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Abstract We consider two basic problems of algebraic topology: the extension prob-

lem and the computation of higher homotopy groups, from the point of view of com-
putability and computational complexity.

The extension problem is the following: Given topological spaces X and Y , a sub-
space A ⊆ X, and a (continuous) map f : A → Y , decide whether f can be extended
to a continuous map f̄ : X → Y . All spaces are given as finite simplicial complexes,
and the map f is simplicial.

Recent positive algorithmic results, proved in a series of companion papers, show
that for (k −1)-connected Y , k ≥ 2, the extension problem is algorithmically solvable
if the dimension of X is at most 2k − 1, and even in polynomial time when k is fixed.

Here we show that the condition dimX ≤ 2k − 1 cannot be relaxed: for dimX =

2k, the extension problem with (k−1)-connected Y becomes undecidable. Moreover,
either the target space Y or the pair (X,A) can be fixed in such a way that the problem
remains undecidable.
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Our second result, a strengthening of a result of Anick, says that the computation
of πk(Y ) of a 1-connected simplicial complex Y is #P-hard when k is considered as
a part of the input.

1 Introduction

One of the central themes in algebraic topology is to understand the structure of all
continuous maps X → Y , for given topological spaces X and Y (all maps between
topological spaces in this paper are assumed to be continuous). For topological pur-
poses, two maps f,g : X → Y are usually considered equivalent if they are homo-

topic, i.e., if one can be continuously deformed into the other;1 thus, the object of
interest is [X,Y ], the set of all homotopy classes of maps X → Y .

Many of the celebrated results throughout the history of topology can be cast as
information about [X,Y ] for particular spaces X and Y . In particular, one of the
important challenges propelling the research in algebraic topology has been the com-
putation of the homotopy groups of spheres2 πk(S

n), for which only partial results
have been obtained in spite of an enormous effort (see, e.g., [13, 22]).

A closely related question is the extension problem: given A ⊂ X and a map
f : A → Y , can it be extended to a map X → Y ? For example, the famous Brouwer

fixed point theorem can be restated as non-extendability of the identity map Sn → Sn

to the ball Dn+1 bounded by the sphere Sn. See [33] for a very clear and accessible
introduction to the extension problem, including further examples and applications
and covering the earlier developments until the late 1950s.

Computational Homotopy Theory In this paper, we consider the (theoretical) com-

putational complexity of homotopy-theoretic questions such as the extension prob-
lem, the homotopy classification of maps, and the computation of homotopy groups.
More precisely, we prove hardness and undecidability results that complement recent
positive algorithmic results obtained in a series of companion papers [5, 6, 12]. To
put our results into context, we first give more background.

By classical uncomputability results in topology (see, e.g., the survey [31]), most
of these problems are algorithmically unsolvable if we place no restriction on the
space Y . Indeed, by a result of Adjan and of Rabin, it is undecidable whether the
fundamental group π1(Y ) of a given finite simplicial complex Y is trivial, even if Y

is assumed to be 2-dimensional. The triviality of π1(Y ) is equivalent to [S1, Y ] having

1More precisely, f and g are homotopic, in symbols f ∼ g, if there is a map F : X ×[0,1] → Y such that
F(·,0) = f and F(·,1) = g. With this notation, [X,Y ] = {[f ] : f : X → Y }, where [f ] = {g : g ∼ f } is
the homotopy class of f .
2We recall that the kth homotopy group πk(Y ) of a space Y is defined as the set of all homotopy classes

of pointed maps f : Sk → Y , i.e., maps f that send a distinguished basepoint s0 ∈ Sk to a distinguished
basepoint y0 ∈ Y (and the homotopies F also satisfy F(s0, t) = y0 for all t ∈ [0,1]). Strictly speaking,
one should write πk(Y, y0) but for a path-connected Y , the choice of y0 does not matter. Moreover, if Y

is simply connected, i.e., if π1(Y ) is trivial, then the pointedness of the maps does not matter either and
one can identify πk(Y ) with [Sk, Y ]. For k ≥ 1, each πk(Y ) is a group, which for k ≥ 2 is Abelian; the
definition of the group operation will be reviewed in Sect. 4.
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only one element, represented by the constant map, and so [S1, Y ] is uncomputable in
general. Moreover, by the Boone–Novikov theorem, it is undecidable whether a given
pointed map f : S1 → Y is homotopic to a constant map, and this homotopic triviality
is equivalent to the extendability of f to the 2-dimensional ball D2. Therefore, the
extension problem is undecidable as well.3

In these results, the difficulty stems from the intractability of the fundamental
group of Y . Thus, a reasonable restriction is to assume that π1(Y ) is trivial (which in
general cannot be tested, but in many cases of interest it is known), or more generally,
that Y is k-connected, meaning that πi(Y ) is trivial for all i ≤ k (equivalently, every
map Si → Y , i ≤ k, can be extended to Di+1). A basic and important example of a
(k − 1)-connected space is the sphere Sk .

For a long time, the only positive result concerning the computation of [X,Y ] was
that of Brown [4], who showed that [X,Y ] is computable under the assumption that
Y is 1-connected and that all the higher homotopy groups πk(Y ), 2 ≤ k ≤ dimX, are
finite (the second assumption is rather strong and not satisfied if Y is a sphere, for
example). Brown also gave an algorithm that, given k ≥ 2 and a finite 1-connected
simplicial complex Y , computes πk(Y ).

In the 1990s, three independent collections of works appeared with the goal of
making various more advanced methods of algebraic topology effective (algorithmic):
by Schön [28], by Smith [30], and by Sergeraert, Rubio, Dousson, and Romero (e.g.,
[24–26, 29]; also see [27] for an exposition). New algorithms for computing higher
homotopy groups follow from these methods; see Real [23] for an algorithm based
on Sergeraert et al.

An algorithm that computes πk(Y ) for a given 1-connected simplicial complex Y

in polynomial time for every fixed k ≥ 2 was recently presented in [6], also relying
on [12] and on the methods of effective homology developed earlier by Sergeraert et
al.

The problem of computing [X,Y ] was addressed in [5], where it was shown that its
structure is computable assuming that Y is (k − 1)-connected and dim(X) ≤ 2k − 2,
for some integer k ≥ 2. These assumptions are sometimes summarized by saying that
X and Y are in the stable range.

As observed in [6], the methods of [5] can also be used to obtain an algorithmic so-
lution of the extension problem. Here dimX can even be 1 beyond the stable range;4

thus, given finite simplicial complexes A ⊆ X and Y and a simplicial map f : A → Y ,
where Y is (k − 1)-connected and dimX ≤ 2k − 1, k ≥ 2, it can be decided algorith-
mically whether f can be extended to a continuous map X → Y . The algorithm again
runs in polynomial time for k fixed, and the same holds for the algorithm mentioned
above for computing [X,Y ] in the stable range.

New Undecidability Results For the algorithms for homotopy classification and ex-
tendability, we have two types of assumptions: The first is that the dimension of X

3For undecidability results concerning numerous more loosely related topological problems we refer to
[20, 21, 31] and references therein.
4In the border case dimX = 2k − 1, the algorithm just decides the existence of an extension, while for
dimX ≤ 2k − 2 it also yields a classification of all possible extensions up to homotopy.
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is suitably bounded in terms of the connectivity of Y (in the stable range or at most
one more). This is essential for the algorithms to work at all.5 The second assump-
tion is that the relevant dimensional parameter k is fixed, which guarantees that the
algorithm runs in polynomial time.

Our main result is that, for the extension problem, the first assumption is necessary
and sharp.

Theorem 1.1 Let k ≥ 2 be fixed.

(a) (Fixed Target) There is a fixed (k − 1)-connected finite simplicial complex Y =

Yk such that the following problem is algorithmically unsolvable: Given finite

simplicial complexes A ⊆ X with dimX = 2k and a simplicial map f : A → Y ,
decide whether there exists a continuous map X → Y extending f . For k even,
we can take Yk to be the sphere Sk .

(b) (Fixed Source) There exist fixed finite simplicial complexes A = Ak and X = Xk

with A ⊆ X and dimX = 2k such that the following problem is algorithmically

unsolvable: Given a (k − 1)-connected finite simplicial complex Y and a sim-

plicial map f : A → Y , decide whether there exists a continuous map X → Y

extending f .

The theorem is stated in terms of simplicial complexes since these are a standard
input model for topological spaces in computational topology that we assume may
be most familiar to most readers. For the purposes of our reductions, we actually
work with simplicial sets (see Sect. 3.2), which offer a more flexible, but still purely
combinatorial, way of representing topological spaces. The simplicial sets are then
converted into simplicial complexes by a suitable subdivision.

When constructing A, X, and Y as simplicial sets, we can furthermore ensure that
Y has a certain additional property, namely that it is (k − 1)-reduced, which provides
an immediate certificate that Y is (k − 1)-connected; this is proved in Appendix B.
Thus, in particular, the difficulty of the extension problem does not lie in verifying
the (k − 1)-connectedness of Y .

While most of the previous undecidability results in topology rely on the word
problem in groups and its relatives, our proof of Theorem 1.1 relies on the undecid-
ability of Hilbert’s tenth problem, which is the solvability of a system of polynomial
Diophantine equations, i.e., the existence of an integral solution of a system of the
form

pi(x1, . . . , xr) = 0, i = 1,2, . . . , s, (1)

where p1, . . . , ps are r-variate polynomials with integer coefficients. This problem is
undecidable by a celebrated result of Matiyasevich [14], building on earlier work by
Davis, Putnam, and Robinson; also see [15, 17] for additional background and further
references.

5We remark that the stable range assumption guarantees that [X,Y ] has a canonical Abelian group struc-
ture, which we exploit heavily (for instance, it means that [X,Y ] has a finite description even when it is
an infinite set). In the special case πk(Y ) ∼= [Sk, Y ], by contrast, the group structure has a different origin
and is available for all dimensions k.
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On the Hardness of Computing [X,Y ] When dimX = 2k and Y is (k − 1)-
connected, we can no longer equip [X,Y ] with the group structure of the stable range.
Thus, it is not clear in what sense the potentially infinite set [X,Y ] could be com-
puted in general. A natural computational problem in this setting is to decide whether
|[X,Y ]| > 1; in other words, whether there is a homotopically nontrivial map X → Y

for given simplicial complexes X and Y as above.
We can prove that this problem is NP-hard for every even k ≥ 2; in order to keep

this paper reasonably concise, the proof is to be presented in the Ph.D. thesis of the
second author. The reduction is very similar to that of Theorem 1.1. We can show that
the problem is at least as hard as deciding the existence of a nonzero integral solution
of the quadratic system (Q-SYM) defined in Sect. 2 below with all the constant terms
bq equal to zero. This problem may well be undecidable, but as far as we know, the
best known lower bound is that of NP-hardness.

#P-Hardness Our second result concerns the problem of computing the higher ho-
motopy groups πn(Y ) ∼= [Sn, Y ] for a simply connected space Y , if n is not consid-
ered fixed but part of the input (n is given in unary encoding).6 Anick [2] proved that
this problem is #P-hard,7 where Y can even be assumed to be a 4-dimensional space.8

However, Anick’s hardness result has the following caveat: It assumes that the in-
put space Y is given in a very concise form, as a cell complex with the degrees of
the attaching maps encoded in binary (see Sect. 5.3 for a review of the construction).
A straightforward way of converting this cell complex to a simplicial complex yields
a 4-dimensional simplicial complex with an exponential number of simplices, which
renders the hardness result meaningless for simplicial complexes. In Sect. 6.3, we
provide a different way of converting Anick’s concise encoding of the input space Y

into a homotopy equivalent9 simplicial complex that can be constructed in polyno-
mial time, and in particular, has only polynomially many simplices. This yields the
following result.

Theorem 1.2 It is #P-hard to compute the rank of πn(Y ) (i.e., the number of sum-

mands of πn(Y ) isomorphic to Z) for a given number n ∈ N (encoded in unary) and

a given simply connected 4-dimensional simplicial complex Y .

6Note that with a unary encoding of n, the size of the input is significantly larger than with a binary (or
decimal encoding), and hence the hardness result is correspondingly stronger.
7Somewhat informally, the class of #P-hard problems consists of computational problems that should
return a natural number (as opposed to YES/NO problems) and are at least as hard as counting the number
of all Hamiltonian cycles in a given graph, or counting the number of subsets with zero sum for a given
set of integers, etc. These problems are clearly at least as hard as NP-complete problems, and most likely
even less tractable.
8Actually, the hardness already applies to the potentially easier problem of computing the rational homo-

topy groups πn(Y ) ⊗ Q; practically speaking, one asks only for the rank of πn(Y ), i.e., the number of
direct summands isomorphic to Z.
9Spaces X and Y are homotopy equivalent if there are maps f : X → Y and g : Y → X such that the
compositions fg and gf are homotopic to identities. From the point of view of homotopy theory, such X

and Y are indistinguishable and, in particular, πk(X) = πk(Y ) for all k ≥ 0.
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Outline of the Proof of Theorem 1.1 We aim to present our results in a way that
makes the statements of the results and the main steps and ideas accessible while
assuming only a moderate knowledge of topology on the side of the reader.

We thus review a number of basic topological concepts and provide proofs for
various assertions and facts that may be rather elementary for topologists. On the
other hand, some of the proofs assume a slightly stronger topological background,
since reviewing every single notion and fact would make the paper too lengthy.

For proving Theorem 1.1, we present an algorithm that converts a given system
of Diophantine equations into an instance of the extension problem; i.e., it constructs
simplicial complexes A, X, and Y and a map f : A → Y such that there is an exten-
sion of f to all of X iff the given system of equations is solvable. Moreover, as stated
in the theorem, there are actually two versions of the reduction: The first uses a fixed
target space Y = Yk and encodes the equations into A, X, and f . The second uses a
fixed pair (Xk,Ak) of source complexes and encodes the equations into f and Y .

