that only matched a single training instance, but 

made a correct prediction, meaning that the rule has an accuracy of 100%. While this rule is 

maximally accurate, we know that it is probably useless for making generalized predictions 

on testing instances that the algorithm has not yet seen. This hypothetical over-fit rule 

highlights why generalization pressures are critical to LCS algorithms.

Rule fitness is traditionally calculated as a power function of rule accuracy (i.e. fitness = 

accuracy) where the run parameter ν is typically set to 10. Previously, we observed that 

placing too much emphasis on optimal accuracy in calculating fitness led to dramatic 

overfitting in noisy problem domains [38]. Therefore ExSTraCS has adopted a default value 

of ν = 1 making fitness equal to rule accuracy. The fitness of a rule proportionally impacts 

it’s probability of being selected as a parent by the genetic algorithm, and is inversely 

proportional to it’s probability of being deleted.
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The numerosity of a rule is simply the number of copies of a given rule that have been 

introduced and preserved in [P]. Instead of individual copies of the same rule appearing in 

[P], Michigan LCS algorithms check to see of a rule already exists. If it does, it’s numerosity 

is increased rather than adding that new rule copy to the population. Similarly if the 

algorithm seeks to delete a rule, the numerosity is decreased by 1. Once the numerosity of a 

rule reaches 0, the rule is removed entirely from the population. Rule numerosity plays a 

role throughout the algorithm, impacting the calculation of prediction votes, and deletion 

probabilities. When attempting knowledge discovery by manually inspecting the rule 

population, rules with the highest numerosity often have the best balance of accuracy and 

generality for making useful class predictions [48].

2.1.7 Match Set—See (3) of Figure 1. Getting back to the core learning cycle, a training 

instance is passed to [P] where the subset of rules that have a condition that matches the 

attribute states of the training instance are activated to form the match set [M]. All rules in 

[M] are relevant to the attribute states of the training instance, but may predict different class 

endpoints. ExSTraCS determines a rule to match by stepping through attributes specified in 

the attribute reference list. To match, all discrete instance states must equal the respective 

rule condition states. All continuous instance states must fall within the respective 

continuous intervals given by the rule condition. If an instance state has a missing value it 

will match anything, allowing ExSTraCS to handle the missing data point in a neutral 

manner. Because of this, ExSTraCS does not require imputation in the presence of missing 

data points. Like EK, imputation can add a positive or negative bias depending on it’s 

quality. Imputation can still be performed prior to running ExSTraCS, but this is not 

currently built-in to the algorithm.

2.1.8 Correct Set—See (4) of Figure 1. ExSTraCS is designed specifically to deal with 

supervised learning problems, where the true class endpoint is known for each training 

instance ahead of time. As originally proposed in UCS, the match set [M] is divided into a 

correct set [C], and incidentally an incorrect set [I]. Being that we know the true class of the 

current training instance, [C] is simply the subset of rules in [M] that predict the ‘correct’ 

class. Intuitively, [C] represents the best rules currently in [P] for making a prediction on the 

current training instance. Later in the iteration, rules in [C] will receive a fitness boost for 

matching and making a correct prediction, while rules that matched, but made an incorrect 

prediction will be penalized with a fitness decrease.

2.1.9 Covering—See (5) of Figure 1. At this point it is possible that no rules in [P] have 

made it into [C]. For instance, this occurs the very first learning iteration, because [P] starts 

out empty. When [C] is empty the rule discovery operator known as covering is activated. 

Traditional Michigan LCS covering randomly generates a rule that both matches the training 

instance, and in the case of supervised learning assigns that rule the same class as the current 

training instance. Covering assures that at least one rule is included in the population that 

matches the current training instance, and serves to intelligently initialize [P] with rules that 

are sure to match at least one training instance in the search space. The ‘random’ generation 

of a rule condition is achieved by taking the attribute states of the training instance, and for 

each one deciding whether to keep that attribute state specified in the rule condition, or 
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generalize it. For example, using the quarternary rule representation, covering might take the 

training instance [1,0,0,2,1,1,1]→1 and convert it into the following rule [#,0,#,#,1,#,#]→1, 

where only two attributes have been specified, and the rest have been generalized. The 

probability pspec is applied to each attribute to decide whether it will be specified. In [43], 

covering was adapted to apply EK probabilities to bias the specification of attributes with 

high EK weights, and generalize attributes with low EK weights. This was successful in 

speeding up learning by initializing rules to specify attributes most likely to be useful in 

making accurate class predictions. The calculation of EK probabilities in that 

implementation relied on pspec to determine the average number of attributes that would 

ultimately be specified in rules when applying EK.

As mentioned in the introduction, when the dataset includes large numbers of attributes, it is 

probable for rules to be generated that specify far too many attributes, which will lead to 

pure over-fitting, and prevent the algorithm from learning any useful generalizations. pspec is 

a critical and difficult parameter to set especially as the number of attributes in the dataset 

becomes large. Ideally, we want the LCS algorithm to be able to discover rules that will 

match more than one training instance in the dataset. One potential solution is to set up a 

parameter sweep, where the LCS algorithm is initially tested with different values of pspec. 

However this can be computationally expensive, time consuming, and makes running LCS 

algorithms more of a challenge. We could also purposefully set pspec to an extremely low 

value, but this can lead to the frequent generation of completely general rule conditions that 

match everything, but also capture no useful information. Notably, ExSTraCS automatically 

prevents completely general rules from entering [P].

As a rule discovery mechanism, covering has been updated in ExSTraCS 2.0 to apply the 

RSL. This changes how covering operates both with and without the application of EK. 

Without EK, the new covering mechanism begins by randomly picking the number of 

attributes to specify (ASpec) within the range (1, RSL). Next, ExSTraCS randomly selects 

ASpec attributes to specify, where the new rule condition adopts the states of those attributes 

found in the training instance.

By default, ExSTraCS does apply EK to covering. In this situation, ASpec is determined as 

before, but now ExSTraCS deterministically selects the ASpec attributes with the top EK 

scores to specify. In a preliminary investigation we also tested an EK covering scheme 

which applied roulete wheel selection to probabilistically select the ASpec attributes to 

specify. However, we found that this was both slower and less effective. With or without 

EK, both strategies assign the class of the current training instance to the rule.

Additionally, if an attribute is selected to be specified that has a missing value in the training 

instance, the attribute remains generalized in the rule. Also, if a continuous attribute is to be 

specified during covering, a continuous range centered around the current training instance 

attribute value is added to the rule condition [3]. The size of the interval is determined in the 

following way: (1) Get the difference diff between the maximum and minimum values 

observed in the training data for this attribute (previously computed and stored in the ADM). 

(2) Randomly select a range radius (r) that is between 25% and 75% of diff. (3) The interval 
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is set to the value of the continuous attribute in the instance ±(0.5 × r). Pseudo-code for the 

covering strategy is given in Algorithm 1.

2.1.10 Rule Parameter Updates—See (6) of Figure 1. Now that [M], [C], and [I] have 

been formed, and at least one rule is in [C], rule parameters are updated for the rules that 

made it into at least one of these sets. Any rules in [P] that did not make it at least into [M] 

will not receive any updates during the current training iteration. Referring back to Table 2 

and the column labeled ‘Updated’, the following parameters will get updated: (1) 

MatchCount; incremented for all rules in [M], (2) CorrectCount; incremented for all rules in 

[C], (3) Accuracy; recalculated for all rules in [M], (4) Fitness; recalculated for all rules in 

[M], (5) AveMatch-SetSize; an average estimate of the number of rules included in [M] 

(used to calculate deletion probability), and (6) TimeStampGA; gets set to current number of 

iterations that have passed when the GA is successfully activated (applied only to rules in 

[C]). Rule parameter updates are directly responsible for learning.

2.1.11 Subsumption—See (7) of Figure 1. Subsumption is a generalization mechanism 

that has been a part of most Michigan LCS algorithms since XCS [48]. ExSTraCS preserves 

subsumption as it was originally conceived, running the mechanism within [C] as well as 

between parent and offspring rules in the GA. Subsumption examines pairs of rules that 

have an accuracy greater than the parameter accsub (typically set to 0.99) and that have been 

involved in a [M] more than thetasub (typically set to 20). The more general rule (Rg) is a 

potential subsumer (e.g. [#,0,#,#,1,#,#]→1 using the quarternary rule representation for 

simplicity). The more specific rule Rs has the potential to be subsumed (e.g. [1,0,2,#,1,#,#]

→1). If the above constraints were met and all specified attribute states in Rg are also 

specified in Rs then Rg subsumes Rs. This means that the numerosity of Rg increases by the 

numerosity of Rs, and then Rs is removed from the population.

While subsumption is currently preserved in ExS-TraCS it is unlikely that it is particularly 

effective in noisy problem domains where optimal rules are unlikely to achieve an accuracy 

of 0.99 or greater. This may prove an interesting target for future work.

