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PREFACE

The mathematical formulations and resulting computer code described
herein are revisions to and extensions of earlier versions of the G400PA
program. These developments were provided by United Technologies Research
Center (UTRC) under sponsorship of the Army Structures Laboratory/USARTL

(AVSCOM), through contract NAS1-16803, "Study of Expansion of Synthesized
Unsteady Airfoil Data Method".

The present G400PA analysis represents an integration and culmination of
various G400 related aeroelastic analysis development programs supported over
a fifteen year span by several sources. All development of the G400 analysis
was conducted and/or supervised by Dr. Richard L. Bielawa, presently of
Rensselaer Polytechnic Institute. Initial development was performed under
United Technologies Corporate and Divisional sponsored independent research
and development. Since then extensive refinements to the analysis were made
under varied governmental agency sponsorship:

1. Langley Research Center of the National Aeronautics and Space
Administration (NASA) and the U.S. Army Air Mobility Research and
Development Laboratory, Langley Directorate as part of Contract NASl-
10960.

2. Structures Laboratory of the USRTL (AVRADCOM) under Contract NASl-
16058.

3. Lewis Research Center of NASA under Contract NAS3-22753.

This report represents documentation of all pertinent G400PA developments
which incorporate: (1) state-of-the-art analysis techniques, (2) program user
‘identified improvements, (3) an improved methodology for modeling unsteady
stalled airloads of two dimensional airfoils, developed by Dr. Santu T.
Gangwani at UTRC.

These technological efforts constitute a continuating contribution to the
Simplified Coupled Rotor Fuselage Vibration Analysis (SIMVIB), which was
funded through contract NAS1-16058.
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Extended Aeroelastic Analysis for Helicopter Rotors
with Prescribed Hub Motion and Blade Appended
Pendulum Vibration Absorbers™

by

Richard L. Bielawa
Rensselaer Polytechnic Institute
Troy, New York

SUMMARY

Mathematical development is presented for the expanded capabilities of
the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic
Analysis. The G400PA expanded analysis simulates the dynamics of all coaven-
tional rotors, blade pendulum vibration absorbers, and the higher harmonic
excitations resulting from prescribed vibratory hub motions and higher harmon-
ic blade pitch control. The analysis includes the methodology for modeling
the unsteady stalled airloads of two-dimensional airfoils. Formulations are
also presented for calculating the rotor impedance matrix appropriate to the
higher harmonic blade excitations. This impedance matrix, and the associated
vibratory hub loads, are the rotor dynamic characteristic elements for use in
the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Updates to
the development of the original G400 theory, program documentation, user
instructions and information are presented.

*The research effort which led to the results in this report was financially
supported by the Structures Laboratory, USARTL (AVRADCOM).




INTRODUCTION

The G400PA helicopter rotor aeroelastic analysis described herein
represents a generalization and extension of the original United Technologies
Research Center (UTRC) G400 Rotor Aeroelastic Analysis described in Reference
1. This analysis was originally developed in response to the unique aero-
elastic characteristics of the composite bearingless rotor and represented an
advancement in the state-of-the—art with regard to the modeling of rotors with
time-variable, nonlinear structural twist and multiple structural redundancy.
Since the publication of Reference 1, the G400 analysis has evolved into a
family of analyses with a completely general range of applicability in rotor
type (articulated, hingeless, teetered) and vehicle application (helicopters,
propellers, wind turbines).

The principal features of the G400PA analysis relative to the Reference 1
version are:

1. A capability for analyzing underslung teetered rotors.

2. The implementation of the nonlinear equations of motion for two
independent blade-appended pendulum vibration absorbers.

3. 1Inclusion of the dynamic and aerodynamic loads due to specified
harmonic accelerations in arbitrary combinations of all six compo-
nents of hub motion.

4. The expansion of the blade pitch control description to include
cosine and sine components of the (b-1), b, and (b+l) harmonics of
cyclic pitch angle, (where b is the number of blades).

5. Provision for calculating impednace matrices, wherein each of the
components of hub acceleration are systematically perturbed to obtain
numerical partial derivatives of hub loads with respect to hub
motion.

6. Extension of the blade coupling effects to include structural sweep.

7. Inclusion of an advanced methodology for modeling unsteady stalled
airloads.

8. 1Increase in the number of blade segments from 15 to 20.

9. Improved input format by generic grouping of input data.




This report presents the technical background pertinent to the G400PA
features listed. A general description of the program structure and elements
is documented, along with user information to successfully run the program. A
detailed description of the required input and output results is presented.
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SIMULATION OF UNDERSLUNG TEETERED ROTORS

Basic Modeling Considerations

For articulated and hingeless rotor systems the individual rotor blades
are mechanically coupled to each other only through motions of the hub.
Consequently, these rotor types can be conveniently analyzed as single-bladed
rotors whenever the assumption of infinite hub rigidity is involved. That is,
without hub motion, the blades do not interact mechanically with each other.
This is not true for teetered (two-bladed) rotors, however. Even for infinite
impedance of the supporting shaft, each of the blades of a teetered rotor can
impart bending loads to the other through the root load restraint. According-
ly, teetered rotors must be analyzed as a multiple (two) bladed rotor system.

The method of implementing the teetered rotor capability in the G400PA
analysis was selected based upon the already inherent use of the Galerkin
method of solution. The selected method actually amounts fo a '"modified
Galerkin" approach in that the assumed uncoupled bending modes used to define
the blade elastic deformations actually satisfy only the geometric boundary
conditions. More specifically, the modeling is based upon the following
considerations:

1. The rotor system is assumed to consist of a rigid body finite mass
hub which teeters as a rigid body, and two blades which are each cantilever
attached to this hub mass. Thus, the out-of-plane displacements for either
blade consists of a rigid flapping part plus an elastic part based on
"cantilevered" uncoupled mode shapes. For untwisted blades, this displacement
distribution (for the n'th blade) assumes the following form (using the nomen-
clature of Reference 1):

m), \_ (m-i) NEM
Z, (r)-r[BBH—l) (B—BB)]+Z yw‘(f)q:?)(f) (m=1,2) (1)
t

where Ywi(r) are the uncoupled cantilevered flatwise bending mode shapes. In
this formulation, each of the qwi ™) modal response quantities are independent
degrees-of-freedom. The advantage of this formulation is that symmetric
bending rotor modes, which respond tyically at even harmonics, are simulated
exactly, and the antisymmetric rotor modes, which respond typically at odd
harmonics, can be well approximated geometrically as '"pinned" modes with
Equation (1).
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2. The blade inplane deflections are simulated with no lead lag
rotation, but with combinations of edgewise and flatwise bending as in a
typical hingeless configuration.

3. The mass of the hub, to which the blades are cantilever attached, is
set to zero as a limiting process. The required moment balance about the
teeter hinge (in the flapping direction) is achieved by properly combining the
flapping equations for the two blades together with the moment imparted to the
teeter motion excitation by the teeter stops.

4. This formulation is inherently incapable of yielding correct bending
moment calculations at the root region using mode deflection methods. This is
because the formulation uses modes which do not satisfy the "load" boundary
conditions at the root. Both the modified Galerkin formulation and the force-
integration method, however, are relatively insemsitive to these boundary

conditions. Consequently, the bending moments and stresses obtained using
force-integration, should be reasonably accurate.

The four considerations discussed above form the basis for the actual
mathematical formulation discussed in the following subsections. In the first
subsection, the load distributions resulting from the flapping motion of an
underslung teetered blade are described. In the next subsection, the imple-
mentation of the moment equilibration across the teeter hinge is presented.
Finally, in the last subsection, the details of the implementation of the
teeter stop load characteristics are presented.

Aerodynamic and Dynamic Load Distributions

The analysis presented in Reference 1, and implemented in the parent G400
code, would be sufficient for formulating the teeter flap angle equation, but
for the presence of the undersling distance, h .- This distance is defined
as the distance of the rotor-hub apex below the teeter axis. The approach
taken for defining the additional loads due to undersling is to define an
incremental position vector and to then form the appropriate incremental
components of inertial velocity and accelerationm, as measured in the blade
coordinate system. Using Equation (35) of Reference ! as a starting point and
referring to Figure 1, one can write the incremental (nondimensional) position

vector as:

B v
A{xs}usg=hus! -?8 o (2)
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Using coordinate system transformations as described in Reference 1 and
appropriate differentiation yields the following expression for incremental
velocity vector:

*

B
{AV 5} ust Pust (B;BB) 3)

This vector then modifies the definition for blade section inflow angle
used for defining the quasi-static angle-of-attack, and finally the blade
airload distribution. Further use of the coordinate system transformations,
additional differentiation and D'Alembert's principle, yields the following
vector for the incremental (inertial) dynamic load distribution:

& |
Poys B-(B-Bg)
A prs = =mh o ZB‘ ' (4)
u
Poys s -B[5-(8-8y)]

Before the teetered blade root constraint can be implemented, the basic
flapping equation must also be modified to account for the undersling dis-
tance. With reference to Figure 1, equilibration of the moment about the
flapping hinge results in the following modified flapping equation:

|
j; [(r—hus! Ba)pzs—(zse ~hyst) sz-qys] dr =My =0 (s)

This modified equation is to be compared with Equation (31) of Reference
1. Note that p,_ and p, are, respectively, the total load distributions in
the xg- and zg- directions and contain the incremental loads given by Equation
(4). The loads due to teeter stops are accounted for by the general moment
about the flapping hinge, Mys, this moment defined in greater detail in the
following subsection.

Implementation of Teetered Blade Root Constraint

As implemented by the G400 analysis for a single blade (infinite
impedance hub), the blade quations of motion take the following form:

' =
LT REETR I N I B (6)
. : z




In this form, the elastic mode acceleration subvector, {3*}, and the flapping
acceleration, , are linearly coupled, and all remaining linear and nonlinear
terms in the various equations are grouped on the right-hand side as an exci-
tation vector. This vector is composed of a subvector for the elastic modes,
{- }, and the term for the flapping equations, {: }. This form of the equa-
tlons is appropriate for time-history solutions, but requires a simultaneous
equations solution at each time step to decouple the accelerations.

Before two blades are mechanically constrained by the teetered blade
boundary conditions, Equation (6) must be generalized to the following
augmented form:

— -/ g
Agd"t agh) | i I St
PR B SR PR 0 - .
A, AT ! **(l) =
g A gp J- {——E-
b M 1 W N Y % (2) =
1 Aqq_ ! Agj | d ~q
0 AR () ==
i TqB 1A @ (7a)
e | \ B 52 :
b - —'B

or, in a more abbreviated form as:

[aa]{d}={E}

(7b)

The teetered constraint can be converniently implemented by first defining
the following constraint relationship:

sell)
’\: --q_-
e = | v
r=y 0

L‘
z {Q} (8b)

The teeter constraint is applied to the equations of motion, Equation
(7), with the following matrix operations:

19




7"} A][T]{g}= [r)i=} +{ast (9)

The partitioning of Equation (9) is as follows:

! |
M 4 A *x(| =1
Aqq | AqB ' o} q ) -q
et st il ) Rvirl () Rt
i ' M [ —
o LAy p@ | (TAEET) (TT T T

Equation (10) is then in the same form as Equation (6) and the same
procedure must be followed to achieve a time-history solution (decoupling of
the accelerations and then numerical integratiom). Generally, the simul-
taneous equations solution of Equation (10) is accompanied using partitioning
methods; the details of this essentially mathematical operation are outside
the scope of this report and are therefore omitted.

Teeter Stop Moment Characteristics

The moment applied to the teeter angle equation due to the teeter stops,
BZrg, is an essentially nonlinear function of teeter angle. This moment 1is
characterized in the G400PA analysis by the five parameters defined graphical-
ly in Figure 2. For teeter angles between *B,, the teeter stop moment is, of
course, zero. When the teeter angle reaches the first limit stop angle, By,
the limit stop imparts an initially elastic reaction with a spring rate of
Kgy. Between this first limit stop angle and a saturation angle, B8,, the
reaction moment is assumed to be a generally nonlinear function of teeter
angle and increases to the value of M, with a rate of Kg,, at the saturation
angle, B,. At teeter angles above B;, the reaction moment again obeys an
elastic relationship. Generally, the saturation spring rate, Kg,, will
exceed the initial rate, Kg;. However, this implementation provides suffi-
cient latitude for modeling other nonlinear relationships. Mathematically,
this implementation can be defined as follows:
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BLADE APPENDED PENDULUM VIBRATION ABSORBERS

Basic Assumptions

The inclusion of blade appended pendulum absorbers in the aeromechanical
description of the rotor blade requires the definition of additional equations
of motion, as well as modifications to existing ones. The following list of
principal assumptions forms the basis of the G400PA modeling of blade appended
pendulum absorbers:

1. Provision must be made for simulating a maximum of two (2)
independent pendular absorbers. State-of-the-art installations of such vibra-
tion absorbers have included up to two absorbers, each tuned to a different
rotor harmonic.

2. Each pendular absorber consists of a specified hinge location, a
rigid body mass (with c.g. offset and rotary inertia about that hinge), and a
restraint about the hinge accruing from a rotary spring, a rotary viscous
damper, and a (nonlinear) friction damper (see Figure 3).

3. The hinge location and orientation for each absorber is subject to
the following constraints (again refer to Figure 3):

a. The hinge axis must be within a blade section plane, e.g.,
perpendicular to the spanwise axis.

b. The hinge axis may be both translated and inclined relative to the

local chord line. This translation and inclination‘define the
distance, Z10 , and the angle, @0 , shown in Figure 3.
PAH PA

The hinge axis may be located at any spanwise station.

(8]

4. The mass center of each absorber is nominally chordwise balanced at
the blade elastic (reference) axis, (i.e., no chordwise mass offset,
Y10 A = 0) in the undeflected position. Note that for nonzero values of
P

inclination angle (of the hinge axis relative to the chord line), deflections
of the pendulum will produce time variable chordwise c.g., offsets.

5. To enable the analysis to make rapid parameter variations on the
pendular parameters, the blade bending and torsion modes are calculated
excluding the mass of the pendula. Therefore, the effect of incremental
pendulum mass must be explicitly accounted for in the blade dynamic equations.
This is accomplished by adding the respective pendulum masses as incremental
mass distributions extended over the two blade segments which straddle that
pendulum's radial location.
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6. Lastly, the pendula deflection angles are not restricted to '"small"
amplitudes. Thus, the realistic effects of amplitude saturation can be
analyzed.

Dynamic Loads

The derivation of the dynamic loads acting on the pendulum follows the
basic method described in the previous chapter wherein an incremental
displacement vector is defined, and then with appropriate differentiation and
coordinate transformations an inertial acceleration vector is formed. The
displacement vector for a point mass hinged to an offset, inclined axis is
given by:

_ cos Bp ' ; 0
COS Bpap Sin Bp cose

where the total pitch angle of the hinge axis, OPAH’ is the sum of the blade
pitch axis, ©, and the built-in pitch angle relative to the blade,(DO . The
PA

resulting components of inertia loading are then gien by the following
equations:

~Mpaf; .
Ap 2 [—sianB‘-cosB +2cos B, B, sin Opyuy
5/pPa o R ]
+(B+2§)sin[3pcos@PAH] (13a)
=Mp,f, { . . | .
Op, : _T ![-cos Bp sin ®p,, By—2sin ,Bp Bp
s PA Mo B,

+sin Bp(|+2§+f3§+ 52)sin®mm

* » * ®%
- (a cos B,(B,6 +BBp)+sian(ZB+6)) c0S Oppy]

(13b)
»
+2i0. [-2 (g - aWP-aWP)-(B+2B)cos ©
PAH

+ (l+b2+23é +2§) sin @]}
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=Mp,f;

L X
A : —— {1l cos &, cos
(pozs) A {[ By cos Gppy Bp
PA 0T

-( 2cosBp(ép 5+B[§p)+sin 'B'pe) $inB@p,y —SIN Bp(fiz+§z+2 Bé)cos@ ,,AH]

+ ZIQPAH[-(é2+zﬁb+ﬁa) cos@-'@sin@]} (13c)

where the distribution function, fj, is defined for only two of the blade
spanwise segments, the centers form a straddling pair: the one closest
inboard, r(ny), and the one closest outboard, r(ng), of the pendulum mass
center location, rpp: (see Figure 4):

Mng)=rea ,
[ — | l:nI
ring ) —ring
fi =z
rea —ring) (14)
ring)-ring) P 15No

Equations (13) and (14) are then in a general form appropriate for
inclusion in the blade dynamic equations. Note that the nominal inertia load
distributions, given by Equations (4la, b, c) and (44a, b, c) of Reference 1
must also be modified since, at the two straddling radial stations, the mass
distributions must be augmented by Mp,f;.

Equations of Motion
The usual blade dynamic equations (those for modal responses, flapping
and lead-lag motions) are easily modified by including the additional inertia
load distributions as defined in the above subsection. The pendulum equations

are formed by equilibrating the inertia moments about the hinge to the spring
and damper restraints:

* % ] * *
Ipo X} [COSﬁp Fzs—sm Bp FXS] "Kp Bp_ Cpo-Sp Sgn(Bp) (15)

where the concentrated loads acting on a pendulum mass center, Fx5 and FZG,

are given by:

Fxs: px5+Apx5 (16a)
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S S )+ +AD
er Sin 8p,, (5y5+Apy5) COS @ppy (325 pzs) (160

and where the quantities pxS’ p 55 pzS are components of the usual blade
inertia loadings for the stradd{lng segments modified by the following
multiplication:

n
~ AN
P =z I — P(T')
PA iny Mo ArM : (17)

The quantities, (APxS’ Ap y5 and Ap 25 are formed from Equations (13a, b and c¢),
respectively, but with the factor (f /m Ar ) set equal to unity, and all the

B* dependent terms deleted. All such ﬁ terms are instead grouped into the
single inertia-acceleration term on the left-hand side of Equation (15). Note
that I, is the effective rotary inertia of the pendulum about the hinge.

The above development is the same for either pendulum and subscripting to
denote pendulum index was omitted for clarity.
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BLADE LOADS DUE TO HIGHER HARMONIC EXCITATIONS

As originally formulated, the G400 aeroelastic analysis simulated a wide
spectrum of "higher harmonic'" blade loads. The term "higher harmonic' is used
herein to denote frequency content in the range of blade number (b) x rotor
rotation frequency (), and above. Indeed, because of the multi-harmonic
nature of the local dynamic pressure of helicopter blade section in forward
flight, higher harmonic airloads ensue even from the usual collective and
simple harmonic cyclic blade pitch angles. Another explicit source of higher
harmonic airloads is the considerable harmonic variability of the inflow
velocities induced in the rotor plane by the vortex structure of the rotor
itself. Reference (3) presents an in-depth description of this theory and its
interactive implementation with the G400 analyses.

Two further sources of higher harmonic excitation are considered herein.
The first, prescribed harmonic motion of the hub, is required to evaluate the
characteristics of the rotor coupling with the airframe. This coupling is
accomplished in the Simplified Coupled Rotor/Airframe Vibration Analysis
(SIMVIB) using the rotor impedance matrices computed in the G400PA code. The
details of this calculation are described in a subsection below. The second
source of higher harmonic excitation considered, higher harmonic pitch
control, is included to provide an important analytic capability for applica-
tion to a timely area of helicopter vibration of research and development.
Technical developments of each of these sources of higher harmonic excitation
are presented in the subsections which follow.

Prescribed Harmonic Hub Motions

The required impedance matrix is the collection of partial derivatives of
the six components of hub vibratory loads (3 shears and 3 moments) with
respect to each of the six components of hub vibratory acceleration (3 trans-
lations and 3 rotations). This calculation is generally implemented by first
achieving harmonic responses with selective perturbations in each of the com-
ponents of acceleration and then forming numerical partial derivatives of the
hub loads. The actual hub loads are calculated using the force-integration
method (see Reference 4) together with the total resulting inertia, gravity
and aerodynamic blade load distributions. The details of this calculation do
not represent new technology and, consequently, are omitted herein.

Of more importance are the calculations of the incremental airloads and
dynamic loads due to harmonic hub motion. For this purpose, the components of
inertia velocity and acceleration, in the blade coordinate system are re-
quired. Generally, the hub degrees-of-freedom are defined in the nonrotating
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(with rotor speed, ) body-fixed axis system; therefore, the basic degrees-of-
freedom are the instantaneous velocity components along (or about) coordinate
axes fixed to the 'nonrotating', but generally moving hub. ' Because of this
definition of basic hub degrees-of-freedom, the actual deflections (transla-
tions and rotations) are subject to the order of integration and the appropri-
ate Euler angles must be suitably defined and integrated in this context.
Furthermore, recourse must be made to the Theorem of Coriolis (Reference 5) to
obtain the correct differentiation with respect to time as measured in an
inertial space. The material to follow outlines the approach for making these
differentiations and obtaining their components in the blade coordinate
system. Much intermediate calculation is omitted for clarity, and the final
results include the previously considered effects of undersling (teetered
rotor feature) and thickness noise mass center offsets (pendulum absorber
feature). '

Consider the vector sum for a point mass at a blade section:

X;: X+ X, *X; (18)
where X7 is the position vector with respect to inertial space. X, is the
position vector of the nonrotating (with respect to ) hub:

{xg = [To] {xn} (19)

[To] is the coordinate transformation due to hub orientation motion and {Xh}
is the position vector of the hub in the hub fixed system. Consistent with
the definition of the hub centered coordinate system, [TO] and {Xh} can be
considered to be unity and null, respectively, at any instant in time, but
have finite time derivatives. {Xl} is the position vector of the offset/blade

plmlmE 20)

where [Tl] is the coordinate system transformation due to rotor rotation, and
{e} is the position vector from the hub center to the blade root point. {Xz}
is the position vector due to blade element displacement within the blade
coordinate system:

{x2}= [To]['ﬁ] [Tz]{xs} (21)
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where [Tz] is the coordinate transformation due to flapping and lead-lag about
a common point, and {XS} is the position vector of the point mass within the
blade "5" coordinate system. Specific definitions for the coordinate trans-
formations and position vectors are as follows:

* g 0 ~WwWz Wy
[ ] wg 0 ~uwy (22a)
~Wy wy O

b

ey -sv o
[T|]= sy Cy O (22b)
(0 o |

[
(22¢)
[]=]s 1 o
B 0 |
€ +h,(B-86:)
{e}: O_“se B-Bs (22d)
—hyst
T €,
X H - - ’
{ 5} Y10€@ ~2,55@ *e, (22e)

Y|QS® +Z,c0 *e,

where €, € and €  are the elastic deflections in the Xg, yg5 and zg direc-
tions, respectively, and are functions of the modal responses, structured
twist, etc. Furthermore, for convenience, a matrix [TS] is defined which
transforms from the nonrotating blade root to the blade "5" coordinate
system:

[T]:fr'][Tz] (23)

Other operations on the Tg matrix which are useful:

-t 1 & B]fcysyoO
[Ts] |- 1 olfsycy 0 (24)
-B 0 | o I

31




[‘] -[(l+§)s\p +8cw][—(l+§)c¢ +st][Bsw—[§c¢]
Tl

s)%| [0+B)cy -ssy]-[BIsy +3cy]-[Bey+Bsy]

é 0 (25)
0

The total inertial velocity vector, is defined using the Theorem of
Coriolis and is given in matrix form as follows:

oy (o [} o [ | o)
el el ofollil] e Ll sl o

where the operator py denotes differentiation with respect to time, as
measured in the inertial coordinate frame.

The terms underlined are deleted because they do not contribute to hub
motion. Note that in this formulation, the actual hub deflections (transla-
tions and rotations) are taken as zero at any instant in time.

Transformation into components in the "5" coordinate system is
accomplished by premultiplication by [T5]'1, and retention of only those terms
relating to hub motion and/or undersling results in the following:

{ovs} <1 {1}

Velcy-8syl+Vy(sy +8cy) +8v,

w. 8 (27)
2 {-Ve sy +8cy)+Vylcy - Bsy) +8d w
-B(V,(CW'*VyS\P)*Vz »"Wyc‘P*waW
_ wXSW-wyCW 0
*hust § wy sy +wCy +(B=Bglu, b+7 wz =Bluysy +w,cy
0 TwylCy=8Sy)+w,(sy+8cy)
_ _ ~w, +B(uxc‘p +“‘y54’) 3 wyCY —wySY
*(¥,0c®-Z,,s@) o +(§050+2,0C8) (—~(wysy +uwcy)
WxCY Tuwysy 0
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Equation (27) then gives the components of incremental velocity at the local
blade section with which the tangential and normal components of air velocity,
Up and U, respectively, can be appropriately modified. The total blade
section inflow angle, ¢ (= tan~! (Up/UT))’ is then formed in the usual manner
and included in the section angle-of-attack. In this manner, the effects of
prescribed hub motion are included in the airload distribution.