We will actually work only with quadratic Diophantine equations of a slightly
special form (which is sufficient; see Sect. 2). The unknowns are represented by the
degrees of restrictions of the desired extension f̄ to suitable k-dimensional spheres.
The quadratic terms in the equations are obtained using the Whitehead product, which
is a binary operation that, for a space Z, assigns to elements α ∈ πk(Z) and β ∈ πℓ(Z)

an element [α,β] ∈ πk+ℓ−1(Z); see Sect. 4.2.
Here is a rough outline of the proof strategy. First we focus on Theorem 1.1(a)

(fixed target) with k even, which is the simplest among our constructions.

• The spaces X and A are simplest to describe as cell complexes. The subcomplex
A is a union of r spheres S2k−1, which intersect only at a single common point.
This union is called a wedge sum and denoted by A = S2k−1 ∨ · · · ∨ S2k−1. The
space X is homotopy equivalent to another wedge sum, of s spheres Sk ; i.e., X ≃

Sk ∨ · · · ∨ Sk .
• The fixed (k − 1)-connected target space Y is the k-sphere Sk .
• Maps X → Sk can be described completely by their restrictions to the k-spheres in

the wedge sum. Each such restriction is characterized, uniquely up to homotopy,
by its degree—this can be an arbitrary integer. Thus, a potential extension f̄ can
be encoded into a vector x = (x1, . . . , xr) of integers.

• Similarly, the map f : A → Sk can be described by its restrictions to the (2k − 1)-
spheres in the wedge sum. Crucially for our construction, the homotopy group
π2k−1(S

k) has an element of infinite order, namely, the Whitehead square [ι, ι],
where ι is the identity Sk → Sk (we still assume k even). We will work with maps
f whose restriction to the qth sphere is (homotopic to) an integral multiple bq [ι, ι],
for some (unique) integer bq . Thus, f is specified by the vector b = (b1, . . . , bs)

of these integers.
• Given arbitrary integers a

(q)
ij , 1 ≤ i < j ≤ r , q = 1,2, . . . , s, we construct the pair

(X,A) in such a way that, taking f̄ : X → Y specified by x as above, the restriction
of f̄ to the qth sphere of A is homotopic to

∑
i<j a

(q)
ij xixj [ι, ι] (here the addition

and multiplication by integers are performed in π2k−1(S
k)). Since [ι, ι] is an ele-

ment of π2k−1(S
k) of infinite order, f̄ is an extension of f iff

∑
i<j a

(q)
ij xixj = bq

for all q = 1,2, . . . , s.
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• In this way, we can simulate an arbitrary system of quadratic equations by an ex-
tension problem. Some more work is still needed to describe X and A as finite
simplicial complexes and f as a simplicial map.

• For Theorem 1.1(a) with k odd, the Whitehead square [ι, ι] as above no longer
has infinite order. Instead, we use Y = Sk ∨ Sk and replace [ι, ι] by the White-
head product [ι1, ι2] of the inclusions of the two spheres into Y . This leads to
skew-symmetric systems of quadratic equations, and showing that these are still
undecidable needs some work (see Sect. 2).

In Theorem 1.1(b) with k even, the (fixed) source space X is homotopy equivalent
to Sk and A = S2k−1. Under the homotopy equivalence X ≃ Sk , the inclusion A →֒

X becomes the Whitehead square [ι, ι], and for k odd it is replaced by [ι1, ι2]. In
both cases, the system of quadratic equations is encoded into the structure of the cell
complex Y and the map f : A → Y .

2 Diophantine Equations and Undecidability

We will need to work with quadratic Diophantine equations of two special forms:
∑

1≤i<j≤r

a
(q)

ij xixj = bq , q = 1,2, . . . , s, (Q-SYM)

where a
(q)
ij , bq ∈ Z, and x1, . . . , xr are the unknowns (i.e., the left-hand sides are

quadratic forms with no square terms), and
∑

1≤i<j≤r

a
(q)

ij (xiyj − xjyi) = bq , q = 1,2, . . . , s, (Q-SKEW)

with a
(q)

ij , bq ∈ Z, and unknowns x1, . . . , xr , y1, . . . , yr (so here we deal with skew-
symmetric bilinear forms).

Lemma 2.1 The solvability of the system (Q-SYM), as well as that of (Q-SKEW),
in the integers is algorithmically undecidable.

Proof First, it is well known and easy to see that the solvability of a general quadratic

system of Diophantine equations is no easier than the solvability of an arbitrary Dio-
phantine system (1), and thus undecidable.10

First we show undecidability for (Q-SYM); this system differs from a general
quadratic system only by the lack of linear terms and squares. Given a general
quadratic system

∑

1≤i,j≤r

a
(q)

ij xixj +
∑

1≤i≤r

b
(q)

i xi = cq , q = 1, . . . , s, (4)

10The idea is to represent higher degree monomials in the general system using new variables; e.g., for the

monomial x3y we can introduce new variables t1, t2 , new quadratic equations t1 = x2 and t2 = xy, and
replace x3y by t1t2.
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we add new variables x0, x′
0 and x′

1, . . . , x
′
r , and we replace the terms xixj with xix

′
j

and xi with xix
′
0. We also add the following equations:

x0x
′
0 = 1; xix

′
0 − x0x

′
i = 0, i = 1, . . . , s.

The resulting system is of the form (Q-SYM) (assuming an indexing of the variables
such that the xi precede the x′

i ) and it forces x0 = x′
0 = ±1, and xi = x′

i . Thus, each
of its solutions corresponds either to a solution of the original system (4) (when x0 =

x′
0 = 1), or to a solution of the system obtained from (4) by changing the sign of all

the linear terms (when x0 = x′
0 = −1). Since there is an obvious bijection xi → −xi

between the solutions of (4) and those of the system with negated linear terms, the
solvability of the constructed system (Q-SYM) is equivalent to the solvability of (4).

Next, we show that (Q-SKEW) is no easier than (Q-SYM). Given a general sys-
tem (Q-SYM), we add new variables x0, y0, x′

0, y′
0 and, for each i = 1, . . . , r ,

also x′
i , yi , and y′

i . We replace each term xixj in the original system (Q-SYM) by
the antisymmetric expression xiy

′
j − x′

jyi , and we add the following equations (for
i = 1,2, . . . , r):

x0y
′
0 − x′

0y0 = 1, x0yi − xiy0 = 0, x′
0y

′
i − x′

iy
′
0 = 0,

(x0y
′
i − x′

iy0) − (xiy
′
0 − x′

0yi) = 0.

This gives a system of the form (Q-SKEW), which we call the new system.
It is clear that each solution of (Q-SYM) yields a solution of the new system.

Conversely, supposing that the new system has a solution, we claim that it also has a
solution with x0 = y′

0 = 1 and y0 = x′
0 = 0. Once we have a solution satisfying these

additional conditions, it is easy to check that x1, . . . , xr form a solution of the original
system.

To verify the claim, for notational convenience, let us index the x and y variables in
the new system by the set I = {0,1, . . . , r,0′,1′, . . . , r ′}, where xi′ = x′

i and yi′ = y′
i .

We suppose that (xi, yi : i ∈ I ) form a solution of the new system. Since x0y
′
0 −

x′
0y0 = 1, the 2 × 2 matrix

(
x0 x′

0
y0 y′

0

)
has determinant 1 and thus an integral inverse

matrix, which we denote by T .

Let us define new values (x̄i, ȳi : i ∈ I ) by
(

x̄i

ȳi

)
= T ·

(
xi

yi

)
, i ∈ I . We have x̄0 =

ȳ′
0 = 1 and ȳ0 = x̄′

0 = 0, and it remains to show that the x̄i and ȳi satisfy the new
system. This happens because, for every i, j ∈ I , we have

x̄i ȳj − x̄j ȳi = det

(
x̄i x̄j

ȳi ȳj

)
= det

(
T ·

(
xi xj

yi yj

))

= detT · det

(
xi xj

yi yj

)
= xiyj − xjyi . �
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3 Cell Complexes and Simplicial Sets

This section and the next one primarily present known material from topology. In
several cases we need to adapt results from the literature to our needs, which is some-
times best done by re-proving them. Readers may want to skim these two sections
quickly and return to them later when needed.

Here we review two basic ways of building topological spaces from simple pieces:
cell complexes and simplicial sets. Cell complexes, also known as CW complexes, are
fairly standard in topology, and we will use them for a simple description of the vari-
ous spaces in our proofs. Simplicial sets are perhaps less well known, and for us, they
will mainly be a convenient device for converting cell complexes into simplicial com-
plexes. Moreover, they are of crucial importance in the algorithmic results mentioned
in the introduction. For a thorough discussion of simplicial complexes, simplicial
sets, cell complexes, and the connections between the three, we refer to [7].

3.1 Cell Complexes

In the case of cell complexes, the building blocks are topological disks of various
dimensions, called cells, which can be thought of as being completely “flexible” and
which can be glued together in an almost arbitrary continuous fashion. Essentially
the only condition is that each n-dimensional cell must be attached along its bound-
ary to the (n − 1)-skeleton of the space, i.e., to the part that has already been built,
inductively, from lower dimensional cells. The formal definition is as follows.

We recall that if X and Y are topological spaces and if f : A → Y is a map defined
on a subspace A ⊆ X, then the space X ∪f Y obtained by attaching X to Y via f

is defined as the quotient of the disjoint union X ⊔ Y under the equivalence relation
generated by the identifications a ∼ f (a), a ∈ A.

A closed or open n-cell is a space homeomorphic to the closed n-dimensional unit
disk Dn in n-dimensional Euclidean space or its interior D̊n, respectively; a point is
regarded as both a closed and an open 0-cell.

An m-dimensional cell complex11 X is the last term of an inductively constructed
sequence of spaces X(0) ⊆ X(1) ⊆ X(2) ⊆ · · · ⊆ X(m) = X, called the skeletons of X:

1. X(0) is a discrete set of points (possibly infinite) that are regarded as 0-cells.
2. Inductively, the n-skeleton X(n) is formed by attaching closed n-cells Dn

i (where
i ranges over some arbitrary index set) to X(n−1) via attaching maps ϕi : Sn−1

i =

∂Dn → X(n−1). Formally, we can consider all attaching maps together as defining
a map ϕ = ⊔iϕi from the disjoint union

⊔
i S

n−1
i to X(n−1) and form X(n) =

(
⊔

i D
n
i ) ∪ϕ X(n−1).

For every closed cell Dn
i , one has a characteristic map12 Φi : Dn

i → X(n) ⊆ X,
which restricts to an embedding on the interior D̊n

i . The image Φi(D̊
n
i ) is commonly

11Cell complexes can also be infinite dimensional, in which case some care must be taken in defining their
topology, but we will deal with cell complexes that are made of finitely many cells, and are thus finite
dimensional.
12The composition of the inclusion Dn

i
→֒ (

⊔
i Dn

i
) ⊔ X(n−1) with the quotient map.
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denoted by en
i , and it follows from the construction that every point of X is contained

in a unique open cell (note that these are generally not open subsets of X, however).
As a basic example, the n-sphere is a cell complex with one n-cell and one 0-cell,

obtained by attaching Dn to a point e0 via the constant map that maps all of Sn−1

to e0.

Subcomplexes A subcomplex A ⊆ X is a subspace that is closed and a union of
open cells of X. In particular, for each cell in A, the image of its attachment map is
contained in A, so A is itself a cell complex (and its cell complex topology agrees
with the subspace topology inherited from X).

The Homotopy Extension Property An important fact is that cell complexes have
the homotopy extension property: Suppose that X is a cell complex and that A ⊆ X

is a subcomplex. If we are given a map f0 : A → Y into some space Y , an extension
f̄0 : X → Y of f0 and a homotopy H : A × [0,1] between f0 and some other map
f1 : A → Y , then H can be extended to a homotopy H̄ : X × [0,1] → Y between f̄0

and some extension f̄1 : X → Y of f1. The following is an immediate consequence.

Corollary 3.1 For a cell complex X, subcomplex A ⊆ X, and a space Y , the extend-

ability of a map f : A → Y to X depends only on the homotopy class of f in [A,Y ].
Moreover, the map f : A → Y has an extension f̄ : X → Y iff there exists a map

g : X → Y such that the diagram

A
f

i

Y

X

g

commutes up to homotopy, i.e., gi ∼ f .

Cellular Maps and Cellular Approximation A map f : X → Y between cell com-
plexes is called cellular if it maps skeletons to skeletons, i.e., f (X(n)) ⊆ Y (n) for
every n.

The cellular approximation theorem (see [9, Theorem 4.8]) states that every con-
tinuous map f : X → Y between cell complexes is homotopic to a cellular one; more-
over, if the given map f is already cellular on some subcomplex A ⊆ X, then the
homotopy can be taken to be stationary on A (i.e., the image of every point in A

remains fixed throughout).

3.2 Simplicial Sets

For certain constructions it is advantageous to use a special type of cell complex
with an additional structure that allows for a purely combinatorial description; the
latter also facilitates representing and manipulating the objects in question, simplicial
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sets, on a computer. We refer to [8] for a very friendly and thorough introduction to
simplicial sets.

Intuitively, a simplicial set can be thought of as a kind of hybrid or compromise
between a simplicial complex (more special) on the one hand and a cell complex
(more general) on the other hand. As in the case of simplicial complexes, the build-
ing blocks (cells) of which a simplicial set is constructed are simplices (vertices,
edges, triangles, tetrahedra, . . . ), and the boundary of each n-simplex �n is attached
to the lower dimensional skeleton by identifications that are linear on each proper face
(subsimplex) of �n; thus, these identifications can be described combinatorially by
maps between the vertex sets of the simplices.13 However, the attachments are more
general than the one permitted for simplicial complexes; for example, one may have
several 1-dimensional simplices connecting the same pair of vertices, a 1-simplex
forming a loop, two edges of a 2-simplex identified to create a cone, or the boundary
of a 2-simplex all contracted to a single vertex, forming an S2.

Moreover, one keeps track of certain additional information that might seem su-
perfluous but turns out to be very useful for various constructions. For example, even
if the identifications force some n-simplex to be collapsed to something lower di-
mensional (so that it could be discarded for the purposes of describing the space as
a cell complex), it will still be formally kept on record as a degenerate n-simplex;
for instance, the edges of the triangle with a boundary contracted to a point (the last
example above) do not disappear—formally, each of them keeps a phantom-like ex-
istence of a degenerate 1-simplex.