2.1.12 Attribute Tracking and Feedback—See (8) of Figure 1. Attribute tracking and 

feedback mechanisms were first introduced in [37] and later implemented by ExSTraCS 

[41]. Attribute tracking (AT) is essentially a form of long-term memory for supervised, 

incremental learning (see (8) in Figure 1). Given a finite training dataset, a vector of AT 

scores is maintained for each instance in the data. During learning, the AT scores for the 

current training instance are increased based on which attributes are specified in rules found 

in [C]. Post-training, these scores can be applied to characterize patterns of association in the 

dataset. In particular, heterogeneous patterns can be sought that may capture clinical patient 

subgroups that in turn may be targeted for research, treatment, or preventative measures 

[37]. Note that using AT alone does not impact ExSTraCS learning performance. Attribute 

feedback (AF) is applied to the GA mutation and crossover operators. AF probabilistically 

directing rule generalization based on the AT scores from a randomly selected instance in 

the dataset. The probability that AF will be used in the GA is proportional to the algorithm’s 

progress through the specified number of learning iterations (i.e. AF is applied infrequently 

early-on, but frequently towards the end). AF speeds up effective learning by gradually 
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guiding the algorithm to more intelligently explore reliable attribute patterns. These 

mechanisms and their application are further detailed in [37, 40,41]. One final observation 

that should be made in the context of scalability is that AT and AF are likely to become 

somewhat difficult to apply as datasets become extremely large, specifically when there are 

huge numbers of training instances or potentially predictive attributes. However in the 

context of this investigation, we do not consider large enough data for this to be a problem.

2.1.13 Genetic Algorithm—See (9) of Figure 1. The next step in the algorithm is to 

apply the second rule discovery mechanism. Specifically, ExSTraCS applies a niche GA that 

selects two parent rules from [C] and then generates two offspring rules to be added to [P]. 

The GA is activated if the difference between the current iteration and the average 

TimeStampGA of rules in [C] is greater than the run parameter thetaGA (typically set to 25 

by default). This prevents the GA from running very early on, or on sets of rules in which 

many of the rules were recently involved with the GA mechanism. This helps the algorithm 

to distribute its efforts exploring the search space.

When activated, the GA begins by selecting two parent rules. ExSTraCS has both the 

roulette wheel and tournament selection implemented as options for parent selection. 

Tournament selection is used by default, as this strategy was found to be more parameter 

independent, noise independent and efficient when implemented in the XCS algorithm [15].

Next, a uniform crossover operator is applied with probability χ = 0.8 which seeks to shuffle 

the conditions of the two parent rules, recombining them into two new offspring rules. AF is 

implemented into the ExSTraCS GA as previously described in [37]. In brief, the AT scores 

from a randomly selected instance are used to bias the swapping of attributes between parent 

rules, encouraging attributes with high AT values to end up in one rule, and attributes with 

low AT values to end up in the other. The intuition here is that high scoring attribute 

combinations identified for one instance, will be more likely to be tested out in another. 

Crossover proceeds as previously implemented in [41]. However crossover can yield an 

offspring rule that specifies more attributes than the RSL allows. In order to maintain this 

limit, the algorithm checks to see if the number of attributes specified in either offspring 

rules is greater than the RSL. If AF is active, attributes with the lowest AF scores are 

generalized from the rule until the RSL is reached. Alternatively if AF is not active, 

attributes are randomly selected to be generalized from the rule until the RSL is reached.

Lastly, a mutation operator is applied to both off-spring rules. Previous implementations of 

mutation in Michigan LCS algorithms apply a default probability of υ = 0.04 for every 

attribute in the dataset, potentially ‘mutating’ this attribute in the rule condition. LCS 

mutation is somewhat different than other evolutionary algorithms. Specifically if an 

attribute was originally specified in the rule, mutation generalizes it to ‘wild/don’t care’. If 

the attribute was originally not specified in the rule, it now specifies the attribute to have the 

current attribute state of the training instance. As a result, new offspring rules generated by 

the GA will always match the current training instance under consideration. This type of 

mutation becomes problematic when scaling up to data with large numbers of attributes as 

discussed in section 1, since random chance will tend to mutate rules towards having 

roughly half of all attributes specified. ExSTraCS 2.0 updates the mutation operator in two 
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ways: (1) adapting it to the RSL and (2) integrating EK to guide mutation in the context of 

the RSL.

First, we determine the final number of attributes AFSpec that will be specified in the rule 

following mutation. The parameter υ (which notably does not have the same function as in 

the traditional mutation operator) is used to pick some number of steps. Specifically we 

repeatedly choose a random number in the range (0,1) and increment steps each time until 

this random number is less than υ. Assuming a low value for υ (a default value of 0.04 is 

preserved), steps will typically equal 0. Next we randomly pick AFSpec from the range 

(ACSpec − steps, ACSpec + steps) where ACSpec is the current number of attributes specified in 

the rule. Also, keep in mind that this range cannot go below 1 or above RSL. This forces 

ExSTraCS to search the problem space in which we are most likely powered to find useful 

generalizations.

At this point we compare ASpec to the current number of attributes specified in the rule. 

Now, one of the following scenarios is possible: (1) AFSpec = ACSpec, i.e. specificity is 

maintained, (2) AFSpec > ACSpec, i.e. specificity is increased, (3) AFSpec < ACSpec, i.e. 

specificity is decreased. If specificity is to be maintained ExS-TraCS retains a probability υ 

that the mutation operator will abort, and the rule will remain unchanged. Alternatively, 

ExSTraCS mutates two attributes in the rule (one specified, and another generalized) so that 

overall specificity is unchanged. If specificity is to be increased, ExSTraCS specifies 

attributes until AFSpec is reached. If specificity is to be decreased, ExSTraCS generalizes 

attributes until AFSpec is reached.

This new mutation scheme applies the opportunity to utilize AF, EK, or simply rely on 

random chance to select attributes to be mutated. First, a target attribute is selected as 

follows: If EK is active (as it is by default), ExSTraCS applies a 50% chance that EK 

weights will be applied to roulette wheel selection to pick the target attribute. If selecting an 

attribute to specify, a larger attribute EK weight means a larger probability of being selected. 

If selecting an attribute to generalize, a smaller attribute EK weight means a larger 

probability. If EK is deactivated, or the 50% chance opts to avoid the use of EK, the target 

attribute is chosen randomly. This 50% chance of using EK to choose the mutated 

attribute(s), assures opportunity for rule diversity by limiting the application of EK bias.

Once an attribute has been selected as the target for mutation, we check to see if AF is 

currently active. If so, the AT scores from a randomly selected instance are used to 

probabalistically allow the attribute to be specified if the AT score is high, or prevent it if 

low. If generalizing an attribute, the opposite is true. Lastly, there is a probability of υ that 

the class endpoint of a given rule will be mutated to a different class.

Before the two offspring classifiers are added to [P], ExSTraCS checks to see if either rule 

already exists in the population (if so that rule’s numerosity is increased). Also before 

adding offspring rules to [P], ExS-TraCS attempts to perform GA subsumption between 

parent and offspring rules as discussed in 2.1.11.
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2.1.14 Deletion—See (10) of Figure 1. At the end of a learning cycle ExSTraCS sums the 

number of rules currently in [P] (microPopSize). The micro-population size is the sum of all 

rule numerosities in [P]. The macro-population size is the number of unique rules currently 

in [P]. If microPopSize is greater than N, than rules will be selected for deletion until N is 

reached. Rules are selected for deletion using roulette wheel selection. The calculation of 

rule deletion weights is inherited from XCS [48] and UCS [9]. Specifically the deletion 

weight of a given rule is calculated as follows:

(2)

Here, meanFitness is the average Fitness of all rules in [P] while the other rule parameter 

values in the above equation are specific to the given rule. To prevent division errors, if 

fitness = 0, the run parameter initFitness (set to 0.01 by default) is used instead of fitness. 

Additionally, to protect rules from deletion that have above average fitness and low 

numerosity (i.e. If ), or similarly protect rules with very little 

experience (i.e. If matchCount < thetadel), an alternate calculation of deletionWeight that 

will yield smaller weights is applied.

(3)

2.1.15 Rule Compaction—See (C) of Figure 1. Once ExSTraCS has reached Imax, we are 

left with a [P] that ideally has learned some accurate generalizations that will be useful for 

making class predictions. When Michigan LCS learning stops, some of the rules will 

inevitably be inexperienced as the algorithm is always testing new areas of the search space, 

while seeking to preserve the best, more experienced rules. Some of the rules in [P] are 

useless artifacts of the rules discovery process that contribute nothing, or even hinder, 

accurate predictions. Additionally, a certain amount of rules that overlap in the search space 

are likely to exist in [P]. To remove these poor or overlapping rules, and/or to reduce the 

overall size of [P] with the intent of increasing interpretability via manual rule inspection, 

ExSTraCS makes six rule compaction strategies available to post-process [P] and yield a 

compacted population [Pc] (see (C) in Figure 1). Each rule compaction strategy was 

implemented and evaluated in [35]. Comparisons in [35] suggested that the simple Quick 

Rule Filtering (QRF) was both the fastest, and most well suited to the theme of global 

knowledge discovery [42] in which it is more important to preserve or improve performance 

than to minimize rule population size. ExSTraCS applies QRF by default. The remaining 

subsections discuss other key features that highlight how the evolved population of rules 

[Pc] can be applied and evaluated.