The inertia (dynamic) load distributions require the second time
derivative with respect to inertial space. The Theorem of Coriolis is now

applied to the velocity vector, Equation (26), rather than the displacment
vector:

o[l ol 8- F
]+ 2[%][H) + [W) 7] e} +[re)[m] £} (28)

+2 [fo

The underlined terms are deleted because they do not contain contributions
accruing from hub motion. After the indicated operations have been performed,

the following expressions for incremental components of inertia load distribu-
tion are obtained:
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In both Equations (27) and (28) the expressions for hub velocity and
acceleration are completely general. For present purposes, these components
of velocity and acceleration are to be prescribed as simple (but higher)
harmonic functions:

i Vine c(n¢)+vi"5 s(ny)

“j “Inc “ins

(30)

where j = x, y, or z, and where n is equal to a prescribed multiple of the
number of blades. To minimize the computational requirements for calculating
these trigonometric functions, the following identies are utilized:

0 cloy) shy)
! Cy sy
2 |-2(sw)2 2(sy)(cy)
3 a(cy)®-3(cy) 3(sy)-a(sy) 3
24 2c(n=1)yecy -cin=2y  2sin=l}ycy-sin-2)¢ (31)

Higher Harmonic Blade Pitch Control

The implementation of higher harmonic pitch control (HHC) in the G400PA
analysis is a relatively straightforward task. For this type of higher
harmonic excitation, the incremental blade pitch angle is assumed to be of the
following form:

BBypc* TAq- Clb-UY - Bn—ig s(b=1)y

“Ang C(bY) = Bpgs(by)
(32)
-An+,sc(b+|)\p-an+.ss(b +l)‘{f

The amplitudes in this partial Fourier series are generally prescribed,
or are perturbed in order to obtain the partial derivative matrix of hub loads
with respect to HHC pitch amplitudes. The incremental pitch control angle
given by Equation (32) is then used to define the blade airloads and to
complete the calculations for 90, 50 and ﬁ: used in forming the blade inertia
load distributions.
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Impedance Matrix Calculation

The impedance matrix is defined as the array of partial derivatives of
components of hub loads with respect to components of higher harmonic excita-
tion variables.

Xe.  Xg.) . .
d(ch.qsi) 1€j<9

These X, and X terms are, respectively, the cosine and sine components of
i i
each of the six components of hub load, X;, and similarly, q., and q_  are,

respectively, the cosine and sine components of the higher harmonic eicitation
variables, q.. Specifically, these consist of each of the six components of
hub vibratory amplitude (cosine and sine) and three higher harmonic control
pitch amplitudes (cosine and sine). The calculations for these derivatives
are accomplished numerically by first obtaining responses which are converged
to periodicity without, and then, with perturbations in each of the higher
harmonic excitation variables, qj:

axi - Xi(Qj“’AQj)-Xi (QI)

(34)

In practice, the perturbation amplitudes are selected to achieve calcula-
tions of the partial derivatives which approach limit values. Due to round-
off characteristics of the computer and the inability to achieve exactly
converged responses, there is generally a practical limit to how small the
various Aq. values can be. Some care and experimentation are therefore
warranted in the selection of the qu perturbation levels.
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SPANWISE VARIABLE ELASTIC AXIS OFFSET

Originally, the G400 technology assumed the elastic axis to define a
space-curve as a result of combined flatwise and edgewise bending. For this
case, the blade curvature is directly proportional to the elastic modal
degrees—of-freedom. This situation simplified the structural modeling
especially with regard to the nonlinear torsion excitation which resulted from
a combination of flatwise and edgewise bending. For built-in variable elastic
offset (structural sweep), the accurate definition of sweep in terms of its
curvature becomes impractical. An approximation to the blade kinematics
resulting from "small sweep'" could be obtained by just considering the struc-
tural sweep to consist of '"pre-bends'" in the elastic axis, however this proce-
dure becomes suspect at moderate to large structural sweep. In the case of
the kinematics of radial foreshortening, the absence of elastic axis offset
can be shown to be a quadratically nonlinear function of bending deformations.
The presence of elastic axis offset, however, introduces linear terms in the
bending deformations.

Torsion Excitation for Elastic Axis as a Space Curve

As given in Reference 1, the torsion differential equation (35) is
comprised of elastic stiffening terms, combinations of distributed moments,
and nonlinear torsion loads. These torsion loads are due to distributed
forces acting on moment arms provided by curvature in the elastic axis.

\ —
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elastic stiffening
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In Reference 1, the curvatures used in the (nonlinear) third portion of
the torsion equation were assumed to arise entirely from the elastic bending
deflections, vg and wg. It can be shown that the nonlinear excitation term in
Equation (35) can be reduced to the familiar difference of bending stiffness

shown in equation (36):

1H !
{}@ s [((-:1z - EL)ve we' - (e,T + EB, (6] + 2 Be ) Be) w,u] (36)

Though this method for including the effect is simple, several
difficulties exist in implementing it. First, the implementation of equat10n
(36) is based on a "mode deflection" formulation. Studies on the character-
istics of "mode deflection" (References 4 and 6) have established that conver-
gence to accurate representations of internal bending moment is often not
assured with a small number of modes. This accuracy problem is then compound-
ed by the fact that the two components of this nonlinear excitation are sub-
tractive as is evidenced by the differencing of the section bending stiff-
nesses shown above.

The second difficulty with using the SEI method relates to the assumed
space-curve character of the elastic axis. Torsion deflections are contribute
to inplane and out-of-plane deflections in the presence of bending. Thus, an
analogous nonlinear excitation effect exists in both the flatwise and edgewise
bending equations. In the framework of the G400 analysis, these nonlinear
excitations in the bending equations are most practically implemented using a
“force integration' approach. Consequently, the combination of using a AEI
mode deflection method in the torsion equation and a force integration method
in the bending equations results in a (coupled) modal mass matrix, which is
generally nonsymmetric. A nonsymmetric mass matrix is not intrinsically a
weakness for isolated rotor simulation and has been successfully used for
years in that mode. However, the potential exists for spurious divergent
response conditions caused by an inertia matrix becoming nonpositive-defi-
nite.

Finally, the third difficulty is in including the built-in curvature due

to structural sweep. Equation (36) requires curvature information which is
not generally available for the built-in geometry.
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Because of these difficulties, the conventional AEI approach of Equation
(36) was abandoned in favor of a "force integration' approach. Accordingly,
the Galerkin approach is applied to the nonlinear excitation term and integra-
tion by parts is used to achieve an intermediary step needed to eliminate the
explicit curvature terms:

j;l ng{-..}@dr= j;l{_pzs ,[for' Yeiy;’drzdrl

r pef 1" 1 4 "
* R, j; j; Teizsd'zd": +(z5T+ qys)j; %,Ys dr,
(37)

§ " -
- (yg T— Q) fo 79}25‘1'«}‘5'

Since this term represents the nonlinear effects, it is reasonable to use
a zeroth order approximation to the curvature terms wherein the structural
sweep is assumed to be "small'. With this assumption, all the integrals in
Equation (37) can be evaluated using the deflection correction functions
defined in the previous subsections. Thus, Equation (37) becomes:

j;l 791- {-.. }@ dr= -lo"{ryg, [pyscoS@ + pzssin@]

~Tig [prgc0s@ - B, sine]

I Al Auf) - 38

+ i‘;ej[T(w, Aw'e' - AW )+qy5cos®+qzssm®] (38)
- ' 2, .

Fyej [T(vé+ a® -ave) - QzCOs® + qyssm@)]} dr

where:

) YRS 7 - AW— - ~4av_)

Yo;* T8j(we + Zigg, — Aw— AW = {Av,~ BV, (39a)

rzej’ %(Ve+Yiop,+ AV = AV) = (Awg; + aw, ) (39b)
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5= vy (wd+2! — (Al -
Y. gj(we Aw aw' ) (Avel AV@_‘

i loEA- (39C)

! /!
F;sj: yej (V‘ + ylloeA + Av‘z)'_ AV(Z)') - (Awﬂj (2) + vaj (2) ) (39d)

and where Avg , AVg , Awg and AWy are the torsion mode dependent portions of

. J J . ] .o ] . . . . .
the deflection correction functions arising from built-in elastic offset

(Avgs.s ++- etc.) as well as elastic bending effects (Aveij qwi, ... etel).
Equation (38) represents the required form of the 'force integration" imple-

mentation of the nonlinear torsion excitation term. The final torsion equa-
tion can then be written as:

i |
{yé_ [6u6+...] ar =fo {yejqxs—ryej[pyscos<?+ P, Sin o]

+F28j [p25 cos@—pys sin ®]
~ , . (40)
-I"ze. [T(we+...+q sin ®]

z
i 5

i !
r
+Py9- [T(Ve+"'+qy5 cos ®]} d
]
To conclude this subsection, three observations can be made of the force
integration formulation:

1. Equations (39) all reduce to zero, for zero structural sweep, and
zero elastic deflection, as would be expected from the behavior of
Equation (36).
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2. In Equation (38), the terms multiplying the nonlinear torsion
weighting functions (Tyg , ...) are actually the force and moment

loadings defined for theJlinear excitations of the bending equations.
The nonlinear torsion weighting functions, Equations (39), thus serve
in effect, as the virtual deflection functions arising from torsion
deflections appropriate to the bending generalized loads.

3. The validity of the force integration approach is enhanced by the
fact that the resulting terms in the torsion equation, which repre-
sent rows of the inertia matrix (reflecting the integration of
inertia forces), produce complete mass matrix symmetry, and conse-
quently insure positive-definiteness.

Kinematic Representation for Structural Sweep

The approach for modeling structural sweep is to use simple well-
established concepts for bending and torsion of straight beams. Blade elastic
bending is defined by conventional beam bending differential equations where
the independent spanwise variable is taken to be the arc length along the
elastic axis. Furthermore, these bending differential equations are defined
locally using the loadings normal to the built-in elastic axis. Within this
context, explicit elastic bending-torsion coupling due to structural sweep is
omitted in favor of implicit coupling due to inertial, aerodynamic and gravi-
tational loadings taken with appropriate sweep related kinematics. In
modeling structural sweep, the kinematics of the blade element mass centers
and aerodynamic centers are defined as explicit functions of the blade modal
response variables. This subsection addresses this major task, from which the
formulations of inertial aerodynamic and gravity loads follow in a straight-
forward manner. These subsequent formulations for loadings are thus omitted
herein for clarity.

Structural sweep is defined generally by including both inplane and out-
of-plane offsets of the built-in elastic axis, ysEA and ZSE , respectively

(see Figure 5). The basic approach of the structural sweep related reformula-
tions consists of: (1) defining a coordinate system rotation transformation
from the "5" pitch axis system to the swept "6" system (which is locally
attached to the elastic axis), and (2) defining the deflections in the "5"
system as functions of the built-in structural sweep and the elastic bending
and torsion motions, which are measured in the "6" system. For consistency
with previous formulations this approach must also account for the presence of
structural twist. The procedure formulated for including these two structural
elements (sweep and twist) is summarized in the material which follows; the
reader is directed to Reference 7 for a more detailed description.
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The general modeling of the blade yg and zg kinematics due to combined
structural twist and sweep is accomplished in the following steps:

1.

The elastic axis of the "equivalent beam", described in the previous
subsection, is "distorted" back to the original planform defined by
the built-in structural sweep and segment arc length distributions
(but without pitch or twist). This step defines the position of the
elastic axis space curve. This positioning requires the xg, yg and
zg offset distances of the centers of the segments, as well as
projections onto the xg-ys and xg—zg planes of the swept elastic axis
line segments. These projections define the sweep angle distribu-
tions Aés and Afs.

As shown in Figure 5, the orientations of the elastic axis line
segments define the local "6" coordinate system. The xg is defined
parallel to the axis of the elastic axis line segment; y¢ is defined
parallel to the xg~ys plane, (+) in leading edge direction; zg is
orthogonal to xg and yg, (+) in the normally positive thrusting
motion. It should be stressed that the result of step 1 is to
produce, in addition to the inplane and out-of-plane offsets (Ayg and
bzg) of the elastic axis from the (reference) xg pitch axis, a radial
foreshortening (xg) due to the constancy of the total arc length of
the elastic axis. This Axg foreshortening is given by the negative
of ug, as developed in the next subsection.

The segments of the blade configuration resulting from steps 1 and 2,
are then pitched and twisted about their respective elastic axis line
segments (xg axis). The pitch and twist angles for each segment are

defined relative to the yg axis.

The blade is elastically deflected in torsion (Se =1I Ye.qe.) about
the built-in space curve elastic axis as defined by leEA and zj
EA

to define a first set of "small" incremental ¥s and zg deflections.

The blade is elastically deflected in flatwise and edgewise bending
(w and v, respectively in the presence of the torsion deflection) to
define a second set of small incremental deflections. This second
set of incremental deflections is measured in the "6" coordinate
system and is governed by the basic G400 deflection correction trans-
formations defined in Reference 1.

The second set of small incremental "6" coordinate system deflections
defined in step 5 is transformed to the "5" coordinate system using
an Euler angle transformation derived from sweep angle projections,

Aes and Afs, as discussed in above step 1.
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7. The results of steps, 1, 4 and 6 are then combined to define the
total yg and zg position vector components.

First, the sweep angle projection distributions are defined using the
built—-in elastic axis line segment changes per segment length. The
(invariant) segment arc lengths Ar, together with changes to the projection
angles caused by elastic torsion deflection are:

[ by !
Aeg: sin '{-— z’“ [(Avt @' - &V @' )cos® + (Awe,fz’ +Auh;2) )sin@]q,j} (41)

Mg, = sin” {—-9“ +[ (Awt @) 4 awe ") Cos® +(wg, ‘2’1— AVEA""")sm@ q0 } (42)

where AySEA and AZSEA are the built-in elastic axis offset changes per segment

length. The corresponding quantities, defined in the chordwise and edgewise
directions z A and Az are derived using trigonometric
» Y10g,? 2105, Y10, 105,° &

resolution with the "5" coordinate system quantities, and the local built-in
pltch angle distribution, as appropriate.
The coordinate system transformation relating the ("5") pitch axis

coordinate system with the ("6") swept coordinate system makes use of the
sweep angle projections given in Equations (41) and (42):

{Axs} = [ras] {Axs} (43)

{AX5}= TAS {Axc} TAS]{A’“} (44)

where: -
cos Ae5 cos Afs -sin Aes cos Afs cos Ae5 sin Afs
X X X
[TAS]: sin A, cos A, 0

. (45)
-cos Aes smAfs sin Aes cosAes smAf5 cos Ag

X X X
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and where

X= «A:oszAfs + sinzAf5 cosers (46)

This development is combined to yield the required expressions for
inpl;ne and out-of-plane displacement:

Ys y'OEA cos® - Z'OEA sin@
Zs Yiog, SIN® + 2,0, €OSO
N
+

™ (Avf‘j- AVEAj)cos ®+ (Aw“i + AWEAj)sin@)
J=1 8

(47)
0

+ [E] [TAs"] (ve+Av - AVIcos® - (we ~— Aw — AW)sin ®
(Ve + Av - AV)SIN® +(w, — Aw - AW)cos ©

where:

(48)

£]-

and where Var W

(o o)
o -
- O

o Av, Aw, AV, AW are linear and nonlinear combinations of q,.>
i

qvk, and qg , as per the original G400 structural twist formulatioms (1).
The addition of structural sweep is accomplished, while retaining the
structural twist formulation. The formulation, given by Equation (47),
together with that for radial foreshortening, extends the kinematic modeling
to applications with large structural sweep and moderate structural twist.
Note that these formulations are generally quite nonlinear in the elastic
modal response variables qwi, qvkand qej.
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Kinematics of Radial Foreshortening

The original G400 development (ref. 1) invoked various principal
assumptions to advance the art of modeling nonlinear structural twist. The
radial foreshortening of a mass element due to elastic bending, u,, was kept
simple and assumed to be limited to that accruing from flatwise bending only.
The foreshortening was represented by a quadratic function in flatwise bending
only:

r
_
Ue= 3 Z[ fr;,ir’wmdn ] A, Iwen (49)
m O

In the reformulated G400 technology (Reference 7), this restrictive
assumption was relaxed. The two basic assumptions which were retained,
expanded upon, and utilized as an alternative basis are as follows:

1. The elastic torsion axis is defined to be the spanwise locus of shear
centers of the two-dimensional blade (beam) sections taken perpen-
dicular to this spanwise locus. This definition treats the elastic
axis as an abstract section property, in contrast with what would be
measured in a bench test of an actual curved beam. The built-in
structural sweep (elastic axis offset), together with the elastic
bending deflections, define an elastic axis which is generally a
space-curve about which the local torsion deflection must take
place.

2. The arc length of the elastic axis is invariant for each blade
segment. Radial foreshortening accrue entirely from the kinematics
of bending and distributed torsion along the space-curve elastic
axis.

3. Local radial foreshortening is defined relative to the total extended
arc length of the elastic axis. A hypothetical beam formed by the
straightening out of the arc length of the elastic axis and the
elimination of all pitch and twist is herein defined to be the
"equivalent beam".

As shown in figure 6, contributions to radial foreshortening consist of
(a) the built-in in structural sweep, i.e. that which restores the equivalent
beam to the original swept planform (b) first order (linear) functions of
bending, arising from built-in structural sweep, (c) second order (nonlinear)
functions of bending each with elastic torsion arising from built-in struc-
tural sweep, and (d) second order functions each of both flatwise and edgewise
bending.
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Figure 6. Contributions to Incremental Radial Foreshortening Due to Structural
Sweep and Elastic Deformations
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Each of these contributions can be modeled in a straightforward manner,
and in lieu of the detailed development given in Reference 5, are simply
stated as follows: '

(dax), = dr-=dx =dr- \/dfz- A’%n" Az2

s
€A (50)
J [| - J:- (B¥i0g, /AR = (Aziog, /A7) ] dr
Al ‘ >,1
(dax), = [sinAf!s cosA e,,zse = sinA escosA,S Yﬁe] dr (51)
- 2 2
(dAax)y = cos.!\e50 cosAf!’o [I - \/l- v.' - we ] dr (52)

?cosAeso cosAfso % (v'ez + we'z)dr

where A and Az are, respectivel the built~in changes per segment
yloEA 10, s P Y ges p g

length of the chordwise and flatwise distances of the elastic axis from the
reference, x5, axis, and Ae and Af are, respectively, the structural sweep
angle projections onto the és—ys and x5~zg reference planes.

The total elastic radial foreshortening at the center of the nth segment
is then determined by the following integral:

Ve, = j;'n [(dax), +(dan), + (dax)s) (53)
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UNSTEADY STALLED AIRLOADS

A detailed analysis of dynamic stall experiments has led to a set of
relatively compact analytical expressions (Reference 8) called synthesized
unsteady airfoil data. These expressions accurately describe, in the time-
domain, the unsteady aerodynamic characteristics of stalled airfoils, the
unsteady airloads are modeled using, as the primary dynamic descriptions, the
instantaneous angle-of-attack, @, the nondimensional angle of attack rate, M,
and the unsteady decay parameter, &,. This methodology represents a signif-
icant improvement over that which was used in the prior version of G400PA
(Reference 9). The implementation of this new methodology in the extended
G4LOOPA utilizes unsteady data obtained for the NACA 0012 and SC1095 airfoils.

Since the inclusion of this new methodology forms an important element of
the extended G400PA analysis, a presentation of highlights of this methodology
is warranted in the interest of convenience and completeness. The remainder
of this section constitutes an abridged reproduction of material authored by
Gangwani (Reference 7 and 8). The reader is referred to these references for
a more thorough exposition.

Review of Basic Methodology (Reproduced from Reference 7)

Dynamic Stall Model

The analytical model of dynamic stall, includes the main physical
features of the dynamic stall phenomenon as observed in oscillating airfoil
tests.

When an airfoil experiences an unsteady increase in angle-of-attack
beyond the static stall angle, a vortex starts to grow near the leading edge
region. As the angle continues to increase, the vortex detaches from the
leading edge and is convected downstream near the surface, as shown schemati-
cally in Figure 7. The suction associated with the vortex normally causes an
initial increase in lift. The magnitude of the increase depends on the
strength of the vortex and its distance from the surface. The streamwise
movement of the vortex depends on the airfoil shape and the pitch rate. The
relative distance between the vortex and the airfoil varies according to the
kinematics of the airfoil, such as the pitch rate and the instantaneous angle-
of-attack. As the vortex leaves the trailing edge, a peak negative pitching
moment is obtained. The airfoil then remains stalled until the angle-of-
attack drops sufficiently so that reattachment of the flow can occur. The
present method incorporates all of these events. For example, the strength of
the vortex is made a function of the angle when the vortex leaves the leading
edge (moment stall angle). The higher the moment stall angle, the higher the
strength of the vortex. ’
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Figure 7. Dynamic Stall Modeling
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Parameters Influencing Dynamic Stall

The unsteady lift, drag, and pitching moment coefficients of the airfoils
obtained from the two-dimensional oscillating airfoil tests show a large
degree of hysteresis when plotted as functions of angle-of-attack. This is
particularly true, when the reduced frequency and the maximum angle-of-attack
are sufficiently high. Figures 8a, 8b, and 8c show an example of tyical loop
data obtained from the oscillating airfoil test. The amount of hysteresis and
the shape of the loops vary in a highly nonlinear fashion with parameters such
as amplitude, mean angle, and reduced frequency.

The results of the oscillation airfoil tests indicate that the dynamic
characteristics of an airfoil depend on the following parameters: (1) airfoil
shape and sweep; (2) Mach number; (3) Reynolds number; (4) reduced frequency,
k; (5) oscillation amplitude, &; and (6) mean angle-of-attack, a .

Both the static and dynamic characteristics of the airfoil are affected.
Since most rotor aeroelastic analyses employ time-history solution techniques
for computation of the aerodynamic loading acting on the rotor blades,
frequency domain parameters such as reduced frequency or amplitude, are
inappropriate to use. Moreover, for arbitrary motion it is difficult to
describe the reduced frequency, the amplitude of oscillation, or the mean
angle-of-attack of a rotor blade section in a precise manner. As a result, an
alternative set of dynamic parameters, which are appropriate for the time
domain simulations, is defined. The parameters replacing k, a, and &_ in the
present method are: (4) the instantaneous angle-of-attack, a; (5) the
nondimensional pitch rate, A; and (6) the unsteady decay parameter, a,. The
&, accounts for the time history effects of the change in o, and is based
upon the Wagner function.

For the sinusoidally oscillating airfoil, the a, A, and o,, parameters
can be easily expressed in terms of the reduced frequency, the amplitude, and
the mean angle-of-attack. Also, they can be easily evaluated for rotor blade
sections in a stepwise manner and are very convenient to use for the predic-
tion of the onset of dynamic stall and for the determination of the unsteady
airloads. Thus, the present method determines, through the synthesization
process, the effect of these selected parameters (a, A, «,) on the dynamic
stall characteristics of the airfoils by utilizing the data from the oscil-
lating airfoil tests. The synthesization process involves curve-fitting the
test loop data to the prescribed analytical expressions in order to determine
the unknown parameters or coefficients embedded in the analytical expressions.
The analytical expressions are obtained mostly by mathematical or empirical
means. In general, they represent simple quantitative approximations to the
various observed physical features of the dynamic stall phenomenon.
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Definition of the Unsteady Decay Parameter, q,

For a two-dimensional airfoil going through an arbitrary change in angle-
of-attack, one can describe an instantaneous effective angle-of-attack, o,
by using Duhamel's integral (Reference 4) as given below:

s
ag (s)=a(0) ¢ (s,M) +{g—:_ﬁ ¢ (s-o,Mdo (54)

where a(0) corresponds to the initial angle-of-attack, M represents Mach
number, ¢.(s,M) is the response to step change in & (a compressibility
corrected form of the Wagner function), and s is the nondimensional time as
given by:

2 (! (55
s=2 [“ugy, )

The unsteady decay parameter, O, to be used extensively in the present
method, is defined as follows:

a, =als)-ag (s) (56)

The @, parameter physically represents the difference between the instan-
taneous angle, @ and the effective angle, ap, and therefore accounts for the
time-history effects of the change in a. This physical description of «, is
valid for attached flow conditions only. In the present method, the o
parameter is most useful for predicting the onset of dynamic stall, and for
convenience, it is also used to describe approximately the unsteady coeffi-
cients after the stall.

The effects of compressibility are incorporated in the definitions of

o, by the use of the general or compressible Wagner function (see also
Reference 11) obtained from the following approximate relationship

\ (57)

éc (s,M)= [10-01ese008888 ti=MB) ¢ 11g 038 wwd) , Siowe
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Computation of Dynamic Parameters

For the sinusoidally oscillating airfoil, where the motion of the airfoil

is completely known, the parameters @, A, and &, can be obtained analytical-
ly as given below:

a= & sin ks

(58)
A=k83 cos ks (59)
a, =y, (k,M) k@ cos ks +y, (k,M) & sin ks (60)

where k, s, and M represent reduced frequency, nondimensional time, and Mach
number, respectively. The Y; and Y, functions are described by:

- (k M)zo.nssu-uz)(o.oass) ,0:335(1-M )(0.3)
‘o k2 +(1-M)2(0.0455° K2+ (1-M9)%0.3)2 (61)

Y2 (k. M) = OIGSRZ + 0335k2
k24 (1-M2)2 (0.0455)2 k% +(1-M2)% (0.3)2

(62)

In contrast to the closed form evaluations obtainable for sinusoidal
motion, numerical evaluations of these three section dynamic parameters must

be obtained for arbitrary motion in the time domain. This is accomplished in

a stepwise manner using the recursive relationships (eqs. 63, 64, 65) at time
step n: .

a, =6n+¢n

(63)

_[d6n , 9%n] AV (64)
An* [aw * v ](AS)n

@y, =%, * Y, (65)
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where:

X, * Xpet e-o.OQsS(l-quAﬂn +0.165(a, —a,_,) (66)
2
Yy =Yy, ® -o.}(n-u NAs)h 4 0.335 (a, =ap-) (67)
2Un
(ash, = gz (ay) (68)

Here, AV is azimuthal stepsize, @ is rotor speed, c is chord length, and
U, is streamwise velocity. -

The instantaneous angle-of-attack, @,, is described in the section
normal to the midchord, 6, and ¢, are the pitch angle and inflow angle,
respectively. The numerical calculation of the nondimensional angle-of-attack
rate, A, poses special problems. The nondimensional time derivative of pitch
angle in Equation (64), 36,/3¥, may be computed analytically from the known
control angle and elastic torsion response rates, whereas the time derivative
of ¢ must be computed using some form of numerical differentiation. The
nominal method is a backward difference scheme. However, in some applica-
tions, this method was found to give violent numerical instabilities and an
alternative method was required. The alternate method selected is based on
the assumption of a predominantly oscillatory response at some user selected
frequency, ®, which typically would be taken as the dominant blade torsion
natural frequency. These two numerical results are given below:

€1
"

i
— (1.5 ¢n- 2¢n_| + .5¢n_2); 0
L (69)

oV wCOSuA’W
uJAN’-¢ - ¢ .w>0
i —— : , (COS n n ').