Formally, a simplicial set X is given by a sequence (X0,X1,X2, . . .) of mutually
disjoint sets, where the elements of Xn are called the n-simplices of X (we note that,
unlike the case of simplicial complexes, a simplex in a simplicial set need not be
determined by the set of its vertices; indeed, there can be many simplices with the
same vertex set). The 0-simplices are also called vertices.

For every n ≥ 1, there are n + 1 mappings ∂0, . . . , ∂n : Xn → Xn−1 called face

operators; the intuitive meaning is that for a simplex σ ∈ Xn, ∂iσ is the face of σ op-
posite to the ith vertex. Moreover, there are n + 1 mappings s0, . . . , sn : Xn → Xn+1
called the degeneracy operators; the approximate meaning of siσ is the degenerate
simplex which is geometrically identical to σ , but with the ith vertex duplicated.
A simplex is called degenerate if it lies in the image of some si ; otherwise, it is non-

degenerate. We write Xndg for the set of all nondegenerate simplices of X. A sim-
plicial set is called finite if it has only finitely many nondegenerate simplices (if X

is nonempty, there are always infinitely many degenerate simplices, at least one for
every positive dimension).

13More precisely, the vertex set of each simplex is equipped with an ordering, and the identifications are
required to be weakly order-preserving maps (not necessarily injective) between the vertex sets.
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There are natural axioms that the ∂i and the si have to satisfy, but we will not
list them here, since we won’t really use them. Moreover, the usual definition of
simplicial sets uses the language of category theory and is very elegant and concise;
see, e.g., [7, Sect. 4.2].

If A and X are simplicial sets such that An ⊆ Xn for every n and the face and
degeneracy operators of A are the restrictions of the corresponding operators of X,
then we call A a simplicial subset of X.

Examples Here we sketch some basic examples of simplicial sets; again, we won’t
provide all details, referring to [8]. Let �p denote the standard p-dimensional sim-
plex regarded as a simplicial set. For p = 0, (�0)n consists of a single simplex,
denoted by 0n, for every n = 0,1, . . .; 00 is the only nondegenerate simplex. The face
and degeneracy operators are defined in the only possible way.

For p = 1, �1 has two 0-simplices (vertices), say 0 and 1, and in general there
are n + 2 simplices in (�1)n; we can think of the ith one as containing i copies of
the vertex 0 and n + 1 − i copies of the vertex 1, i = 0,1, . . . , n + 1. For p arbitrary,
the n-simplices of �p can be thought of as all nondecreasing (n+ 1)-term sequences
with entries in {0,1, . . . , p}; the ones with all terms distinct are nondegenerate.

In a similar fashion, every simplicial complex K can be converted into a simpli-
cial set X in a canonical way; first, however, we need to fix a linear ordering of the
vertices. The nondegenerate n-simplices of X are in one-to-one correspondence with
the n-simplices of K , but many degenerate simplices show up as well.

Geometric Realization Like a simplicial complex, every simplicial set X defines a
topological space |X|, the geometric realization of X, which is unique up to homeo-
morphism. More specifically, |X| is a cell complex with one n-cell for every nonde-

generate n-simplex of X, and these cells are glued together according to the identifi-
cations implied by the face and degeneracy operators (we omit the precise definition
of the attachments, since we will not really use it and refer to the literature, e.g., to
[8] or [7, Sect. 4.3]).

Simplicial Maps Simplicial sets serve as a combinatorial way of describing a topo-
logical space; in a similar way, simplicial maps provide a combinatorial description
of continuous maps.

A simplicial map f : X → Y of simplicial sets X,Y consists of maps fn : Xn →

Yn, n = 0,1, . . . , that commute with the face and degeneracy operators.
A simplicial map f : X → Y induces a continuous, in fact, a cellular map

|f | : |X| → |Y | of the geometric realizations in a natural way (we again omit the
precise definition). Often we will take the usual liberty of omitting | · | and not distin-
guishing between simplicial sets and maps and their geometric realizations.

Of course, not all continuous maps are induced by simplicial maps. However, sim-
plicial maps can be used to approximate arbitrary continuous maps up to homotopy.
The simplicial approximation theorem (which may be most familiar in the context
of simplicial complexes) says that for an arbitrary continuous map ϕ : |X| → |Y |

between the geometric realizations of simplicial sets, with X finite, there exist a suf-

ficiently fine subdivision X′ of X and a simplicial map f : X′ → Y whose geometric
realization is homotopic to ϕ; see Sect. 3.4 for more details.
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Encoding Finite Simplicial Sets A finite simplicial complex can be encoded in a
straightforward way by listing the vertices of each simplex.

For simplicial sets, the situation is a bit more complicated, since the simplices are
no longer uniquely determined by their vertices, but if X is finite, then we can encode
X by the set Xndg of its nondegenerate simplices (which we assume to be numbered
from 1 to N , where N is the total number of nondegenerate simplices), plus a little
bit of additional information.

The simple but crucial fact (see, e.g. [7, Theorem 4.2.3]) we need is that ev-
ery simplex σ can be written uniquely as σ = sτ , where τ is nondegenerate and
s is a degeneracy, i.e., a composition s = sik . . . si1 of degeneracy operators where
k = dimσ − dim τ (in particular, σ is nondegenerate itself if σ = τ and s is the iden-
tity). Thus, as mentioned above, degenerate simplices σ do not need to be encoded
explicitly but can be represented by sτ when needed, where the degeneracy s can be
encoded by the sequence (ik, . . . , i1) of indices of its components.14 The extra infor-
mation we need to encode X, in addition to the list of its nondegenerate simplices,
is how these fit together. Specifically, for σ ∈ X

ndg
n and 0 ≤ i ≤ n, the ith face can

be written uniquely as ∂iσ ∈ Xn−1 = sτ with τ nondegenerate, and for each σ , we
record the (n + 1)-tuple of pairs (τ, s).

Similarly, if f : X → Y is a simplicial map between finite simplicial sets, then
given the encodings of X and Y , we can encode f by expressing, for each σ ∈ X

ndg
n ,

the image f (σ ) = sτ , with τ ∈ Y
ndg
m and recording the list of triples (σ, τ, s).

For a finite simplicial set X, we define size(X) as the number of nondegenerate
simplices. If the dimension of X is bounded by some number d , then the number
of bits in the encoding of X described above is bounded by O(size(X) log size(X)),
with the constant of proportionality depending only on d .

The notion of size will be a convenient tool that allows us to ensure that our re-
ductions can be carried out in polynomial time, without analyzing the running time
in complete detail, which we feel would be cumbersome and not very enlightening.

More specifically, our reductions will be composed of a sequence of various basic
constructions of simplicial sets, which will be described in the next subsection.

For each of these basic constructions, it is straightforward to check15 that when we
apply them to finite simplicial sets of bounded dimension, both the running time of
the construction (the number of steps needed to compute the encoding of the output
from the encoding of the input) as well as the size of the output simplicial set are
polynomial in the size of the input. Thus, to ensure that the overall reduction is poly-
nomial, it will be enough to take care that we combine only a polynomial number of
such basic constructions, that the size of every intermediate simplicial set constructed
during the reduction remains polynomial in the initial input, and that the dimension
remains bounded.

14Moreover, this sequence is unique, by the simplicial set axioms that we have not specified, if one stipu-
lates ik < · · · < i1.
15A notable exception are subdivisions, for which we provide more detail in Appendix A.



Discrete Comput Geom (2014) 51:24–66 37

3.3 Basic Constructions

In this subsection, we review several basic constructions for cell complexes and sim-
plicial sets. (One advantage of simplicial sets over simplicial complexes is that vari-
ous operations on topological spaces, in particular Cartesian products and quotients,
have natural counterparts for simplicial sets. This is where the degeneracy operators
and degenerate simplices turn out to be necessary.) For more details, we refer to [7, 9].

Pointed and k-Reduced Simplicial Sets and Cell Complexes Several of the con-
structions are defined for pointed spaces. We recall that a pointed space (X,x0) is a
topological space X with a choice of a distinguished point x0 ∈ X (the basepoint). If
X is a cell complex or a simplicial set, then we will always assume the basepoint to be
a vertex (i.e., a 0-cell or 0-simplex, respectively). A pointed map (X,x0) → (Y, y0) of
pointed spaces (cell complexes, simplicial sets) is a continuous (cellular, simplicial)
map sending x0 to y0. Homotopies of pointed maps are also meant to be pointed;
i.e., they must keep the image of the basepoint fixed. The reader may recall that, for
example, the homotopy groups πk(Y ) are defined as homotopy classes of pointed
maps. The set of pointed homotopy classes of pointed maps X → Y will be denoted
by [X,Y ]∗.

A simplicial set X is called k-reduced, k ≥ 0, if it has a single vertex and no
nondegenerate simplices in dimensions 1 through k. Similarly, a cell complex X is
k-reduced if it has a single vertex and no cells of dimensions 1 up to k. It is then
necessarily k-connected.

If (Y, y0) is a 0-reduced cell complex (or simplicial set), then any cellular (or
simplicial) map from a pointed complex (X,x0) into Y is automatically pointed.
Moreover, if Y is 1-reduced, then every homotopy is pointed, too, and thus [X,Y ]

is canonically isomorphic to [X,Y ]∗.

Products If X and Y are cell complexes, then their Cartesian product X × Y has a
natural cell complex structure whose n-cells are products ep × eq , where p + q = n

and ep and eq range over the p-cells of X and the q-cells of Y , respectively.
Furthermore, if X and Y are simplicial sets, then there is a formally very simple

way to define their product X ×Y : one sets (X ×Y)n := Xn ×Yn for every n, and the
face and degeneracy operators work componentwise; e.g., ∂i(σ, τ ) := (∂iσ, ∂iτ). As
one would expect from a good definition, the product of simplicial sets corresponds to
the Cartesian product of their geometric realizations, i.e., |X ×Y | ∼= |X|× |Y |.16 The
apparent simplicity of the definition hides some intricacies, though, as one can guess
after observing that, for example, the product of two 1-simplices is not a simplex—so
the above definition must imply some canonical way of triangulating the product.

16To be more precise, the above equality holds literally, with the product topology on the right-hand side,
only under suitable assumptions on X and Y , e.g., if both X and Y have only countably many simplices.
In the general case, one has to interpret the product |X| × |Y | differently, in the category of so-called
k-spaces, and the same subtlety arises for products of cell complexes; see, e.g., the discussion in the
respective appendices in [7, 9]. For the spaces we will encounter, however, this issue will not arise, and the
product will be the same as the usual product of topological spaces.
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Remark 3.2 A pair (sσ, tτ ) of degenerate simplices in the factors may yield a nonde-
generate simplex in the product, if the degeneracies s and t are composed of different
degeneracy operators si . However, dim(X×Y) = dimX+dimY , so the product con-
tains no nondegenerate simplices of dimension larger than dimX + dimY , and hence
size(X × Y) is at most size(X) × size(Y ) times some factor that depends only on the
dimension17 dim(X × Y).

Moreover, if the dimensions are bounded, the product can be constructed in poly-
nomial time.

Quotients and Attachments If X, Y , and A are cell complexes with A ⊆ X and if
f : A → Y is a cellular map, then the space X ∪f Y obtained by attaching X to Y

along f is also a cell complex in a natural way (see, e.g., [7, Sect. 2.3]). In particular,
X/A is a cell complex, with cells corresponding to the cells of X not contained in A,
plus one additional 0-cell (corresponding to the image of A under the quotient map).

Similarly, if X is a simplicial set and if ∼ is an equivalence relation on each Xn

that is compatible with the face and degeneracy operators, then the quotient X/ ∼

is also a simplicial set. In particular, this includes simplicial attachments X ∪f Y

of simplicial sets along a simplicial map f : A → Y defined on a simplicial subset
A ⊆ X, and quotients X/A by simplicial subsets. These constructions are compatible
with geometric realizations, e.g., |X ∪f Y | ∼= |X| ∪|f | |Y |.

Moreover, the size of X ∪f Y is at most the size of X plus the size of Y , and in
bounded dimension, the attachment can be constructed in polynomial time.

Wedge Sum (or Wedge Product) If X1, . . . ,Xm are pointed spaces, then their wedge

sum X1 ∨· · ·∨Xm is simply the disjoint union of the Xi with the basepoints identified
(this is a very special type of attachment). If the Xi are cell complexes or simplicial
sets, then so is their wedge sum.

Later we will need the following bijection:

[X1 ∨ X2 ∨ · · · ∨ Xm, Y ]∗
∼=
−→ [X1, Y ]∗ × [X2, Y ]∗ × · · · × [Xm, Y ]∗ (5)

where the components of this map are given by the restrictions to the respective Xi .

Mapping Cylinder and Mapping Cone For a map f : X → Y , the mapping cylinder

of f is the space Cyl(f ) defined as the quotient of (X × [0,1]) ⊔ Y under the iden-
tifications (x,0) ∼ f (x) for each x ∈ X. The mapping cone Cone(f ) is defined as

17This follows from the fact about realizations mentioned above. Another way of seeing this is that if
dimσ = p, dim τ = q , and dim(sσ ) = dim(tτ ) = n > p + q , then s and t involve n − p and n − q degen-
eracy operators si with i ≤ n, respectively, so there must be a repetition since n − p + n − q > n. Without
further reflection, this immediately implies that size(X × Y ) ≤ size(X) · size(Y ) · (dimX)!(dimY )!.

In fact, the factor is only singly exponential in the dimensions. For instance, for a product �p ×�q of
two standard simplices, the vertices of �p × �q correspond to the grid points in {0, . . . , p} × {0, . . . , q},
and the nondegenerate k-simplices correspond to subsets of size k+1 of the grid that are weakly monotone
in both coordinates (weakly monotone paths of length k). Thus, the number of nondegenerate simplices of
full dimension p + q equals

(p+q
p

)
, and the number of all nondegenerate simplices is at most 4p+q , say.

Thus, size(X × Y ) ≤ size(X) · size(Y ) × 4dimX+dimY , say.
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the quotient Cyl(f )/(X × {1}) of Cyl(f ) with the subspace X × {1} collapsed into a
point.