2.1.16 Prediction—See ‘Prediction’ in Figure 1. As a supervised learning algorithm, 

iterations of ExSTraCS do not alternate between an explore/exploit phases as described in 

XCS [48] and other reinforcement learning-driven LCS algorithms. In the classic exploit 

phase, a prediction array is generated using [M] to obtain a class prediction. ExS-TraCS will 
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generate a prediciton array in the following situations: (1) performance tracking during 

learning (ExSTraCS generates a prediction array every iteration to track estimated prediction 

performance), (2) evaluation of rule population prediction accuracy over a complete training 

or testing dataset, and (3) applying [P] as a prediction machine to other previously unseen 

instances.

ExSTraCS adopts a prediction strategy similar to XCS with a couple minor extensions to 

increase the chances that a class prediction can be made without resorting to a random 

choice between class (if class votes are tied). The ‘vote’ calculated for each endpoint class is 

the sum of all numerosity-weighted fitnesses (numerosity*fitness) for rules specifying a 

given class in [M]. The class with the largest vote is selected to be the predicted class. 

ExSTraCS extends this approach, also similarly tracking the sum of numerosities and the 

sum of initTimeStamp for each class. If there is a tie for best class after the initial vote, then 

this tie is broken by the class with the greatest numerosity sum (i.e. more rules in [M] 

predict the given class). If a tie persists then the class with the younger average set of rules is 

chosen as the prediction since all things being equal, we have the expectation that newer 

rules should be better. If the tie still cannot be broken, a random class is selected as the 

prediction. Ties at any level in prediction are rare, thus we don’t expect this expansion to 

have much influence in most problem domains. It does however seem appropriate to use any 

information available to avoid making random predictions.

If [M] is empty when the prediction array is activated, then no rules cover the current data 

instance. When this occurs, no prediction can be made, as [P] is said to not ‘cover’ the given 

instance. ExSTraCS tracks and reports this coverage statistic for complete evaluations of 

training or testing data

2.1.17 Output—See ‘Output’ in Figure 1. Upon request, ExSTraCS will yield up to five 

distinct output files when Imax has been reached. Additionally, the user can specify any 

number of checkpoints for learning to be paused, and complete evaluations of [P] to be 

completed yielding the same set of output files. Output files include (1) the population of 

rules [P] including rule parameter values for respective rules, (2) population statistics, 

summarizing major performance statistics including global training and testing accuracy of 

the classifier population [42], (3) co-occurrence scores for the top specified pairs of 

attributes in the dataset [42] (discussed further in section 2.2.2), (4) attribute tracking scores 

for each instance in the dataset [37], and (5) a summary of class predictions for the testing 

datasets. This last output files is new to ExSTraCS 2.0. It includes the class prediction and 

associated class votes for each instance in the testing data. This allows the solution evolved 

by ExSTraCS to be explicitly tested and evaluated as a prediction machine. Class votes for 

each instance could be utilized as fuzzy predictions, Bayesian probabilities, or estimates of 

prediction confidence. These output files facilitate algorithm transparency, interpretation, 

and knowledge discovery. For a detailed exploration of how knowledge discovery or 

statistical significance testing might be pursued in ExSTraCS or similar Michigan LCS 

algorithms we refer readers to [42].

2.1.18 Miscellaneous—Here we review some of the additional features implemented in 

ExSTraCS to facilitate flexibility of use. First, in addition to a training dataset for learning, 
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ExSTraCS optionally allows a testing dataset to be loaded so that the algorithm may be 

evaluated on instances it has not yet been exposed to. Notably, whenever evaluations of the 

algorithm are being completed, learning and rule discovery is turned off so that the rule 

population remains unchanged. ExSTraCS is designed to facilitate cross-validation analyses, 

where an original training dataset is broken into n parts, and the algorithm is independently 

trained n separate times on  of the data, with a different  of the data reserved for testing 

each run (n = 10 by default). Cross-validation analysis allows for an assessment of over-

fitting, and the ability of the algorithm to make useful predictions on instances it has not yet 

seen. Optionally, ExSTraCS allows the user to generate cross-validation datasets from an 

original training dataset, and to serially run the algorithm n independent times, each yielding 

associated output files.

Next, ExSTraCS offers a ‘reboot’ option, which allows the user to load any previously 

generated rule population output file, and pick up training from where it had previously left 

off. This allows the user to add additional training iterations without having to run ExS-

TraCS from scratch.

Also, class imbalance can bias the standard calculation of prediction accuracy, such that it 

does not meaningfully reflect performance. ExSTraCS applies a balanced accuracy 

calculation to all complete evaluations of [P]. Balanced accuracy (balAcc) is the average of 

sensitivity and specificity. ExSTraCS extends the calculation of balanced accuracy described 

in [47] to accommodate discrete endpoints with more than two classes. This is done by 

tracking whether a prediction is a true positive (TP), true negative (TN), false positive (FP), 

or false negative (FN) for each class. Using these values we calculate sensitivity and 

specificity for each class using the following equations:

(4)

(5)

Ultimately, balanced accuracy is calculated as follows, where n is the number of classes.

(6)

2.1.19 Logistics—Table 3 summarizes all of the ExSTraCS learning parameters and the 

default values applied in this study. The ExSTraCS algorithm is run from the command-line 

and coded in Python to promote readability and facilitate ongoing development. The code is 

open source, well annotated and freely available at sourceforge.net [36]. The software 

comes with a complete users guide that details the parameters found in Table 3, reviews how 

to apply the features built into ExSTraCS, and when users may want to turn off certain 
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mechanisms (e.g. attribute tracking, attribute feedback, expert knowledge, or rule 

compaction).

2.2 Experimental Evaluation

In this section we detail the experimental evaluation applied to test the scalability of 

ExSTraCS. This includes a description of the simulation studies, experimental comparisons, 

and an overview of the different performance metrics applied. In previous work, we found 

that UCS outperformed XCS [38], and two other Pittsburge-style LCS algorithms [39] on 

complex simulated SNP datasets within which patterns of pure, strict epistasis and genetic 

heterogeneity were modeled. Later, we also demonstrated that the use of attribute tracking 

and feedback in AF-UCS [37] as well as the application of expert knowledge in UCS-EK 

[43] outperformed UCS on the same datsets. Most recently, we introduced ExSTraCS 1.0 

which combined AT, AF, EK, rule compaction, and the rule representation previously 

described [41]. Evaluation of ExSTraCS 1.0 on a similar set of simulated datasets concluded 

that the combination of these features significantly improved or preserved all performance 

metrics when compared to implementations that applied these mechanisms independently. In 

the present study, ExSTraCS 1.0 serves as the standard of comparison with which we 

evaluate the impact of the RSL, TuRF, and expert knowledge mutation in ExSTraCS 2.0.

2.2.1 Simulation Studies—This study included two separate complex genetic simulation 

studies, and a study of different benchmark multiplexer problems. The first simulation study 

is identical to the one performed in [41], including a total of 960 diverse datasets with 

discrete SNP attributes. These datasets range in difficulty from those that we know 

ExSTraCS 1.0 can reliably solve to those with massive amounts of noise and particularly 

challenging patterns of association that are currently unsolvable. All simulated datasets, and 

the associated simulated genetic models used to produce them were generated using 

GAMETES [45], an open source piece of software designed to generate a diverse spectrum 

of pure, strict epistatic models. A pure, strict interaction is one in which examining a single 

attribute or subset of attributes involved in the interaction model will yield no information 

about the class endpoint (case or control). This is a particularly challenging pattern to detect. 

Two-locus epistatic genetic models with heritabilities of (0.1, 0.2, or 0.4) and attribute minor 

allele frequencies of 0.2 were simulated in GAMETES applying a model difficulty estimate 

to choose model architectures that were maximally and minimally difficult to solve (i.e. two 

models were selected for each heritability) [44]. For reference, a heritability of 1 would be 

an example of data without noise. In theory, the best testing accuracy we can hope to 

reliably achieve for a dataset with heritability = 0.4, is 0.7. For a dataset with heritability = 

0.1 this drops to only 0.55, making these particularly noisy datsets.

In turn, these models were used to generate an archive of simulated datasets that also 

included patters of genetic heterogeneity (i.e. one part of the dataset was generated to model 

epistasis in one pair of attributes, and the other with a different pair of epistatic attributes). 