Prediction of Dynamic Stall Events (Reproduced from Reference 7)

In the present method it is considered important to accurately predict
three major events associated with dynamic stall. These events, as shown in
Figure 8b, are the stall onset, the vortex at the trailing edge, and the
reattachment.

Onset of Stall

Because the dynamic stall airloads acting on an airfoil are highly
influenced by the leading edge vortex, an accurate prediction of the instant
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the vortex breaks away from the leading edge (moment stall point) becomes very
important. The occurrence of moment stall depends on factors such as Mach
number, the airfoil shape and the pitch rate.

Under the conventional quasi-static theory formulation, the stall is
assumed to occur when the effective angle-of-attack reaches the static stall
angle,

a£m=0“ (70)

In general, O¢go is assumed to vary with the airfoil shape, Mach number and
Reynolds number. To some extent, the value of agg also depends on the
criterion followed for stall.

Under the present formulation, the relationship represented by Equation
(70) is extended to include dynamic stall effects. An assumption is made that
at the dynamic stall point, in general, the effective angle of attack, O is
not only a function of Aogs but also depends on the pitch rate at stall, A,
and the instantaneous angle-of-attack at stall, o, (Equation (71))

aEmg F (aSS' Am' aDl‘l‘? , (71)

The actual functionality F depends on the type of stall and on the criterion
followed for stall. It is assumed that F varies with airfoil shape, mach
number, and Reynolds number, and can be established empirically. Lineariza-
tion of the relationship of Equation (71) with respect to parameters A and
%y, around quasi-steady conditions, ass(1+€), leads to the following simple
expression for Qp,, the angle at which dynamic moment stall first occurs:

ay=live+c, A +C a la. (72)

Here, awm represents the value of the parameter, L at the point of moment
stall. Thus, instead of the function F, one can determine empirically the
coefficients €, Cpp» and C_ for various Mach numbers,_Reynolds numbers, and
airfoils. 1In Equation (72), the last two terms represent the delay in dynamic
stall when compared with quasi-static stall. One available method (Reference
13) represents this delay in stall by a constant time delay. However,
Equation (72) is a much more general relationship which predicts the onset of

dynamic stall quite accurately for airfoils  experiencing unsteady motion.
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Vortex at Trailing Edge

Normally, after the occurrence of moment stall, there is a significant
increase in negative pitching moment due to the travel of the stall vortex.
The maximum negative pitching moment occurs when the vortex is near the
trailing edge of the airfoil. For the case shown in Figure 8b the instant
when the vortex leaves the trailing edge is marked by 'TE'. Preliminary
results have led to empirical relationship Equation (73) for predicting the
instant the vortex leaves the airfoil:

Sm'=l.0/(CA,Apm+Cm apm) (73)

Where s_. is the total nondimensional time for the vortex to travel from the
leading edge to the trailing edge. The coefficients CAt and Cat vary with
Mach number, airfoil shape, sweep, and Reynolds number.

Reattachment

The instant the reattachment of the flow occurs is shown in Figure 8b.
Normally, for low Mach numbers (M<0.4) the reattachment occurs at an angle op
which is less than the static stall angle a e At higher Mach numbers, where
the static stall may be induced by shocks, the reattachment angle app can be
higher than the static stall angle, @ _. In the present formulation, a
general expression for agg is assumed by (eq. 74):

are:(1-€ + CapApm+ Cwr Qwn) Ass (74)

In general, for a given airfoil, the values of C,p and C p, as used in
Equation (74) for reattachment, are quite different from C,_and C__ used for
stall onset. However, the value of the parameter € is the same in both of
these equations.
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Unsteady Section Coefficients (Reproduced from Reference 7)

Unsteady Lift Coefficient

The unsteady lift coefficient, Cru> of an airfoil in the time domain
under the present synthesization is described by Equations (75) through (82).

Clu=Csla-8a -aay) +0g.8a; +AC,+AC, (75)
sa, =(P,A+P, a +Py) a,, (76)
ba, = By Ay ’ (77)
AC,=0,A+Q, a, +03la/ag,) +Q4la /ass)2 (78)
3
2 I-e'(Bl‘m)
AC ;=04 8, +Qg Aa, +0Q;lagy) [———2-— (79)
(Bi 5m)
2u(t-1y.)
Sm = ——C_dm— (80)
0 Q < Qg
(@/agg = 1) Qgs €A < apm
5= (@pm/ags 1) [l.o -(sm/sm,)Z] 0<Sm< Smt (81)
0 Sm> Smt
(0 a<ag
(@/agg —1) Qg SQsSQp, (82)
G ~Qpe
(agm/aeg —1) m Qpe S Q< Ay
\ 0 as ap

The synthesized unsteady lift coefficient (Equation (75)) has been
expressed as a sum of static C;g at some shifted angle (G-Aal-Aaz) plus an
incremental lift coefficient (AC;,+AC;,). The shift in angle is given by
Equations (76) and (77) and the incremental lift coefficient by Equations (78)
and (79). (The quantity a ;, in Equation (75) is the conventional static lift
curve slope). The Aa; shift in angle (Equation (76)) is present even when no
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stall occurs, and the Aa, shift in angle (Equation 77)) is mainly associated
with the occurrence of dynamic stall and subsequent reattachment. Similarly,
the AC;; (Equation 78)) represents essentially the unsteady effects over
static C;g for dynamically unstalled airfoils, and ACp, (Equation 79)) repre-
sents the effects associated with the dynamic stall events such as vortex
formation and reattachment. In fact, the last term in Equation (79) repre-
sents explicitly the suction effects of the leading edge vortex and equals
zero when no vortex exists.

Thus, Equation (75) is a general expression for unsteady Cp, even when no
dynamic stall occurs. For unstalled cases, the magnitudes of Aa, and ACy,
are essentially zero.

The B, parameter in Equation (79) is an empirically determined constant
and is nominally equal to 0.18. The quantity s,, as described by Equation
(80), represents the nondimensional time measured from the instant of the
occurrence of dynamic moment stall. The unknown parameters P, through P; and
Q, through Q, are determined empirically by means of a least-squares curve-
fitting of Equation (75) with the test data. It should be noted that most of
the terms in Equation (75) are linear in parameters o, A, and a,.

Unsteady Moment Coefficient

The unsteady pitching moment coefficient, Cy,, has been formulated
using relationships similar to those for Cy, and is described below:

Cou® Cuas (@ =8a,) + 0gm AC, + AC,, (83)

ACy=n A+, aytngla/ag)+ 0, jay] (84)

tng 8 +7mg ba, v, ap A S

Here a,  represents the static pitching moment slope at zero angle-of-attack
and it normally equals zero. The last term in Equation (84) represents the
vortex effects. For unstalled airfoils, the last three terms in Equation (84)
are zero. The unknown parameters N, through n, once more are determined by

the least-square curve-fitting of Equation (83) to the test data.
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Unsteady Drag Coefficient

The unsteady drag coefficient, Cp,, appears to vary with the dynamic
parameters in the same way as Cy, and is described as follows:

Cou = Cps(@~4a;) + ACy (85)

ACH=R A + Ry @y + Rala/ags) + Ry |au|

_ (86)
+Rg 83 + Rg 8y + R 80, + Ry Qp ApmSpy,
where:
0 a < ag
(a/aqq=1) Qg< @< Apm
538, o [ 23] o5, < (87)
0 : Sm>5m’
0 a < Qg
2
(Q/Oss"l) QSSSQSQDm
Ba* .25 88
(apnfass -1? [I. —(Sm/Smt) ] O € Sm S Smt (88)
° Sm> Smt

The last term in Equation (86) represents the effects of the stall vortex
on the unsteady drag. For unstalled conditions, the last four terms in
Equation (86) are essentially equal to zero. Once more, the unknown param-
eters R, through Rg are computed using the linear least-squares curve-fitting
of Equation (86) to the unsteady drag test data.
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GENERAL DESCRIPTION OF THE G400PA PROGRAM

Program Structure

The G400PA program is structured with an initial routine (MAIN),
appropriate modular levels and a collection of utility subroutines and/or
functions. The subroutine calling structure is presented in Table I. The
hierarchical structure is alternately indicated using indentations with
indicating symbols and/or nested parentheses. The subroutines are in
alphabetical order within any given hierarchical level and not with respect to
calling order. '
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TABLE I

HIERARCHIAL LISTING OF G40Q0PA ELEMENTS

@ G400PG
m E159

A BMFIT
ELAST
INVERT
NFMS

¢ BMEVAL
¢ BMFIT
¢ EIGENE (INVERT, SIMUL)

> > >

A PCHDAT
4 PCHMOD
Ao TMSS

m  LOADER
m MODEIN
= MOTION

A ENDCON
¢ F389SU

BLINS
INTERP
LNAERO
SHIL.DM
STALN
¢ RESETQ
¢ SETVAL
A HUBSUM
A INISH

¢ ADMCOF
DPCHEK
SETVAL
PABSSU (ADMCOF) .

A MAJITR

¢ AERPRF (ALFCOR(HEYSDL (HEYSK)))
¢ BLADEL

FACT12

HBINRT

RDNANL ,
RSPNSS (QQPSET,HHCANG)
SETUP

SPANS

qqaaas

> & o

qqq<e<q4«
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SPANS (cont'd.)

ALFDOT
ALWCOM
BLINS
DEFLEX
EULER
HYSDMP
PHIDOT
SHLDM

e e s s 00000

» COEFF3 (ULSTAL)
» SYNTH3

BLINS
GETCDS (INTERP)
GETCLS (INTERP)
GETCMS (INTERP)
SHLDM

q4q4q94 4494«

CROUTS
NUTRIM (GJR)
QSTHRM (HARM)
RESETQ
TABLE
TEETR
TMARCH

¥ ADAMS
¥ EXTRAP
¥ QPPCAL
A\

v

e & & & > o o

QPPTST
STRSSS (EULER)

s NIAM

| I N 4

[ 0 I I I A 4

A

BNDGIT (GJR,QUADFT)
DEFCOR
DFYZEA
DYNMAT

¢ DEFLEX
¢ RSPNSS (QQPSET, HHCAN G)
¢ TCOUPL

MYKSTD (GJR)

PTFLLG

RSPNSS (QQPSET, HHCANG)
SPNWIZ

SPRINT

TRFLX1

TWOF

PRNT

RESETG
RESETQ
WAKUCZ
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WAKUCZ (cont'd)

A
A

> > > >

DISCRT
FFIGEN

LFCT (NPRM)
REVERS (SBSCRP)
SCTAB

SUBS (SBSCRP)

LINFIT
MAXIMZ (DISCRT)
MODUL S
SEARCH

* & O
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Brief Description of Program Elements

ADAMS

This function implements an algorithm for time integration of any of the
time dependent variables.

ADMCOF

This subroutine evaluates the coefficients required for the time integra-
tion algorithm

AERPRF

This subrouting completes the calculations for and outputs the summary
of aerodynamic performance quantities

ALFCOR

This subroutine calculates the corrected rotor angle-of-attack due to the
proximity of a ground plane or wind tunnel walls using the theory of Reference 14,

ALFDOT

This subroutine calculates the aerodynamic A parameter using backward
differencing on the inflow angle and direct knowledge of the time derivative
of pitch.

ALWCOM

This subroutine calculated the unsteady decay parameter o, required for
the unsteady stalled and generalized Wagner function airloads methodologies.

BLADEL

This subroutine provides the computational loop over number of blades
in forming the blade response equations. The upper limit on this loop is
(1,2) depending on whether the rotor is of (unteetered, teetered) type.

BLINS

This subroutine does a tri-variant table look up of the airfoil section
coefficients. The three variables are angle-of-attack, Mach number and
spanwise station.

BLOCK DATA (UNDATC)

This data element contains the empirically derived coefficients required
by subroutines COEFF3, SYNTH3, UNSICF and others for using the UTRC unsteady
stalled airloads methodology (Reference 3).
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BMEVAL

This subroutine evaluates the bending mode shape and its derivatives at
spanwise locations other than where they are calculated in the E159
eigensolution.

BMFIT

This subroutine performs a functional (polynomial) fit of the bending
mode shape for use in subroutine BMEVAL for evaluating bending mode shapes
at nonstandard spanwise locationms.

BNDGTT

This subroutine calculates the flatwise and edgewise bending stiffness
characteristic of the torque tube component of a bearingless rotor, as
required for the redundant analysis calculation (see RDNANL).

COEFF3

This subroutine calculates various coeff1c1ents needed for the UTRC
stalled unsteady airloads methodology.

CROUTS

This subroutine is a compact simultaneous equations solver used for
nonteetered rotor configurations. It uses the Crout Reduction method
described in Reference 15.

DEFCOR

This subroutine calculates constants of integration appropriate to the
deflection correction functions (Av, Aw, etc.) to insure orthogonality of
these functions with the articulated blade degrees-of-freedom.

DEFLEX

This subroutine evaluates the spanwise deflections, slopes, velocities,
etc. from the modal responses, forms the sweep transformations and, for the
eigensolutions, forms various deflection partial derivatives. DEFLEX typi-
cally operates within the spanwise loop of the calling subroutine.

DFYZEA
This subroutine forms the spanwise derivative of the structural sweep

angles from the input sweep changes per segment length, or from numerical
differentiation.
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DISCRT

The purpose of this subroutine is to compute the magnitude of the Fourier
coefficient CMAG of a set of time-history data, as part of the transient
spectral stability analysis (TSSA).

DMPRTB

This subroutine does a table look-up to implement the nonlinear lag damper
angular rate vs damper moment characteristics.

DPCHEK

This subroutine tests the input integration steps size for acceptable
accuracy, and automatically decreases it if the value is too large.
DYNMAT

This subroutine forms the modal integration coefficients used for the

portions of the equations not requiring explicit spanwise integrations at each
time step. ‘

EIGENE

This subroutine performs the eigensolution of the bending portion of the
E159 preprocessor for uncoupled blade frequencies and mode shapes. It uses
the method of determinant iteration.

ELAST

The purpose of this subroutine is to calculate the elastic coefficients
for flatwise and edgewise bending for the E159 eigensolution.

ENDCON

This subroutine serves three main functions associated with the completion
of the Part II time-history solution: (1) it completes the calculations for
median and 1/2 peak-to-peak stresses, (2) it controls the harmonic analyses
of responses hub loads and stresses, and (3) it controls the saving of end
conditions and other data for use in either the F389 code or subsequent

G400 runms.
EULER

This subroutine performs the coordinate.s stem transformations between
P y
the "5" and "6" coordinate system vectors.
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EXTRAP

This subroutine effects a "static" solution on any degree-of-freedom
whose natural frequency is sufficiently high to approximate the response
neglecting the twice time differentiated term in that degree-of-freedom's
governing equation.

E159

This subroutine controls the preprocessor calculations of the uncoupled
modal frequencies and mode shapes for flatwise and edgewise beam bending,
and for torsion responses.

FACT12

This subroutine performs an interpolation function calculation in the use
of input tabulated variable inflow.

FFTGEN

This subroutine is a standard Fast Fourier Transform calculator, and is
used in the transient spectral stability analysis (TSSA).

F389SU

This subroutine sets up the various blocks of data needed by the (UTRC F389)
variable inflow branch of the coupled rotor/fuselage vibration analysis and
writes them to appropriate data files, A detailed description of the appro-
priate data transmitted between the G400PA and F389 portions of the analysis
is given in Reference 3.

GETCDS

This subroutine provides internally calculated static aerodynamic drag
data in place of user provided static airfoil data for usage in the unsteady
stalled airloads calculation.

GETCLS

This subroutine provides internally calculated static aerodynamic lift
data for usage in the unsteady stalled airloads calculation.

GETCMS

This subroutine provides internally calculated static aerodynamic moment
data for usage in the unsteady stalled airloads calculation.

GJR

This utility subroutine optionally obtains simultaneous equation solutions
and/or matrix inversions using the Gauss-Jordon Reduction method.
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G400PG

The subroutine is the main G400PA element and directs all major portions
of the solution flow,

HARM

This utility subroutine performs a Fourier (harmonic) Analysis of any
time history string of data. This harmonic analysis uses a negative cosine
and sine definition for the harmonic components.

HBINRT

This subroutine calculates components of inertial acceleration, as meas-
ured in the rotating blade coordinate system, from the prescribed harmonics
of hub motion.

HEYSDL

This subroutine calculates interference factors needed for subroutine
ALFCOR.

HEYSK

This subroutine calculates induced velocity functions for subroutine HEYSDL,

HHCANG

This subroutine calculates contributions to the total blade pitch angle
and its first and second time derivatives accruing from higher harmonic control

angle inputs.
HUBSUM

This subroutine provides a printout of the rotor hub loads and impedance
matrix calculations which are transmitted to the coupled matrix/fuselage
vibration analysis program.

HYSDMP

This subroutine calculates the increment to blade edgewise bending moment
to account for hysteretic structural damping. This formation of structural
damping is dependent on edgewise deflection and the signs of rate and accelera-

tion, but not their magnitudes.

INISH

This subroutine initializes arrays and logic variables, and nondimension-
alizes parameters, as required for the time-history solution.
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INTERP

This subroutine is a general purpose linear interpolation calculator,

INVERT

This subroutine is a general purpose matrix inversion, determinant calcu-
lator used by the E159 eigensolution.

LFCT

This subroutine finds the prime decomposition of any integer for use with
the Fast Fourier Transform subroutine, FFIGEN.

LINFIT

This subroutine performs a least-square fit to results from the transient
spectral stability analysis routine, WAKUCZ.

LNAERO

This subroutine calculates partial derivatives of airfoil section coeffi-
cients with respect to angle-of-attack and Mach number,

LOADER

The purpose of this subroutine is the loading of the generic loader
portion of the input data.

MAJITR

This subroutine provides the structuring needed to produce a trimmed
configuration, and to calculate the impedance matrices. Specifically, this
subroutine provides the iterative loop structure to perturb various system
parameters in a systematic manner to form numerical partial derivatives, both
those needed for trim and those needed for the impedance matrices.

MAXIMZ
The purpose of this subroutine is to maximize the magnitude of the Fourier

coefficient as a function of frequency in the vicinity of an identified high
response frequency, as part of the transient spectral stability analysis.

MODEIN

This utility subroutine inputs the blade bending and torsion mode shapes
and their derivatives with respect to span.
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MODULS

The purpose of this utility subroutine is to form the modulus of a vector
of Fourier transforms,

MOMNTM

This function evaluates am empirical function joining the two branches
of the actuator disk momentum equation across the vortex ring state based
on a function given in Reference 16.

MOTION

This subroutine controls the time-history solution flow.

MYKSTD

This subroutine calculates the static flatwise bending deflection and
spanwise derivative distributions for the blade for unit load on the inboard
and of the cantilever mounted torque tube (for bearingless rotor applications

only).
NFMS

This subroutine controls the calculation of the uncoupled beam bending
vibration modes within the E159 eigensolution preprocessor.

NIAM

This subroutine performs the following functions:

1. Completes the input of the required data; specifically (a) the inertia,
elastic, geometric and other operational data, (b) the blade mode shape
data, (c) the variable inflow data, and (d) the saved initial condi-
tions, from an appropriate data file.

2. Performs some initializations and/or nondimensionalizations of logic
and system parameters.

3. Calculates the deflection correction functions which accrue from
structural twist and sweep.

NPRM

This utility subroutine finds the next prime number given the vector of
previous primes. It is intended for use with subroutine LFACT.
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NUTRIM

This subroutine calculates the combined partial derivative matrices used
for the trim (major iteration) calculations and performs the simultaneous
equations solution for each major iteration.

PABSSU
This subroutine sets up parameters and provides appropriate nondimen-

sionalizations as required for the prescribed hub motions and simulations of
the pendular absorbers.

PCHDAT

This utility subroutine output punches spanwise array elastomechanical
data from the E159 portion of the program for subsequent opt1ona1 explicit
input to the G400 proper part of the program.

PCHMOD

This utility subroutine putput punches spanwise mode shape data from the
E159 portion of the program for subsequent optional explicit input to the
G400 proper portion of the program.

PRNT

This subroutine provides an echo print output of the Part II input data
which pertains to the Inertia, Elastic, Geometric and other Operational Data.

PTFLLG

This subroutine calculates the parameters used to define the pitch-flat,
pitch-edge and pitch-flap couplings.

QPPCAL

This subroutine calculates the array of response accelerations for output
print.

QPPTST
This subroutine tests the system degrees-of-freedom for numerical instabil-

ities. The criteria used to identify such an instability are the occurrence
of three sign changes of increasing amplitude in three time steps.

QSTHRM
This subroutine performs harmonic analyses (using subroutine HARM) of the

blade modal responses, pendular absorber responses, hub shears and moments,
and blade stresses, after the responses have converged to periodicity.
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QUADFT

This subroutine fits a quadratic function to any set of three ordinates
corresponding to three equally spaced abscissae,

RDNANL

This subroutine makes the redundant analysis calculations needed for
simulations of bearingless rotor configurations.

RESETG

This subroutine resets torsion mode shapes which might be displaced by
the formation of the pseudo-torsion mode. '

RESETQ

This subroutine places selected terminal conditions into an array and
writes them to a data file for use as initial conditions for subsequent runs.

REVERS

This subroutine is used for subscript scrambling and unscrambling as
required for the FFT calculation.

RSPNSS
This subroutine performs the following time-dependent calculations:

1. TForms the blade azimuth angle and various harmonics
2. Sets the impressed control angle and its time derivatives.

3. Sets the modal response variables from various optional sources.
SBSCRP

This subroutine finds the mixed radix representation of an integer for
use in the Fast Fourier Transform.

SCTAB

This utility subroutine exponentiates an angle multiplied by the
imaginary vector i.

SEARCH

This subroutine is used in the TSSA solution to search a vector of
Fourier transforms to identify frequencies at which the Fourier transform is
a maximum,
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SETUP

This subroutine sets up the inertia coupling matrix and excitatlon vector
for the modal responses of a given blade.

SETUAL

This subroutine saves and inputs end (initial) conditions on spanwise
inflow angle and the component time variables comprising the unsteady decay
parameter o. '

SHLDM

This subroutine analytically approximates the NACA 0012 airfoil aero-
dynamic coefficients as functions of angle-of-attack and Mach number.

SIMUL

This utility subroutine performs a simultaneous equations solution as
part of the E159 calculations.

SPANS

This subroutine implements the loop over spanwise station in forming the
blade response equations. The spanwise inertia, aerodynamic and gravity load
distributions are formed in this subroutine.

SPNWIZ

This function performs a numerical integration between blade section
centers of a specific integrand type as required for forming the deflection
corrections functions due to structural twist.

SPRINT
This subroutine outputs (as optionally requested) the spanwise integra-
tion coefficients. Although most of these coefficients were required only

for the (deleted) flutter, coupled mode eigensolution, some are used in the
time-history solution. For completeness all coefficients were retained.

STALM

- This function approximates the variation of static moment coefficient
stall angle with Mach number for the NACA 0012 airfoil.

STALN

This function approximates the variation of static normal force (lift,
to close approximation) coefficient stall angle with Mach number for the
NACA 0012 airfoil.
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STRSSS

This subroutine calculates the spanwise stresses and integrated hub loads
optionally using the force-integration or mode deflection methods.

SUBS

This subroutine computes appropriate subscripts and exponents for the
Fast Fourier Transform.

SYNTH3

This subroutine is a component of the group of elements comprising the
unsteady stalled airloads modeling wherein the final calculations of unsteady

1lift, drag and moment are made.

TABLE

This utility subroutine performs a table look-up and first derivative
calculation for use in defining the instantaneous control angle.

TCOUPL

This subroutine calculates the coupled torsion modes arising from optional
use of the rigid body degree-of-freedom with the E159 calculated elastic

(normal) torsion modes.

TEETR

This subroutine combines the inertia coupling matrices and excitation
vectors for a two-bladed rotor to effect the teetered rotor boundary conditions

at the blade roots.

TIMINT

This utility subroutine is used for interpolation of input control
functions which are prescribed functions of time.

TMARCH

This subroutine controls the solution flow for obtaining the time-
history solutions. It furthermore tests for numerical instabilities and

convergence to periodicity.