By the discussion concerning attachments, if X and Y are cell complexes and
f is cellular, then Cyl(f ) and Cone(f ) are cell complexes as well. Moreover, if f

is a simplicial map between simplicial sets, then by taking the analogous simplicial
attachments and quotients, we obtain simplicial sets, denoted by Cyl(f ) and Cone(f )

as well, and called the simplicial mapping cylinder and simplicial mapping cone,
respectively. The simplicial constructions are compatible with geometric realizations,
for example, |Cyl(f )| ∼= Cyl(|f |).

We will use the mapping cylinder in our construction to replace an arbitrary map
f : X → Y by an inclusion X →֒ Cyl(f ), which has the same homotopy properties
as f . A more precise statement is given in the following lemma (see, e.g., [9, Corol-
lary 0.21]).

Lemma 3.3 Let f : X → Y be a continuous map between topological spaces. We

consider X ∼= X × {1} and Y as subspaces of Cyl(f ) and denote the corresponding

inclusion maps18 by iX : X →֒ Cyl(f ) and iY : Y →֒ Cyl(f ).

(a) Y is a strong deformation retract19 of Cyl(f ).
(b) X (considered as a subspace via iX) is a strong deformation retract of Cyl(f ) iff

f is a homotopy equivalence.
(c) iX ∼ iY f are homotopic as maps X → Cyl(f ).
(d) If f : X → Y is a homotopy equivalence and if g : Y → X is a homotopy inverse

for f , then iXg ∼ iY as well.

Reduced Mapping Cone and Mapping Cylinder If X and Y and f are pointed, with
basepoints x0 and y0, it will be technically convenient, particularly in Sect. 6, to con-
sider the spaces C̃yl(f ) and C̃one(f ), called the reduced mapping cylinder and the
reduced mapping cone, respectively, that are obtained from Cyl(f ) and Cone(f ) by

18More precisely, the inclusion maps are given as the composition of the respective inclusions X ∼= X ×

{1} ⊆ X × [0,1] ⊔ Y and Y ⊆ X × [0,1] ⊔ Y with the quotient map X × [0,1] ⊔ Y → Cyl(f ).
19We recall that a deformation retraction of a space X onto a subspace A is a map H : X × [0,1] → X

such that H(x,0) = x and H(x,1) ∈ A for all x ∈ X and H(a,1) = a for all a ∈ A. Thus, a deformation
retraction witnesses that the inclusion map iA : A →֒ X is a homotopy equivalence with a homotopy
inverse r = H(·,1) : X → A that is a retraction, i.e., that restricts to the identity on A.

A deformation retraction is called strong if it keeps A fixed pointwise throughout, i.e., if H(a, t) = a

for all a ∈ A and t ∈ [0,1] (some authors include this directly in the definition of a deformation retraction).
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collapsing the segment x0 × [0,1] (whose lower end is identified with y0) to a single
point. We will apply this construction only to cellular or simplicial mapping cylin-
ders and cones, in which case contracting the subcomplex x0 × [0,1] is a homotopy
equivalence.

Moreover, if f is a homotopy equivalence, then we may assume that its homotopy
inverse g is pointed as well and that the homotopies fg ≃ idY and gf ≃ idX keep
the basepoints fixed (see [9, Corollary 0.19]). It follows that Lemma 3.3 remains true
if we take C = C̃yl(f ) as the reduced mapping cylinder (the inclusions are given as
those into Cyl(f ), followed by the quotient map Cyl(f ) → C̃yl(f ), which does not
make any identifications within X or within Y ).

By the remarks concerning the size of simplicial products and attachments, the
size of the (reduced or unreduced) simplicial mapping cylinder or cone is at most the
size of X plus the size of Y , times a factor depending only on dimX.

3.4 Subdivisions and Simplicial Approximation

For simplicial complexes, there is the well-known notion of barycentric subdivision

(see, e.g., [18, §15]). An analogous notion of subdivision, called normal subdivision,
can also be defined for simplicial sets. Informally speaking, the normal subdivision
Sd(X) of a simplicial set X is defined by barycentrically subdividing each simplex of
X and then gluing these subdivided simplices together according to the identifications
implied by the face and degeneracy operators of X. We refer to [7, Sect. 4.6] for the
precise formal definition and just state the facts that we will need in what follows.

For the standard simplex �p , the nondegenerate k-simplices of Sd(�p) corre-
spond to chains of proper inclusions of nondegenerate simplices (faces) of �p . It
follows that Sd(�p) has (p + 1)! nondegenerate p-simplices and, in general, at most
2p+1(p + 1)! nondegenerate simplices of any dimension. Consequently, for any sim-
plicial set X, the size of Sd(X) is at most the size of X times a factor that depends
only on dimX and which can be bounded from above by 2dimX+1(dimX+1)!. More-
over, if the dimension is bounded, Sd(X) can be constructed in time polynomial in
size(X).

If f : X → Y is a simplicial map, then subdivision also induces a map Sd(f ) :

Sd(X) → Sd(Y ), and this is compatible with compositions, i.e., Sd(fg) =

Sd(f )Sd(g).
For each simplicial set X, there is a simplicial map lastvX : Sd(X) → X, called the

last vertex map,20 which is a homotopy equivalence that is compatible with simplicial
maps f : X → Y , i.e., f lastvX = lastvY Sd(f ).21,22

20On the standard simplex �n, seen as a simplicial set, this map is defined by sending a chain (σ0, . . . , σk)

(a k-simplex of Sd(�n)) to the simplex [v0, . . . , vk], where vi is the last vertex of the simplex σi (recall
that the vertices in each simplex are ordered).
21In the language of category theory, Sd is a functor and lastv is a natural transformation between Sd and
the identity functor on simplicial sets.
22In fact, it is true that X and Sd(X) are not only homotopy equivalent but homeomorphic (as one might
expect given the terminology “subdivision”). However, for simplicial sets this is a decidedly nontrivial
result; see [7, Corollary 4.6.5]. The difficulty is related to the fact that there is no way of defining this
homeomorphism for all simplicial sets in such a way that it becomes compatible with simplicial maps. For
our purposes, the natural homotopy equivalence lastvX will be sufficient and more convenient.
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There is also a simplicial approximation theorem for simplicial sets, which
uses iterated normal subdivisions. Specifically, the t-fold iterated normal subdivi-
sion of a simplicial set is defined inductively as Sdt (X) := Sd(Sdt−1(X)), where
Sd0(X) := X.

Theorem 3.4 [7, Theorem 4.6.25] Let X and Y be simplicial sets such that X has

only finitely many nondegenerate simplices, and let f : |X| → |Y | be a continuous

map. Then there exist a finite integer t (which depends on f ) and a simplicial map

g : Sdt (X) → Y such that |g| is homotopic to the composition f | lastvt
X | of f with

the iterated last vertex map lastvt
X : Sdt (X) → Y .

To convert arbitrary simplicial sets into homotopy equivalent (in fact, homeomor-
phic) simplicial complexes, another subdivision-like operation is needed (see, e.g.,
[11]). Given a simplicial set Z, one can define a simplicial complex B∗(Z) induc-
tively, by introducing a new vertex vσ for every nondegenerate simplex σ , and then
replacing σ by the cone with apex vσ over B∗(∂σ ). If the simplicial set Z has a cer-
tain regularity property—which is satisfied, for instance, if Z = Sd(X)—then B∗(Z)

and Z are homotopy equivalent (in fact, homeomorphic).23 We summarize the prop-
erties that we need in the following proposition (for completeness, we provide a proof
in Appendix A).

Proposition 3.5 If X is a simplicial set, then the twofold subdivision B∗(Sd(X))

is a simplicial complex. Moreover, there is a simplicial map γX : B∗(Sd(X)) → X,
which is a homotopy equivalence. For a simplicial subset A ⊆ X, B∗(Sd(A)) is a

subcomplex of B∗(Sd(X)) and γX|A = γA.24

If X is finite and of bounded dimension, there are algorithms that construct the

simplicial complex B∗(Sd(X)) and evaluate the map γX , both in polynomial time.

4 Homotopy Groups

We review some further facts about homotopy groups that we will need. For more
details see, e.g., [9, Sect. 4.1].

4.1 Basic Facts

So far, we used the definition of the nth homotopy group πn(X,x0) of a pointed
space (X,x0) as the set of homotopy classes of pointed maps (Sn,p0) → (X,x0),
where p0 ∈ Sn is an arbitrarily chosen basepoint, and the homotopies are required to
keep the basepoint fixed. Equivalently, the elements of πn(X,x0) can be viewed as

23As an illustration that this fails for general simplicial sets, consider the case where Z = Σp is the
simplicial set model of the d-sphere with only two nondegenerate simplices, one in dimension 0 and one
in dimension d . In this case, B∗(Σd ) is a 1-dimensional simplex.
24In fact, the construction B∗ Sd is functorial and γ is a natural transformation (like the construction Sd
and the map lastv), but we will never use this stronger fact.
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homotopy classes [f ] of maps f : (Dn, ∂Dn) → (X,x0) sending all of ∂Dn to x0,
modulo homotopies that keep the image of ∂Dn fixed (as before, we will often drop
the basepoint from the notation).25

In what follows, we will also need the Abelian group operation in πn(X,x0),
n ≥ 2, which can be defined as follows: Suppose f1, . . . , fm are maps (Dn, ∂Dn) →

(X,x0). Suppose we have a cellular decomposition of Dn as a cell complex Dn
m

with n-cells en
1 , . . . , en

m (in Sect. 6.1 we will provide a concrete geometric construc-
tion of Dn

m). Then we can define a map f from Dn ∼= Dn
m to (X,x0) representing

the homotopy class [f1] + . . . + [fm] by sending the (n − 1)-skeleton of Dn
m to x0,

and by defining the restriction of f to each open cell en
i to be fi .

A very important special case of homotopy groups is that of spheres. We will use
the following well-known facts:

• The sphere Sn is (n − 1)-connected.
• For all n ≥ 1, πn(S

n) is isomorphic to Z and generated by the homotopy class ι of
the identity. For each map ϕ : Sn → Sn, there is a unique integer a ∈ Z such that
[ϕ] = aι; it is called the degree of ϕ and denoted by degϕ. The degree is obviously
invariant under homotopy.

• We have π3(S
2) ∼= Z. The group is generated by the famous Hopf map26 η :

S3 → S2.

We will also need the following simple fact.

Lemma 4.1 Let g : Sn → Sn be a map of degree b ∈ Z. Then, for any map f :

Sn → X, we have [fg] = b · [f ] ∈ πn(X).

Proof Consider the n-dimensional unit cube In ∼= Dn, where I = [0,1] is the
unit interval. We identify Sn with the quotient In/∂In. From the map of sets
(In, ∂In) → (In, ∂In) given by (s1, . . . , sn−1, sn) → (s1, . . . , sn−1, bsn mod 1) we
obtain g0 : Sn → Sn by passing to quotients. By the definition of the addition of ho-
motopy classes, on the one hand, [g0] is the b-fold sum of the identity, and hence a
particular example of a map of degree b. On the other hand, fg0 is a representative
of b · [f ], the b-fold sum of [f ]. Since [fg] depends only on the homotopy class [g],
which is uniquely determined by the degree of g, the lemma follows. �

Let X be a cell complex and A ⊆ X a subcomplex. Then the homotopy groups of
the spaces A, X, and X/A in a certain range are connected by an exact sequence.

Theorem 4.2 Let A ⊆ X be cell complexes. Let p, q ≥ 0 be integers, q ≤ p + 1. If

A is p-connected and X is q-connected, then X/A is also q-connected and there is

an exact sequence

πp+q(A) → ·· · → πi(A) → πi(X) → πi(X/A) → πi−1(A) → ·· · → πq+1(X/A).

25The claimed equivalence is obtained by identifying Sn with the quotient Dn/∂Dn of the n-disk by its
boundary and p0 with the image of ∂Dn under the quotient map.
26See [9, Example 4.45] for the definition (which is not difficult, but which we will not need).
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Here the maps πi(A) → πi(X) and πi(X) → πi(X/A) are induced by the inclu-

sion and the projection, respectively, and the exactness means that the kernel of each

homomorphism equals the image of the preceding one.

Proof One can define homotopy groups of any pair (X,A), A ⊆ X, and these homo-
topy groups fit into the following exact sequence:

· · · → πi(A) → πi(X) → πi(X,A) → πi−1(A) → ·· · , i ≥ 1;

see [9], Sect. 4.1. From the exactness and the connectivity assumptions it is easy to
show that πi(X,A) = 0 for i ≤ q . Then, according to [9, Proposition 4.28], the map
πi(X,A) → πi(X/A) induced by the quotient map X → X/A is an isomorphism for
i ≤ p + q . Substituting πi(X/A) in this range into the exact sequence above, we get
the exact sequence from the statement of the theorem. �

In the proof of Theorem 1.1 we will need a description of the nth homotopy group
of a cell complex Y obtained from T by attaching (n + 1)-cells eℓ, 1 ≤ ℓ ≤ m, by
attaching maps ϕℓ : Sn → T .

Proposition 4.3 Let n ≥ 2 be an integer. Suppose that T is a 1-connected cell com-

plex and Y is a cell complex obtained from T as described above. Then

πn(Y ) ∼= πn(T )/
〈
[ϕ1], [ϕ2], . . . , [ϕm]

〉
,

where 〈[ϕ1], [ϕ2], . . . , [ϕm]〉 is the subgroup of πn(T ) generated by the homotopy

classes of ϕℓ, 1 ≤ ℓ ≤ m.

Proof It is sufficient to prove the statement for a single cell attached; then we can
proceed by induction. Consider the reduced mapping cylinder C̃ylϕ, together with
the inclusions of Sn and T into it and the projection onto C̃ylϕ/Sn = C̃oneϕ = Y .
The situation is summarized in the diagram

Sn

ϕ

C̃ylϕ C̃ylϕ/Sn = Y

T

∼

which commutes up to homotopy. Applying Theorem 4.2 for A = Sn, X = C̃ylϕ,
p = n − 1, and q = 1, we obtain the exact sequence

πn

(
Sn

)
→ πn(C̃ylϕ) → πn(Y ) → πn−1

(
Sn

)
= 0.