In this way, our simulated datasets concurrently models patterns of both epistasis and 

heterogeneity. All datasets in this first simulation study include a total of 20 attributes. Four 

of the attributes were predictive as two separate epistatic interactions heterogeneously 

related to the endpoint, and the remaining 16 were randomly generated, non-predictive 
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attributes. Sample sizes (i.e. number of instances) of 200, 400, 800, or 1600 were generated 

each with a heterogeneous mix ratio of either (50:50 or 75:25) (e.g. 75% of instances were 

generated from one epistatic model, and 25% were generated from a different one). 20 

replicates of each model and dataset combination were generated yielding a total of 960 

datasets (i.e. 3 heritabilities × 2 model difficulties × 4 sample sizes × 2 mix ratios × 20 

replicates). Furthermore we applied 10 fold cross validation in the assessment of every 

dataset, which means that each algorithm version was run a total of 9600 times for this 

simulation study. For each, ExSTraCS was run up to Imax = 200, 000.

Our second simulation study exclusively examines scalability. Due to the additional 

computational demands, this study was limited to a single combination of model and dataset 

features. Specifically we chose a model/dataset combination from the first simulation study 

that we knew ExSTraCS could reliably learn when only 20 attributes were included in the 

dataset. This combination involved a heritability of 0.4, a minor allele frequency of 0.2, the 

maximally easy model architecture, a sample size of 1600, and a mix ratio of 50:50. 20 

replicate datasets with this combination of contraints were generated having either 200 or 

2000 attributes. 10-fold cross validation was applied so that each algorithm version was run 

a total of 200 times (20 replicates × 10 CV). Furthermore in this second simulation study we 

also evaluated performance when ExSTraCS was run for a larger number of iterations, as 

well as with a larger population size.

Our third study explores a spectrum of multiplexer problems (i.e. 6-bit, 11-bit, 20-bit, 37-bit, 

70-bit, and 135-bit). An x-multiplexer is a combinational logic circuit that takes x binary 

inputs, where x = k + 2k, and gives one binary output. The value encoded by k address bits 

gives the position of one of the remaining 2k register bits. The binary value at that target 

register bit is given as the output value. For example, in the 6-bit mulitplexer, if the input is 

110010 then the output will be 0 since the underlined address bits point to the last bit (i.e. 

index 3 in base ten, highlighted in bold with value 0). The 6-bit multiplexer has itself has 

been referred to as a difficult problem, since it and all other standard multiplexer problems 

are epistatic, heterogeneous (i.e. multimodal), and have no reliable main effects (i.e. no 

linear relationships between single attributes and classification). Multiplexer problems also 

conveniently scale up to higher dimensions, which require the discovery of a set of 

optimally generalized rules to solve the problem and make reliable output predictions. Table 

4 summarizes major characteristics of the 6-bit to 135-bit multiplexer problems, including 

the order of epistatic interaction, the number of heterogeneous feature combinations, the 

number possible unique training instances, and the minimum number of accurate, optimal 

rules required to solve the respective problem. The required number of optimal rules [O] 

given in this table assumes that we are searching for a best-action map rather than a 

complete-action map, the later being applied to reinforcement learning LCS algorithms such 

as XCS [11]. Multiplexer problems are most commonly used as benchmark problems 

applied throughout the LCS literature since their introduction by Wilson in [49]. The 6-bit 

and 11-bit multiplexers have been explored using other machine learning strategies such as 

genetic programming [21,22], decision trees [32,7], and neural networks [8,34] however 

they have rarely appeared outside of the LCS literature in recent years, presumably, in-part 

because other machine learning algorithms have trouble adapting to these nonlinear, 
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distributed types of problems, particularly when they are scaled up to a higher difficulty. 

While a handful of studies have reported successfully tackling the 70-bit multiplexer 

problem [13,12,11,14,4,10,23], to the best of our knowledge, only two studies to date have 

claimed to tackle the 135-bit multiplexer problem [11, 23], both of which involve LCS 

algorithms. However, in [11], Butz successfully solves the ‘layered’ 135-bit multiplexer, as 

opposed to the standard 135-bit problem. A ‘layered’ multiplexer provides additional fitness 

guidance towards specification of address bits in rules from the beginning. This greatly 

simplifies the problem by essentially giving part of the solution to the algorithm from the 

start (i.e. the address bits should be specified in optimal rules). In the second study [23], 

Iqbal et. al. successfully solved the standard 135-bit multiplexer, but used building blocks 

learned from training on simpler multiplexer problems in order to achieve scalable learning. 

This approach requires the unlikely assumption that when faced with a complex problem, a 

similarly structured simpler versions of that problem will be available from which to derive 

reliable building blocks. In real world classification problems such as those found in 

bioinformatics this would be an unrealistic assumption. Therefore, to the best of our 

knowledge, the standard 135-bit multiplexer problem has not yet been reported to have been 

solved as a stand-alone problem by any LCS or other machine learning algorithm. In the 

present study we have decided to investigate multiplexer problems as they are characteristic 

of our target complicating phenomenon (i.e. epistasis and heterogeneity), and to put the 

performance of ExS-TraCS into a problem context more familiar to LCS and machine 

learning researchers.

ExSTraCS analysis of the 6 different multiplexer problems was run with a few differences 

compared to our previous simulation studies. For the most part, run parameters given in 

Table 3 were kept the same with the exception of N, Imax, and ν. Given that these 

multiplexer problems did not include noise, we used a more typical LCS algorithm setting of 

ν = 10 such that ExSTraCS would give a greater fitness weight to rules with a very high 

accuracy. Table 5 gives the settings for N and Imax used to solve each of the multiplexer 

problems. Maximum rule population sizes were selected based on those used in [23] which 

has reported solving the different multiplexer problems in fewer learning iterations than 

other Michigan-style LCSs, and thus will be our standard for comparing multiplexer results. 

Different than any other attempt to solve the multiplexer problem, Table 5 also gives the 

finite number of randomly generated multiplexer training instances used to train ExSTraCS 

on a respective multiplexer problem. Previous analyses of multiplexer problems learn online 

from an essentially infinite stream of randomly generated muliplexer instances that serve to 

train or test the algorithm’s predictive performance as part of an explore/exploit scheme, 

respectively. As a supervised learning LCS, ExSTraCS only performs explore iterations, 

constantly learning on training instances and avoiding wasteful estimation of predictive 

performance. Instead, ExSTraCS periodically pauses learning, and separately evaluates the 

training vs. predictive performance of the current [P] on the entire training and testing 

dataset (i.e. two batch-wise evaluations). Another reason for this type of finite multiplexer 

learning, is that ExSTraCS requires a finite training dataset in order to generate expert 

knowledge weights to drive covering and mutation mechanisms. Having a finite training 

dataset is also more in-line with typical real-world supervised learning applications. Also we 

would expect training on a finite set of instances to be harder than a constant stream of new 
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training examples, since the latter will provide more unique examples from which to enforce 

rule generalizations. Training dataset sizes were chosen somewhat arbitrarily and through 

trial and error for the harder problems. 30 randomly generated multiplexer datasets for each 

of the 6 different multiplexer problems were trained using ExSTraCS. In each case, one of 

the other 30 multiplexer datasets was used for testing ExSTraCS predictions. It should be 

pointed out that every simulated multiplexer datset is comprised entirely of predictive 

attributes, where in our previous simulation studies only 4 attributes were predictive, and the 

rest were non-predictive. For example, in the 135 multiplexer datasets, all 135 attributes are 

predictive of class endpoint and crucial to solving the complete problem.

All simulated datasets can be made available upon request or similar simulated genetic 

datasets may be generated using the GAMETES software package [45, 44]. Pair-wise 

statistical comparisons between the ExS-TraCS implementations were made using the 

Wilcoxon signed-rank tests. We consider statistical significance at a p-value below the 0.05 

cutoff. We also correct for multiple statistical comparisons using a very conservative 

Bonferroni correction based on 20 separate algorithm comparisons involving 9 performance 

metrics. A maximally conservative correction including all families of hypothesis would 

thus correct for 180 separate tests yielding a significance cutoff of 0.00027. A slightly less 

conservative approach would treat the 9 performance metrics statistic as a separate families 

of hypothesis yielding a significance cutoff of 0.0025. All three cutoffs are provided. All 

statistical evaluations were completed using R. All analyses were performed using 

‘Discovery’, a 2400 core Linux cluster available to the Dartmouth College research 

community.