TMSS

This subroutine calculates the uncoupled torsion mode shapes and natural
frequencies within the E159 eigensolution.
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TRFLX1

This subroutine calculates the torsion deflection characteristics of the
flexbeams (for bearingless rotor configurations) due to spanwise varying
torques resulting from the concentrated shears and moments at junction point
of the flexbeam, torque tube and blade proper. :

TWOF

This function performs a least-square curve fit calculation on blade
twist to facilitate subroutine NIAM in the numerical differentiation of
blade twist.

UL STAL
This subroutine performs a table look-up of the input airfoil data to
obtain (1) derivatives of section unstalled 1lift and moment coefficients with

respect to angle-of-attack, and (2) static life and moment stall angles, for
use in subroutine COEFF3.

UNDATA

This element contains the empirical coefficients required by subroutine
COEFF3 for using the unsteady stalled airloads calculation.

UNSICF

This subroutine controls the implementation of the unsteady stalled
airloads calculation.

WAKUCZ
This subroutine performs the transient spectral stability analysis (TSSA)

for extracting such stability indicators as characteristic exponent and time
to half amplitude from the time-history solutions (see Reference 17).
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PROGRAM INPUT DESCRIPTION

The required input to the program consists of the following major data
blocks in order of loading:

I. Airfoil Data

I1. Loader Data Descriptions
ITII. Blade Modal Data

1v. Variable Inflow Data

In addition, there are descriptions of optional data entries which augment
the utility of the code:

V. Rotor Inflow Program F389 Required Data

VI. Multiple Case Runs

VII. Initial Conditions

VIII. Input/Output File Unit Numbers

IX. General Information to Facilitate Operation and Improve Efficiency

Details which define and describe pertinent preparation procedures for these
data are given in the subsections which follow.
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I. Airfoil Data

This data block consists of sets of tables of two-dimensional lift, drag and
pitching moment coefficients versus angle-of-attack for up to ten (maximum) Mach
numbers. Such setes of angle-of-attack, Mach number variable data can be
obtained for up to five (5) arbitrary spanwise locations. Additionally, if
unsteady aerodynamics are used, the static stall angles, both lift curve slope
and pitching moment curve slope (Cy against @) may be included in this table.

Input Format for First Card(s)

While actual set-up of this data block follows a basic format (described
below), specific variations are required on the first card(s) of this block
depending on optional usage. These variations denote whether multiple data sets
are to be input for respective spanwise locations, a single set is to be input
for use on all spanwise locations, or an analytic representation of the NACA 0012
airfoil is to be used for all spanwise locations. Each of these optional usages
is described below.

For the case of distinct airfoil characteristics being defined at up to five
(5) spanwise locations, the first card image format is as follows:

card #lA: NZ NRCL NRCD NRCM TITLE (optional) (412,A72)

NZ (normally the number of Mach number groups) on card 1A is not used when
defining multiple spanwise airfoils i.e. G400 automatically ignores NZ on card lA
if the sum of the absolute values of NRCL, NRCD and NRCM is 4 or greater. See
card 1B for specification of the number of Mach number groups. The quantities
NRCL, NRCD and NRCM are, respectively, the number of radial stations for which
cg» ¢q and Cuc /4 airfoil data tables to be input. NRCL, NRCD and NRCM each must
fall between a minimum absolute value of 1 and a maximum absolute value of 5.
Normally, NRCL, NRCD and NRCM are input as positive integer numbers. The program
also provides for the optional input of NRCL as a negative value, in which case
the printout of the entire data table, (part of the normal case printout) is
suppressed. Note that at least one of these three inputs must have an absolute
value of 2 or greater. For multiple spanwise section properties, an additional
card, following the one described above, is then required, which begins the input
of the cyg airfoil data:
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card #1B: Nz(1) RADCL(1) TITLE(optional) (12, F8.0, A70)

where NZ(1) is the number of Mach numbers, 12 (maximum), for which groups of cg
data are to be read in for the first radial station; RADCL(1) is the
nondimensional radial station at which the airfoil no. 1l data is defined.

For a blade with three distinct constant airfoil sections along the span the
quantities NRCL, NRCD and NRCM would be set to 4. For example, if the airfoils
change abruptly at x/R = .4 and x/R = .8, the change is modeled by entering four
complete airfoil tables for the four radial locatioms adjacent to x/R = .4 and
x/R = .8 of the blade. Thus, the airfoil data should be assigned as follows:
(Note that the #2 airfoil data is entered twice)

1) airfoil no. 1 from x/R = 0. to .399 (RADCL(1) = .399)
2) airfoil no. 2 from x/R = .401 to .799 (RADCL(2) .401) and (RADCL(3) = .799)
3) airfoil no. 3 from x/R .801 to 1.0 (RADCL(4) .801)

It is not necessary to specify a radial station at the blade tip or at the
root. For the present example airfoil no. 3 data, which is entered in the cyg
vs. @ table that follows card 1B (which has RADCL(4) = .801), will automatically
be assumed to extend to the blade tip. Similarly the data of the table with
RADCL(1) = .399 will be assumed to extend to the root subject to the parameters
(A)5 and (R)421 which are often used to render the airfoil ineffective in the
region inboard of the true airfoil.

For the case of a single airfoil to be used for all spanwise locationms, a
single first card image is input. This card is similar to the card #1A described
above, except that the quantities NRCL, NRCD AND NRCM are input as zero (or the
columns are left blank):

card #1 Nz(1) 0 O O TITLE(optional) (412, A72)
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In this case the card is interpreted as the first card of the cg data with
the RADCL(1) information omitted (see description above for card #1B). NZ is
required and defines the number of cg Mach number groups to follow.

éﬂﬁLZQEQ_A1§£Q£kJ¥§E?iPEj2F

For those optional cases wherein the analytic NACA 0012 airfoil option is
specified, (see "S" array location 63 discussed in subsequent sections) the first
card image must be a single card with blank or zeroed columns 1 through 8. For
this option, the remainder of the airfoil data is omitted.

Input Format for Subsequent Cards

For those cases wherein tabulated airfoil data are to be input, the subse-
quent inputs continue the airfoil cg data initiated with the #1A and/or #1B
cards. Thus, the card image set-up defined by cards 1B, 2, and 2* is then input
NRCL times (or only once, if NRCL = 0):

card #2: // J N MA(1) cL(1) A(2) cL(2) ... A(4) cL(4) (12, 10F7.0)
cards #2+: A(5) cL(5) ... . (F9.0, 9F7.0)
... A(N) CcL(N) ALSTAL DCLDAO (F9.0,9F7.0)
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where: J is the number of data entries to be input for this Mach number group.
N is the number of angle-of-attack-cy (abscissae - ordinate) pairs to be input.
Normally, a maximum of thirty-four (34) a-cy pairs may be input; up to thirty-
three (33) pairs can be input if the unsteady option is chosen. Note that
J=Nx 2+ I, where I = 2 without invoking the unsteady option, and I = &4 with
the use of the unsteady option (i.e. ALSTAL, DCLDAO input) M is the Mach number
appropriate to the data group. A(i) are the N angle-of-attack abscissae in
degrees and CL(i) are the N lift coefficient ordinates. ALSTAL and DCLDAO are,
respectively, the static stall angle (a at Cl max), in degrees, and the lift
curve slope at zero angle-of-attack, in per degree units; these items are needed
only if the unsteady airloads option, (A)64, is invoked with a value of 2. Note
that J is an integer, but N and M are floating point formatted.

Cards 2 and 2+ are then repeated for each successively higher Mach number.
A maximum of 12 Mach numbers is allowed and the lowest and highest Mach numbers
need not define the total working range as the search technique uses the boundary
data for Mach numbers beyond the range input. Thus, repeated data for zero and
supersonic Mach numbers are not needed. The lowest Mach number table must
contain an angle-of-attack range from -180° to 180° or from 0° to 180° depending
on whether or not unsymmetric airfoil data is expected by G400 according to
(A)61; all higher Mach number data need extend only from -30° to 30° if (A)61 = 1
or from 0° to 30° if (A)6l1 = 0.

The general format described above is repeated for the cq and Coc/b sub-
blocks in that order but with either card image #1B or #lA, depending on whether
multiple airfoil section data are or are not input and used. The static stall
angles and aerodynamic coefficient curve slopes at zero angle-of-attack are not
entered for the for the cq subblock. Lastly, the total storage allocated for
the combined airfoil data is 5000 locations. The total airfoil data consists of
several sets each comprised of two data items (no. of point pairs and Mach
number) and point pair data, one set defined for each Mach number. The maximum
number of abscissa-ordinate point pair data available is therefore equal to 2500
less the total number of Mach number sets. For applications requiring extensive
airfoil data, the data should be "budgeted" among the various spanwise sections,
as appropriate.

Combining the previous discussions we arrive at the following airfoil data
input sets. Note that the Mach numbers should be input in increasing order.
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Single Airfoil

repeat 3 NZ 0 0 0 Title (412, A72)
times
(Cz’ Cq»
then C //}cards 2, 2%) a from at least-180°
to 180° (or 0° to
180° if (A) 61=0)
epeat //(cards 2, 2%) a from at least-30° to 30°
(NZ-1) (or 0° to 30° if
times (A) 61=0)
Multiple Airfoil
‘//6 NRCL NRCD  NRCM Title (412, A72)
repeat NN
times (C,, ,// NZ  RADCL  Title  (I2, F8.0, A70)
Cd’ then
Cp) ‘///(cards 2, 2%) a from at least-180° to
180° (or 0° to 180° if
(A) 61=0)
epeat
(N2-1) ,//(cards 2, 2%) o from at least-30° to
times 30° (or 0° to 30° if
(A) 61=0)
where: NN = |NRCL| + |NRCD| + |NRCM|
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1I. Loader Data Descriptions

Most of the data used by G400 is entered by using the '"loader blocks"
discussed in this section. Each loader block is assigned a letter designation.
Each block groups items that are similar in nature. For example, the A-block
includes only (A)erodynamic data while the D-block contains only (D)ynamic data.
Since a particular data block usually contains a substantial volume of data, a
particular entry is referred to by both it's block letter and by numerical
designation. For example (A)28 is item 28 of the A-block or the rotor collective
pitch while (D)2 is the number of edgewise modes to be used. It should be noted
that it is not always obvious which data block a particular item should belong to
although a conscious attempt has been made to group similar items into the same
block. Subsequent sections briefly describe the items available in each data
block. Note that the blocks are arranged in alphabetical order (with some
letters missing, i.e. there is no I-block) for convenience even though the user
need not order the input alphabetically in the input deck or file.

Since the capabilities of the various G400 versions vary slightly, some of
the input quantities are not appropriate for all versions. For such cases where
a G400 data entry from one version of G400 is loaded to another version where it
is inappropriate, the data entry will be accepted and treated only as a data file
comment, not to be used.

Card Format

The following card format must be adhered to for loader block data entries:

ZZ NN L DATA(L) DATA(L+l) ... DATA(L+4)  (Al,I1,14,5F12.0)

where: ZZ 1is the block letter for the data on this card, A, B, C...etc

NN is the number of data items on this card, max = 5. For example, if
NN is 3 only DATA(L), DATA(L+1) and DATA(L+2) will be used. Any data
entered in the fields corresponding to DATA(L+3) and/or DATA(L+4)
when NN = 3 will be ignored
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L is the loader location of DATA(L). For example if ZZ = A, NN = 3 and
L = 28 then the DATA ( ) fields on this card correspond to (A)28, 29,
30 respectively.

Although not a requirement it is recommended practice to group the A-block, D-
block etc. cards together in a particular deck to aid input interpretation. This
order is particularly useful since loader data can be redefined in the same deck.
For example if loader location (D)2 is defined early in the file it may still be
redefined later in the deck. If the data from many blocks are interspersed it
becomes more difficult to assure which (D)2 data was the last to be loaded.

Overriding Data

There are some loader locations in the R, G and D-blocks that are automati-
cally overridden by the E159 preprocessor generated block data if (E)1195 = 1.0.
Any values loaded into these R, G and D-block locations will be replaced with the
E159 generated block values. In subsequent sections a dagger superscript (1)
flags the entries that are overridden in this way. When the E159 preprocessor
and associated E-block data is not used, (E)1195 = 0., the daggered values are
used.

Title and Comment Cards

Provision has been made for the input of title and comment cards in the
loader block data. The first 15 (or less) cards encountered with an asterisk,
"' in column ! will be read and stored as the job title. The title will be
printed at the beginning of the loader block input echo, before the beginning of
the time history solution, and before the beginning of the TSSA solution. If the
code encounters a character in column 1 other than an asterisk or one of the data
block characters (e.g. A, C, D. etc.) the card will be treated as a comment card.
It will be read and ignored. It is therefore useful in labeling a particular
input deck, but nowhere will it be printed. For example, the code would treat a
card with a "dollar sign'", or even a blank, in column 1 as a comment card.
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(4)

Location Item - Description

1 P Air density. [lb-sec?/ft"]

2 Ay Speed of sound. [ft/sec]

3 B Tip loss, used to define equivalent momentum

area and three-dimensional airloads near the
blade tip. Usually set to .97 but when using
variable inflow (see (A)66 (A)3 should be set
to 1.0). [ND]

4 Bey Increment added to all values of cy obtained
from tabulated airfoil data or from the
analytic NACA 0012 data. Airfoil data
generally correspond to smooth wind tunnel
models and Acy,  is often used to adjust for
the higher drag of production blades. [ND]

5 Ncut-out Number of blade segments, starting at
inboard end and defining the cut-out region
for which the lift and moment coefficients
are set to zero.

6 (cd) The drag coefficient used on the first

Nout-out Se€gments. [ND]

cut-out

7 Ky im Effectivity factor of the induced
velocities calculated using actuator disk
momentum considerations in calculating inflow
angle at a local blade section. Default
value is 1., corresponding to conventional
usage of momentum actuator disk inflow. This
input quantity can be used to approximate the
effects caused by real inflow characteristics
as modeled by more accurate theories. For
such usage, the effectivity would typically
be in the range of 1.0 to 1.1. [ND]
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(4)

Location Item
8 h

9 Hepp
10 Worr
11-20 _
21 v

22 as
23 R/C

Description

Height of positively thrusting rotor from
ground or wind tunnel floor for purposes
of evaluating Heyson corrections to rotor
angle of attack (see Ref. 14). [ft]

Height of wind tunnel test section for
purposes of evaluating Heyson correc-
tions. Note that zero values for the wind
tunnel test section dimensions implies that
ground effect corrections, rather than wind
tunnel wall corrections, are to be made.

[£t].

Width of wind tunnel test section for
purposes of evaluating Heyson corrections.
[ft]

Intentionally blank.

Forward flight velocity. See also (V)23.
Should be a positive value. [kts] (1 kt=1.689
ft/sec=.5148 m/sec)

Aerodynamic shaft angle-of-attack measured
with respect to the relative air velocity.
The shaft angle of attack will be varied if
major iterations ((A)41#0) are performed and
trim is on propulsive force (see (A)48).
Typical input values are -90° for a forward
thrusting propeller, +90° for a wind turbine

"with a horizontal nacelle, 0° for the main

rotor of a helicopter in hover, and -
90° < ag < 0 for the main rotor of a
helicopter in forward flight. [deg]

Rate of climb. If (A)23 is nonzero then (V)21

becomes the total net 'forward' velocity.
[£t/min]
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(4)

Location

24

25

26

27

28

29

30-32

33

34

.75R

VosViesVls

Description

Fixed roll rate. [deg/sec]
Fixed pitch rate. [deg/sec]

Longitudinal cyclic pitch, coefficient of
minus cosYy term in Fourier expansion of blade
control pitch angle. [deg]

Lateral cyclic pitch, coefficient of minus
siny term in Fourier expansion of blade
control pitch angle. [deg]

Blade collective pitch angle as defined at
the 75% radius. [deg]

Mean rotor inflow ratio. Used only if
(A)68=0. Usually should be set to zero
for variable inflow cases. [ND]

Initial conditions on the "momentum'" induced
velocity components comprising a Glauert-like
variable inflow description (used only when
(A)68>0). Note that the variable inflow
controlled by locations (A)65 and (A)66 and
the momentum variable inflow can be used
separately or simultaneously, see (A)68.

[ND]

Amplitude of minus cosine term of (b-1)/rev
cyclic pitch. The number of blades is b.

[deg]

Amplitude of minus sine term of (b-1)/rev
cyclic pitch. [deg]
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(4)

Location

35

36

37

38

39-40

42

Item

Ab)g
Bib)g
Alb+1)

B(b+1)s

MI

(Control)

Description

Amplitude of minus cosine term of b/rev
cyclic pitch. [deg]

Amplitude of minus sine term of b/rev
cyclic pitch. [deg]

Amplitude of minus cosine term of b+l/rev
cyclic pitch. [deg]

Amplitude of minus sine term of b+l/rev
cyclic pitch. [degl

Intentionally blank.

Maximum number of major trim iterations to be
made in an attempt to achieve trim. A zero
value will deactivate the major iteration.
G400 will not print a complete transient time
history if major iteration fails, see (S)l2.

Calculation rate (by sequential control angle
perturbations) for trim partial derivative
matrix. Base value here is problem depen-
dent, 2. is typical. (A)42 has a strong
affect on CPU time. O=calculate partial
derivative matrix for the first major itera-
tion only and use this matrix for all remain-
ing major iterations. If table (A)351 is not
completely empty use the table for the first
iteration and recalculate the matrix accord-
ing to (A)42 for the remaining major itera-
tioas.

l.=recalculate for every major iteration.
2.=recalculate for every other major iter-
ation.
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(4)

Location Item
43 fw
44 —_—
45 Lreq
46 €life
/,

47 PFreq
48 €pp
49 PMreq
50 €pM

Description

Nonstandard correction weighting factor.
Usually G400 will attempt to drive the trim
error completely to zero at every major
iteration using the trim partial derivative
matrix. (A)43 can be used to moderate the
size of this large step (usual values are .5
or 1.0); default=1.0. [ND]

Intentionally blank.

Requested values of lift to be used in
major iteration. [lb]

Tolerance lift for major iteration. A zero
value deactivates trimming on lift (1% to 3%
on total lift is typical). ([1b]

Requested value of propulsive force to be
used in major iteration. [1b]

Tolerance on propulsive force for major
iteration. A zero value deactivates trimming
on propulsive force. The automatic trim
calculation (major iteration) must trim
either to a required propulsive force or to a
required shaft angle of attack; therefore, a
deactivation of trim to propulsive force
automatically directs the trim calculation to
trim to requested shaft angle, location
(A)22. [1b]

Requested value of pitching moment for major
iteration (positive nose up). [lb-ft]

Tolerance on pitching moment for major

iteration. A zero value deactivates trimming
on pitching moment. [1lb-ft]
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(4)

Location Item

51 RMreq

52 eRM
53-59 —

60 Abp3gg

61 (Control)
62 (Control)
63 (Control)
64 (Control)

Description

Requested value of rolling moment for major
iteration (positive port side up). [lb-ft]

Tolerance on rolling moment for major
iteration. A zero value deactivates trimming
on rolling moment. [1lb-ft]

Intentionally blank.

Delta psi for F389 aerodynamic (Wl) data
transferral. Note that this value is only
used as a data transfer "frequency" and is
not actually used during F389 execution.  See
also (8)33, (s)23, (A)65, (A)66. (A)60 must
be greater than (S)8. Also, (A)60 must be <
15 deg; G400 will set to 15 deg if criterion
is violated. [deg]

Make nonzero (l.) if airfoil data for a
nonsymmetrical airfoil are to be used.

Make 1., to invoke the radial flow, swept
airfoil option, see (R)461-(R)500,

R(221-300).

Analytic (static) airfoil option. Make
nonzero (l.) to use the built-in analytic
approximation to the static NACA 0012 airfoil
data. A zero value results in the use of the
input tabular data.

Unsteady airfoil data optionm.
0.=use conventional quasi-static airloads
(this is the default value). See (A)63.
.=generalized Wagner function to definme
effective angle-of-attack; assumes unstalled
aerodynamics. Tabular airfoil data look-up
in t-h solution.
2.=UTRC synthesized a, A,ay, method in the
t-h solution; assumes dynamic stalled aero-
dynamics (see locatioms (R)521- (R)540,
(A)300-(A)308, and (A)63).
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(a)

Location Item

65 (Control)
66 (Control)
67 (Control)
68 (Coatrol)
69 (Control)

Description

Make nonzero (1.) to load velocity distribu-
tions from the F389 code. See (S)33, s(23),
(A)66. The velocity distributions from F389
are the induced velocities only.

Make nonzero (1.) to use the F389 velocity
distributions loaded as per input locations
(A)65 and (S)33. 1If (A)68 is nonzero, momen-
tum induced velocities will be added to the
loaded velocities. This option is often
referred to as the variable inflow option.

Variable inflow shape option. A value of
(0., 1.) causes the inputted variable inflow
azimuthal distributions to be used in a
(continuous point-to-point, stepped pulse)
manner.

Generalized Glauert (momentum derived) inflow
option. A zero value deactivates usage. A
value of 1. causes the input ((A)30-32)
induced velocity components to be used as
constants; a value of 2. causes the induced
velocities to be varied to satisfy momentum
considerations.

Input nonzero (1.) to activate use of the
tabulated time histories of incremental
control angles.

AB,5 in table (A)10l, [degl

AA)  in table (A)151, [deg]

AB; ¢ in table (A)201, [degl
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(a)

Location

70

71

72

73-100

101

102-149

150

Item

(Control)

Gw

Npg.75

(T,A8

75)

Description

Gust wave option.

0.=Disable this option.

1.=(F) is a time history of gust factor.
This factor is multiplied by the velocity
of (A)21. Abscissa of table (A)251 is time
(sec).

2.=(F) is a time history of gust velocity
increment that is added to the velocity of
(A)21. Abscissa of table (A)251 is time
(sec).

3.=(F) is the gust velocity vs. ft imbedded
in the air mass. Similar to option (2) but
abscissa of table (A)251 is ft.

Inclination angle of the gust wave; a
positive value implies a relative velocity
component up in the vertical direction. Also
see (A)251,(A)70. [deg]

Side flow angle of the gust wave; a positive
value implies a relative lateral velocity
component in the direction to port. Also see
(4)70, (A)251, (A)501. [deg]

Intentionally blank.

Number of abscissa-ordinate point pairs
used to define time-history of A8 75(t).
A9.75 calcula?ion is bypassed if Nag . is
zero. Max pairs 24. (See (A)69, (A)28).

Table of 48 .5 abscissa-ordinate pairs;
[U(T)=sec; U(A6.75) = deg]. Note that the
pairs are input with time first, A8 75

second.

Intentionally blank.
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(4)

Location Item

N
151 BA|
152-199 (T’AALS)
200 _

N
201 BB,
202-249 (T,28, )
250 _
251 Ngust
252-299 (T, Egyer)

Description

Number of abscissa-ordinate point pairs used
to define time history of BAj . 6 =0 45~
Ayg cosfit-By sin@-.... BAA; . calculation is
bypassed if Nj,,. is set to zero. Max pairs
24 (see (A)69, (A)26).

Control angle increment AA;  time history
tabulation. [U(T)=sec, U(AA,q) = deg]

Intentionally blank.

Number of abscissa-ordinate point pairs
used to define the time history of

B o> 6=e.75_Als goth-BlsSin?t_“"
8B, calculation is bypassed if NaBLs
is set to zero. Max pairs 24. (See
(A)69, (A)27).

ABy, control angle increment time history
tabulation. [U(T)=sec; U(AB,g) = deg]

Intentionally blank.

Number of abscissa-ordinate point pairs used
to define the time-history of the gust wave

function; calculation is bypassed with a zero
value. (See (A)70).

Table of gust wave function abscissa-ordinate
pairs; (see input loc. (A)70 for definition
of £ ) [(sec, ND), (sec, ft/sec), or (ft,

gust
ft/sec)]
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(a)

Location

300

301

302

303

304

305

306

307

Item

(Control)

Mlower

M
upper

(Control)

(Control)

(Control)

(Control)

max

DescriEtion

Locations (A)300-(A)308 are for unsteady

stalled airloads option, when (A)64=2,

Static aerodynamic data utilization for use
with the UTRC a-A-o, synthesized unsteady
stalled airloads; used if (A)64=2,

1.=using static data according to (A)63.
2.=using built-in static data. See (A)304 to
enable sweep effects.

Lower Mach number below which the UTRC
unsteady airloads method is suppressed (0.=no
lower limit). [ND]

Upper Mach number above which the UTRC
unsteady airloads method is suppressed (0.=no
upper limit). [ND]

: Inc1u§ion of nonuniform inflow in inflow

rate 3 calculation.
O0.=nonuniform inflow is included
l.=nonuniform inflow is omitted

Swept data option (see (A)300) for unsteady
stalled aero.
0.=do not use swept data

.~use swept data

Input/Output unit code number for both
input/output of unsteady parameters (for
restart purposes) (0.=input/output is
suppressed).

An input value of (0.,1.) causes the unsteady
stalled airloads method to (omit, include),
respectively, the calculation of unsteady
drag.

Maximum (absolute) value of A parameter

used in UTRC unsteady stalled airloads method
(0.=no limit). [rad]
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(4)

Location

308

309

310-350

351-399

400-600

Item

941 max

(1]

Description

Maximum (absolute) value of unsteady
decay parameter, a,, used in unsteady air-
loads formulations (0.=no limit). [rad]

Frequency used for numerically differenti-
ating inflow angle to calculate 'A' param-
eter. Typical nonzero values would be blade
Ist or 2nd torsion mode frequency. Zero
value invokes numerical differentiation
algorithm based on standard backward differ-
entiation techniques. [ND]

Intentionally blank.