If we replace the inclusion Sn →֒ C̃ylϕ by the map ϕ : Sn → T , we get

πn

(
Sn

) ϕ∗
−→ πn(T ) → πn(Y ) → 0.

Hence πn(Y ) = πn(T )/〈ϕ∗(ι)〉, where ι is the homotopy class of the identity on Sn,
and thus ϕ∗(ι) is the homotopy class of ϕ. �
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4.2 Whitehead Products and Wedge Sums of Spheres

Whitehead Products There is another type of operation on elements of homotopy
groups that we will need. Consider two spheres Sk and Sℓ with their standard struc-
tures as cell complexes (one vertex and one cell of the top dimension). Then the
product Sk × Sℓ is also a cell complex, with one vertex, one respective cell ek and
eℓ in dimensions k and ℓ, and one cell ek × eℓ in dimension k + ℓ. In particular, the
(k + ℓ − 1)-skeleton of the product is a wedge Sk ∨ Sℓ, to which the (k + ℓ)-cell is
attached via a map ϕ : Sk+ℓ−1 ∼= ∂(Dk+ℓ) → Sk ∨ Sℓ.

Now, if f : Sk → X and g : Sℓ → X are (pointed) maps, we can combine them
into a map f ∨ g : Sk ∨ Sℓ → X. If we compose this with the attachment map ϕ

discussed before, we get a map [f,g] : Sk+ℓ−1 → X, called the Whitehead product

of f and g. The homotopy class of this product clearly depends only on the ho-
motopy classes of the factors, so we get a well-defined product πk(X) × πℓ(X) →

πk+ℓ−1(X), again denoted by [·, ·]. As a quite trivial but nonetheless useful exam-
ple, if X = Sk × Sℓ, then the attachment map ϕ itself equals the Whitehead product
[ιSk , ιSℓ ] of the two inclusions ιSk : Sk →֒ Sk ∨ Sℓ and ιSℓ : Sℓ →֒ Sk ∨ Sℓ.

In our proofs we will use the fact that the Whitehead product is natural, graded
commutative, and bilinear, i.e.,

f∗[α,β] = [f∗α,f∗β],

[α,β] = (−1)kℓ[β,α],

[α + γ,β] = [α,β] + [γ,β],

[α,β + δ] = [α,β] + [α, δ]

where α, γ ∈ πk(X), β, δ ∈ πℓ(X), and f : X → Y . For the proof see [34], Chap. X,
7.2, Corollary 7.12 and Corollary 8.13.

In the proof of Theorem 1.1 we will need some facts about the homotopy groups
of spheres and their wedge sums.

Theorem 4.4 [9, Corollary 4B.2], [34, XI, Theorem 2.5] There is a homomorphism

(called the Hopf invariant) H : π2k−1(S
k) → Z such that for d even H([ι, ι]) = ±2.

Let us note that for k odd the Whitehead product [ι, ι] ∈ π2k−1(S
k) is of order 2,

i.e., 2[ι, ι] = 0. Whitehead products play a crucial role in Hilton’s theorem, which
converts the computation of homotopy groups of a wedge of spheres to the com-
putations of homotopy groups of spheres. We do not need this theorem in its full
generality as it was proved in [10], and so we restrict ourselves to a special case.

Let k ≥ 2 and r , s ≥ 1 be integers. Let

T = Sk
1 ∨ · · · ∨ Sk

r ∨ S2k−1
1 ∨ · · · ∨ S2k−1

s (6)

be the wedge sums of r copies of Sk and s copies of S2k−1. Denote by νi and μq

the homotopy classes of the inclusions Sk →֒ T and S2k−1 →֒ T onto the ith copy
of Sk and the qth copy of S2k−1, respectively. Then the homotopy groups πk(T ) and
π2k−1(T ) can be described by the following special case of Hilton’s theorem.
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Theorem 4.5 [10, Theorem A] With the notation as above, there are isomorphisms

πk(T ) ∼=
⊕

1≤i≤r

πk

(
Sk

i

)
,

π2k−1(T ) ∼=
⊕

1≤i≤r

π2k−1
(
Sk

i

)
⊕

⊕

1≤q≤s

π2k−1
(
S2k−1

q

)
⊕

⊕

1≤i<j≤r

π2k−1
(
S2k−1

ij

)
.

An element β ∈ π2k−1(S
k
i ) corresponds to the composition νiβ ∈ π2k−1(T ), an

element β ∈ π2k−1(S
2d−1
q ) to the composition μqβ ∈ π2k−1(T ), and an element

β ∈ π2k−1(S
2k−1
ij ) to the composition [νi, νj ]β ∈ π2k−1(T ).

We will say that some elements x1, . . . , xr of an Abelian group are integrally in-

dependent if the only valid relation a1x1 + · · · + arxr = 0 with coefficients ai ∈ Z
is that with all ai zero. The following statement is an immediate consequence of
Theorems 4.5 and 4.4.

Corollary 4.6 If k ≥ 2 is odd, then the elements μq , 1 ≤ q ≤ s, and [νi, νj ], 1 ≤ i <

j ≤ r are integrally independent in π2k−1(T ).
If k ≥ 2 is even, then the elements μq , 1 ≤ q ≤ s and [νi, νj ], 1 ≤ i ≤ j ≤ r are

integrally independent in π2k−1(T ).

Proof The reason is that every element in the list comes from a different direct sum-
mand and is of infinite order. �

In the case k = 2 and s = 0 we can say even more.

Corollary 4.7 [9, Example 4.52] The homotopy group π3(
∨r

i=1 S2
i ) is a free Abelian

group generated by the Whitehead products [νi, νj ], 1 ≤ i < j ≤ r , and homotopy

classes νiη, where η : S3 → S2 is the Hopf map.

5 The Constructions for Theorem 1.1 Presented as Cell Complexes

Here we present the essence of the proof of Theorem 1.1. Namely, for every system
of quadratic Diophantine equations of the form (Q-SYM) (for k even) or (Q-SKEW)
(for k odd), we construct cell complexes A, X, Y , and a continuous map f : A → Y ,
where Y is (k − 1)-connected and dimX = 2k, such that f is extendable to X iff the
Diophantine system has a solution. Moreover, one of (X,A) and Y can be assumed
to be fixed, as in Theorem 1.1(a) and (b). We will also see the role of Whitehead
products and Hilton’s theorem in the proof.

What remains for the next section is to convert X, A, Y into finite simplicial com-
plexes and f into a simplicial map, so that the solvability of the extension problem
remains unchanged. Moreover, the construction has to be algorithmic.

While discussing the cellular constructions of X, A, Y , it is also natural to describe
the cell complex used by Anick in the proof of his #P-hardness result. Indeed, his
construction uses tools very similar to those employed in our constructions.
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The Generalized Extension Problem In order to simplify the presentation, it is con-
venient to remove the assumption in the extension problem that A is a subspace of
X, or in other words, that the map A → X is an inclusion. Instead, we consider three
spaces A, W , Y and (arbitrary) maps g : A → W and f : A → Y , and we ask if there
is a map h : W → Y making the following diagram commutative up to homotopy:

A
f

g

Y

W

h

(GEP)

For a generalized extension problem as above, we obtain an equivalent extension
problem by setting X = Cyl(g) (where A is considered as a subspace of the cylinder
in the usual way). This is easy to see, but we nonetheless briefly describe a proof of
this fact that only uses the homotopy extension property for pairs of cell complexes
and the properties of the mapping cylinder summarized in Lemma 3.3. This means
that we can replace the mapping cylinder Cyl(g) by any other cell complex that has
these properties, and the same proof will still apply. This will be useful for our sim-
plicial constructions later on, for which it will be convenient to work with what are
called generalized mapping cylinders (see Sect. 6.2).

Let iA and iW be the inclusions of A and W into X. On the one hand, given a
solution f̄ : X → Y of the extension problem, i.e., f̄ iA = f , we can define h := f̄ iW
as the restriction of f̄ to W . Then hg = f̄ iWg ∼ f̄ iA = f , so h is a solution to the
generalized extension problem.

On the other hand, given a solution h for the generalized extension problem (GEP),
let r : X → W be the retraction from X to W and define f̄ := hr . Then f̄ iA = hriA ∼

hg ∼ f , so f̄ is an extension of a map homotopic to f , and since extendability
depends only on the homotopy class of a map (Corollary 3.1), f can be extended
as well.

Thus, we are free to consider the generalized extension problem with dimW ≤ 2k

and dimA ≤ 2k − 1.

5.1 Fixed Target

We describe an instance of the generalized extension problem for part (a) of Theo-
rem 1.1, where the target Y is fixed. The system of equations will be encoded into
cell complexes A, W and the maps g : A → W , f : A → Y .

Fixed Target with k Even Here Y = Sk ,

A = S2k−1
1 ∨ · · · ∨ S2k−1

s , W = Sk
1 ∨ · · · ∨ Sk

r . (8)
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Then the diagram (GEP) becomes

A = S2k−1
1 ∨ · · · ∨ S2k−1

s

f

g

Sk

W = Sk
1 ∨ · · · ∨ Sk

r

h

According to (5) from the discussion of wedge sums in Section 3.3, the homotopy
class of f : A → Sk is specified completely by the homotopy classes of its restrictions
to the spheres forming A. We will use f∗μq = [f ]μq ∈ π2k−1(S

k) to denote these,
where μq is the homotopy class of the inclusion of the qth sphere S2k−1

q into A. Our
particular choice is

f∗μq = bq [ι, ι]. (9)

Similarly, the homotopy class of g : A → W is given by its restrictions as

g∗μq =
∑

1≤i<j≤r

a
(q)

ij [νi, νj ], (10)

where νi is the homotopy class of the inclusion of the ith sphere Sk
i into W . Finally,

let h : W → Sk be an arbitrary map and write h∗νi = xi ι ∈ πk(S
k) for some integers

xi ∈ Z. According to (5) again, the diagram (GEP) commutes up to homotopy iff
(hg)∗μq = f∗μq , i.e., iff

h∗

( ∑

1≤i<j≤r

a
(q)

ij [νi, νj ]

)
= bq [ι, ι] (11)

for all 1 ≤ q ≤ s. Using the naturality and bilinearity of the Whitehead product, the
left-hand side equals

∑

1≤i<j≤r

a
(q)
ij [h∗νi, h∗νj ] =

∑

1≤i<j≤r

a
(q)
ij [xi ι, xj ι] =

∑

1≤i<j≤r

a
(q)
ij xixj [ι, ι].

According to Corollary 4.6 the homotopy class [ι, ι] is of infinite order, and so the
system of Eqs. (11) is equivalent to (Q-SYM). We get the following proposition.

Proposition 5.1 Let the maps f : A → Sk and g : A → W be as in (9) and (10)
above. Then f can be extended to X = C̃yl(g) if and only if the system (Q-SYM) has

a solution.

Fixed Target with k Odd The element [ι, ι] ∈ π2k−1(S
k) has order 2, so we cannot

use Y = Sk . However, leaving A, W and g : A → W as before, we can take Y =

Sk ∨ Sk and specify f by

f∗μq = bq [ι1, ι2], (12)
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where ι1 and ι2 are inclusions of Sk onto the first and the second summand in Sk ∨Sk ,
respectively. Using Hilton’s theorem (Theorem 4.5) for πk(S

k ∨ Sk), the homotopy
class of a general map h : W → Y satisfies

h∗νi = xi ι1 + yi ι2, xi, yi ∈ Z. (13)

Using the fact that [ι1, ι2] = −[ι2, ι1], it is easy to show that the commutativity of the
diagram (GEP) is equivalent to the system of s equations in π2k−1(S

k ∨ Sk),
(∑

i<j

a
(q)

ij (xiyj − xjyi)

)
[ι1, ι2] +

(∑

i,j

a
(q)

ij xixj

)
[ι1, ι1]

+

(∑

i,j

a
(q)

ij yiyj

)
[ι2, ι2] = bq [ι1, ι2].

By Corollary 4.6 of Hilton’s theorem the element [ι1, ι2] ∈ π2k−1(S
d ∨ Sd) is of

infinite order, while [ι1, ι1] and [ι2, ι2] are of order 2. Multiplying all the equations in
(Q-SKEW) by 2, we get an equivalent system, in which all the a

(q)

ij are even. For this
system, the above equation is exactly the one from (Q-SKEW). We get the following.

Proposition 5.2 Let the maps f : A → Sk ∨Sk and g : A → W be as in (12) and (10)
above. Then f can be extended to X = C̃yl(g) if and only if the system (Q-SKEW)
has a solution.

5.2 Fixed Source

The idea for the first step of the proof of Theorem 1.1(b) is similar; however, the
constructions involve attaching cells, and also the usage of Hilton’s theorem is more
substantial.

Fixed Source with k Even We put

A = S2k−1, W = Sk

where the homotopy class of g : A → W is [g] = [ι, ι]. A given system of equations
(Q-SYM) will be encoded in the target space Y and in the homotopy class of f : A →

Y . The target space Y is a cell complex obtained from the wedge of spheres T defined
in (6) by attaching (2k)-cells eij , 1 ≤ i < j ≤ r and eii , 1 ≤ i ≤ r , i.e.,

Y =
(
Sk

1 ∨ · · · ∨ Sk
r ∨ S2k−1

1 ∨ · · · ∨ S2k−1
s

)
︸ ︷︷ ︸

T

∪
⋃

1≤i<j≤r

eij ∪
⋃

1≤i≤r

eii . (14)

The attaching maps for the cells are the maps S2k−1 → T whose homotopy classes
are, respectively,

ϕij = [νi, νj ] −
∑

1≤q≤s

a
(q)
ij μq , ϕii = [νi, νi].
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Denote the images of the homotopy classes μq ∈ π2k−1(T ), 1 ≤ q ≤ s and νi ∈

πk(T ), 1 ≤ i ≤ r , in Y by μ′
q and ν′

i , respectively. Further, take a map f : A → Y

of the homotopy class

[f ] = 2b1μ
′
1 + 2b2μ

′
2 + · · · + 2bsμ

′
s .