2.2.2 Performance Metrics—In order to thoroughly evaluate performance, we consider a 

variety of standard and customized metrics that we have applied in previous work 

[42,37,43,35,41]. These include training and testing accuracies which have been determined 

by running the static rule population as a prediction machine on all instances in the 

respective datasets. Balanced accuracy, described in section 2.1.18 is used to calculate these 

respective accuracies. Testing accuracy is the metric that we particularly want to pay 

attention to when evaluating if ExSTraCS is learning useful generalizations. We also 

examine the average rule generality of [P]. Average generality is weighted by the 

numerosity of rules. This metric gives the average proportion of attributes that are 

unspecified in rules across the population. Generality is useful for evaluating the algorithm’s 

progress in maximizing rule generality while balancing accuracy. All other metrics being 

equal, a higher generality is preferable. Next, we consider the macro-population size (i.e. the 

number of unique rules in [P]). A smaller macro-population size is generally considered to 

be more interpretable in the context of manually inspecting the rules. This metric might also 

be a useful indicator that the population size may need to be increased in order to improve 

performance. Specifically, if macro-population size is equal or close to the micro-population 

size, this suggests that the best, most experienced rules are not getting the opportunity to 

have their numerosities increased, which helps to protect them from complete removal from 

the population. Also, we include run-time (i.e. cpu-time) as a metric. Reported run-times 

exclude pre-processing of EK scores. Efficient implementations of the Relief-based 

algorithms such as the ones included with MDR [29] can make this pre-processing a 
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relatively trivial contribution to run-time. However it should be noted that the current 

Python implementations of Relief-based algorithm built into ExSTraCS are needlessly slow, 

albeit effective.

Along with these standard LCS metrics, we have previously introduced a set of four 

conservative ‘power’ metrics designed to quantify the interpretability of [P] using global 

trends as described in [42]. Each of these metrics are based on the fact that we are working 

with a simulation study where we know the true underlying model, and the algorithm is 

tasked with finding it for itself. Specifically, ‘Both Power’ is the proportion of datasets in 

which the four predictive attributes were specified more frequently in the rules of [P] than 

any others. This gives us a sense of the algorithm’s ability to correctly identify both two-

locus, heterogeneous models. ‘Single Power’ is the proportion of datasets in which the 

attributes of at least one of the two separate, two-way epistatic models were specified more 

frequently in the rules of [P] than any others. This gives us a sense of the algorithm’s ability 

to find at least one of the two epistatic models. The last two metrics are based on attribute 

co-occurrence in rules. This involves the examination of pairs of attributes that are specified 

together in rules across the population. This is intended to give us insight into the nature of 

attribute interactions, and facilitate the distinction between an epistatic interaction and a 

heterogeneous relationship when performing knowledge discovery. ‘Both Co-Power’ is the 

proportion of datasets in which the two pairs of modeled epistatic interactions are also the 

two pairs of attributes with the highest co-occurrence counts in rules of [P]. ‘Single Co-

Power’ is the proportion of datasets in which at least one of the epistatic pairs has the 

highest co-occurrence count in rules of [P]. These last metrics help to identify if the 

underlying pattern of heterogeneity can be identified during knowledge discovery. The most 

important performance metrics considered in this study include testing accuracy, and the 

various measures of power.

3 Results and Discussion

We begin by reviewing the results of the first simulation study that examines a full spectrum 

of complex noisy datasets with 20 attributes (see Tables 6 through 8). Each table 

summarizes performance metrics averaged over 960 datasets (each run 10 times for cross 

validation) with statistical comparisons between versions of ExSTraCS. In order to properly 

evaluate the RSL, we want to give ExSTraCS 1.0 the best opportunity to perform well by 

adjusting the run parameter pspec to specify a similar number of attributes in covering to 

what RSL would allow. In previous work we have typically used pspec = 0.5 on datasets with 

20 attributes [38,39,37,43,40,35,41]. This simulation study includes datasets with 200, 400, 

800, and 1600 instances. Referring back to Table 1 we can identify the RSL that will be used 

by ExSTraCS 2.0 for each dataset size. Given that all simulated SNP datasets have ε = 3, 

ExSTraCS 2.0 will use RSL’s of 5,6,7, and 7 for respective numbers of training instances. 

Given a RSL of 7, covered rules in this first study will, on average, specify 3.5 attributes. 3.5 

attribute out of a total of 20 is 0.175. Table 6 gives the first comparison between two 

separate analyses of ExSTraCS 1.0 where the parameter setting of pspec = 0.5 is compared to 

pspec = 0.175. Here we observed few significant differences between a pspec of 0.5 vs. 0.175. 

However, using 0.175, ExSTraCS 1.0 required a significantly shorter run time, and yielded a 

small significant increase in average rule generality. Therefore, ExSTraCS 1.0 with pspec = 
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0.175 becomes our standard for comparison. Notably we will use the same logic for setting 

pspec in ExSTraCS 1.0 when we scale up to larger datasets (i.e. a pspec of 0.0175 is used for 

datasets with 200 attributes, and a pspec of 0.00175 is used for datasets with 2000 attributes).

Based on the findings in [43], we began with the understanding that using EK within the 

mutation operator might add too much bias towards the highest EK scoring attributes. This 

had previously been demonstrated to lower ‘Both Co-Power’ in similar datasets with 20 

attributes. This translates into a loss in our ability to distinguish patterns of heterogeneity. 

Therefore, we next compared ExSTraCS 1.0 (pspec = 0.175) to a preliminary implementation 

of ExSTraCS 2.0 that includes RSL, but excludes the use of EK within the mutation operator 

(see Table 7). ExSTraCS 2.0 with RSL yields significant and dramatic performance 

improvements for ‘Both’, and ‘Single’ Power as well as a small significant increase in 

average testing accuracy and ‘Single Co-’ Power. However, notably we observed an 

increase in run time as well as a loss in ‘Both Co-Power’. Clearly, in this smaller-scale 

simulation study, the RSL leads to more efficient learning, as it limits the dimmensionality 

of the rule search space preventing the algorithm from spending time considering rules that 

are far too over-specific. Regarding the loss in ‘Both Co-Power’; manual rule inspection of a 

number of rule populations evolved using RSL indicated that rules specifying all 3–4 of the 

modeled predictive attributes were much more common. Since this is simulated data, we 

know that optimal rules (in the context of knowledge discovery) would specify epistatically 

interacting pairs alone. However, given the noise modeled in these datasets, the accuracy of 

rules that specify these pairs alone will never be ‘optimal’ (i.e. accuracy = 1). Ultimately, the 

loss in ‘Both Co-Power’ does not indicate a problem with the RSL, but rather it points to a 

fundamental issue involving the calculation of rule fitness in noisy problem domains. 

Specifically, when the fitness of a single rule is based on accuracy alone, it has no concept 

of what it means to be a ‘fit’ rule in the context of the population as a whole. Going back to 

our manual rule inspection, rules dominate which are slightly over-specified, and have an 

accuracy of 1 or close to 1. As a result, it is not surprising that we see a loss in our very 

conservative ‘Both Co-Power’ which requires that the two independent pairs of interacting 

attributes are specified together in rules more than any other combination of attributes. All it 

takes for loss in this metric is for one other attribute pair to be co-specified in rules more 

frequently. In this simulation study, it turned out that some other combination of the four 

predictive attributes (X0, X1, X2, and X3) was typically one of the top two co-specified. For 

instance we may want attributes X0 and X1 and separately X2 and X3 to be co-specified the 

most (as they constitute the two heterogeneous epistatic pairs), but instead we might see X0 

and X1 as well as X0 and X2. We plan to address the issue of fitness calculation in the 

context of noisy problems as part of the ongoing development of ExS-TraCS.

Next, we added our new EK mutation strategy to ExSTraCS 2.0 and compared it to our 

previous ExS-TraCS 2.0 implementation (see Table 8). Later we will see why the addition 

of this mutation mechanism to ExSTraCS 2.0 was important to scalability. After the 

incorporation of EK mutation we observed further dramatic and significant increases in 

‘Both’ and ‘Single’ Power, as well as average testing accuracy. We also observed a 

significant decrease in run time, however compared to ExSTraCS 1.0, this run time is still 

significantly higher. The significant and dramatic loss in ‘Both Co-occur Power’ can be 
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attributed to the same phenomenon linked to fitness that was previously discussed, but this 

effect is exacerbated by the use of EK in mutation which will directly impact the overall 

frequency of attribute specification in [P]. It is also worth pointing out that ExSTraCS 2.0 

with EK Mutation has roughly reached the estimated optimal average testing accuracy for 

this set of 960 datasets (≈ 0.6167). This value is estimated from the heritabilities of the 

simulated datasets. An equal number of datasets have a heritability of either 0.4, 0.2 or 0.1, 

which should yield maximum testing accuracies of approximately 0.7, 0.6, or 0.55 

respectively (averaging to ≈ 0.6167).

To further characterize performance differences between ExSTraCS 1.0 and ExSTraCS 2.0 

with EK mutation, we explore performance differences when the 960 datasets of this first 

simulation study are segregated by their heritability, sample size, architecture difficulty (i.e. 

hard (H), or easy (E)), and mix ratio. Figures 4, 5, and 6 give boxplot summaries of testing 

accuracy, ‘Both Power’, and ‘Single Power’, respectively comparing ExSTraCS versions 1.0 

and 2.0. Keep in mind that ‘Sample Size’ corresponds to the number of unique training 

instances in the original (pre-cross validation) datasets, and that heritability is inversely 

proportional to noise in the data. Note that the values summarized by each individual 

boxplot correspond to 20 replicate datasets evaluated using cross validation. We can see 

from these figures, that ExSTraCS 2.0 with EK mutation outperforms version 1.0 for nearly 

every dataset combination.