Trim partial derivative matrix obtained as
output from a previous trim calculation. Any
nonzero value in this table will suppress
recalculation for first major iteration.

(See (A)41-(A)55).

Intentionally blank.
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(¢)

Location Item

1 NSPSTR
0

3 GR
K

& TFB

5 c/t

Description

Innermost torsionally flexible segment of
flexbeam. Default is 1. Twist will always
be zero for segments <(C)1. This entry is
always used to define the pseudo torsion mode
shape and twist regardless of (C)15.

Built-in twist angle of the flexbeam,
positive leading edge up at outboard end

of flexbeam, deg. Note that GBFB is defined
relative to the inputted twist angle distri-
bution (only when using (G)7, which in turn
is defined for zero collective angle). Used
only when all of (R)361-(R)381=0. [deg]

Built-in flexbeam pitch angle at flexbeam
root, defined relative to structural twist
input only when using (G)7, positive leading
edge up. Only used if all of (R)361-
(R)381=0. [deg]

Equivalent or critical torsion stress
coefficient for flexbeam (i.e., stress per
unit average torsion strain as defined by
total flexbeam twist). [in-psi]

Flexbeam aspect ratio parameter, where C

is flexbeam width and t is flexbeam
thickness. This parameter is used to deter-
mine plate-like deflection for torsion
"pseudo-mode". A zero value gives a rod-like
deflection shape. Max value = 12.5 to avoid
under flow. A larger value will be reset to
zero. Used always, regardless of (C)I5.

{ND]
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(©)

Location

10

11

Item

(Control)

(Control)

Description

Torque tube snubbing control
0.=torque tube is snubbed to the flexbeam
at location (G)15
1.=torque tube is snubbed to the hub
extension at location (G)15 of torque
tube. (C)6 is used only if (C)15=1.

Snubber stiffness alignment option. Used
only if (C)15=1
0.=snubbers are oriented vertically and
horizontally, see (C)8, (C)9
l1.=snubbers are oriented parallel and
perpendicular to local torque tube angle.
Usually used for cantilevered torque tube
configurations, see (C)8, (C)9.

Snubber vertical (torque tube flatwise)
spring rate, see (C)7. Used only if (C)15=1.
[1b/ft]

Snubber horizontal (torque tube edgewise)
spring rate, see (C)7. Used only if (C)15=1.
[1b/ft]

Spring rate of rotational spring connecting
outboard end of torque tube to the blade spar
about chordwise axis. A zero value implies
zero stiffness for pinned-pinned torque tube
configurations ((C)14=(C)15=0) and infinite
stiffness for snubbed configurations. Used
only if (C)15=1. [ft-1b/rad]

Spring rate of rotational spring connecting
the outboard end of the torque tube to the
blade spar about an axis perpendicular to the
chord linec. Used only if (C)15=1. A zero
value implies infinite stiffness. [ft-
1b/rad]
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(€)

Location

12

13

14

15

16

Item

(Control)

(Control)

(Control)

(Control)

NTQTB1

Description .

When the torque tube flexbeam redundant
analysis is enabled, location (C)15=1 the
torque tube is assumed to be in (tension,
compression) as location (C)12 is (0.,1.).
Default = 0.

Used to weigh the effectiveness of nonlinear
EI bending excitation of torsion over flex-
beam span. The effectiveness is taken to be

.100%, 0%, 100%*pseudo-torsion mode shape, as

location (C)13 is 0.,1.,2., respectively.
Default is 0. Used always regardless of
(€)15, on all segments < (G)16-1.

l=include wobble mode for cantilevered torque
tube configurations. Valid only (G)15=(G)16
and (G)16>1. (C)15=1 will disable this
option. Use option (D)34 instead of

(E)1189.

0.=disable redundant analysis, do either a
cantilevered torque tube analysis with wobble
mode (C)14=1, or a simple pitch-horn analysis
without wobble, (C)14=0.

1.=Use flexible torque tube flexbeam redun-
dant analysis snubbing to the flexbeam or to
the hub extension, see (C)6. G400 will
default to (C)15=0. if C-block
inconsistencies are detected. See limi-
tations on (D)1, (D)3. For (C)15=1 the
following input constraints must be followed:
(6)15=1, (G)15=(c)16, (G)16>(G)15, (G)1l6>2.,
(6)16>(C)16, |(6)18]>0, (D)3>2, (D)1>1. Use
option (D)34 instead of option (E)1189.

Innermost segment of torque tube, also the
snubber location and the pitch horn attach-
ment segment. Used only if (C)15=1. This
entry also defines the first value in tables
(€)71,(C)81 etc. that is actually used.
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(c)

Location

17

18

19-30

31-40

41-50

Item

Dgnus

Glpg

Description

Optional snubber attachment distance below
flexbeam. Used only when (C)15=1
(Usually used on main rotors). [in]

Optional built-in torque tube droop angle
at the flexbeam-torque tube juncture. Used
only if (C)15=1. [deg]

Intentionally blank.

Optional flexbeam plate bending stiffness for
each flexbeam sgement. Where D = Et3/12(1-
v)2 = EI/C. t = segment flexbeam thickness,
C = segment flexbeam width of (C)51. D is
used to correct the flexbeam torsional
equation for secondary warping effects. [1lb-

ft]

Flexbeam torsion (St. Venant) stiffness for
each flexbeam segment. Flexbeam is
torsionally flexible between segment (G)16-1
and segment (C)1 or first nonzero value in
table (C)41, whichever has highest segment
number. In this way G400 can redefine (C)l
to be as large as (G)16. (Note that (E)737-
(E)886 defines the torque-tube torsional
stiffness). Only used if (G)15=1. Flexbeam
is centrifugally stiffened using (R)161.
[1b-£t?]
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()

Location

51-60

61-70

71-80

81-90

91-100

101-110

Item

EI
Epp

YTTgg

'Descrigtion

Optional flexbeam section width for each
flexbeam segment. This is used with table
(C)31 to define incremental stiffness changes
due to flat plate effects. [ft]

Intentionally blank.

Torque-tube flatwise bending stiffness, EI
(Note that (E)253 defines the flexbeam flat-
wise stiffness; also note that no unique
segments are defined for the torque tube.
The torque tube segments are defined in the
(E)4-(E)23 table and therefore have lengths
identical to the flexbeam lengths). Used
only when (C)15=1. [1b-ft ]

Torque-tube edgewise bending stiffness.

(Note that (E)454 defines the flexbeam stiff-
ness; also see note on (C)71-(C)80.) Used
only when (C)15=1. [1b-ft ]

Mass of each torque-tube segment (see notes
on (C)71-(C)80 for segment length defini-
tions). Used only when (C)15=1. [1b-

sec /ft]

Distance from torque-tube elastic axis to
torque tube c.g. for each segment (see notes
of (€)71-(C)80 for segment length defini-
tions). Presently not functional. [ND,R]
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(c)

Location

111-120

121-130

131-150

Item

(1/c)g

(L/e)g

Description

Torque-tube flatwise bending modulus (see
notes of (C)71-(C)80 for segment length

definitions). Used only when (C)15=1.
[in3]

Torque~-tube edgewise bending modulus (see
notes of (C)71-(C)80 for segment length

definitions). Used only when (C)15=1.
[in3]

Intentionally blank.
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(D)

Location

4-8

Item

NFM

NEM

NTM

LCH

Description

Number of flatwise bending modes to be used
not including rigid modes if blade is articu-
lated (see (G)10). Note that it is not
necessary to use all of the bending modes
that were calculated by E159. For articu-
lated rotors (D)1<(E)24-1 (when E159, G400
run simultaneously). For cantilevered rotors
(D)1K(E)24. 1f (C)15=1, (D)1 must be 2> 1,
default=0. Max value = 5.

Number of edgewise bending modes to be wused
not including rigid modes if blade is articu-
lated (see (G)11). Note that it is not
necessary to use all of the bending modes
that were calculated by E159. For articu-
lated rotors (D)2<(E)25-1 (when E159, G400
run simultaneously). For cantilevered rotors
(D)2<(E)25. Default=0. Max value = 3.

Number of elastic torsion modes to be used.
(D)3<(E)26 (when E159, G400 run simultaneous-
ly). Note that even if (D)3=0, G400 permits
use of a rigid body torsion mode. See (D)34.
1f (C)15=1, (D)3 must be > 1, default=0.

Max value = 2.

Flatwise bending modal frequencies, non-
dimensional with respect to 2, in
ascending modal order. A negative value

will cause q,, inertia blade forces to be
i

neglected while retaining all elastic terms
in the time history solution. Max values =
5. [¥p]

Intentionally blank.

$G400 will obtain these values from the E159 preprocessor if (E)1195=1.0. 1In
this case (D) input values entered by user will be ignored.
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(D)

Location

10-12

13

14-15

16-30

30

31

Item

tw,

tw

(Control)

se

Description

Edgewise bending modal frequencies, non-
dimensional with respect to Q, in ascendin "
modal order. A negative value will cause q,

inertia blade forces to be neglected while
retaining all elastic terms in the time-
history solution. Max values = 3. [ND]

Intentionally blank.

Torsion modal frequencies, nondimensional
with respect to 2, in ascending modal order
(not including rigid body fggthering mode) .
A negative value will cause qg inertia blade

. J .
forces to be neglected while retaining all
elastic terms in the time history solution.
Max value = 2. [ND]

Intentionally blank.

Edgewise structural damping option.

0.=use (D)3l in viscous damping formulation
l.=use (D)31 in nonviscous hysteretic damping
formulation

2.=use distribution of nonviscous hysteretic
damping. See (R)501 for distribution table.

Viscous ((D)30=0.) damping equivalent
critical damping ratio used to approximate
structural damping in all edgewise bending

modes. If (D)30=1., this item is a non-

viscous, hysteretic constant. If (D)30=2.,
this item is not used, see (R)50l. Caution:
typically some nonzero damping is required
here to dampen the lightly damped edgewise
modes. [ND]

1G400 will obtain these values from the E159 preprocessor if (E)1195=1.0. 1In
this case (D) input values entered by user will be ignored.
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(D)

Location Item
4
32 Vo
g
33 ese
34 Kroot
. DTHETA
38 S
39 g
40 CLD

Description

Critical (viscous) damping ratio for
structural damping in flatwise bending modes.
[ND]

Critical (viscous) damping ratio for
structural damping in torsion modes. [ND]

Torsional spring rate connecting root of
blade to fixed structure to represent control
system flexibility. A nonzero value will
automatically introduce the rigid-body
feathering degree-of-freedom as an additional
"torsion mode". Do not use in tandem with
(E)1189-(E)1190. See comments in (E)1189.
(D)34 must be used instead of (E)1189 for
bearingless rotor applications when (C)15=1.
[ft-1b/rad]

Direct pitch-edge coupling for edgewise
bending modes only. 3 max, one value for
each edgewise bending mode. See (G)13 for a
similar value for the rigid lead lag mode.
Nondimensional where DTHETA is pitch angle
per unit of edgewise modal amplitude DQVK
(which in turn is nondimensional with respect
to R). Unlike (G)12 this entry functions
with cantilevered blade modal data. [ND]

Intentionally blank.

Acceleration due to gravity; a negative value
implies inverted flight. Default = 32.2
ft/sec?. [ft/sec?]

Linear lag damper rate. Provides lag damping

moment at blade root proportional to root
angular velocity, see (D)49. [1b-ft-sec]
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(D)

Location Item Description
41-46 ‘L1-L6 Six lag damper geometrical dimensions.

Currently this option is not functional.
47 ND Lag damper attaches to center of this

segment, default=1. Currently not function-
al.

48 (Control) Make (0.,1.) as the outboard lag damper
attachment is (inboard, outboard) of the
feathering bearing.

49 (Control) 1.=Use tabulated damper properties, table
(D)51.
0.=Use linear lag damper rate ((D)40).

50 Nip Number of root angular velocity - root
damping moment pairs (abscissa-ordinate) to
be inputted in table (D)51-98.

51-98 (X,M) Table of blade root angular velocity, X, vs.
root damper moment, M, pairs. Max pairs =
24, Usually velocity and moment are given
same sign. Values for both positive and
negative root velocities must be entered.
[U(A*)=rad/sec; U(M)=ft-1b]

99 —_ Intentionally blank.

The following five items are for teetered

rotors only.

100 Bl Limit stop angle below which there is no
constraint on teetering (a zero input is
treated as infinity). [deg]

101 Kg Initial limit stop flapping spring rate

defined when the B, limit stop is first
reached. [ft-1b/rad]
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(D)

Location

102

103

104

105-150

Item

Description

Saturation limit stop angle above which the
limit stop constraint is defined by a second
constant spring rate. [deg]

Saturation moment when the B, limit stop is
reached. [ft-1b]

Flapping spring rate of limit stop for teeter
angles in excess of B,. (Note that locations
(D)100-104 provide a general representation
of a nonlinear limit stop spring). [lb-
ft/rad]

Intentionally blank.
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(E)

Location

24

25

26

27

28-47

48-67

Item

NSEG

Ar

NFMC

NEMC

NTMC

(Control)

(I/c)F

(I/C)E

Description

Rotor radius, from center of rotation to
blade tip. [ft.]

Offset distance of start of elastically
deformable portion of rotor blade. Must
be zero for a teetered rotor. [ND,R]

Number of segments into which the blade 1is
partitioned; min of 5., max of 20.

Blade segment lengths, in order from root
to tip; sum of segment lengths plus the off-
set must equal the rotor radius. [in.]

Number of flatwise bending modes to be calcu-
lated, including rigid flapping mode if any;
min of 0., max of NSEG. See (D)1, (E)26.
(E)24 must be >0. if (C)15=1.

Number of edgewise bending modes to be calcu-
lated, including rigid lag mode if any; min
of 0., max of NSEG. See (D)2, (E)26.

Number of torsion modes to be calculated.
Torsion mode(s) alone cannot be requested
(i.e., (E)24+(E)25 cannot be zero); min of
0., max of NSEG. (E)26 must be >l. if
(C)15=1. See (D)3.

Make nonzero (l.) to output punch loader
block data and uncoupled mode shape data
for direct input in subsequent runms.
Section moduli for flatwise bending for
segments defined in locatioms (E)4-23, root
to tip, cannot be zero. [in3]

Section moduli for edgewise bending for

segments defined in locations (E)4-23, root
to tip, cannot be zero. [in3]
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(E)

Location

69

70

71

72-99

100

101-250

251

252

253-452

453

Item
QR

(Control)

AwFE

(w',As)

Description
Rotor tip speed. [ft/sec]

Make nonzero (l.) to output intermediate E159
calculations for debug purposes.

Frequency scan interval for flatwise and
edgewise bending frequency iteration; default
value is 0.5. See (E)1192 for torsion scan
interval [rad/sec]

Intentionally blank.

Number of elements in weight distribution
table (equal to twice the number of ordinate-
abscissa pairs in table (E)101-(E)250).

Weight distribution table, taken as sequen-
tial ordinate-abscissa pairs, root to tip.
Generally, this and all other tables should
include an extended final (tip) spanwise
increment so that the sum of the spanwise
increments plus the offset exceeds the radius
by a sufficient amount to preclude diminution
due to numerical round-off. [U(w'y) =

1b/in; U(Asy) = in]

Intentionally blank.

Number of elements in flatwise area moment of
inertia table (equal to twice the number of
ordinate-abscissa pairs in table (E)253-
(E)452.

Flatwise area moment of inertia table (see
remarks for w', As table). [U(Ipy) =
in*, U(Asy) = in]

Number of elements in edgewise area moment of
inertia table (equal to twice the number of
ordinate-abscissa pairs in table (E)454-
(E)653.
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(E)

Location Item
454-653 (1g,As)
654 —
675 —
676-695 oM
696-715 Xr,
716-735 Ke,

736 Ney

Description

Edgewise area moment of inertia table (see
remarks for w', As table); [U(Igy) = in*,
U(Ask) = in]

Intentionally blank.

Stations other than those defined by the
input breakup (E)4-23 for purposes of evalu-
ating the mode shapes. [ND,R]

Intentionally blank.

Discrete incremental lumped masses added to
centers of blade segments defined by inputs
(E)4-23. [1b-sec?/ft]

Explicit flatwise hinge spring rates at
inboard ends of selected blade segments

to replace values obtained from input flat-
wise bending stiffness considerations. Note:
(E)696 and (E)716 should both be sufficiently
large to approximate infinite stiffness
retention if a cantilever beam root boundary
condition is desired. If an articulated
(hinged) joint is desired a small nonzero
value is recommended. See item (G)10. [lb-
ft/rad]

Explicit edgewise hinge spring rates at
inboard ends of selected blade segments,

to replace values obtained from input edge-
wise bending stiffness considerations (see

note for KF-)’ see (G)11. [1b-ft/rad]
i

Number of elements in the St. Venant torsion
stiffness (GJ) table (equal to twice the
number of ordinate-abscissa pairs in (E)737-
(E)886). (For flexbeam type rotor include
the torque-tube GJ and GJ of spar outboard of
the torque tube in this table, GJ of flexbeam
is entered in (C)41-(C)50).
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(E)

Locatilon

737-886

887

888-1037

1038

1039-1188

1189

Item

(GJ,As)

Npa

(kA,As)

Nig

(Ie,AS)

(Control)

Description

Torsion stiffness table, G is the shear
modulus, J is the area polar moment of
inertia about the elastic axis (see remarks
for w', As table). [U(GJy) = lb-inZ?,

U(Asg) = in]

Number of elements in tension area radius of
gyration table (equal to twice the number of
ordinate-abscissa pairs in (E)888-(E)1037).

Tension carrying area polar radius of
gyration table. Taken about the elastic

axis this parameter adds the torsional stiff-
ness caused by centrifugal forces to the
elastic, GJ, stiffness (see remarks for w',As
table). [U(kayx) = in, U(Asy) = in]

Number of elements in torsional mass inertia
distribution table (equal to twice the number
of ordinate-abscissa pairs in (E)1039-
(E)1188).

Torsional mass inertia per inch distribution
table (see remarks for w', s table).
[U(1g) = lb-sec?, U(Asy) = in]

Default value implies that the blade is
torsionally cantilevered at the root. Make
(~1.) to active root torsional spring
restraint (input item (E)1190). Note that
this input and (D)34 define a redundant capa-
bility. (E)1189 and (E)1190 enable the flex-
ible torsion mode to have root flexibility
directly. Alternatively, (E)1189 can be set
to zero. In this way E159 will calculate a
cantilevered torsion mode. If a rigid body
component is required due to control system
flexibility (D)34 may be entered. G400 will
then include a rigid body feathering d.o.f.
in subsequent calculations. (E)1189 and
(D)34 should not be used simultaneously.
Option (D)34 should be used for bearingless
rotors when (C)15=1. or when (C)l4=1,
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(E)

Location

1190

1191

1192

1193

1194

1195

1196-1540

1541-1560

Item

K
%

(Control)

Aw

BSCALE

(Control)

k
Y10

Description

Torsion root spring rate. See (E)1189 and
(D)34. [1lb-in/rad]

Innermost segment which is active in torsion.
Segments inboard of this are assumed not to
twist elastically, default=1. (Note: For
bearingless rotors this entry defines the
innermost torsionally flexible torque tube
segment).

Frequency scan interval for torsion frequency
iteration; default value is 5. See (E)71 for
flatwise-edgewise scan interval. [rad/sec]

Modulus of elasticity; default value is
1.x107. [1b/in?]

Factor used to scale the stiffness matrix

to avoid erroneous zero evaluation of the
determinant due to computer underflow or
overflow; default value is 10%. 1In addition
to under and over flow messages, an indica-
tion of a need to vary this input is the
calculation of bending modes with frequencies
equal to multiples of the scan interval
(E)71. [NnD]

Make nonzero (1l.) to activate the E159
uncoupled mode preprocessor branch of the
program. If this item is set to zero, modes

must be loaded from an existing file, see
(S)15 and (E)27.

Intentionally blank.

Thickness wise mass radii of gyration
evaluated about the chordwise axis for
selected blade breakup. Note that G400 will
use inputed values of torsional mass inertia
(E)1039-1188 and the thicknesswise mass radii
of gyration to calculate chordwise mass radii
of gyration (R)141-160; anything entered by
the user in (R)141-160 is replaced if EIS59 is
run. [in]
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(E)

Location Item Description
1561-1999 —_ Intentionally blank.
2000 (Control) Case number for output generated by E159

branch of the program. Used in printout
and on modal output file.
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(6)

Location Item
2 TR

3 b

4 Té

> TNsEG
6 c

7 elequ

Description

Rotor tip speed. [ft/sec]

Rotor radius from center of rotation to blade
tip. [ft]

Number of blades. Must be 2. for a teetered
rotor ((8)5=1.)

Nondimensional offset distance to start of
deformable and/or deflectable portion of
rotor blade; this distance added to the sum
of the segment lengths must exactly equal R.
[ND,R]

Number of blade segments used to define
spanwise variable arrays, min of l., max
of 20.; sum of (E)5 plus the rotor offset
(G)4*R must be equal to the rotor radius
(G)2.

Rotor area solidity (bc/R). Will calculate
internally if not input [ND]

Linear equivalent blade twist angle (i.e.,

difference between tip and center of rotation

built-in angles, positive when tip angle 1is
greater than root angle). Note, this input
is the default value used when both the aero-
dynamic ((R)361) and structural ((R)381)
built-in twist angle radial distributions
have all zero values. (G)7 not used if non-
zero values are entered; in (R)361 or (R)381.
When (G)7 is used, (C)2 and (C)3 are also
used to define span and/or flexbeam twist.
(€)1 always defines the first segment to have
nonzero twist for bearingless rotors. [deg]

t1G400 will obtain these values from the (E) block if the E159 preprocessor is

invoked.
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(G)

Location Item
8 c

9 —_
10 Bg

11 SB

12 AB/AB

Description

Blade chord if chord is constant. If a non-
zero value is entered here (G)8 will be used
instead of the chord distribution of table
(R)421. [ft]

Intentionally blank.

Built-in precone angle. An identically zero
value denotes a rotor blade articulated in
flapping in which case the first mode input
(from E159 or direct input) will be a calcu-
lated "rigid-like" mode but will be discarded
in favor of an analytic rigid flapping mode
regardless of any root spring entered in
(E)696; similarly, a finite nonzero value
signifies a nonarticulated blade with built-
in precone, see (D)1. [deg]

Built~in prelead angle. An identically zero
value denotes a rotor blade articulated in
lead-lag in which case the first mode input
(from E159 on direct input) will be a calcu-
lated "rigid-like" mode but will be discarded
in favor of an analytic rigid lead-lag mode
regardless of any root spring entered in
(E)716; similarly a finite nonzero value
signifies a nonarticulated blade with built-
in prelead, see (D)2. [deg]

"Direct”" value of pitch-flap coupling
(=A8/AB). A nonzero value will suppress

a calculation of this quantity from the
inputted pitch-horn/push-rod geometry, see
(6)17, (G)18. It will also suppress the
printout of the push-rod force harmonic
analysis. Since this option pitches the
blade in proportion to the blade root shape,
(G)12 doesn't function for flatwise canti-
levered modes. A positive value is flap-up,
pitch-up. [ND]
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(G)

Location

13

14

15

16

17

Item

A9/ A8

8
Bpr

NDEL31I

NDEL30

IpR

Description

Pitch-lead coupling forward. A positive
value represents lead-pitch up. This entry
is for rigid lead-lag only. The following
constraints must be met to enable (G)13;
(D)34#0., (G)11=0., (C)14=0., (C)15=0. Sece
(D)35 for edgewise bending mode pitch
coupling values. [ND]

Built-in elevation angle (from horizontal)
of push-rod attachment point, measurable when

%75 = 0. ldeg]

The center of thls segment number is the
inboard attachment point of pitch input
structural members (pitch horn, feathering
cuff, or torque tube) to blade spar. 1If
(G)16>0., (G)15 will default to 1.0. For
redundant torque tube analysis, (C)15=1.,
(G)15 should be set to (C)l6.

The center of this segment number is the
outboard attachment point of pitch input
structural member to blade spar. Note that
if this pitch input member 1s attached to the
blade spar at a single point (cantilevered
configuration as for a typical articulated
blade with a pitch horn) NDEL3l and NDEL30
must both be inputted with the same appropri-
ate value. For bearingless rotor (C)15=1l.
applications (G)16 serves the additional
function of defining the outer limit of the
flexbeam; this limit 1is taken as the inner
boundary segment (G)16. 1If (C)15=1., the
torque tube attaches to the center of (G)16.
When (C)15=1., (G)16 must be <l1l.

Radial location of push-rod to pitch input
structural member attachment point. (G)12
must be zero to enable use of this entry for
pitch-flap coupling. [in]
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(G)

Location

18

19

20

21-50

Item

Y10PR

SNpp

USL

Description

Location forward of feathering axis of pitch
input point (pitch link to pitch horn point).
Note that input items (G)15-(G)18 together
with the input modal data provide the
geometric data from which pitch-flap, and
pitch-edge couplings are calculated. These
calculations are bypassed if either of loca-
tions (G)16 or (G)18 are inputted identically
zero. (G)12 must be set to zero to enable
use of this entry for pitch-flap, pitch-edge
coupling. For a redundant flexbeam analysis,
(€)15=1., |(G)18] must be nonzero. [in]

Input (G)19-21 used only for teetered rotor ((S8)5=1.)