Since πk(Y ) ∼= πk(T ) ∼= πk(S
k
1 ) ⊕ · · · ⊕ πk(S

k
r ) by Theorem 4.5, a general map

h : W → Y has a homotopy class

[h] = x1ν
′
1 + x2ν

′
2 + · · · + xrν

′
r

with arbitrary integer coefficients xi . To show that the commutativity of the diagram
(GEP) (up to homotopy) is equivalent to the satisfaction of the system (Q-SYM), we
will need the following lemma.

Lemma 5.3 Let Y be the cell complex as above. Then the classes μ′
q ∈ π2k−1(Y ),

1 ≤ q ≤ s, are integrally independent and

[
ν′
i, ν

′
j

]
=

∑

1≤q≤s

a
(q)

ij μ′
q , 1 ≤ i < j ≤ r,

[
ν′
i, ν

′
i

]
= 0, 1 ≤ i ≤ r.

Proof The statement is a consequence of Proposition 4.3 and Corollary 4.6. �

Using this lemma and the bilinearity and graded commutativity of the Whitehead
product, we compute [hg] ∈ π2k−1(Y ) as

h∗[g] = h∗[ι, ι] = [h∗ι, h∗ι]

=

[ ∑

1≤i≤r

xiν
′
i,

∑

1≤j≤r

xjν
′
j

]
=

∑

1≤i,j≤r

xixj

[
ν′
i, ν

′
j

]

= 2
∑

1≤i<j≤r

xixj

[
ν′
i, ν

′
j

]
+

∑

1≤i≤r

x2
i

[
ν′
i, ν

′
i

]

= 2
∑

1≤i<j≤r

xixj

( s∑

q=1

a
(q)
ij μ′

q

)

= 2
∑

1≤q≤s

( ∑

1≤i<j≤r

a
(q)

ij xixj

)
μ′

q .

Comparing with [f ] and using the fact that μ′
q are integrally independent, we obtain

the system (Q-SYM).

Fixed Source with Odd k As in the fixed target case, we resolve the problem of
[ι, ι] being of order 2 by replacing it with [ι1, ι2]. In this case, it means that we set
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A = S2k−1, W = Sk ∨ Sk . The target space Y remains the same as for k even. We
take f to be any map with

[f ] = b1μ
′
1 + b2μ

′
2 + · · · + bsμ

′
s

and g has the advertised homotopy class [g] = [ι1, ι2], where ι1 and ι2 are the ho-
motopy classes of the inclusions of the two copies of Sk into W = Sk ∨ Sk . The
homotopy class of a map h : W → Y is again determined by its restrictions along ι1,
ι2, namely

h∗ι1 = x1ν
′
1 + x2ν

′
2 + · · · + xrν

′
r , h∗ι2 = y1ν

′
1 + y2ν

′
2 + · · · + yrν

′
r ,

where the xi and yi can be arbitrary integers. The composition [hg] ∈ π2k−1(Y )

equals

h∗[g] =

[ ∑

1≤i≤r

xiν
′
i,

∑

1≤j≤r

yjν
′
j

]
=

∑

1≤i,j≤r

xiyj

[
ν′
i, ν

′
j

]

=
∑

1≤i<j≤r

(xiyj − xjyi)
[
ν′
i, ν

′
j

]
+

∑

1≤i≤r

xiyi

[
ν′
i, ν

′
i

]

=
∑

1≤i<j≤r

(xiyj − xjyi)

( ∑

1≤q≤s

a
(q)

ij μ′
q

)

=
∑

1≤q≤s

( ∑

1≤i<j≤r

a
(q)

ij (xiyj − xjxi)

)
μ′

q

(again using Lemma 5.3). Since the μ′
q are integrally independent, the comparison

with [f ] leads to the system (Q-SKEW).
Summarizing our findings, for k both even and odd we get the following.

Proposition 5.4 For each k ≥ 2 let the maps f : A → Y and g : A → W be as above.
Then f can be extended to X = C̃yl(g) if and only if there is a solution to the sys-

tem (Q-SYM) when k is even, or (Q-SKEW) when k is odd.

5.3 Anick’s 4-Dimensional Cell Complexes

Here we introduce complexes constructed by Anick [2, p. 42] for his hardness result.
These are compact 4-dimensional cell complexes which arise from the wedge W =

S2
1 ∨ · · · ∨S2

r of r copies of S2 by attaching s 4-cells. According to Corollary 4.7, the
homotopy class of a general attaching map must be an integral combination of the
homotopy classes νiη and the Whitehead products [νi, νj ], where η is the homotopy
class of the Hopf map S3 → S2 and νi is the homotopy class of the inclusion S2 → W

on the ith copy of S2.
Together with [9, Proposition 0.18] this implies that, up to homotopy equivalence,

a completely general way of attaching 4-cells to W is described by integers a
(q)
ij for
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1 ≤ i ≤ j ≤ r and q = 1,2, . . . , s. Specifically, the qth 4-cell is attached via a map
S3

q → W representing the homotopy class in π3(W) defined by

ϕq =
∑

1≤i≤r

a
(q)

ii ιiη +
∑

1≤i<j≤r

a
(q)

ij [ιi, ιj ].

Therefore, the homotopy type of the resulting Anick complex, i.e., its class of homo-
topy equivalence, which we denote by Y 4

a , is completely determined by the vector

a = (a
(q)

ij )
1≤q≤s

1≤i≤j≤r of integer coefficients.

In Anick’s #P-hardness result, the input complex Y 4
a (whose higher homotopy

groups are to be computed) is encoded very concisely by the vector a of integers,
represented in binary.

Theorem 5.5 (Anick [2]) It is #P-hard to compute the rank of πn(Y
4
a ) for a given

integer n ≥ 2 (encoded in unary) and a given integer vector a (represented in binary).

In Sect. 6, we will show that, given a, we can construct, in polynomial time, a
finite 4-dimensional simplicial complex homotopy equivalent to Y 4

a . Together with
Anick’s result, this will imply Theorem 1.2.

6 Simplicial Constructions

In this section, we prove that the constructions of cell complexes and cellular maps
from the last section can be converted into homotopy equivalent finite simplicial com-
plexes and simplicial maps. The constructions of such simplicial sets and maps in-
volve only simplicial products, attachments (in particular, mapping cylinders), quo-
tients, and subdivisions, which are all algorithmic. It is crucial, that in the case of
Anick’s complexes, the algorithms are polynomial time.

We remark that the conversion of the cell complexes and maps for the extension
problem (those from Propositions 5.1, 5.2, and 5.4) runs in time polynomial in the
size of the binary encoding of the coefficients a

q

ij and the unary encoding of the co-
efficients bq . The running time could be made polynomial with respect to the binary
encoding of all the coefficients including bq ; however, it would complicate the pre-
sentation slightly, and it is unnecessary for the undecidability results.

Let us denote by Σp a “model” of the sphere Sp as a simplicial set with only two
nondegenerate simplices, one in dimension 0 and the other in dimension p.

6.1 Constructing the Sum of Several Maps Sp → Y

In this short section we describe how, given simplicial maps f1, . . . , fm : Σp → Y ,
we can construct a simplicial representative of the sum [f1] + · · · + [fm] ∈ πp(Y ).
To this end, we have to change the domain to a simplicial set with a larger number of
simplices.

We define the simplicial set Dp
m, which is a union of m copies of �p , where the

ith copy is glued by its ∂1-face to the ∂0-face of the (i + 1)st copy. The union of the
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remaining faces (the ∂1-face of the first copy, the ∂0-face of the last copy, and all the
∂i -faces with i > 1) is denoted by ∂Dp

m. Here is a picture of D2
m:

•

•

•

1

•

···

•

m

with the double arrows denoting the boundary ∂D2
m. Another point of view is, that

D1
m is a chain of m copies of the 1-simplex �1 and each Dp

m is a cone over
Dp−1

m.
There is a simplicial map Dp

m → �p that sends the first copy of �p in Dp
m

onto �p by the identity, while the rest is sent to the degeneracy of the ∂0-face of �p .
It induces a simplicial map

q : Dp
m/∂Dp

m → Σp,

which is a homotopy equivalence (it is easy to see this, e.g., from homology). There
is another simplicial map that collapses the whole (p−1)-skeleton of Dp

m. The map
factors through Dp

m/∂Dp
m as

Dp
m Dp

m/∂Dp
m

δ

Σp ∨ · · · ∨ Σp.

We specify a simplicial map f : Σp ∨ · · · ∨ Σp by mapping the ith copy of Σp to Y

by fi .
The maps q , δ, and f fit into a diagram

Dp
m/∂Dp

m

δ

q ∼

Σp ∨ · · · ∨ Σp
f

Y

Σp

Since q has a continuous homotopy inverse, there is a unique homotopy class of maps
Σp → Y extending [f δ] up to homotopy, namely the homotopy class of [f1]+ · · ·+

[fm].
By the naturality of the subdivision, we also have maps

q : Sdt
(
Dp

m/∂Dp
m

)
→ Σp,

δ : Sdt
(
Dp

m/∂Dp
m

)
→ Sdt

(
Σp

)
∨ · · · ∨ Sdt

(
Σp

)

(the map q is the composition of the subdivision of the original q with the it-
erated last vertex map Sdt (Σp) → Σp) that will serve to add representatives
f1, . . . , fm : Sdt (Σp) → Y .
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6.2 Generalized Mapping Cylinders

In the above approach, in order to construct simplicial maps Σp → Y , we replaced
the domain Σp by a homotopy equivalent simplicial set. This will be very useful for
the proof of part (a) of Theorem 1.1. For part (b), the domain has to be left unchanged,
and thus a different construction must be used.27 It is roughly “dual” to the previous
one: It replaces the target Y by a homotopy equivalent simplicial set.

Thus, instead of subdividing the sphere Σp , we will replace the target space Y by
a “generalized mapping cylinder.” This solution also works for domains other than
Σp . Thus, for a map f : X → Y , we will be interested in diagrams, commutative up
to homotopy, of the following form:

Y

iY∼

X
iX

f

M

Definition 6.1 Let M be a pointed simplicial set with two simplicial subsets
X,Y ⊆ M containing the basepoint of M . Let iX : X → M and iY : Y → M be the
corresponding inclusion maps, and let f : |X| → |Y | be a pointed continuous map.
We say that M is a generalized mapping cylinder for f , with upper rim X and lower

rim Y , if iY is a homotopy equivalence and iX ∼ iY f . We denote this situation by

M : X
f

Y .

We remark that the above definition depends only on the homotopy class of f ; we
may thus say that M is a generalized mapping cylinder for the homotopy class [f ].

By Lemma 3.3 and the remark following it, the reduced mapping cylinder C̃yl(f )

of f : X → Y is an example of such a generalized mapping cylinder with upper rim X

and lower rim Y . Moreover, if f is a homotopy equivalence with a homotopy inverse
g, one can easily see from the definition that a generalized mapping cylinder M for
f is also a generalized mapping cylinder Mop for g with upper rim Y and lower rim
X (i.e., the roles of upper and lower rim are interchanged).28

The important property of generalized mapping cylinders, which we are going to
use heavily, is that they may be used for attaching cells.

Proposition 6.2 Let M : Σ
p

1 ∨· · ·∨Σ
p
m

f

Y be a generalized mapping cylinder for

a pointed map f , whose restriction to the ith summand is fi : |Σ
p

i | → |Y |. Then the

27There is a further issue with the subdivision—it is not polynomial. The construction of a representative
of a multiple b[f ] of a map f : Σp → Y requires b simplices, and this number is exponential in the
number of bits of b.
28When f is injective, one can use Y as a generalized mapping cylinder for f .
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composition Y
iY
−→ M

proj
−−→ M/(Σ

p

1 ∨ · · · ∨ Σ
p
m) extends to a homotopy equivalence

Y ∪
(
e
p+1
1 ∪ · · · ∪ e

p+1
m

) ∼
−−→ M/

(
Σ

p

1 ∨ · · · ∨ Σ
p
m

)

where the cell e
p+1
i on the left is attached to Y along the map fi .

Proof Set X = Σ
p

1 ∨ · · · ∨ Σ
p
m. Then the space from the statement, obtained from Y

by attaching cells, is the mapping cone of f . By [3, Theorem I.14.19] the mapping
cone of f : X → Y is homotopy equivalent to that of iY f : X → M (since iY is a ho-
motopy equivalence). Further, by [3, Theorem I.14.18] it is also homotopy equivalent
to the mapping cone of iX : X → M (since iY f ∼ iX). By [3, Theorem VII.1.6] the
mapping cone of iX is homotopy equivalent to M/X.

All the involved maps respect Y (which is naturally a subspace of all the map-
ping cones and also maps by proj iY to the quotient M/X), proving that the resulting
homotopy equivalence is indeed an extension of the composition proj iY . �

Generalized mapping cylinders can be composed in an obvious way.

Lemma 6.3 Let f : X → Y and g : Y → Z be pointed continuous maps, and let

M and N be generalized mapping cylinders for f and g, respectively. Let NM :=

N ∪Y M be the simplicial set obtained by identifying the lower rim of M with the

upper rim of N . Then NM is a generalized mapping cylinder for gf .

Proof Consider the diagram

X

f

iX

M iM

Y

g

iY

jY
N ∪Y M

N iN

Z jZ

where iX , iY , jY , iZ , iM , iN are inclusions, both triangles commute up to homotopy,
and the square commutes strictly. Consequently, the triangle formed by the spaces X,
Z and N ∪Y M commutes up to homotopy, too. To show that N ∪Y M is a generalized
mapping cylinder for gf , it suffices to prove that the inclusion iN is a homotopy
equivalence.

It is well known (see [9, Theorem 4.5]) that to every inclusion iY : Y → M which
is a homotopy equivalence there is a deformation retraction r : M → Y . Then the
map h : N ∪Y M → N defined as jY r on M and as the identity on N is a homotopy
inverse to iN . �

We will also need simplicial maps representing (the homotopy classes of) a con-
stant number of specific maps, such as the Whitehead product [ι, ι] : S2d−1 → Sd of
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the identity on Sd with itself, the Whitehead product [ι1, ι2] : S2d−1 → Sd
1 ∨Sd

2 of the
inclusions Sd

i → Sd
1 ∨ Sd

2 , and the Hopf map η : S3 → S2. In each case, it is possible
to construct these explicitly, but we will use the following general lemma.