Now that we have demonstrated the efficacy of ExS-TraCS 2.0 on a diverse array of smaller, 

complex noisy datasets, we move on to the second simulation study specifically examining 

scalability in a subset of similar datasets with either 10 or 100 times as many attributes. 

Tables 9 through 11 examine performance on 20 select datasets with 200 attributes and a 

heritability of 0.4. In these datasets, the maximum average testing accuracy we can hope to 

achieve is 0.7.

Preliminary studies indicated that the quality of EK scores became particularly important to 

successful learning in datasets with a greater number of potentially predictive attributes (not 

shown). TuRF was designed to improve the quality of EK scores, particularly in larger noisy 

datasets [28]. Table 9 explores the impact of using TuRF in combination with MultiSURF 

vs. MultiSURF alone to generate and apply EK scores to learn on datasets with 200 

attributes using the original ExSTraCS 1.0 algorithm. It is worth pointing out that the 

introduction of TuRF alone to the analysis significantly improves testing accuracy as well as 

one of the power metrics. However this alone is not sufficient for ExSTraCS to reliably find 

the underlying pattern of association in the presence of 196 non-predictive attributes.

Next we compared ExSTraCS 1.0 (pspec = 0.0175) to ExSTraCS 2.0 without EK mutation 

and without TuRF in order to examine the effect of RSL alone. Notice that the ExSTraCS 

1.0 is able to achieve a testing accuracy well above 0.5, indicating that has been able to learn 

useful generalizations. However, in terms of our conservative power metrics, ExSTraCS 1.0 

fails to scale up performance in clearly identifying the 4 true underlying predictive attributes 

out of the 200 in the dataset. However with the introduction of RSL in ExSTraCS 2.0, we 

observe very dramatic and significant performance improvements for all key metrics as well 
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as a significant decrease in run time. Clearly, RSL alone is effective at scaling ExSTraCS 

performance from 20 to 200 potentially predictive attributes.

As before we added the new EK mutation mechanism back into ExSTraCS 2.0 and 

compared it to ExS-TraCS 2.0 without EK mutation (see Table 11). We observed a small 

non-significant increase in testing accuracy, a significant increase in rule generality, and a 

significantly more compact [P]. There was no room for improvement in any of the power 

metrics. The importance of the EK mutation mechanism only becomes clear within even 

larger datasets. We also made the same comparisons presented in Tables 10 and 11 adding 

back TuRF (not shown) and observed very similar results, with only slight, non-significant 

improvements to testing accuracy and a significant reduction in macro population size.

The last part of this second simulation study examines 20 datasets with 2000 attributes. 

Again we compare ExSTraCS 1.0 (pspec = 0.00175) to ExStraCS 2.0 without EK Mutation 

but now we have also applied TuRF (see Table 12). The application of TuRF to the 

generation of EK scores (while more time consuming) is likely improve the quality of 

scores, and in combination with ExSTraCS, improve overall performance. This choice was 

based on the observation that on larger datasets, MultiSURF was failing to rank modeled 

predictive attributes with some of the highest scores. In other words, we observed that in 

datasets with greater than 200 attributes the trade-off between EK scoring performance and 

computational time makes the application of TuRF preferable. Referring to Table 12, notice 

that even with TuRF ExSTraCS 1.0 completely failed to scale up to 2000 attributes after 

200,000 iterations evidenced by a testing accuracy close to 0.5 (no better than a random 

prediction), and all power scores of zero. The incorporation of RSL alone (No EK Mut) in 

ExS-TraCS 2.0 yielded only a small significant increase in testing accuracy and rule 

generality, along with a non-significant increases in ‘Single Power’, a marginally significant 

increase in ‘Single Co-Power’, and a significant reduction in run time.

With the addition of EK mutation, we observe a significant and dramatic increase in testing 

accuracy, ‘Single Power’, and ‘Single Co-Power’ and another significant reduction in run 

time (see Table 13. While ExS-TraCS 2.0 is clearly now able to learn at least parts of the 

underlying pattern, we still do not observe increases in the conservative ‘Both Power’ or 

‘Both Co-Power’ metrics within 200,000 learning iterations.

As a follow up, we repeated our evaluation of ExS-TraCS 2.0 with EK mutation, but 

doubled the run parameter N from 2000 to 4000, to see if an increased population size might 

facilitate learning. These results are included in Table 14 under N = 4000. This change alone 

did little to improve learning if not hinder prediction performance, as the testing accuracy 

dropped by a small non-significant amount and both macro population size and run time 

increased dramatically. This suggests that N has already been set large enough to allow for 

the underlying relationships between attributes and class endpoint to be learned.

As further follow up we ran ExSTraCS 2.0 with EK mutation for twice as many iterations 

(i.e. 400,000 iterations) using both N = 2000 and N = 4000. These results with N = 2000 are 

summarized in Table 15. We can see that running ExSTraCS 2.0 for twice as many 

iterations continues to improve testing accuracy and the power metrics by a small non-

Urbanowicz and Moore Page 27

Evol Intell. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant amount. Additionally we observe that additional learning iterations significantly 

increases rule generality, and dramatically reduces macro population size as ExSTraCS 

seeks to further generalize accurate rules.

Lastly, we illustrate the importance of TuRF, and associated EK scores in helping to guide 

ExSTraCS in scaled-up analyses. Table 16 compares ExSTraCS 2.0 using all of the best 

setting explored thus far, with and without the application of TuRF. At 2000 attributes, 

TuRF and the associated higher-quality EK scores in this noisy problem environment is a 

critical part of the ExSTraCS 2.0 success.

These results suggest that ExSTraCS 2.0 with RSL and EK mutation has the ability to scale 

up to datasets with at least 100 times as many attributes than Michigan LCS have previously 

been applied in this type of complex, noisy problem domain. However, in these larger-scale, 

complex domains, the algorithm may require a greater number of learning iterations in order 

to be useful not only as a prediction machine, but as a source for knowledge discovery. 

While increasing testing accuracies provide the clearest indicator that ExSTraCS 2.0 is 

successfully scaling up to handle more attributes, knowledge discovery is equally important 

in our epidemiological problem domain of interest. Following rule inspection of some of the 

best performing [P]’s, we believe that at least one of the issues hindering our ability to 

achieve better power performance, is similarly tied to the fitness issue discussed earlier with 

regards to ‘Both Co-Power’. Consider that as the number of attributes becomes larger, there 

will be an increasing probability that random combinations of attributes specified in rules 

will have high rule accuracies by chance alone (even in the context of using RSL). These 

non-optimal rules become more frequent in [P] as the algorithm learns, obscuring the 

identification of attributes that are most important to making optimal generalizations (i.e. 

that have an optimal balance of accuracy and coverage of instances in the dataset). 

Ultimately we return to the issue of how fitness is calculated, which conveys a localized 

perspective of rule-value when it relies on accuracy (where accuracy is the number of times 

the rule has made a correct prediction, only among the instances it has actually matched). 

We believe this to be a critical target for future investigation that may further expand the 

scalability and overall performance of ExS-TraCS and other Michigan LCS algorithms, 

especially in the context of complex, noisy, supervised learning problems.

Our final simulation study examines the various multiplexer problems. Figure 7 summarizes 

the results for the 6-bit, 11-bit, 20-bit, and 37-bit multiplexer problems when applying 

ExSTraCS 2.0 with EK Mutation and MultiSURF (no TuRF). Included in the figure are 

curves illustrating estimated training accuracy calculated every 1000 iterations based on the 

proceeding 1000 iterations. Also included are associated points which represent complete 

batch-wise testing accuracies representing predictive performance. Any space between a 

point and it’s corresponding training curve represents overfitting by ExSTraCS. To best 

compare these results to other LCS investigations of multiplexer problems, readers should 

focus on these testing points. All curves and points are the average of 30 separate runs as 

described in [23]. We consider a multiplexer problem to have been solved when the testing 

accuracy goes above .99. Notice in Figure 7 that ExSTraCS 2.0 (1) solves the 6-bit and 11-

bit problems within 10,000 iterations, (2) solves the 20-bit problem within 50,000 iterations 

with a training set of 10,000, 5,000 or 2,000, but has nearly solved it (test accuracy = 0.988) 
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after only 10,000 iterations with a training set of 10,000, and (3) solves the 37-bit problem 

within 50,000 iterations with a training set of 10,000 or 5,000. As would be expected, larger 

training sets yield more efficient learning performance. Compared to the best results 

presented in [23] where either XCS or XCSCFC performed best, ExSTraCS 2.0 (1) yields 

very similar performance in solving the 6-bit and 11-bit multiplexer, (2) solves the 20-bit 

multiplexer in approximately 10,000 fewer training iterations, and (3) solves the 37-bit 

problem in approximately 20,000 fewer learning iterations. While ExSTraCS had access to 

all possible mulitplexer training instances in both the 6-bit and 11-bit problems, only a finite 

subset were available for larger problems. For example in the 20-bit multiplexer problem 

ExSTraCS only had access to a random set of approximately 0.95%, 0.48%, or 0.19% of all 

possible training instances. Additionally, compared to XCSCFC [23] ExSTraCS learns 

directly on a single given dataset as opposed to reusing building blocks from simpler 

multiplexer problems (e.g. using building blocks from solving the 20-bit problem to more 

efficiently solve the 37-bit problem). Therefore, we claim that ExSTraCS 2.0 can solve these 

problems directly in fewer iterations, with fewer unique training instances than previously 

reported in Michigan-style LCSs.