Feathering bearing segment number. Segments
1 thru SNppg are fixed in torsion for the
pseudo-torsion mode (but not necessarily for
the elastic modes).

Hub undersling distance. This 1s the
distance from the teeter hinge to the hub
(and rotor) apex. Positive for an undersling

rotor [in]

Intentionally blank.
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(N)

Location

2-4

10

11

12

15-24

Item

pend

TPAH

Z10PAH

Description

Number of blade appended pendular vibration
absorbers activated per blade, maximum of 2.

Intentionally blank.
5-24 Data for pendular absorber No. 1 (see V-

block for pendular absorber initial
conditions)

Radial location of pendular absorber hinge
attachment. [in]

Location of pendular hinge point in direction
normal to the section chord (+ upward).

[in]

Pendular absorber arm length (i.e., distance
from hinge point to mass center). [in]

Mass of pendular absorber. [lb-sec?/ft]

Rotary inertia of pendular absorber about the
hinge point. [lb-sec2-ft]

Discrete rotary spring restraining the
pendular absorber about the hinge point.
[ft-1b/rad]

Rotary damping about hinge point. [lb-
sec-ft]

Frictional moment about the hinge point.
[1b-ft]

Intentionally blank.
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(N)

Location

13

14

25-49

Item

PA

Opa

Description

Integration frequency for the pendular
absorber. This frequency should be close to
the natural frequency of the absorber.
Default value is calculated from the inputted
mechanical properties. [ND]

Built-in (+, nose up) pitch angle, relative
to section chord line for the pendular
absorber hinge axis. [deg]

Repeat of locations (N)5 through (N)24, but
for the second pendular absorber. See V-
block for pendular absorber initial condi-
tions,
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(R)

Location

1-20

21-40

41-60

61-80

81-100

101-120

121-140

141-160

161-180

Item

TAx

™

tH(EDp

t(EDg

tH(1/e)g

Description

Nondimensional blade segment lengths, 1in
order from root to tip, minimum of 5, maximum
of 20 values, starting from the offset loca-
tion. Accuracy is generally improved if the
last segment is small (<0.03). [ND]

Mass of each blade segment.
[1b-sec?/ft]

Flatwise bending stiffness evaluated about
bending neutral axis. [1b-in?]

Edgewise bending stiffness evaluated about
bending neutral axis. [lb-in?]

Section modulii for flatwise bending, root to
tip. [in3]

Section modulii for edgewise bending, root to
tip. [in3]
Thicknesswise mass radii of gyration of blade

segments about the chordwise axis, root to
tip. [ND]

Chordwise mass radii of gyration of blade

segments about an axis perpendicular to the
chord line and through the elastic axis, root
to tip. [ND]

Tension carrying area polar radii of gyration
about elastic axis, root to tip. [ND]

1G400 will obtain these values from the (E) block output from the EI59 preproces-
sor if it is run simultaneously with G400
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(R)

Location

181-200

201-220

221-240

241-260

261-280

281-300

Item

Y1065

8y sEA

Z5EA

bz gpp

Description

Distances from elastic axis forward in the

chordwise direction to airfoil section mass
centers for each segment, root to tip. [ND]

Distances from elastic axis 'upward" in

thicknesswise direction to airfoil section
mass centers for each segment, root to tip
(presently inactive). [ND]

Distances forward in in-plane (yg) direction
from the (extended) root pitch axis to the
built-in elastic axis for each section
(defined herein as the locus of section shear
centers). [ND]

Built-in in-plane elastic axis offset change
over each segment (i.e., the difference in
nondimensionalized y.p, between the two ends
of a segment) table. This item is used to
determine the chordwise (forward) structural
sweep angle distribution; if all values of
this distribution are input as zero, the
sweep angle distribution is computed inter-
nally using numerical methods from the offset
data (R)221-(R)240. [ND]

Distances in out-of-plane (zs) direction from
the root pitch axis to the built-in elastic
axis (see above items (R)221-(R)240), posi-
tive in the normally thrusting direction.

[ND]

Built-in out-of-plane elastic axis offset
change per segment table. The comments made
for A§5EA apply for this item (except that it
is for the out-of-plane sweep). [ND]
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(R)

Location Item
301-320 EB
321-340 EBZ
341-360 /M
_ 6
361-380 Ba
0
381-400 By

Description

Torsional stiffness (to be multiplied by
twist rate squared), as defined in Ref. 18.
[1b-ft"]

Torsion to edgewise elastic coupling
stiffness (to be multiplied by twist rate),
as defined in Ref. 18. [1b-ft3)

Constants relating torsional moment to
torsional stress, root to tip. Default is 1
if all values are entered as zero. If the
default is used, this means that what the
code prints out as torsional stress is really
the torsional moment. [in~3]

Aerodynamic built-in nonlinear twist (at the
center of each segment) angle distribution,
root to tip. Since collective angle is
defined at the 75% span location, 6,4

should have a zero value at 75% span. Should
the structural twist angle distribution
differ from 6p,, the appropriate data

must be loaded into locations (R)381-(R)100;
otherwise, 8, will be used for both
aerodynamic and structural applications,

(G)7 is ignored if nonzero values are entered
in this table. [deg]

Structural built-in nonlinear twist angle (at
center of each segment) distribution, root to
tip, if different from aerodynamic twist.
(G)7 is ignored if anything nonzero is
entered in this table. If (R)381-400 is
input then (R)361-380 must be input. See
remarks above for aerodynamic built-in twist,
locations (R)361-(R)380. [deg]
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(R)

Location

401-420

421-440

441-460

461-480

481-500

501-520

Item

AD

§10c/4

Descrigtion

Built-in (structural) twist angle change over
each segment, root to tip. (i.e., the
difference in twist between the two ends of a
segment). Note that this item is used
directly to define the built-in twist rate
distribution, 8'gg; if all values of this
item are input as zero, the twist rate dis-
tribution is computed internally using
numerical methods from the input twist angle
distributions, locations (R)361-(R)380 or
(R)381-(R)400, as appropriate. [degl

Blade chord at center of each segment (use
for nonconstant chord blades only). For
constant chord blades, use (G)8, root to tip.
Nonzero (G)8 will override this table. [ft]

Distances from elastic axis forward to
airfoil quarter chord positiom, root to tip.
(nD]

Aerodynamic built-in sweep angle distri-
bution, positive aft. [deg]

Blade airfoil section spanwise skin friction
drag coefficient, for use with the radial

flow, swept airfoil option, (A)62=1. [ND]

Distribution of edgewise nonviscous
structural damping ratio. These entries
provide hysteresis damping proportional to
the local edgewise moment. Used when
(p)30=2. [ND]
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(R)

Location

521-540

541-560

561-580

581-600

601-620

621-640

Item

(Control)

Description

Distribution of explicit airfoil shape
similarity index for each segment for use
with the unsteady stalled airloads option,
(A)64=2. A zero value denotes a default
quasi-static airloads modeling whereas a
value of (1. through 6.) denotes respective
unsteady stalled airfoil similarity with the
following sections. O.=suppresses a-A-ay
method at this section.

1.-3.= inactive
4.= NACA 0012
S.= SC1095

6.= 1inactive

Intentionally blank. -

Incremental lift coefficient ACQ coefficient
to be added to the airfoil tables. [ND]

Incremental pitching moment coefficient, ac_,
to be added to the airfoil tables. [ND]

Distances from reference (elastic) axis
forward to neutral axis of tension carrying

area for each segment, root to tip. [ND]

Intentionally blank.
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(s)

Location Item

1 CASE

2-4 —_—

5 (Control)
6 (Control)
7 —_—

8 Ay

9 NF

Description

Case number (can be any noninteger, for
labeling purposes).

Intentionally blank.

1.=teetering rotor, only if two-bladed. See
(6)3, (G)19, and (G)20.

Make nonzero (l.) to print the modal
integration constants used to a limited
extent in the time-history solution.

Intentionally blank.

Azimuth increment used in the numerical
integration of the dynamic equations.
Usually, 30./F .  where F_ .  is the largest
natural blade frequency (cycles/rev) of (D)4-
(D)15. To minimize computer time (S)8 should
be as large as possible. [deg]

Number of "flap trials" (i.e., maximum number
of rotor revolutions for which the blade time
history will be computed in an attempt to
obtain convergence to periodicity). 1If a
transient response is desired for only a
portion of one rotor revolution the program
will compute a time history solution for any
nonzero fractional Ny value (<1.) imput.
Normally Np is input as an integer value.

An identically zero value will cause the

" time-history solution to be bypassed entire-

ly. Usually an input value in the range of
7.-10. is sufficient for helicopter applica-
tions requiring convergence to perodicity.
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(s)

Location

10

11

12

13,14

15

Ay

Item

print

(Control)

(Control)

Description

Flapping tolerance to within which the
aeroelastic/dynamic responses must repeat

on successive revolutions in order for the
motion to be considered converged to period-
icity. (Generally use .00l to .002). Flat-
wise and torsional modal displacements and
velocities are compared to this tolerance.
Edgewise displacements and velocities are
compared to €p as well, except when the
blade is cantilevered edgewise and articu-
lated flatwise. Then for the highest edge-
wise mode alone, periodicity is checked using
5%ep. (S)10 should be set to a small
nonzero value for transient analyses. [ND]

Azimuth increment used to present printed
output of various pertinent aerodynamic,
dynamic, and elastic load distributions as

well as aeroelastic responses and stresses.
This input quantity should be an integral
multiple of location (S)8. [deg]

Make nonzero (1.) if the total (transient)
time-history is to be output (i.e., responses

calculated before convergence to periodicity
is obtained). If a major iteration is
performed ((A)41>0) and succeeds, all of the
final rotor revolutions of the final major
iteration are printed. If major iterations
fail, only the last rotor revolution of the
last major iteration is printed. When (8)7=0
the rotor initial conditions at the initial
azimuth are always printed regardless of
(s)12.

Intentionally blank.

Make greater than zero (1.) for all cases
wherein new blade modal data are to be input.
Program automatically sets this control
number to (-1.) after each loading of modal
data. Set (E)1195=0 when (S)15>0.
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(s)

Location

16-20

21

22

23

24

25

26

27-31

32

Item

(Control)

(Control)

(Control)

(Control)

(Control)

A“pplot

(Control)

(Control)

Description

Intentionally blank.

Blade stress calculation method
0.=integrate forces on blade to evaluate
stresses (recommended option)

.=superpose modal deflections (strains) to
evaluate stresses

Blade number for stress calculations
Default is 1.

Make nonzero (l.) if the modal responses and
hub shears and moments are to be (negative)
Fourier analyzed and output after periodicity
has been obtained. Must be set to one if
coupling to F389 is desired so that flapping
harmonics may be transferred to F389. See
(s)52.

Input nonzero (l.) to (negative) Fourier
analyze and output harmonics of flatwise
and edgewise bending stresses, see (S)52.

Input nonzero (l.) to (negative) Fourier
analyze and output harmonics of torsional

stresses, see (§)52.

Azimuthal increment used to form the data

strings for plotting purposes and for use
with the transient spectral stability

‘analysis (input locations (S)41 through

(s)50). This input quantity should be an
integral multiple of location (S)8. [deg]

Spanwise segment numbers for which stress
data are to be saved for plotting (or TSSA)
purposes (max number of values = 5.); see
Ref. 17 for SA version plotting.

Unit code number of file into which the saved
time data strings are to be stored for subse-
quent plot (or TSSA) purposes (default =

12.)
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(s)

Location

33

34

35

36-40

41

42-44

Item

(Control)

(Control)

(Control)

SR

(Control)

Description

File unit number control for interaction with
the F389 variable inflow program.
0.=all inputs and outputs are via card images
(file units 1 and 5).

.=inputs from file unit 14, outputs to files
13, 16 and 23.

File unit number control for use in saving
end conditions for use as initial conditions
in subsequent runs (or restarting when using
the F389 code).
0.=end conditions only are output via card
images (file unit 1).

.=end conditions and restart initial condi-
tions are input to and output from unit 26.

Stress calculation suppression option. Make
value equal to (0.,1.,2.) to cause suppres-
sion of stress calculations for (nonoutputted
responses only, nonoutputted responses and
all transient responses, all responses),
respectively.

Intentionally blank.

Sample rate for Transient Spectral Stability
Analysis (TSSA) (see Ref. 17 for a discussion
of this technique). Every (sr)th point in a
transient time-history is saved for use in a
TSSA. A zero value bypasses the TSSA.
Channel selection for each of three available
for the TSSA. The channels available are:
1-5, flatwise bending modal responses; 6-8,
edgewise bending modal responses; 9,10
torsion modal responses; 11,12,13 blade tip
vertical, inplane, and torsion deflections,
respectively. In additiom, channels 14-28
are available for stability analysis of the
blade stresses as selected by input locations
(s)27-31. Thus, channels 14-18 contain the
five flatwise stresses, channels 19-23
contain the five edgewise stress, and
channels 24-28 contain the five torsion
stresses. 3 values max.

129




(s)

Location

45

46

47

48

49

50

51

52

53-59

60

Item

“L

“y

(Control)

(Control)

NeRrEQ

(Control)

Description

Intentionally blank.

Lower bound of frequency band chosen for
TSSA. [ND]

Upper bound of frequency band chosen for
TSSA. [ND]

Initial estimate of percentage of total
transient data used in each time displaced
data sample block in TSSA. [ND]

Number of transient (time displaced) Fourier
coefficient calculations made to establish
modal damping in TSSA; maximum value is 200.

Number of desired resonant frequencies to be
extracted from frequency band defined by
input locations (S)46 and (S)47.

Intentionally blank.
Make nonzero (l.) to analyze and print

harmonics of spanwise airloads in negative
cosine Fourier series. See (S)23-25.

Intentionally blank.

(5)60-(8)70 control calculation of hub
impedance matrix and excitation vector

Multiple of number of blades to determine the
harmonics of hub motion and resulting loads
and impedance, thus, resulting frequency, w,
would be w=mbQ.
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(s)

Location

61

62

63

64-66

67

68-69

70

Item

Aa

Aa

NSTAVB

ISTAVB

(Control)

A%uc

Description

Perturbational amplitude used for
incrementing each of the components of linear
hub acceleration (x,y,z) to calculate the
impedance matrix numerically. [ft/sec?]

Perturbational amplitude used for
incrementing each of the components of
angular hub acceleration (ex,ey,ez) to
calculate the impedance matrix numerically.
[rad/sec?]

Number of blade radial stations for which
harmonics of vibratory stresses are to be
included in augmented impedance matrix, maxi-
mum of 3.

The (NSTAVB) radial station segment numbers
for utilizing vibratory stresses in the
augmented impedance matrix.

Make (1.) to include vibratory push-rod loads
in the augmented impedance matrix.

Intentionally blank.

Perturbational amplitude used for increment-

ing the components of higher harmonic control
(locations (A)33 through (A)38) to calculate
the augmented impedance matrix numerically.

A zero value will retain the inputted higher
harmonics of pitch control, but will suppress
this portion of the impedance matrix calcula-
tion. [degl

131




(s)

Location

71-98

99

Item

(Control)

Description

Intentionally blank.

Location used to end a case or series of
cases. Input (+1.) to end the Loader

format data block for the case defined by

the loader data and load additional cases

at the conclusion of that case. Make (-1.)
to end the loader data and read no further
cases. In both instances the combined alpha-
meric code and word count, ZZ NN (see begin-
ning of this section) should be either (S1)
or (-1). Note: this entry must appear sing-
ly on an input card, and that card must be
the last card for the case. This card image
must have one of the following forms (with
Al, 11, 14, F12.0 format):

s1 99 1.
s§1 99 -1,
-1 99 1.
-1 99 -1.
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(V)

Location

1-20

21

22

23

24

25-40

41-45

46-48

Item

Description

Intentionally blank.

Hub Euler roll (helicopter) angle used to
orient hub relative to gravity vector.
Positive is right-hand rule rotation about
the negative x; axis. Since Euler angles may
be large, the order in which they are applied
is important; in G400 the order is Yy, By
then ¢y. [deg]

Hub Euler pitch (helicopter) angle used to
orient hub relative to gravity vector.
Positive is rotation about the Y, axis
(right-hand rule). [deg]

Hub Euler yaw (helicopter) angle used to
orient hub relative to gravity vector.
Positive is right-hand rule rotation about
the negative z, axis. [deg]

Initial condition on rotor azimuth. [deg]
Intentionally blank.

Initial conditions on ith flatwise bending
mode rates (blade no. 1); max value = 5.,
see (D)4. ([ND]

kth

Initial conditions on edgewise bending

mode rates (blade no. 1); max value = 3.,
see (D)10. [ND]
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(V)

Location

49,50

51

52

53

54

55

56-60

61-65

66-68

§Pl(1)

¢ (1)
Bp

Description

h torsion mode rates

(blade no. 1); max value = 2., see (D)1l4.
[ND]

Initial conditions on jt

Intentionally blank.

Articulated rigid flap rate initial condition
for rotors with a rigid flapping mode (blade
no. 1). [ND]

Articulated rigid lead rate initial condition
for rotors with a rigid lag degree-of-freedom
(blade no. 1). [ND]

Initial flap rate of pendular absorber number
one on blade no. 1, see N-block (also see
(V)94 for initial conditions on blade 2 of a
teetered rotor). [ND]

Initial flap rate of pendular absorber number
2 on blade 1, see N-block (also see (V)95 for
initial conditions on blade 2 of a teetered
rotor). [ND]

Intentionally blank.

Initial conditions on ifP flatwise bending
mode deflection (blade no. 1); max value = 5,
see (D)4. [ND]

Initial conditions on kEP edgewise bending
mode deflections(blade no. 1); max value = 3.
see (D)10. [ND]
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(v)

Location Item Description
69,70 dej Initial conditions on jth torsion mode

deflections(blade no. 1); max value = 2.
(blade no. 1), see (D)14. [rad]

71 — Intentionally blank.
72 B Articulated rigid flap angle initial condi-

tion, positive upward (i.e., in the direction
of the Z,, axis). [rad]

73 s Articulated rigid lead angle, positive
forward (i.e., in the direction of rotation).
[rad]
74 Bgl) Initial flap angle of pendular absorber no. 1
1 on blade no. 1, see N-block. [rad]
75 Bél) Initial flap angle of pendular absorber no. 2
2 on blade no. 1, see N-block. [radl
76-80 — Intentionally blank.
81-115 Initial conditions for blade 2 for a teetered

rotor. Same format as (V)41-(V)75. See
(s)2, (s)s.
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I1II. Blade Modal Input Data

Included in this data are the radial distributions of the blade (uncoupled)
flatwise, edgewise and torsion normal mode shapes and their derivatives. These
quantities are either calculated internally by the (activated) E159 branch of the
program (and not input as part of the input data) or are explicitly input from
some previous source. This previous source can be either the output from the

E159 branch itself (from some previous run), or an equivalent analysis. 1In
" either case, these data are then input in the following card image format:

NFM NEM NTM NSEG (414)

subsequent cards:

F(i) F(i+l) F(i+2) F(i+3) F(i+4) (F18.0, 4F12.0)

where: NFM, NEM, and NTM are, respectively, the numbers of flatwise bending,
edgewise bending and torsion normal modes whose mode shapes and derivatives are
to be input. See (D)1-3 to limit the number of those modes actually used to be a
subset of NFM, NEM and NTM. NSEG is the number of blade spanwise stations for
which the input modal data are defined. F(i) are the modal functions listed
below (defined at the i'th spanwise stations). Five entries per card are made
for each F function input for NSEG total entries. The modal functions must be
loaded in the following order (note that the natural frequencies for the
following modes are entered in locations (D)4,10,14):
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(NSEG values, root to tip)

ll)
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IV. Variable Inflow Data

If location (A)65 of the Loader block of operational data is nonzero, the
following block of variable harmonic inflow is input:

card #1: (NHARML (13)
card #2: (// XLAMO(1) _ (F14.0)
card #3: (XLAMC(I,I) XLAMC(I,2)... (5F14.0)

card #3 + (NHARML/5):

XLAMS(I,1) XLAMS(I,2)... (5F14.6)

___

Subsequent cards repeat the pattern wherein "I", the spanwise station index,
varies from 1 to NSEG. NHARML is the number of harmonics of inflow to be input,
and XLAMO(i), XLAMC(i,n) and XLAMS(i,n) are, respectively the zeroth, n'th cosine
and n'th sine components of harmonic inflow at the i'th radial station, wherein a
positive Fourier series is assumed. The inflow is defined positive up and has
the units of ft/sec.
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V. Rotor Inflow Program F389 Required Data

The UTRC Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis
(F389) is described in detail in Reference 3. This analysis determines the
induced velocities of a rotor if provided with.the rotor flight condition,
airfoil lift curves shapes, blade motion, and geometry. G400 can be linked to
F389 to provide the data as discussed in Reference 3. The typical run sequence
is to execute G400 using it's internal inflow model (constant or Glauert), while
trimming to a specified flight condition. Upon G400 convergence, the airfoil
data, blade data, and aeroelastic blade responses are automatically transferred
through various files to F389. However, F389 requires a small amount of card
image input data.

The user may optionally save the G400 aeroelastic rotor conditions for use
in the second pass through G400 ((S)34>0.). F389 calculates induced velocity
harmonics and writes this data to a file. Then, G400 is executed a second time
retrieving that variable inflow file. If an initial condition file was generated
and saved during the previous pass through G400, it can also be retrieved and
used to speed convergence.

Entry (S)33 triggers G400 to save blade geometric data, flapping harmonics
and airfoil data on units 16, 13 and 23 respectively for subsequent use by F389.
Entry (S)34 enables G400 final conditions to be written upon completion of the
first G400 pass and to be read as initial conditions at the beginning of the
second G400 pass. (E)27 will trigger G400 to write modal data to unit 1 to be
subsequently transferred (by JCL) into G400 as unit 5 data, during the second
G400 pass. Upon completion of F389, G400 will read the resulting variable inflow
harmonics if (A)65>1.

It should be emphasized that some control parameters in the G400 loader must

be changed between the first and second G400 passes. The following tables,
adapted from Reference 3, summarize these G400 entries.
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TABLE 1II

LOADER DATA TRANSFERRED FROM G400 TO F389

Entry Description First Pass Later Passes
(A)3 Tip Loss Factor .97 (typically) 1.0
(A)29 Inflow Ratio proper values 0.0

(or (A)30-32
when (A)68>0)

(A)60 AY F389 multiple of (S)8 same

(A)65 Load Variable Inflows 0. 1.

(A)66 Use Variable Inflows 0. 1.

(s)23 Output Blade Responses 1. 1.

(s)26 Write Plot File Unused when (8)32=0 AY optionally
(s)32 Unit No. for Plotfile 0. as appropriate
(s)33 Mode of data transferred 1. 1.

with F389
(s)34 Create/Use Initial 1. optionally 1.

Condition File

As previously mentioned, F389 not only receives input from files but also a small
volume of data via cards. Using the JCL of Reference 3, the data is transferred
through files to F389 with no user interaction, aside from properly setting the
entries in the table above. The following table summarizes the additional card
data required by F389 aside from the automatically transferred data. See Refer-
ence 3 for details of card formats.

TABLE IIl

REQUIRED F389 DATA NOT AUTOMATICALLY
TRANSFERRED FROM G400

Entry Item Brief Description
4 DPST - Azimuthal increment DPSIK15°,

360/(No. of blades * DPSI) must be an
integer. [deg]

23 STNS No. of blade segments for inflow
solution (not necessarily same as
G400 segments) max=15 but usually set

to 9.0.

24-38 RS Radial coordinates of segment
centers. These are very sensitive
entries, see Reference __ . [ND]

88 XLINK Set to 1.0 to couple with G400.
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Entry Item Brief Description

185 XNH Number of harmonics of induced velo-
city to be printed. Must not be
greater than 180/DPSI. Max=12.

187 RUN . Set to 1.0

189 REV Number of wake revolutions for hover
set ? 8.0 revs
p=.0-.05 set = 6.0 revs
u=.05-.15 set = 4.0 revs
p=.15-.20 set = 3.0 revs
u?.25 set = 2.0 revs

200 TRUNC Angle of rollup of tip vortex.

TRUNC/DPSI must be an integer.
Usually TRUNC=15.

202 RCORE Tip vortex filament core radius.
" Usually RCORE = .1 x chord. RCORE
must be less than .5% outer segment
length. [ND]

203 RCOREIL Vortex filament core radius for fila-
ments inboard of tip. RCOREI must be
less than ..5% smallest nontip seg-
ment length. [ND]

206 W10PT Set to 1.0 since flapping harmonics
are provided by G400.

210 PUNCH Set to =1.0 to "punch" induced axial
velocities

221 DEBUGP Set to 1.0 to trigger intermediate
printout

227 HARMOP Usually set to zero

366-380 THICK Not used

All other F389 entries typically used are automatically transferred to F389 by
G400. At the conclusion of a G400-F389-G400 sequence, the user should compare
the thrust coefficient of the last G400 pass with that of the first pass. If
they are significantly different, then more passes between F389 and G400 are
required to achieve convergence.
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VI. Multiple Case Runs

The above described data setup defines the correct ordering of required data

blocks for a general G400 case, or for the G400 portion of a more complicated
multi-program run stream. When multiple cases are run (while remaining within
the G400 portion of the run stream) the second and subsequent cases utilize most
of the data input for the first case. The following rules apply to the running
of multiple cases:

Airfoil data is loaded only for the first case; all subsequent cases within
the run use the same tabular data, if analytic data is not used.