Lemma 6.4 Let X and Y be finite simplicial sets and let f : |X| → |Y | be an ar-

bitrary but fixed pointed continuous map. Then there exists a generalized mapping

cylinder X
f

Y . It is of dimension max{dimX + 1,dimY }.

The point here is that, in contrast with Theorem 3.4, we can prescribe the exact
triangulations of the upper and lower rims, which will make it easy to compose the
resulting generalized mapping cylinders.

Proof By the simplicial approximation theorem for simplicial sets (Theorem 3.4),
there exist an iterated barycentric subdivision X′ = Sdt (X) of X and a simplicial
map g : X′ → Y homotopic to f |ℓ|, where ℓ : X′ → X is the natural homotopy equiv-
alence (the iterated last vertex map).

Let M := C̃yl(ℓ) and N := C̃yl(g) be the corresponding reduced simplicial map-
ping cylinders. Since ℓ is a homotopy equivalence, we can also view M as a gen-
eralized mapping cylinder Mop for a homotopy inverse h : |X| → |X′| of |ℓ|, with
upper rim X and lower rim X′. Thus, NMop is a generalized mapping cylinder for
|g|h ∼ f |ℓ|h ∼ f . �

The following proposition plays a crucial role in our simplicial constructions.

Proposition 6.5 Let Y be a finite simplicial set and let f1, . . . , fm : Sdt Σp → Y be

given simplicial maps. Then there is an algorithm that, given an integer vector c =

(c1, . . . , cm), constructs a generalized mapping cylinder Σp
f

Y for the homotopy

class

[f ] = c1[f1] + · · · + cm[fm] ∈ πp(Y ) =
[
Σp, Y

]
∗
,

in time polynomial in the (binary) encoding size of c.

The proof will be given in a series of lemmas. Before going into the proof, we will
generalize this proposition slightly. A homotopy class of a pointed map f : Σ

p

1 ∨· · ·∨

Σ
p
s → Y is determined uniquely by its restrictions Σ

p

k → Y . When each restriction is
expressed as an integral combination of the fi , we may use Proposition 6.5 together
with Lemma 6.7 to provide a generalized mapping cylinder for f .

Lemma 6.6 There is an algorithm that, given an integer of the form c = ±2d , d ∈N,
constructs a generalized mapping cylinder Nc : Σp Σp for the map of degree c.
Moreover, if p is fixed, then size(Nc) is linear in d + 1 and the running time of the

algorithm is polynomial in d + 1, which is the encoding size of c.
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Proof Consider maps g−1, g2 : |Σp| → |Σp| of degrees −1 and 2, respectively, and
choose a generalized mapping cylinder Ni for each gi according to Lemma 6.4. For
p constant, these are fixed simplicial sets.

Thus, by Lemma 6.3,

N2d := N2 · · ·N2︸ ︷︷ ︸
d factors

is a generalized mapping cylinder for (g2)
d , a map of degree 2d . By further compos-

ing this with N−1, if necessary, we obtain a generalized mapping cylinder Nc for a
map of degree c.

Moreover, if p is fixed, then we can precompute the generalized mapping cylinders
N−1, N2, which leads to size(Nc) and running time as requested. �

Lemma 6.7 Suppose that X1, . . . ,Xm and Y are pointed simplicial sets and that

Mi : Xi Y are generalized mapping cylinders for pointed maps fi : |Xi | → |Y |,
1 ≤ i ≤ m. Then there is an algorithm that constructs a generalized mapping cylinder

M : X1 ∨ · · · ∨ Xm

f

Y for the map f : |X1 ∨ · · · ∨ Xm| → |Y | with restrictions

f ||Xi | = fi .
Moreover, if p is fixed, then size(N) is linear in

∑
i size(Mi) and the running time

is polynomial.

Proof The wedge sum M ′ = M1 ∨ · · · ∨ Mm is a generalized mapping cylinder

M ′ : X1 ∨ · · · ∨ Xm

f1∨···∨fm

Y ∨ · · · ∨ Y.

We attach to M ′ the mapping cylinder of the folding map ∇ : Y ∨ · · · ∨ Y → Y to
obtain the required generalized mapping cylinder M . �

Lemma 6.8 Let M1, . . . ,Mm : Σp Y be generalized mapping cylinders for

[f1], . . . , [fm] ∈ πp(Y ). Then there is an algorithm that constructs a generalized

mapping cylinder M : Σp Y for the homotopy class [f1] + . . . + [fm] ∈ πp(Y ),
in polynomial time if p is fixed.

Proof Let us consider the following chain of maps:

Σp q
←− Dp

m/∂Dp
m

δ
−→ Σ

p

1 ∨ · · · ∨ Σ
p
m

f
−→ Y,

where f restricts to fi on the ith summand. The first two maps are simplicial, and
thus their mapping cylinders provide generalized mapping cylinders for any homo-
topy inverse q of q and for δ, respectively. A generalized mapping cylinder for f

was constructed in Lemma 6.7. Composing these cylinders gives the result, since
f δq ∼ f1 + · · · + fm; see Sect. 6.1. �

Proof of Proposition 6.5 Let Mi : Σp
fi

Y , i = 1, . . . ,m, be generalized mapping
cylinders.
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Using the binary expansion of an integer c, Lemma 6.8, and Lemma 6.6, we can
construct the generalized mapping cylinder Nc for every map Σp → Σp of degree c

in time polynomial (at most quadratic) in the bit length of c. The composition MiNci

is a generalized mapping cylinder for ci[fi]. Lemma 6.8 then constructs a generalized
mapping cylinder for the sum c1[f1] + · · · + cm[fm]. �

6.3 Proofs of the Main Results

In Sect. 5 we described the relevant spaces as cell complexes. It remains to construct
them as finite simplicial complexes and the map f : A → Y as a simplicial map.

Proof of Theorem 1.1(a) We will give details only for k even. Using the notation
from Sect. 5.1, we triangulate the target sphere Y = Sk in an arbitrary manner and fix
simplicial maps

w+,w− : Sdt
(
Σ2k−1) → Sk

that represent the homotopy classes of the Whitehead square and its negative,

[w±] = ±[ι, ι] ∈ π2k−1
(
Sk

)

(by the simplicial approximation theorem, a sufficiently fine subdivision Sdt (Σ2k−1)

and the required simplicial maps exist, and they can be hardwired into the algo-
rithm). Let now b be the vector of the right-hand sides of an arbitrary system of
the form (Q-SYM) and let 1 ≤ q ≤ s. By adding |bq | times the map w±, we obtain a
simplicial map

A′
q := Sdt

(
D2k−1

|bq |/∂D2k−1
|bq |

) f ′
q

−−→ Sk

that represents bq [ι, ι].29 Finally, we take A′ = A′
1 ∨ · · · ∨ A′

s and specify f ′ : A′ →

Sk by its restrictions to the A′
q , namely, the maps f ′

q .
We recall that the space X is constructed as the mapping cylinder of a map

g : A → W that was expressed in terms of the Whitehead products [νi, νj ] and the co-
efficients of the system (Q-SYM). In the simplicial setup it will be more convenient to
use generalized mapping cylinders for this purpose. As explained during the discus-
sion of the generalized extension problem in the beginning of Sect. 5, the extension
problems are equivalent. Using a fixed representative w′

± : Sdt (Σ2k−1) → Σk ∨ Σk ,
we may construct the generalized mapping cylinder X′ : A′ W , with the inclusion
denoted by i′ : A′ → X′, of the composition

A′
1 ∨ · · · ∨ A′

s︸ ︷︷ ︸
A′

q∨···∨q
−−−−−→ Σ2k−1

1 ∨ · · · ∨ Σ2k−1
s︸ ︷︷ ︸

A

g
−→ Σk

1 ∨ · · · ∨ Σk
r︸ ︷︷ ︸

W

.

29When bq = 0, we take A′
q = Sdt (Σ2k−1) and f ′

q : Sdt (Σ2k−1) → Sk the constant map onto the base-
point.
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Thus, we have constructed an extension problem, given by i′ and f ′, and by Propo-
sition 5.1, its solvability is equivalent to the solvability of the system (Q-SYM) that
we started with.

Finally, we replace the simplicial sets A′ and X′ by the simplicial complexes
B∗(Sd(A′)) and B∗(Sd(X′)) (see Proposition 3.5). The map f ′ is replaced by the
composition f ′γA′ in the diagram

B∗(Sd(A′))
γA′

A′
f ′

Sk

B∗(Sd(X′))
γX′

X′

where the maps γA′ and γX′ were also defined in Proposition 3.5.
Since both γX′ and γA′ are homotopy equivalences, the extendability of |f ′| is

equivalent to that of |f ′γA′ | by Corollary 3.1. �

Proof of Theorem 1.1(b) Again, we work out the case k even. Let A, X, Y , f , and
g be as in Proposition 5.1 and fix an arbitrary pair of simplicial sets (X′,A′) whose
geometric realization is homotopy equivalent to (X,A). Using generalized mapping
cylinders for this purpose, we may assume that A′ = Σ2k−1. We fix some simplicial
maps

w′
± : Sdt

(
Σ2k−1) → Σk ∨ Σk

representing the Whitehead product and its negative. According to Proposition 6.2,
the cell complex Y of (14) is homotopy equivalent to the quotient M/S, where M

is an arbitrary generalized mapping cylinder M : S
ϕ

T for the map ϕ : |S| → |T |

between the geometric realizations of the simplicial sets

S =
∨

i<j

Σ2k−1
ij ∨

∨

i

Σ2k−1
ii , T =

∨

i

Σk
i ∨

∨

q

Σ2k−1
q ,

whose restrictions to the spheres of S are the attaching maps ϕij and ϕii for the cells
of Y ; see Sect. 5. The generalized mapping cylinder M is constructed by Proposi-
tion 6.5.

Since the image of f : A → Y lies in T , the replacement of Y by M/S results in
replacing f by the composition

f̃ : Σ2k−1
f

T
iT

M
proj

M/S.

(the homotopy equivalence Y ≃ M/S restricts to proj iT on T by Proposition 6.2).
It remains to replace f̃ by a simplicial map. But since f is a combination of

the Whitehead products and the remaining maps iT and proj are simplicial, we
may achieve this by replacing M/S further by the generalized mapping cylinder
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Y ′ : Σ2k−1
f̃

M/S as in Sect. 6.2. We denote the inclusion Σ2k−1 → Y ′ by f ′.
From the definition of the generalized mapping cylinder, iM/S f̃ ∼ f ′ and iM/S is a
homotopy equivalence, and therefore the extendability of f̃ is equivalent to that of f ′.
This finishes the construction of a simplicial replacement of the extension problem.

To make everything into simplicial complexes, we apply B∗ Sd to all the involved
simplicial sets A′ = Σ2k−1, X′, Y ′ and the simplicial map f ′. �

Proof of Theorem 1.2 Let us fix some simplicial representatives

h : Sdt
(
Σ3) → Σ2, w : Sdt

(
Σ3) → Σ2 ∨ Σ2, m2,m−1 : Sdt

(
Σ2) → Σ2

for the Hopf map η, the Whitehead product [ι1, ι2], and the maps of degree 2 and −1,
respectively. We may then build the generalized mapping cylinder

M : Σ3
1 ∨ · · · ∨ Σ3

s

ϕa

Σ2
1 ∨ · · · ∨ Σ2

r ,

for the map ϕa whose restriction to the kth summand Σ3
k is given by

ϕq =
∑

1≤i≤r

a
(q)

ii ιiη +
∑

1≤i<j≤r

a
(q)

ij [ιi, ιj ].

We construct Anick’s simplicial complex Y 4
a as

Y 4
a = B∗ Sd

(
M/

(
Σ3

1 ∨ · · · ∨ Σ3
s

))
.

By Proposition 6.2, it is homotopy equivalent to the cellular complex obtained from
the wedge Σ2

1 ∨ · · · ∨ Σ2
r by attaching 4-cells along the maps with homotopy

classes ϕq .
To get the statement of Theorem 1.2, it is now sufficient to realize that the algo-

rithmic construction above can be carried out in the time polynomial in the binary
encoding of the vector a

(q)

ij , 1 ≤ i ≤ j ≤ r , 1 ≤ q ≤ s. �
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ported by the project CZ.1.07/2.3.00/20.0003 of the Operational Programme Education for Competitive-
ness of the Ministry of Education, Youth and Sports of the Czech Republic. The research by M.K. and J.M.
was supported by the Center of Excellence, Inst. for Theor. Comp. Sci., Prague (project P202/12/G061 of
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Appendix A: Subdivisions of Simplicial Sets

Here we outline a proof of Proposition 3.5.
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Since a simplicial set also encodes an ordering of the vertices within each simplex,
there is another “barycentric subdivision” Sd∗(X) associated with any simplicial set
X, obtained by reversing the order of the vertices in every simplex of Sd(X) (in
Sd(X), the inclusion chains of simplices are ordered according to ascending dimen-
sion, and in Sd∗(X) according to descending dimension). Thus, for example, Sd(�1)

can be described pictorially as • • • while Sd∗(�
1) is • • • .

The barycentric subdivision Sd∗(X) is related to the original simplicial set X via an
initial vertex map Sd∗(X) → X, which is a homotopy equivalence.

Moreover, there is a universal way of associating a simplicial complex with any
simplicial set X: It has the same vertex set as X and a collection of vertices spans
a (unique) simplex if and only if there exists a simplex in the original simplicial set
X with this vertex set. An alternative, equivalent definition of B∗X is that it is the
simplicial complex associated in this way with Sd∗(X).

Proof of Proposition 3.5 The face operators ∂i can be iterated to obtain more general
face operators. Since each ∂i leaves out the i-th vertex of a simplex, by iterating we
obtain face operators that leave out a set of vertices. When this set is I ⊆ {0, . . . , n},
we write the corresponding operator as ∂I . It is easy to observe that we can express
∂I as

∂I = ∂i1 · · · ∂ik ,

where i1 < · · · < ik is the ordering of the elements of I = {i1, . . . , ik}. We call k the
codimension of ∂I . Similarly, we can iterate the si and obtain general degeneracy
operators sI .