Figure 8 summarizes the results for the 70-bit and 135-bit multiplexer problems again 

applying ExSTraCS 2.0. In this Figure, the 70-bit problem is run up to 500,000 learning 

iterations, while the 135-bit problem is run up to 1,500,000 iterations. Notice that ExSTraCS 

2.0 (1) solves the 70-bit problem within 200,000 iterations with a training set of 20,000 and 

10,000, and (2) solves the 135-bit problem within 1,500,000 iterations with a training set of 

40,000. Again compared to the best results presented in [23], ExSTraCS 2.0 (1) solves the 

70-bit problem in approximately 200,000 fewer learning iterations, and (2) has nearly solved 

the 135-bit multiplexer problem (test accuracy = 0.98) in approximately 300,000 fewer 

iterations. We also consider the results reported for MPLCS [4], a powerful parallelized 

Pittsburgh-style LCS, that reported solving the 70-bit multiplexer problem. While the results 

of this system are difficult to directly compare to ExSTraCS, the authors determined their 

algorithm to require a little over 1.1 million learning iterations (put into the context of a 

Michigan-style LCS). While ExSTraCS outperforms MPLCS using learning iterations as a 

performance metric, MPLCS boasts a very rapid run time attributed to its efficient coding, 

windowing scheme, and parallelized computation [4]. ExSTraCS 2.0 is currently 

implemented in Python, and has thus far been designed primarily for learning efficacy rather 

than efficiency and runs significantly slower than MPLCS or Java implementations of XCS. 

For example, ExSTraCS 2.0 took approximately 7 hours to solve the 70-bit problem. We 

fully anticipate dramatic significant reductions in run time once we have the opportunity to 

implement ExS-TraCS in a faster coding language, optimize code efficiency, and 

incorporate parallelization strategies. While we acknowledge run-time to be a shortcoming 

of the the current ExSTraCS implementations, we believe that a fair run-time comparison to 

other cutting-edge implementation can only be made after we have had the opportunity to 

address these accessible issues.

4 Conclusions

This work has focused on the scalability of Michigan LCS algorithms. In particular, we have 

expanded the ExSTraCS algorithm, which was specifically designed to address 
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classification, prediction, and knowledge discovery in complex, noisy, supervised learning 

problems. In this paper we have (1) detailed the ExSTraCS 2.0 algorithm, (2) identified the 

advantages of applying a Michigan LCS as a machine learning algorithm, (3) developed and 

evaluated a data-driven rule specificity limit (RSL) and an expert knowledge (EK) guided 

mutation operator for rule discovery in data with a greater number of potentially predictive 

attributes, (4) demonstrated that ExSTraCS 2.0 dramatically improves performance over a 

spectrum of small scale complex simulated datasets (5) added the TuRF wrapper algorithm 

to ExSTraCS to improve the quality of EK score discovery, (6) demonstrated that ExSTraCS 

2.0 can functionally scale up to datasets with at least 2000 attributes, (7) demonstrated that 

ExSTraCS 2.0 can solve all multiplexer problems up to and including the 135-bit 

multiplexer (8) eliminated the need for multiple run parameters, effectively facilitating use 

of the algorithm, and (9) identified key targets for the ongoing development of a Michigan 

LCS algorithm that can more effectively scale up to datasets with as many attributes as may 

be computationally feasible.

This work re-emphasizes the importance of applying available EK to guide machine 

learning in complex and larger-scale domains. Without EK incorporated into mutation, 

ExSTraCS was unable to scale up performance to datasets with 2000 attributes. Notably, the 

quality of EK weights is just as important to scalability as their application to the algorithm.

Based on trends observed in this study, we expect that ExSTraCS 2.0 will perform best and 

allow maximum scalability when (1) a greater number of training instances are available, (2) 

there is less noise obscuring the underlying pattern of association, (3) ExSTraCS is allowed 

to learn for a greater number of training iterations, (4) TuRF is used in combination with an 

EK generation algorithm, and (5) if possible, some reliable feature selection can be applied 

to pre-process the dataset and limit the number of attributes that will be presented to 

ExSTraCS. Expanding on this last item, the ExSTraCS algorithm itself could be applied to 

perform feature selection. Previously, we applied AF-UCS (a precursor to ExSTraCS) in an 

epidemiological investigation of bladder cancer [40]. In this analysis, AF-UCS was run once 

to identify significantly over-specified attributes as described in [42], and then again on the 

subset of the data that included these top attributes. This yielded a more accurate and 

interpretable rule population.

In future work, we believe that the following areas would be particularly beneficial to 

address in ExSTraCS and other Michigan LCSs: (1) a new strategy for the calculation of 

rule fitness in supervised Michigan LCSs, (2) a more intuitive deletion scheme for noisy 

problem domains, (3) a strategy to adapt the algorithm to learn on continuous endpoints, and 

(4) exploring parallelization and ensemble learning to scale up to truly large-scale datasets 

i.e. on the order of hundreds of thousands to millions of attributes.
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Fig. 1. ExSTraCS Schematic
Ovals are mechanisms, bordered squares are sets of either data or classifiers, green items are 

classifier discovery mechanisms, orange items are traditional LCS mechanisms, blue items 

are mechanisms unique to ExSTraCS, and items with a (*) have features new to ExSTraCS 

2.0.
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Fig. 2. 
Basics of Relief-based algorithms.
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Fig. 3. Knowledge Representations
Quaternary vs. Mixed Discrete-Continuous Attribute List. A continuous-valued attribute is 

highlighted in grey.
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Fig. 4. 
Comparing Testing Accuracy after 200,000 iterations over all dataset combinations in the 

simulation study.
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Fig. 5. 
Comparing ‘Both Power’ after 200,000 iterations over all dataset combinations in the 

simulation study.
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Fig. 6. 
Comparing ‘Single Power’ after 200,000 iterations over all dataset combinations in the 

simulation study.
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Fig. 7. 
Multiplexer Performance (6-bit, 11-bit, 20-bit and 37-bit). The values given in parenthesis 

are respective training/testing dataset sizes. Lines illustrate training accuracy estimations 

calculated over the last 1000 iterations. Points illustrate complete batch-wise testing 

accuracies (i.e. predictive performance) calculated over a corresponding testing dataset.
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Fig. 8. 
Multiplexer Performance (70-bit and 135-bit). The values given in parenthesis are respective 

training/testing dataset sizes. Lines illustrate training accuracy estimations calculated over 

the last 1000 iterations. Points illustrate complete batch-wise testing accuracies (i.e. 

predictive performance) calculated over a corresponding testing dataset. The dashed line 

illustrates perfect accuracy.
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Table 1

Example calculations of ψ

ε

n 2 3 4 5

1 2 3 4 5

2 4 9 16 25

3 8 27 64 125

4 16 81 256 625

5 32 243 1024 3125

6 64 729 4096 15625

7 128 2187 16384 78125

8 256 6561 65536 390625
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Table 2

ExSTraCS Classifier Parameters

Parameter Description Use Updated

MatchCount Number of times included in [M] Calculate accuracy When in [M]

CorrectCount Number of times included in [C] Calculate accuracy When in [C]

Accuracy CorrectCount/MatchCount Calculate fitness, subsumption 
activation

When in [M]

Fitness Estimated health/value of classifier Selection, deletion, prediction When in [M]

Numerosity Number of classifier copies in [P] Used throughout GA or subsumption

AveMatchSetSize Average size of match sets this classifier has been a 
part of

Deletion When in [M]

TimeStampGA The most recent iteration that this classifier was in a 
[C]

Activating GA When in [C]

InitTimeStamp The learning iteration when the classifier was first 
generated

Epoch Status Never

DeletionVote A calculated weight for selecting this classifier for 
deletion

Deletion Whenever deletion is 
required
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Table 3

ExSTraCS Run Parameters

Parameter Default Setting Description

Imax 200,000 Maximum Learning Iterations

N 2000 Maximum Population Size

ν 1 Calculation of fitness from accuracy

χ 0.8 Probability of crossover

υ 0.04 A new mutation pressure

θGA 25 GA activation threshold

θdel 20 Protective deletion threshold

θsub 20 Subsumption activation threshold

accsub 0.99 Subsumption accuracy threshold

β 0.2 Update of AveMatchSetSize

δ 0.1 Deletion weight calculation threshold

initfit 0.01 Initial fitness for new rules

fitnessReduction 0.1 Penalize fitness of offspring rule following crossover

thetasel 0.5 Tournament selection proportion

EK_Algorithm MultiSURF Specifies an internal source of EK generation

TuRF_Percent 0.2 Percent of attributes removed each score re-estimation
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Table 5