Only those items within the operational generic (loader) data which are to
be changed from case to case need to be input.

Item (S)99 of the operational data controls the running of subsequent cases;
a (+1.) value causes a subsequent case to be loaded whereas a (-1.) value
terminates the computer run after the current case.

Unless otherwise specified (by a +l1. value for operational data item (S)15)
the input modal array data block is used for all cases within the run.

Similarly, unless otherwise specified (by a +l. value for operational data
item (A)65) and appropriate additional variable inflow data, the input
variable inflow data block is used for all cases within the run.

Operational data items (S)15 and A(65) discussed above are both automatical-
ly set to zero at the conclusion of the data input for every case.

Terminal conditions on the blade azimuth angle, item (V)24, and on the
degrees-of-freedom, items (V)41-50 and (V)51-70, for any case are carried
over as initial conditions on these quantities for the subsequent case.
Thus, for some applications, e.g., investigations of unstable responses, it
would be appropriate to reinitialize these items on the subsequent cases.

When solution flow leaves the G400 portion of a complex run stream, the
ability to carry over terminal conditions (as initial conditions for a sub-
sequent case) and/or any other quantities associated with trim is lost.
However, a need still exists for preserving these initial conditions for
subsequent reentries to the G400 portions of the run stream. As per loader
locations (S)34 these initial conditions are written to and read from the
file indicated in this input location.
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VII. Initial Conditioms

The initial conditions for a G400 run can be specified via the loader block
input or by triggering the code to read the initial conditions from a file, which
. was created from a previous run. If the initial conditions are read from a file
they override values input by the user in the same locations in the loader block.
End conditions (to be used as initial conditions for a subsequent rumn) are also
output by the ENDCON subroutine onto card images in the punch file (unit 1) in
loader block format. The user could merge this data with the other loader block
data to restart a run. Alternately, the data can be transferred via file (unit
26) as activated by (S)34) eliminating the need to modify the basic loader data
file. This can be useful for cases where iteration is done between codes in one
job stream (i.e., F389). This separate file is written onto unit 26 by the
RESETQ subroutine and contains a string of data stored with an (8E15.6) format.
The following list indicates what data are stored on this file.

(A)21-38, (A)65, (A)66, (A)351-399, (A)60, (S)33, (V)21-120

Unsteady Stalled Parameters Needed for Restart

It should be noted that a separate file is used to transfer initial and end
conditions for use with the unsteady stalled aerodynamic modeling ((A)64=2).

The subroutine SETVAL saves the end conditions on inflow angle and
components of the unsteady decay parameter (o) on the unit specified in
(A)305. The file is written as 5F10.5 and contains the following information:

((PHISAV(I,J), J=1,3), XALFW(I), YALFW(I), I=1,NSEG)
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VIII. Input/Output File Unit Numbers

The following list indicates which logical unit numbers are used by G400 for
the input and output of data. No attempt is made here to specify how the job
control language (JCL) is to be set up for the execution of G400. The user must
make sure that the appropriate units are available to G400 for input and output.

Unit Input/Qutput Relates to Function

5 Input (A)63,(8)15,(E)1159 Obtain airfoil data, loader
block data, mode shape data

14 Input (A)65,(s)33 Input variable inflow data

26 Input/Output (s)34 Input initial conditions from
file. Output end conditions
to same unit

(A)305% Input/Output (A)305 Input initial conditioms for
unsteady aero calculations.
Output end conditions for same
to the same unit

1 Output (E)27,(E)1195 Output E159 mode shapes and
ENDCON generated end conditions
to the punch file (unit 1)

(s)32 Output (s)32,(s)26 Save time-histories for
plotting (or TSSA) purposes

Default is file unit 12.

6 Output - All printed output

*Care must be exercised if the user wants to save initial conditions files, since
the code will overwrite the initial conditions with the end conditions (on the
same file).
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G400 Data File Output

The G400 program outputs to a number of data files for use with other

programs and for restart purposes. They are listed here for completeness. Refer
to an above subsection for the logical unit numbers which need to be defined in
the job control language for creation of this output.

1.

End conditions at the completion of a time history analysis (normal
completion only). The end conditions are written to the same file used to
read in initial conditions (written in RESETQ subroutine). This file can be
read into a subsequent run without modification of the input loader block
data.

End conditions, for unsteady aero calculations, at the completion of a time

history analysis (normal completion only). This file is written only if
(A)64=2. The end conditions are written to the same file used to read in
initial conditions.

Mode shapes generated by E159 and end conditions at the completion of a time
history analysis (normal completion only). The purpose of these end condi-
tions is the same as that for item 1. The end conditions here are written
on card images in loader block format (written by the ENDCON subroutine).

To use these conditions, the card images must be merged into the input
loader block data of a subsequent run.

Plot file containing time history information.
Rotor impedance matrix.

Explicit Wl velocity distributions for F389.
Blade data for F389.

Airfoil data for F389.

Specific I/0 units for this purpose are given below:
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Unit Input/Output

11 Output
13 Output
16 Output
23 Output

Recommended Values

(A)305
(s)32

15
12

Relates to

S(60)

(8)33

(s)23,(s)33

(s)33
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Output explicit Wl velocity
distributions for F389
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IX. General Information to Facilitate Operation of
Program and Improve Efficiency

Aside from the details of the aeroelastic modeling which are covered in
previous sections, and in references 1, 2 and 7, additional considerations exist
in maximizing both the efficiency and accuracy of the implemented numerical solu-
tions of the dynamic equations. This subsection presents material concerning
these numerical methods, and more importantly, ways of dealing with them by
proper input procedures.

Blade Segment Selection

Two decisions must be made in selecting a proper distribution of blade
segment lengths: how many segments should be used, and where segments should be
either sparsely or densely packed. The G400 code incorporates a maximum number
of twenty segments, up from the maximum of fifteen offered in the earlier
versions of G400 (references 1 and 2). Capability to use twenty segments should
not be confused with a general need to use all this capability in every applica-
tion.

Various criteria can be used to guide the program user in making an
efficient blade breakup selection:

1. Generally any one segment should not exceed 15 percent of the span.
This criterion is subjective in that it is based on accumulated user
experience.

2. The segment density should be greatest at the innermost portion of the
blade for the E159 part of the program (uncoupled mode calculations) and
at outermost portion for the G400 proper part of the program. The
requirement for greater blade detail at the root blade portion in the
E159 calculation stems from the fact that here at least for hingeless
rotors the elastic strain energy is most heavily concentrated and has
the most variability. It follows that accurate modeling of the equiva-
lent springs used in E159 is enhanced by a finer breakup here. The
requirement for greater blade detail in the blade tip portion in the
G400 proper calculations stems from the concentration here of inertial
and aerodynamic loadings. The aerodynamic loads are especially subject
to greatest variability at the tip sections.

3. The segment density should be also guided by the specific details of the
blade in question. Any blade portion which has locally concentrated
properties should have greater segment density. Also, segment bounda-
ries should be selected to conform to the geometry inherent in the blade
planform.
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4. With some initial extra effort in the preparatory stage, an efficient
breakup can be used wherein the need for a dense breakup at any portion
of the blade can be relaxed in the G400 proper portion of the code.
This effort consists of first running the E159 preprocessor separately
with a dense breakup to maximize the accuracies of the natural frequen-
cies. Then, various inboard segments are selectively eliminated or
modified from the mode shapes and other distributed data before subse-
quent input to G400 proper part of the code. In this manner the elastic
modeling accuracy is preserved (through retention of the accurate
natural frequencies) while reducing the all over segment count used in
the more expensive G400 proper aeroelastic calculation.

Input of Differentiated Data

The coordinate transformations formulated for G400 require two sets of
spanwise differentiated data which must be explicitly gleaned from the geometry
of the blade design: structural twist rate and structural sweep rate. Although
the G400 code provides for internal numerical differentiations of these quanti-
ties, actual designs often include abrupt spanwise variation which cannot be so
differentiated efficiently. Consequently, the G400 input list includes a direct
input of rate related data, and use of this input is generally recommended for
increased accuracy.

The method selected for input of rate data on these items is based on the
assumption that the rates are constant over their respective segment lengths. To
make the input numbers more meaningful and to minimize data preparation calcula-
tions by the user, the rate data are input as respective changes in the variables
(either twist angle and/or elastic axis offset) over each segment length. Thus,
the actual derivatives are calculated internally by division by each segment
length and the user is freed of this chore. One advantage of this input format
is that the resulting numerical values input provide quick checks of the data.
All such changes can be easily summed to yield the integrated change over the
whole blade, for comparison with input root to tip values of the variables them-
selves.

Temporal Numerical Integration

As discussed in reference 1, temporal integration of the higher differenti-
ated response variables to obtain the lower ones is achieved in the G400 program
using a variant of the Adams integration algorithm. The selected algorithm is
defined by means of the azimuthal integration step size, Ay, and the integration
frequency, W.
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The integration step size should be an integral divisor of 360; a proper
choice depends on the maximum coupled frequency inherent in the various aero-
elastic responses. A reasonable upper limit for Ay is 30 divided by the maximum
such frequency in per rev. Values of Ay greater than this upper limit will
compromise the integration accuracy and, for sufficiently large values, will
cause the computed responses to develop '"numerical" instabilities. As a
corollary, a check on any response which is predicted to be unstable by the
analysis, is to rerun the case with a reduced integration step size to test for
the possibility of the unstable response being merely a numerical instability.

For each response degree-of-freedom a different integration frequency, ®, is
used in the integration algorithm; this frequency is, for each of the elastic
modes, the respective input natural frequencies (locations (D)4-8, (D)10-12, and
(D)14,15. 1In addition to defining modal stiffnesses and integration frequencies,
the input frequencies serve yet another purpose. As noted above, the proper
value of integration step size, Ay, varies inversely with the maximum modal
frequency. Thus, run times (caused by reduced step size) will significantly
increase as any one modal frequency increases. Since any degree-of-freedom
exhibiting a large natural frequency tends to respond quasi-statically, i.e., as
if the acceleration ( q) term were negligible, a reasonable approximation to the
response calculation is to avoid the numerical integration of the "q term entire-
ly and treat the response quasi-statically. This option can be invoked for any
such high frequency mode by input of a negative frequency; a negative sign will
not affect the proper usage of the frequency in the calculation of the dynamic
equations. Note that this optional response calculation can be invoked singly or
in combination for any of the elastic modal responses (negative values in any of
locations (D)4-8, 10-12, and 14-15).

State Vector Initial Conditions

For many applications useful results can be obtained from the G400 code with
little or no attention paid to the input of initial conditions (all elements of
the (V) Loader block and locations 30-32 of the (A) Loader block). Two situa-
tions exist, however, wherein appropriate and accurate initial conditiomns should
be input to maximize the usefulness of the analysis.

Calibrated Excitations of Transients

For those cases wherein aeroelastic instabilities are to be investigated
using the time-history solution, the initial conditions provide a convenient
method for exciting the transient responses in an unambiguous and calibrated
manner. This can be accomplished by selecting a critical degree-of-freedom and
assigning to it a rate initial condition ((V) loader block locations 41-50) equal
to its (nondimensional) natural frequency times an appropriate amplitude (in
radians).
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Restart Calculations

For some cases involving time-history calculations, insufficient rotor
revolutions may have been selected to define the dynamic phenomenon under study,
and a continuation of the case is required. To this end, use should be made of
the built-in feature of the G400 code to record end conditions on the control
angles, components of induced velocity, and the blade deflection state vector.
The code provides for automatic output of punched card images at the end of the
run and, if Loader location (S)34 is input with a nonzero value for file unit
number, to that file as well. Note, however, that these end conditions will be
so recorded only if the run makes a normal completion. Premature aborting of the
run because of excessive response amplitudes, for example, will suppress this
output. Finally, once the end conditions are recorded they can then be used as
initial conditions for subsequent runs.

Hub Force and Moment Trim

Operation of the trim or major iteration feature of the program is
controlled by input locations (A)4l through (A)43 and (A)45 through (A)52. The
main control for the major iteration is location (A)41, the number of major
iterations, Myp. A zero value causes the major iteration feature to be
completely deactivated. On the basis of past usage, a reasonable range for this
input appears to be from 5 to 10, depending on the tightness of the convergence
tolerances selected and the '"goodness'" of the initial guesses on the control
parameters. Convergence of the major iteration is adversely affected by any lack
of convergence of the responses to periodicity within each trim iteration and by
incursion of the rotor into a significantly stalled flight regime. Should a
major iteration fail to converge within any one run the last used control angles
and initial conditions on response variables are generally available in output
card image form and/or partially in the output printed records of each major
iteration for use in subsequent major iterationms.

The trim iteration is operationally flexible as to what hub loads it will
drive to requested values. Generally, the various requested hub loads, 1lift,
propulsive force, pitching and rolling moment are activated in turn by specifying
nonzero values for each of their respective tolerances. Specifically, the
following table describes the optional combinations of hub loads and rotor shaft
angle available with the G400PA trim capability.

150




TABLE IV

SUMMARY OF OPTIONAL BASIC TRIM COMBINATIONS

. . Prop. Pitch. Roll 9 A By o
Option Lift Force Moment Moment .75R s s ]
1 S U U U v F F s, (V)
2 S S U U v F F \'
3 U U S S F v v s, (V)
4 S U S S ' v \' S, (V)
5 S S S ) v \' v \'
6 U U S U F v F s, (V)
7 S U S U v v F s, (V)
8 S s S U v \' F v

where:
F: Control parameter kept fixed
V: Control parameter varied
S: Trim parameter specified and trimmed to
U: Trim parameter unspecified and ignored
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PROGRAM OUTPUT DESCRIPTION

The complete printed output generated by the G400PA program can be
classified into the following six major categories:

I. Listing of Input Data

II. Uncoupled Blade Mode Calculation

II1. Parameters Calculated from the Input Data
IV. Results of Time-History Solution

V. Impedance Matrices

VI. Transient Spectral Stability Analysis

This section describes the pertinent output associated with each of these
categories. While output will always be generated for the first, third and
fourth categories, output for the remaining categories depends upon the options
selected.

Listing of Input Airfoil Data

A series of pages listing the airfoil data will be generated providing that:
(1) the user inputs a zero (0.) in the "A" array location 63, thereby revoking
the static airfoil option, (2) the user specifies no negative values in the first
airfoil data card image, and (3) the user provides the static airfoil data as
input. A negative value or values on the first card would imply that the
optional suppression of the airfoil data was desired.

If static airfoil data is input, then a listing of this data will be output
for ¢y, c4, and Cnc/4 with the formats shown in sample pages 1, 2, and 3. First,
the aerodynamic section coefficient type is appropriately identified with a
label. Next, if multiple spanwise airfoil data is input, the blade radial
station at which the data is defined is output. This value is nondimensional
with respect to rotor radius. If a single airfoil is to be used for all spanwise
locations, a 1.0 is output in place of the blade radial station to signify that
the data can be used for the entire blade span.

The remaining airfoil data is presented as 12 columns of information (some
of which may be zeros). The output closely follows the input format description
described earlier. Each column represents data at one Mach number. Within each
column, the first line gives the number of angle-of-attack/aerodynamic coeffi-
cient pairs. The second line in the column is the Mach number, and the ensuing
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£ST

CL TABLE

XCEN =
PT. PAIRS
MACH NO.

34 ROWS

X o XXX XXX
XX.X
«XXXX

XXX o X XXX
XX o XXXXXX

XXX X XXX
XX XXXXXX

XXX, XXXX
XX XXXXXX

XXX, XXX
XX XX000X

XXX . X XXX
XX« XXXXXX
XXX X XXX
XX XXXXXX

XXX o X XXX
XX XXXX

XX o XXXXXX

XXX o X XXX
XX o XXXXXX

XXX, XXXX
XX XXXXXX

XXX . XXXX
XX« XXXXXX

XXX XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX . X XXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XX.X XX.X
« XXXX «XXXX

XXX, XXXX XXX, XXXX
XX XXXXXX XX XXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XXo XXXXXX

XXXX XXX.XXXX

XXX,
XX XX.XXXXXX XXoXXXXXX
XXX XXXX

XXX.XXXX XXX.XXXX
XX XXXXXX XX XXXXXX

XXXoXXXX XXX.XXXX
XX XXXXXX XX.XXXXXX

XXX.XXXX XXX.XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XX o XXXXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XX« XXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XX XXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXXo XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XXoXXXXXX

XX.X
« XXXX

XXX X XXX
XX XXXXXX

XXX+ XXXX
XX XXXXXX

XXX.XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX, XXXX
XX XXXXXX

XXX X XXX
XX o XXXXXX

XXX« XXXX
XX« XXXXXX

XXX. XXXX
XX XXXXXX

XXX« X XXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX . X XXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX XXXX
XX« XXXXXX

XXX.XXXX
XX o XXXXXX

XXX XXXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XX.X
<« XXXX

XXX, XXXX
XX XXXXXX

XXX XXXX
XX . XXXXXX

XXX XXXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX, XXXX
XX o XXXXXX

XXX.XXXX
XX XXXXXX

XXX . X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX . XXXX
XXo XXXXXX

XXX XXXX
XX o XXXXXX

XXX XXXX
XX o XXXXXX

XXX XXXX
XX« XXXXXX

XXX. XXXX
XX« XXXXXX

XXX, XXXX
XX o XXXXXX

XXX XXXX
XX+ XXXXXX

XXX. XXXX
XX XXXXXX

XXX XXXX
XX« XXXXXX

XX.X
«XXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XX o XXXXXX

XXX« X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX. X XXX
XX XXXXXX

XXXo X XXX
XX o XXXXXX

XXX . X XXX
XX XXXXXX

XXX.X XXX
XXo XXXXXX

XXX X XXX
XX XXXXXX

XXX. X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XX« XXXXXX

XXX. X XXX
XX XXXXXX

XXX. X XXX
XX« XXXXXX

XXXo XXXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XX.X
«XXXX

XXX.XXXX
XX o XXXXXX

XXX. X XXX
XX XXXXXX

XXX. X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XXo XXXXXX

XXX. X XXX
XX XXXXXX

XXX. X XXX
XX XXXXXX

XXX.X XXX
XX« XXXXXX

XXX X XXX
XX XXAXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX . X XXX
XX XXXXXX

XXX. X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX. XXXX
XX XXXXXX

XXX. X XXX
XX XXXXXX

XXX . X XXX
XX XXXXXX

Sample Page 1.

XX.X
« XXXX

XXXo X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XXX o XXXX
XX« XXXXXX

XXX o X XXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XXXo XXXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXXoXXXX
XX XXXXXX

XXXo X XXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXXo XXXX
XX XXXXXX

XX.X
«XXXX

XXX . XXXX
XX« XXXXXX

XXX XXX
XX XXXXXX

XXX. XXXX
XX XXXXXX

XXX.XXXX
XX XXXXXX

XXX. XXXX
XX X XXXXX

XXX XXXX
XX o XXXXXX

XXXo X XXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX . XXXX
XX o XXXXXX

XXX o X XXX
XX XXXXXX

XXXo X XXX
XX XXXXXX

XXX, XXXX
XX. XXXXXX

XXX« XXX
XX« X XXXXX

XXX. XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX, X XXX
XX. XXXXXX

XXXo XXXX
XX XXXXXX

XX.X
« X XXX

XXX, XXXX
XX XXXXXX

XXX« X XXX
XX o X XXXXX

XXX XXXX
XX XXX XXX

XXX . X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX XXXX
XX o XXXXXX

XXX XXXX
XX XXXXXX

XXX+ XXXX
XX XXXXXX

XXX . XXXX
XX« XXXXXX

XXX X XXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XXX . XXXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX XXXX
XX o XXXXXX

XXX o X XXX
XX . XXXXXX

XXX o XXXX
XXX XXXXX

XX.X
«XXXX

XXX, X XXX
XX o XXXXXX

XXX.XXXX
XX o XXXXXX

XXX, XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX . X XXX
XX« XXXXXX

XXX. XXX

XX XXXXXX

XXX. XXXX
XX XXXXXX

XXX. XXXX
XXo XXXXXX

XXX XXXX
XX o XXXXXX

XXX. X XXX
XX XXXXXX

XXX, XXXX
XX XXXXXX

XXX . X XXX
XX o XXXXXX

XXX XXAX
XX o XXXXXX

XXX . XXXX
XX XXXXXX

XXX . XXXX
XX XXXXXX

XXXo XXXX
XX o XXXXXX

XXX+ XXXX
XX XXXXXX

XXX
«XXXX

XXX . X XXX
XX XXXXXX

XXX . XXXX
XX XXXXXX

XXX X XXX
XX o X XXX XX

XXX. X XXX
XX XXXXXX

XXX. XXXX
XX XXXXXX

XXX X XXX
XX« XXXXXX

XXX XXXX
XX o XXXXXX

XXX. XXXX
XX XXXXXX

XXX o X XXX
X XX.XXXXXX

XXX XXXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XXX XXXX
XX o XXXXXX

XXX« XXXX
XX XXXXXX

XXX XXXX
XX X XXXXX



%eT

CD TABLE

XCEN =
PT. PAIRS
MACH NO.

34 ROWS

X « XXXXXX
XX.X
«XXXX

XXX o X XXX
XXo XXAXXX

XXX.XXXX
XX« XXXXXX

XXX . XXXX
XXo XXXXXX

XXX« XXXX
XX« XXXXXX

XXX . XXXX
XX« XXXXXX

XXX XXXX
XX o XXXXXX
XXX XXXX
XX XXXXXX

XXX XXXX
XX« XXXXXX

XXX o XXXX
XX« XXXXXX

XXX, XXXX
XX« XXAXXX

XXX o XXXX
XX o XXXXXX

XXX, XXXX
XX o XXXXXX

XXX . XXXX
XX« XXXXXX

XXX XXXX
XX XXXXX

XXX o XXXX
XX XXAXXX

XXX o X XXX
XX XXXXXX

XXX o XXXX
XX+ XXXXXX

XX.X XX.X
«XXXX «XXXX

XXX.XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XX XXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX, XXXX XXX.XXXX
XX XXXXXX XX+ XXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXo XXXXXX

XXX XXXX _XXX.XXXX
XX XXXXXX XXoXXXXXX

XXX, XXXX XXX, XXXX
XX XXXXXX XX XXXXXX

XXX.XXXX XXX.XXXX
XX XXXXXX XX XXXXXX

XXX. XXXX _XXX.XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XX.XXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XX XXXXXX

XXX.XXXX XXX XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXXo XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX . XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX  XXX.XXXX
XX XXXXXX XX.XXXXXX

XX.X
«XXXX

XXX o« XXXX
XX XXXXXX

XXX o XXXX
XX« XXXXXX

XXX o XXXX
XX« XXXXXX

XXX XXXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX XXXX
XX o XXXXXX

XXX XXXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XXX . XXXX
XX . XXXXXX

XXX XXXX
XX XXXXXX

XXX . X XXX
XX XXXXXX

XXX o XXXX
XX« XXXXXX

XXX« XXXX
XX« XXXXXX

XXX« X XXX
XX« XXXXXX

XXX« XXXX
XX« XXXXXX

XXXo XXXX
XX XXXXXX

XX.X
«XXXX « X XXX

XXX XXXX XXX XXXX
XX XXXXXX XXoXXXXXX

XXX XXAX XXX XXXX
XX XXXXXX XX.XXXXXX

XXX XXXX XXX X XXX
XX XXXXXX XX XXXXXX

XXX XXXX XXX XXXX
XX XXXXXX XX XXXXXX

XXX, XXXX XXX, XXXX
XX XXXXXX XXoXXAXXX

XXX XXXX XXX XXXX
XX XIXXXX XX XXXXXX

XXX XXXX XXX.XXXX
XX XXAXXX XX XXXXXX

XXX XXXX XXX, XXX
XX XXXXXX XX XKXXXX

XXX XXXX  XXX.XXXX
XX, XXXXXX XX XXXXXX

XXX XXXX XXX XXXX
XX XXXXXX XXoXXAXXX

XXX XXXX  XXX.XXXX
XX XXXXXX XX.XKXXXX

XXX XXXX XXX, XXAX
XX XXXXXX XX.XXXXXX

XXX XXXX XXX XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX XXXX
XX XXXXXX XX.XXXXXX

XXX XXX XXX XXXX
XXo XXXXXX XXoXXXXXX

XXX XXXX XXX XXXX
XXo XXXXXX XXoXXXXXX

XXX X XXX
XX XXXXXX

XX.X

XXX XXXX
XX. XXXXXX

XXX
« X XXX

XXX X XXX
XX« XXXXXX

XXX« XXXX
XX o XXXXXX

XXX XXXX
XX XXXXXX

XXX« X XXX
XX« XXXXXX

XXX X XXX
XX. XXXXXX

XXX XXXX
XX o XXXXXX

XXX o X XXX
XX« XXXXXX

XXX X XXX
XX o X XXXXX

XXX+ X XXX
XX o X XXXXX

XXX« X XXX
XX XXXXXX

XXX« XXXX
XX . X XXXXX

XXXo XXXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXXoXXXX
XX« XXXXXX

XXX XXXX
XX. XXXXXX

XXX« X XXX
XX XXXXXX

XXX« XXXX
XXX XXXXX

Sample Page 2.