Since we are interested in the computational side of the story, we will describe the
simplicial complex B∗(Sd(X)) explicitly. Its vertices are the chains

σ = σ0

f1

σ1

f2 fk

σk,

where σ0, . . . , σk are simplices of X with σk nondegenerate, and each fi is a face
operator of codimension at least 1, for which σi−1 = fiσi .

We say that a chain

τ = τ0

g1

τ1

g2 gℓ

τℓ

(still with τℓ nondegenerate and all face operators gi of codimension at least 1) is a
subchain of σ , which we write as σ > τ , if there exists an injective monotone map (a
subsequence) ϕ : {0, . . . , ℓ} → {0, . . . , k} with ℓ < k and a commutative diagram

σϕ(0) σϕ(1) σϕ(ℓ)

τ0

g1

τ1

g2 gℓ

τℓ
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(the top maps are the appropriate compositions of the fi ), where every arrow
σϕ(i) τi is an iterated degeneracy operator pi for which piτi = σϕ(i). The com-
mutativity means that the respective compositions of operators are equal. For each ϕ,
there exists at most one subchain τ , but for a given τ , the choice of ϕ is not unique.
The composition σ0 → σϕ(0) → τ0 gives a canonical operator σ0 → τ0. It is not too
hard to show30 that this operator depends only on σ and τ and not on the choice
of ϕ.

The n-simplices of B∗(Sd(X)) are then formed by the subsets {σ 0, . . . ,σ n} for all
decreasing sequences σ 0 > · · · > σ n of chains; we order the vertices in each simplex
according to the subchain relation.

The simplicial map γ : B∗(Sd(X)) → X is defined on vertices by sending σ to
the last vertex of σ0. For a simplex specified by σ 0 > · · · > σ n, we have a canonical
chain

(σ 0)0 (σ 1)0 (σ n)0

of operators and we use these to map the last vertices lastv((σ i)0) of the faces (σ i)0

to (σ n)0. In this way, we obtain an (ordered) collection of vertices of (σ n)0. The value
of γ on the sequence σ 0 > · · · > σ n is then the simplex of (σ n)0 spanned by these
vertices (it might be degenerate, e.g., when some of the (σ i−1)0 → (σ i)0 preserve
the last vertex).

According to [7, Proposition 4.6.3] and [11, Corollary 4.3], the horizontal map
and the vertical map in the triangle

Sd∗(Sd(X))
π

B∗(Sd(X))

γ

X

are homotopy equivalences (the vertical map is the composition of the initial vertex
map with the last vertex map). Since the diagram commutes,31 the map γ must be a
homotopy equivalence, too. �

Appendix B: Extending Maps into (k − 1)-Reduced Simplicial Sets

Here we prove the claim made after Theorem 1.1 regarding the construction of the
target space Y as a (k − 1)-reduced simplicial set. It is usual in effective algebraic

30The important ingredients are that every simplex can be expressed uniquely as a degeneracy of a nonde-
generate simplex, and that every operator can be written uniquely as a degeneracy of a face.
31This is not too hard to show, but we do not want to dwell into the exact definition of Sd∗(Sd(X)). The

main point is that the preimages under π of the simplex σ 0 > · · · > σn are given by the choices of the
subsequences ϕ. The commutativity is then implied by the independence of the operators (σ i−1)0 →

(σ i )0 on these choices.
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topology that certain computations with simplicial sets only work when at least some
of the inputs are 0-reduced or 1-reduced. A typical example is the computation of the
homology groups of a loop space ΩX of a simplicial set X. First, we remark that
it is impossible to compute these homology groups for general X, as otherwise we
would obtain an algorithmic computation of π1(X), which is known to be impossible
by [19]. On the positive side, there is a very old method for the computation of these
homology groups which, however, works only for 1-reduced X (using the so-called
cobar construction and homological perturbation theory; see [27, Corollary 147] or
[1]).32

It is thus natural to ask if the undecidability of the extension problem of Theo-
rem 1.1 might only be caused by Y being (k − 1)-connected but not (k − 1)-reduced.
In this section, we will prove a version of Theorem 1.1 with (k − 1)-reduced Y . The
simplicial set Y ′ appearing in the proof of part (a) of Theorem 1.1 might be cho-
sen to be either Σk or Σk ∨ Σk (depending on the dimension), both of which are
(k − 1)-reduced and no further work is needed.

To finish the proof of part (b), we need to replace Y ′ by some (k − 1)-reduced
simplicial set without changing the extendability. To this end, we introduce a very
useful notion of an n-equivalence. Let 0 ≤ n ≤ ∞. A continuous map Y → Z is said
to be an n-equivalence if it induces an isomorphism on all homotopy groups up to
dimension n − 1 and a surjection in dimension n (the ∞-equivalences are usually
called weak homotopy equivalences). We will need the following basic property of
n-equivalences.

Proposition B.1 Let X be a cell complex of dimension n, f : A → Y a continuous

map defined on a subcomplex A ⊆ X, and h : Y → Z an n-equivalence. Then f is

extendable to X if and only if hf is extendable to X.

Proof If f has an extension g, then hf extends to hg. The other direction is [32,
Sect. 7.6, Theorem 22]. �

With the previous proposition in mind, we construct a replacement of Y by brute
force, i.e., by going through all “candidate replacements” and checking if they give
equivalent extension problems. In detail, we fix (X′,A′) as in Sect. 6.3 and make
a list of all pairs (Z′, h′), where Z′ is a finite (k − 1)-reduced simplicial set and
h′ : Y ′ → Z′ a simplicial map. In each step we test whether h′ is a (2k)-equivalence.
If that is the case, then the problem of extending the composition h′f ′ : A′ → Z′ to
X′ is equivalent to that of f ′ : A′ → Y ′, which we proved to be undecidable.

By the Hurewicz theorem, h′ is a (2k)-equivalence if and only if Cone(h′) has zero
homology groups up to dimension 2k. This can be tested easily using a Smith normal
form algorithm. The pair (Z′, h′) with the above properties exists by the following
theorem, finishing the proof of Theorem 1.1 with (k − 1)-reduced target.

32On the other hand, it is possible to compute these homology groups for any 1-connected X. This is
another application of the “brute force” version of Theorem B.2 that is explained just prior to its statement.
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Theorem B.2 Let n ≥ k ≥ 2 and let Y be a (k − 1)-connected simplicial set whose

homology groups Hi(Y ), i ≤ n, are finitely generated. Then there exist a finite (k−1)-

reduced simplicial set Z and an n-equivalence ψ : Y → Z.

We believe that the theorem should be known in some form, but we were not able
to find it in the literature. For its proof, we will need a couple of more advanced
notions. Accordingly, the proof will be more sketchy.

Let �n be the standard n-simplex (regarded as a simplicial set). For 0 ≤ k ≤ n, the
kth n-horn is the simplicial subset Λn

k ⊆ �n spanned by all the proper faces of �n

with the exception of the k-th face.
A simplicial set Z is said to be a Kan complex if every simplicial map f : Λn

k → Z

can be extended to a simplicial map �n → Z. The map f is called a horn in Z and
we say that this horn can be filled if the extension exists.

A usual method for constructing Kan complexes is the successive filling of horns,
which is described, e.g., in [7, Proofs of Propositions 4.5.5 and 4.5.6].

Given a simplicial set Y and a horn f : Λn
k → Y in Y , we can form a larger sim-

plicial set Y ∪f �n by attaching �n to Y along f ; this larger simplicial set (contin-
uously) deformation retracts to Y , and, by construction, the horn f : Λn

k → Y can be
filled in the larger simplicial set. We refer to this operation as a single horn filling.

If we simultaneously attach fillings for all unfillable horns in Y , we obtain a sim-
plicial set K(Y ) that contains Y and such that all horns in Y can be filled in K(Y ).
Iterating this procedure,33 we obtain a sequence Y ⊆ K(Y ) ⊆ K

2(Y ) ⊆ · · · , where,
by construction, every horn in K

n(Y ), can be filled in K
n+1(Y ). Let K∞(Y ) be the

union of the simplicial sets Kn(Y ), n ∈ N.

Proposition B.3

• The simplicial set K∞(Y ) is a Kan complex.
• The inclusion Y →K

∞(Y ) is an ∞-equivalence.
• If Y is (d − 1)-reduced, then so is K(Y ) and consequently also K

∞(Y ).
• Let L ⊆ K

∞(Y ) be a finite simplicial subset. Then L lies in a simplicial subset

obtained from Y by a finite sequence of single horn fillings.

Proof Any horn in K
∞(Y ) lies in some K

n(Y ) and is thus fillable in K
n+1(Y ) ⊆

K
∞(Y ). The proof of the second point is similar, using a deformation retraction of

K
n(Y ) onto Y . The third point is clear. For the last point, L lies in some K

n(Y ). By
induction, L ∩ K

n−1(Y ) uses only a finite number of single horn fillings. A finite
number of single horn fillings is required to cover L. �

Thus, there exists a homotopy equivalence Y → K
∞(Y ) of any simplicial set with

a Kan complex. For the proof of Theorem B.2, we will need every Kan complex to
contain a minimal Kan complex as a deformation retract [16, Theorem 9.5] and that a
minimal (k −1)-connected Kan complex is in fact (k −1)-reduced. Thus, composing
the inclusion Y → K

∞(Y ) with the deformation retraction yields an ∞-equivalence
ι : Y → Z of Y with a (k − 1)-reduced Kan complex Z.

33Formally, we define K
0(Y ) := Y and K

n(Y ) :=K(Kn−1(Y )) for n ≥ 1.
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Proof of Theorem B.2 Let Z0 ⊆ Z denote the image of ι and ι0 : Y → Z0 the restric-
tion of ι. By the following proposition, there exists a simplicial set Z′, containing Z0

as a subset, and a simplicial (n + 1)-equivalence ψ : Z′ → Z. Since this map is the
identity on Z0, there is a canonical map h′ : Y → Z′ making the diagram

Z′

ψY ′
ι0

h

ι

Z0

Z

commutative (namely the composition of ι0 : Y → Z0 with the inclusion Z0 →֒ Z′).
Since ι is an ∞-equivalence and ψ induces an isomorphism on homotopy groups up
to dimension n, the same is true for h′ and in particular, it is an n-equivalence. �

Proposition B.4 Let n ≥ k ≥ 2 and let Z be a (k −1)-connected Kan complex whose

homology groups Hi(Z), i ≤ n, are finitely generated. Then there exist a finite (k−1)-

reduced simplicial set Z′ and an n-equivalence ψ : Z′ → Z.
If Z0 is an arbitrary finite (k − 1)-reduced subset of Z, then Z′ can be chosen to

contain Z0 as a subset ψ to be the identity on Z0.

To prove Proposition B.4, we follow the argument in [9, Proposition 4C.1] but
make the attachment maps simplicial by using the idea of filling horns described
above.

Proof of Proposition B.4 We proceed by induction on n. For n ≤ k − 1, we can take
Z′ = Z0.

Assume that we have constructed a finite simplicial set Zn−1 and a map
ψn−1 : Zn−1 → Z that is an (n − 1)-equivalence.

Let Ẑ be the simplicial set obtained from the simplicial mapping cylinder
Cyl(ψn−1) of ψn−1 : Zn−1 → Z by collapsing Z0 × �1 onto the base Z0. Since
ψn−1 is the identity on Z0, the usual deformation retraction of Cyl(ψn−1) onto Z

induces a deformation retraction of Ẑ onto Z. We enlarge the pair (Ẑ,Zn−1) to a
Kan pair (K,L) by filling horns. Since Zn−1 is (k − 1)-reduced, so is L.

By the assumption on ψn−1 and by the Hurewicz theorem, we have Hi(K,L) = 0
for i ≤ n − 1. Consider the exact sequence of homology groups for the pair (K,L):

· · · → Hn(K) → Hn(K,L) → Hn−1(L) → Hn−1(K) → Hn−1(K,L) = 0.

Pick generators γj of Hn(K,L). Since Hn(K) ∼= Hn(Z) and Hn−1(L) ∼= Hn−1(Z
n−1)

are finitely generated, a finite number of generators suffices. By the relative Hurewicz
theorem, Hn(K,L) ∼= πn(K,L,∗) (simplicial homotopy groups, since we are work-
ing with a Kan pair). Thus, we can choose n-simplices gj of K representing the γj ,
whose faces lie in L.
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Let K ′ be the simplicial subset of K spanned by L and the simplices gj . Then
the natural homomorphism Hn(K

′,L) → Hn(K,L) is surjective by the choice of the
simplices gj . Since these relative homology groups are zero in lower dimensions, it
follows from the long exact sequence of the triple (K,K ′,L) that Hi(K,K ′) = 0 for
i ≤ n. In effect, the inclusion K ′ → K is an n-equivalence (by the relative Hurewicz
theorem again). Composing with an arbitrary deformation retraction of K onto Z we
obtain an n-equivalence K ′ → Z satisfying all the required properties except that K ′

is infinite.
Thus, it remains to replace K ′ by a finite simplicial set. Since there are only finitely

many simplices gj , there is a simplicial set L′ with Zn−1 ⊆ L′ ⊆ L, obtained from
Zn−1 by filling finitely many horns, and such that the boundaries of all the simplices
gj lie in L′. We take Zn to be the finite simplicial set spanned by L′ and the simplices
gj . Since |L′| is a deformation retract of |L|, we get that |Zn| is a deformation retract
of |K ′|. Thus, Zn has all the required properties. �
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6. Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Polynomial-time computation of ho-
motopy groups and Postnikov systems in fixed dimension. arXiv:1211.3093 (2012)

7. Fritsch, R., Piccinini, R.A.: Cellular Structures in Topology. Cambridge Studies in Advanced Mathe-
matics, vol. 19. Cambridge University Press, Cambridge (1990)

8. Friedman, G.: An elementary illustrated introduction to simplicial sets. Rocky Mt. J. Math. 42(2),
353–423 (2012)

9. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001). Electronic version
available at http://math.cornell.edu/hatcher#AT1

10. Hilton, J.P.: On the homotopy groups of union of spheres. J. Lond. Math. Soc. 3, 154–172 (1955)
11. Jardine, J.F.: Simplicial approximation. Theory Appl. Categ. 12(2), 34–72 (2004)
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