Learning parameters for x-multiplexer problems.

x N Imax Train/Test Data Size(s)

6-bit 500 200,000 500

11-bit 1000 200,000 2000, 5000

20-bit 2000 200,000 2000, 5000, 10000

37-bit 5000 200,000 2000, 5000, 10000

70-bit 10000 500,000 5000, 10000, 20000

135-bit 10000 1,500,000 10000, 20000, 40000
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Table 6

20 Attribute Simulation Study: Influence of pspec in ExSTraCS 1.0

200,000 Iterations +QRF

Performance Statistics ExSTraCS 1.0

pspec = 0.5 pspec = 0.175 p

Train Accuracy .8566 .8564 -

Test Accuracy .6001 .6004 -

Both Power .3063 .3031 -

Single Power .6167 .6115 -

Both Co-Power .1927 .1990 -

Single Co-Power .7604 .7552 -

Rule Generality .7602 .7607 ↑ ***

Macro Population 1049.7 1048.9 ↓ *

Run Time (min) 48.68 47.04 ↓ ***

– No significant change

*
p < 0.05 (Direction of change given by arrows)

**
p < 0.0025 applying less conservative Bonferroni correction

***
p < 0.00027 applying Bonferroni correction

NOTE: Tables 6 through 16 all use this key.
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Table 7

20 Attribute Simulation Study: ExSTraCS 1.0 vs. 2.0 Influence of RSL

200,000 Iterations +QRF

Performance Statistics ExSTraCS 1.0 ExSTraCS 2.0

pspec = 0.175 No EK Mut p

Train Accuracy .8564 .7999 ↓ ***

Test Accuracy .6004 .6070 ↑ ***

Both Power .3031 .3667 ↑ ***

Single Power .6115 .7146 ↑ ***

Both Co-Power .1990 .1667 ↓ ***

Single Co-Power .7552 .7792 ↑ **

Rule Generality .7607 .8025 ↑ ***

Macro Population 1048.9 1085.12 ↑ ***

Run Time (min) 47.04 58.55 ↑ ***
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Table 8

20 Attribute Simulation Study: ExSTraCS 2.0 Influence of EK Mutation

200,000 Iterations +QRF

Performance Statistics ExSTraCS 2.0

No EK Mut EK Mut p

Train Accuracy .7999 .7882 ↓ ***

Test Accuracy .6070 .6178 ↑ ***

Both Power .3667 .4052 ↑ ***

Single Power .7146 .7635 ↑ ***

Both Co-Power .1667 .0438 ↓ ***

Single Co-Power .7792 .7771 -

Rule Generality .8025 .8026 -

Macro Population 1085.12 987.12 ↓ ***

Run Time (min) 58.55 54.77 ↓ ***
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Table 9

200 Attribute Simulation Study: ExSTraCS 1.0 Influence of TuRF

200,000 Iterations +QRF, pspec = 0.0175

Performance Statistics ExSTraCS 1.0

MultiSURF +TuRF p

Train Accuracy .7004 .7206 ↑ ***

Test Accuracy .6064 .6393 ↑ ***

Both Power 0 0 -

Single Power 0 0 -

Both Co-Power 0 .015 -

Single Co-Power .05 .70 ↑ **

Rule Generality .9415 .9482 ↑ ***

Macro Population 903.84 980.87 ↑ ***

Run Time (min) 65.47 62.15 ↓ **
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Table 10

200 Attribute Simulation Study: ExSTraCS 1.0 vs. 2.0 Influence of RSL

200,000 Iterations +QRF

Performance Statistics ExSTraCS 1.0 ExSTraCS 2.0

pspec = 0.0175 No EK Mut p

Train Accuracy .7004 .7565 ↑ ***

Test Accuracy .6064 .6690 ↑ ***

Both Power 0 1 ↑ ***

Single Power 0 1 ↑ ***

Both Co-Power 0 1 ↑ ***

Single Co-Power .05 1 ↑ ***

Rule Generality .9415 .9794 ↑ ***

Macro Population 903.84 1169.36 ↑ ***

Run Time (min) 65.47 60.11 ↓ ***
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Table 11

200 Attribute Simulation Study: ExSTraCS 2.0 Influence of EK Mutation

200,000 Iterations +QRF

Performance Statistics ExSTraCS 2.0

No EK Mut EK Mut p

Train Accuracy .7565 .7555 -

Test Accuracy .6690 .6734 p = 0.058

Both Power 1 1 -

Single Power 1 1 -

Both Co-Power 1 1 -

Single Co-Power 1 1 -

Rule Generality .9794 .9798 ↑ ***

Macro Population 1169.36 1120.27 ↓ ***

Run Time (min) 60.11 60.11 -
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Table 12

2000 Attribute Simulation Study: ExSTraCS 1.0 vs. 2.0 Influence of RSL

200,000 Iterations +QRF, +TuRF

Performance Statistics ExSTraCS 1.0 ExSTraCS 2.0

pspec = 0.00175 No EK Mut p

Train Accuracy .6528 .7156 ↑ ***

Test Accuracy .5056 .5419 ↑ **

Both Power 0 0 -

Single Power 0 0.15 -

Both Co-Power 0 0 -

Single Co-Power 0 0.35 ↑ *

Rule Generality .9688 .9978 ↑ ***

Macro Population 791.185 1396.41 ↑ ***

Run Time (min) 113.12 96.44 ↓ ***
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Table 13

2000 Attribute Simulation Study: ExSTraCS 2.0 Influence of EK Mutation

200,000 Iterations +QRF, +TuRF

Performance Statistics ExSTraCS 2.0

No EK Mut EK Mut p

Train Accuracy .7156 .7198 -

Test Accuracy .5419 .5959 ↑ ***

Both Power 0 0 -

Single Power 0.15 0.85 ↑ ***

Both Co-Power 0 0.1 -

Single Co-Power 0.35 1 ↑ **

Rule Generality .9978 .9978 -

Macro Population 1396.41 1411.83 ↑ ***

Run Time (min) 96.44 91.65 ↓ **
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Table 14

2000 Attribute Simulation Study: ExSTraCS 2.0 Influence N

200,000 Iterations +QRF, +TuRF, +EK Mutation

Performance Statistics ExSTraCS 2.0

N = 2000 N = 4000 p

Train Accuracy .7198 .7555 ↑ ***

Test Accuracy .5959 .5916 -

Both Power 0 0.1 -

Single Power 0.85 0.9 -

Both Co-Power 0.1 0.25 -

Single Co-Power 1 1 -

Rule Generality .9978 .9977 ↓ ***

Macro Population 1411.83 2802.91 ↑ ***

Run Time (min) 91.65 184.18 ↑ ***
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Table 15

2000 Attribute Simulation Study: ExSTraCS 2.0 Additional Learning Iterations (i.e. 200,000 vs. 400,000)

N = 2000, +QRF, +TuRF, +EK Mutation

Performance Statistics ExSTraCS 2.0

200,000 400,000 p

Train Accuracy .7198 .7228 -

Test Accuracy .5959 .5960 -

Both Power 0 0.1 -

Single Power 0.85 1 -

Both Co-Power 0.1 0.2 -

Single Co-Power 1 1 -

Rule Generality .9978 .9981 ↑ ***

Macro Population 1411.83 1203.09 ↓ ***

Run Time (min) 91.65 169.39 ↑ ***

Evol Intell. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Urbanowicz and Moore Page 57

Table 16

2000 Attribute Simulation Study: ExSTraCS 2.0 Influence of TuRF

400,000 Iterations, N = 2000, +QRF, +EK Mutation

Performance Statistics ExSTraCS 2.0

MultiSURF +TuRF p

Train Accuracy .6936 .7228 ↑ ***

Test Accuracy .5225 .5960 ↑ ***

Both Power 0 0.1 -

Single Power 0 1 ↑ ***

Both Co-Power 0 0.2 -

Single Co-Power 0.25 1 ↑ ***

Rule Generality .9981 .9981 -

Macro Population 1297.39 1203.09 ↓ ***

Run Time (min) 158.44 169.39 ↑ **
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Algorithm 1

ExSTraCS 2.0 Covering

Require: inst

 ASpec ← random(1, RSL)

 if useEK then

  i = 0

  while i < A_Spec do

   targetAtt = EK_RankedAttList[i]

   Add targetAtt to attReference

   if targetAtt is discrete then

    Add inst[targetAtt] to ruleCondition

   else

    Add newRange(inst[targetAtt]) to ruleCondition

   end if

  end while

 else

  i = 0

  while i < ASpec do

   targetAtt =random(Att)

   Add targetAtt to attReference

   if targetAtt is discrete then

    Add newRange(inst[targetAtt]) to ruleCondition

   end if

  end while

 end if

 ruleClass ← instanceClass

 return rule
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