XX.X
«XXXX

XXX X XXX
XX« XXXXXX

XXX X XXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXXo X XXX
XX XXXXXX

XXX X XXX
XX« XXXXXX

XXX X XXX
XX« XXXXXX

XXXo X XXX
XX XXXXXX

XXX o X XXX
XX .o X XXAXX

XXX XXXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XX« XXXXXX

XXX . XXXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XXXo X XXX
XX XXXXXX

XXX« X XXX
XX XXXXXX

XXXa X XXX
XX. XXXXXX

XX.X
«XXXX

XXX XXXX XXX XXXX
XX XXXXXX XX XXXXXX

XXX XXX XXX XXXX
XX XXXXXX XXo XXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XX. XXO(XXX

XXX XXXX XXX.XXXX
XX XXXXXX XX XXKXXX

XXX XXXX XXX XXXX
XX XXXXXX XX o XXKXXX

XXX XXXX XXX.XXXX
XXo XXXXXX XX o XXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX, XXXX
XX XXAXXX XXo XXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XX.XOXXX

XXX XXXX XXX, XXXX
XX XXXXXX XX XXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XX.XXXXXX

XXX XXXX XXX.XXXX
XX XXXXX XX o XIOXXX

XXX XXXX XXX, XXXX
XX XXKXXX XX o XIXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXKX XXX, XXKX
XX XIKXXX XX o XXXXXX

XXX XXXX  XXXoXXXX
XX XXXXXX XX XXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XX.X
«XXXX

XX.X
«XXXX

XXX . XXXX
XX« XXXXXX

XXX« XXXX
XX XXXXXX

XXX, XXXX
XX o XXXXXX

XXX XXXX
XX XXXXXX

XXX XXXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XXX XXXX
XX« X XXXXX

XXX XXXX
XX XXXXXX

XXX.XXXX
XX o XXXXXX

XXX o XXXX
XX XXXXXX

XXX, XXXX
XX XXXXXX

XXX X XXX
XX« XXXXXX

XXX o XXXX
XX o XXXXXX

XXX« XXXX
XX« XXAXXX

XXX X XXX
XX o XXXXXX

XXX« XXXX
XX« XXXXXX

XXXo XXXX
XX o XXXXXX

XX.X
« XXXX

XXX. X XXX
XX X XXXXX

XXX . X XXX

XX XXXXXX

XXX o X XXX
XX XXXXXX

XXXo X XXX
XX . XXXXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XX X XXXXX

XXXo X XXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XXX o X XXX
XX« XXXXXX

XXX. XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX X XXX
XX« XXXXXX

XXX XXXX
XX« XXXXXX

XXX . XXXX
XX XXXXXX

XXX XX
XX« XXXXXX

XXX XXXX
XX o XXX XXX

XXX XXXX
XXo XXXXXX



6ST

CM TABLE

XCEN =
PT. PAIRS
MACH NO.

34 ROWS

X o XXXXXX
XX.X
«X XXX

XXX o X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX . XXXX
XXo XXXXXX

XXX . XXXX
XX« XXOXX

XXX o XXXX
XX« XXXXXX

XXX XXXX
XX« XXXXXX

XXX+ XXXX
XX« XXXXXX

XXX . XXXX
XX . XXXXXX

XXX . XXXX
XX« XXXXXX

XXX, XXXX
XX o X XXXXX

XXX XXXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX o XXXX
XX o XXXXXX

XXX . XXXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XXX o X XXX
XX X XXXXX

XXX o XXXX
XX XXXXXX

XX.X XX.X
«XXXX « XXXX

XXX XXXX XXX XXXX
XX, XXXXXX XXoXXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XX.XXXXXX

XXX.XXXX XXX.XXXX
XX XXU(XXX XXoXXXXXX

XXX XXXX XXX, XXXX
XXo XXUXXX XXoXXXXXX

XXX.XXXX XXX, XXXX
XXo XXXXXX XXoXXXXXX

XXX XXXX XXXXXXX
XX XXXXXX XXoXXXXXX

XXX . XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX, XXXX XXX, XXXX
XX XXXXXX XXoXXXXXX

XXX XXXX XXX XXXX
XX XXAXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XXo XXAXXX XXo XXXXXX

XXX XXXX  XXX.XXXX
XX XXXXXX XXoXXXXXX

XXX.XXXX XXX.XXXX
XX XXAXXX XXoXXXXXX

XXX XXXX XXX.XXXX
XX XXXXXX XX XXXXXX

XXX, XXXX XXX.XXXX
XXo XXXXXX XXoXXXXXX

XXX XXXX XXX XXXX
XX XXAXXX XXoXXXXXX

XXX XXXX XXX, XXXX
XX XXXXXX XX XXKXXXX

XX.X
« X XXX

XXX o XXXX
XX o XXXXXX

XXX« XXXX
XX« XXXXXX

XXX XXXX
XX o XXXXXX

XXX. XXXX
XX XXXXXX

XXX XXXX
XX+ XXXXXX

XXX XXXX
XXo XXXXXX

XXX« XXXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XXX . XXXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX . XXXX
XX« XXXXXX

XXX o XXXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX XXXX
XX« XXXXXX

XXX+ X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XX.X
«XXXX

XXX. X XXX
XX o XXXXXX

XXX« X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXXo XXXX
XX XXXXXX

XXX. XXXX
XX XXXXXX

XXX, XXXX
XX o XXXXXX

XXX XXXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX o X XXX
XX« XXXXXX

XXX X XXX
XX . XXXXXX

XXX XXXX
XX. XXXXXX

XXX XXXX
XX XXXXXX

XXX« X XXX
XX XXXXXX

XXX, XXXX
XX XXXXXX

XXX. XXXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XX.X
«XXXX

XXX« X XXX
XX o XXXXXX

XXX« XXXX
XX XXXXXX

XXX o X XXX
XXX XXXXX

XXX . X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX . X XXX
XX« XXXXXX

XXX X XXX
XX o XXXXXX

XXX . X XXX
XX XXXXXX

XXX« X XXX
XX o XXXXXX

XXX X XXX
XX o XXXXXX

XXX. X XXX
XX e XXXXXX

XXX.XXXX
XX XXXXXX

XXX XXXX
XXo XXAXXX

XXX« X XXX
XX o XXXXXX

XXX« XXXX
XX o XXXXXX

XXX XXXX
XX« X XXXXX

XXX XXXX
XX XXXXXX

XX.X
« X XXX

XXX, X XXX
XX XXXXXX

XXX. X XXX
XX o XXXXXX

XXX XXXX
XX o XXXXXX

XXX« X XXX
XX o XXX XXX

XXX« X XXX
X Xo XXXXXX

XXX XXXX
XX XXXXXX

XXX« X XXX
XX. XXXXXX

XXX . X XXX
XX« X XXXXX

XXX X XXX
XX« XXXXXX

XXX . X XXX
XX o X XXXXX

XXX XXXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX« XXXX
XX« XXXXXX

XXX XXXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

Sample Page 3.

XX.X
« X XXX

XXX+ XXXX
XX o XXXXXX

XXX X XXX
XX. XXXXXX

XXXo XXXX
XX« XXXXXX

XXXo X XXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XXo X XXXXX

XXX o XXXX
XX« XXXXXX

XXX X XXX
XX o XXXXXX

XXX . X XXX
XX XXXXXX

XXX X XXX
XX XXXXXX

XXX X XXX
XX o XXXXXX

XXX X XXX
XX XXXXXX

XXX.XXXX
XXX XXXXX

XXX XXXX
XX o XXXXXX

XXX o X XXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XX.X
«XXXX

XXX . XXXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX XXAX
XX« XXXXXX

XXX+ X XXX
XX XXXXXX

XXX. XXXX
XX. XXAXXX

XXX, XXXX
XX o XXXXXX

XXX o X XXX
XX XXXXXX

XXX XXXX
XX XXXXXX

XXX . XXXX
XX XXXXXX

XXX . XXXX
XX« XYOOXX

XXX o X XXX
XX XXXXXX

XXX X XXX
XX o XXKXXXX

XXX XXXX
XX X XXXXX

XXX XXXX
XX o X XXXXX

XXX« XXXX
XX « X XXXXX

XXX X XXX
XX o XXXXXX

XXX . XXXX
XX o X XXXXX

XX.X
«XXXX

XXX XXXX
XX o XXXXXX

XXX, XXXX
XX o X XXAXX

XXX+ XXXX
XX o XXXXXX

XXX.XXXX
XX XXXXXX

XXX XXXX
XX« XXXXXX

XXX X XXX
XX o XXXXXX

XXX+ X XXX
XX o XXXXXX

XXX XXXX
XX XXXXXX

XXX, XXXX
XX« XXXXXX

XXX X XXX
XX o XXXXXX

XXX XXXX
XX o XXXXXX

XXX o XXXX
XX o XXXXXX

XXX X XXX
XX o XXXXXX

XXX XXXX
XX o XXXXXX

XXX X XXX
XX o XXXXXX

XXX« XXXX
XX XXXXXX

XXX o XXXX
XX X XXXXX

XX.X
«XXXX

XXX . XXXX
XX o XXXXXX

XXX XXXX
XX o XXOXXXX

XXX+ XXXX
XX o XXXXXX

XXX XXXX
XX XXXXXX

XXX . XXXX
XX XXXXXX

XXXo XXXX
XX+ X XXXXX

XXX, XXXX
XX XXXXXX

XXX XXXX

XXo XXXXXX

XXX o XXXX
XX o X XXXXX

XXX XXXX
XX« XXXXXX

XXX XXXX
XX XXXXXX

XXX« XXXX
XX XXXXXX

XXX o« XXXX
XX o X XXXXX

XXX XXXX
XX. XXXXXX

XXX o X XXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XXXe XXXX
XX XXXXXX

XX.X
o XXXX

XXX o X XXX
XX XXXXXX

XXX o XXXX
XX XXXXXX

XXX X XXX
XX X XXX XX

XXX X XXX
XX XXXXXX

XXX X XXX
XX« XXXXXX

XXX o X XXX
XX o XXXXXX

XXX o X XXX
XX XXXXXX

XXX XXXX
XX XXAXXX

XXX o X XXX
XX o X XXXXX

XXX X XXX
XX XXXXXX

XXX o X XXX
XX XXXXXX

XXX . X XXX
XX« XXXXXX

XXX XXXX
XX o XXXXXX

XXX o X XXX
XX o XXXXXX

XXX« X XXX
XX XXXXXX

XXX X XXX
XX o« X XX XXX

XXX X XXX
XX o XXXXXX



line pairs are the angle-of-attack/aerodynamic coefficient pairs presented
vertically. The angles-of-attack are in degrees, and the aerodynamic coeffi-
cients are dimensionless. As soon as the specified number of pairs of data have
been listed vertically, one may encounter a final pair of static stall angle/lift
curve slope data values, providing the unsteady airloads option, (A)64 is invoked
with a value of 2. The static stall angle is in degrees, and the lift curve
slope is in per-degree units (at zero angle-of-attack).

If the maximum of 34 pairs of data values are not entered, the remainder of
the column will consist of zeros. Similarly, if the maximum of 12 Mach numbers
are not entered, the remainder of the column will consist of zeros.

The above format is repeated for all the blade airfoil stations (at most 5
values of XCEN), and for all 3 aerodynamic coefficient types (CL, CD, and CM).
The only exception to the above format is that in the CD table, there will never
be the final pair of static stall angle/aerodynamic coefficient curve slope data
values which sometimes do occur in the CL and CM tables.

Results of Uncoupled Blade Mode Calculation Processor E159

A requirement for the use of the basic G400 analysis is a set of uncoupled
blade modal data consisting primarily of natural frequencies and normal mode
shapes (and their spanwise derivatives). Since the initial development of the
G400 code (reference __),'the United Technologies Corporation program E159 has
been added to the G400 code in the form of a preprocessor. Since the output from
the E159 preprocessor impacts on the Loader data used in the G400 proper portion.
of the code, E159 must be run before the output of the Loader data. Hence, this .
output category preceeds the output of the remaining input data.

The first page of output from the E159 portion of the program follows the
format of sample page 4. The first line consists of a statement of the case
number for the output generated by the E159 branch of the program (see entry
(E)2000). This is followed by a line stating the total number of flatwise, edge-
wise, and torsional frequencies generated by the E159 portion of the code. Next,
the modulus of elasticity in 1b/in? is presented.

The principal output on the remainder of this page consists of six pairs of
columns defining the distributions of pertinent elasto-mechanic properties
starting at the blade root and progressing outward to the blade tip. These
distributions of weight (lbs/in.), area radius of gyration of the tension
carrying (spar) portion of the blade (in.), torsional inertia (1b-sec?), edgewise
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LST

OUTPUT FROM UNCOUPLED FREQUENCY AND MODE CALCULATION (E159 BRANCH) CASE NO.

«XXXXXHY YY
o XXXXXHYYY
SXXXXX+YYY
«XXXXX+HYYY
«XXXXXHY YY
«XXXXXHYYY
« XXXXX+YYY
«XXXXX-YYY
«XXXXX-YYY
«XXXXX-YYY
«XXXXX-YYY
o XXXXX~YYY
«XXXXX-YYY
«XXXXX-YYY .

TOTALS + E XX.XX

.

>

tod

>

%

3

<

3

B¢ 5 5 ¢

c e e e o0 s e s e s
D¢ ¢ D¢ D D¢ DE D S D DC HE D ¢ >
D¢ 26 3¢ DE DL DEHE HE D HE DC HC 2>

ettt tetalelelelalalel

>
>

GJ BECOMES FINITE AT THE START OF SEGMENT NO. XX; THE PUSH-ROD 1S LOCATED AT THE

- XX

NO. OF FREQUENCIES REQUESTED XXXX FLATWISE XXXX EDGEWISE XXXX TORSTONAL

MODULUS OF ELASTICITY =

RADIUS OF TORS. INERTIA
GYRATION OF OF BLADE
SPAR- IN. IN. LBS SEC**2
XXXXXHYYY X XX JXXXXX-YYY
XXXXHYYY XXX S XXXXX-YYY
SXXAXXHYYY XXX S XXXXX-YYY
JXXXXXHYYY X XX JXXXXX-YYY
SXXXXXHYYY XXX JXXXXX-YYY
SXXXXHYYY 0 X XX JXXXXX-YYY
XXXXXHYYY XXX JXXXXX-YYY
JXXAXXHYYY X XX SXXXXX-YYY
SXXAXXHYYY X XX JXXXXX-YYY
SXXXXX+HYYY X XX JXXXXX-YYY
XXXXHYYY X XX JXXXXX-YYY
SXXXXXAYYY X XX JXXXXX-YYY
JXXXXXHYYY X XX JXXXXX-YYY
SXXXXXHYYY X XX JXXXXX-YYY
XXAXXHYYY X XX JXXXXX-YYY
SAXXXXHYYY X XX JXXXXX-YYY
XX.XX

FEDGEWISE
AREA MOMENT
INERTIA=TN**4
S XXXXX+YYY
« XXXXX-YYY
« XXXXX-YYY
« XXXXX-YYY
« XXXXX+YYY
« X XXXX+YYY
< XXXXX+YYY
«XXXXX+YYY
« XXXXX+YYY
« XXXXX+YYY
<X XXXX+YYY
<X XXXX+YYY
» X XXXX+YYY
<X XXXX-YYY
+«XXXXX-YYY
«XXXXX-YYY

1

k4
.

3¢ D D¢ D¢ D B ¢ DE 3¢ D¢ D¢ 5 > ¢ K
S ¢ D2 5l DE D BE D G D¢ DC X D K

® 6 8 06 0 00 & 0 08 b o0

B¢ D¢ HE 5 G DD B 2 D D¢ DG DS M D¢ K

XX.XX

Sample Page 4,

TN.
X.XX

Pttt o taloketetolototole
DE D D DG D HEDC D DS HE DE D D D

DEDEHE D D DEDEDE D DD D X XX

XX.XX

SXXXX+YYY LBS/IN**2

FLATWISE
ARFA MOMENT
INERTTA- TNt A4

XXXXX+HYYY
<X XXXX-YYY
«XXXXX~YYY
S XXXXX~-YYY
«XXAXX-YYY
SXXXXX-YYY
X XXXX-XXX
<X XXXX=XXX

~
z

N EEEEEEERERXER
DE DE HE DE D S DE DL HE D D¢ D DL M M 0
5€ 3¢ D¢ 5C DE DL HC I DS 3 HE D D X e

o
5
%
)
<
<
-
D€ D€ 5€ 3¢ D D D E 2 D D D D D¢ ¢

X XXXX-YYY

XX.XX

GJ
LBS-IN,**2
« XXXXX+YYY
« XXAXX+YYY
SXAXX+HYYY
X XXXXHYYY
« XXXXX+HYYY
« X XAXX+HYYY
X XXXXH+YYY
« X XXXXHYYY

o XXXXXHYYY
SXXXX+YYY
X XXXX+YYY
SXXXXX+YYY
X XXXXHYYY
SXXXXX+YYY

CENTER OF SEGMENT NO. XX.

x

5 5¢ D H¢ D¢ DD DS DE D D D¢ DX DC D DC
D¢ D D D DE D D3¢ D DE D D DE M X e
DE D DEDE D P DEDE D DD M P

® 6 6 0 0 8 0 0 0 8 0 0 s s 00

>
>
.

>
>



and flatwise area moments of inertia (in“), and St. Venant torsion stiffness (1lb-
in?) echo the data input in the (E)101-150, (E)888-1037, (E)1039-1188, (E)454-
653, (E)253-452, and (E)737-886 locations, respectively. At the bottoms of the
columns representing distance out along the blade (columns 2, 4, 6, 8, 10, and
12) are presented summations at the spanwise increments plus the offset. These
summations are presented to show that indeed the distribution extends slightly
beyond the blade radius, to preclude numerical round-off.

Finally, on sample page 4 is a line which defines at which segment the
torsion stiffness, GJ, becomes finite (location (E)1191) and at what segment the
push-rod is located (if present).

Sample page 5 shows the second page of output from E159. First, the rotor
tip speed (ft/sec), rotor radius (ft), and offset distance (nondimensionalized by
rotor radius) are printed. . Then the rotor speed in RPM is presented. Next, the
frequency scan intervals for flatwise and edgewise bending frequency iteration,
and for torsion frequency iteration, are printed (rad/sec). Also, on the same
line is an item called the frequency nondimensionalization scale factor. This
has the units of 1/sec? and is either a duplicate of location (E)654 (if present
and nonzero) or is internally computed as rotor tip speed (divided by rotor
radius) squared. Finally, in this line is a statement of whether the root is
modeled as cantilevered (rigid), or as possessing a spring restraint (flexible)
in which case the torsion root spring rate is then printed (in-1lb/rad). Input
items (E)1189 and (E)1190 define the root flexibility.

The lower portion of sample page 5 consists of 4 columns of information.
The first column represents the selected blade segment breakup (locations (E)4-
(E)23) nondimensionalized by blade radius. However, an additional first item in
this column is presented if a cantilever root boundary condition is desired. If
locations (E)696 and (E)716 are both nonzero, an extra nondimensional first
segment length of .0001 is internally added to the blade, to make the total
number of E159 segments greater than the number of G400 proper segments by 1.

The second column represents the lumped equivalent masses (lb-sec?/ft) at
each of the selected radial stations. If a cantilever root is assumed, as
defined by input items (E)696 and (E)716, the mass at the first "segment" is
defined as 0.0. The remainder of the masses are either computed internally based
upon the weight distribution table inputted in locations (E)101-150, or explicit-
ly from the discrete incremental masses which are inputted in locations (E)676-
695. These masses are located at the blade segment centers.

The third and fourth columns represent the effective flatwise and edgewise
elastic coefficients, or spring rates (ft-1lbs/rad). These values are computed
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OMEGA-R = XXX.XXXX FT./SEC. RADIUS = XXX.XXXX FT. E/R = XXX.XXXX
OMEGA = XXXXX.XX RPM (XXX.XXXXX CPS) '

FLATWISE AND ED&E&ISE SCAN INTERVAL SCALE FACTOR ROOT 1S

XXXXX XXX RIGID
FLATWISE ELASTIC EDCEWISE FLASTIC

TORSTONAL SCAN INTERVAL
X.XX

6ST

SUM OF THE DELTA

DELTA X MASS-SLUGS COFF, FT-LBS/RAD. COEF. FT-LBS/RAD.
<X XXXXX-YYY « XXXXXX SXXAXXX+HYYY « XXAXXX+YYY
o XXXXXX-YYY o XXXXXX-YYY SDXXAXXXHYYY « XXXXXX+HYYY
X XXXXX-YYY <X XXXXX-YYY SXXUXXXHYYY « XXXXXX+YYY
« XXOXXX-YYY «XXXXXX-YYY o« XXXXXX+YYY «XXUXXX+YYY
« XXXXXX-YYY « XXXXXX=-YYY < XXXXXX+HYYY « XXXXXX+HYYY
« XXXXXX-YYY «XXXXXX-YYY «XXXXXX+HYYY « XXXXXX+HYYY
.*XXXXX—YYY «XXXXXX-YYY S XXXXXX+HYYY < XXAXXX+HYYY
« XXXXXX-YYY «XXXXXX-YYY o XXXXXXHYYY o XXXXXX+HYYY
«XXXXXX~-YYY « XXXXXX-YYY « X XXXXX+YYY « XXXXXXHYYY
« XXXXXX-YYY <X XXXXX-YYY S XXXXXX+YYY « XXXXXX+HYYY
« XXXXXX-YYY « X XXXXX-YYY « XXXXXXH+YYY « XXXXXX+YYY
« X XXXXX-YYY «XXXXXX-YYY <X XXXXX+YYY « XXXXXX+HYYY
«XXXXXX-YYY « XXXXXX-YYY «XXXXXX+YYY « XXXXXX+YYY
o X XXX X-YYY « XXXXXX-YYY « XXXXXX+HYYY « XXXXXX+YYY
o XXXXXX-YYY « XXXXXX-YYY o XXXXXX+HYYY « XXXXXX+YYY
« X XXXXX-YYY « XXXXXX-YYY S XXOUXXXHYYY « XXAXXX+YYY
« XXXXXX-YYY o XXXXXX-YYY « XXXXXXHYYY « XXXXXX+YYY
« XXXXXX-YYY « XXXXXX-YYY < XXAXXXHYYY « XXXXXX+YYY
« XXXXXX-YYY « XXXXXX-YYY « XXXXXXHYYY « XXXXXX+YYY
« XXXXXX-YYY «XXXXXX-YYY X XXXXXHYYY «XXXXXX+YYY
« XXXXXX-YYY «XXXXXX-YYY o XXXXXX+YYY « XXXXXX+HYYY

XS + EOVR = XXX.XXXX

Sample Page 5.



using the inputted distributions of flatwise and edgewise moments of inertia
(locations (E)253-(E)653) and the modulus of elasticity. The values may be
replaced with input explicit flatwise and edgewise hinge springs if any of
locations (E)696-735 are made nonzero. The elastic coefficients are used only
internally to calculate the natural modes.

At the bottom of sample page 5 is a summation of the nondimensional spanwise
intervals plus the nondimensional offset. If this sum is not within the range of
0.99 to 1.01, a message will appear: "sum not equal to one." This is to ensure
that the number of specified blade segments actually cover the blade radius
specified, with some tolerance for round-off error.

Sample page 6 consists of 5 columns of data. The first column again
represents the blade segment breakup nondimensionalized by blade radius, without
the extra first "segment." Columns 2 and 4 display the flatwise and edgewise
section bending stiffnesses (1b-in?/in.), as determined from the input area
moments of inertia and the modulus of elasticity, as well as from the radial
locations specified in the distribution tables. Columns 3 and 5 show the flat-
wise and edgewise section bending moduli (in3) as input in locations (E)28-67.

Sample page 7 contains 4 columns of torsionally relevant elastic informa-
tion. The first column is the blade segment breakup nondimensionalized by blade
radius including the extra first segment, if present. The next two columns are
distributions of torsion stiffnesses, (l1b-in?/in), determined from the radial
distributions, the inputted torsion stiffnesses (locations (E)737-(E)886), and
(for GJEFF) from the inputted area radii of gyration of the tension carrying
blade portions (locations (E)888-1037) and from appropriate nondimensionalizing:
factors. Actually, GJEFF reflects "centrifugal" torsional stiffening and is
formed from a combination of terms used in the torsion loading equation:

GJEFF = GJ + EAZT

where GJ is the torsion stiffness, ky is the spar radius of gyration, and T is

the local tension in the blade. Finally, a column representing the spar radius
of gyration (nondimensionalized by rotor radius) is output. This is determined
as the square root of the difference between GJEFF and GJ, divided by T:

KA/R = Y(GJEFF-GJ/T

Sample Page 8 begins the output of the actual calculations for the bending
modes. The format of Sample Page 8 is used for both flatwise and edgewise modes
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191

DELTA X

« XXXXXX
« XXXXXX
« XXXXXX
« XXXXXX
« X XXXXX
« XXXXXX
« XXXXXX
« XXXXXX
« XXXXXX

o XXXXXX

« X XXXXX
« XXXXXX

o XXXXXX

« X XXXXX
« XXXXXX
« XXXXXX
« XXXXXX
o XXXXXX
« XXXXXX

o XXXXXX

FLATWISE

(Lo thg) T
« XXXXXX+YYY
< XXXXXX+YYY
< XXXXXX+YYY
« XXXXXX+YYY
< XXXXXX+YYY
< XXXXXX+YYY
< XXXXXX+YYY
« XXXXXX+YYY
< XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXXHYYY
« XXXXXX+YYY
« XXXXXX+YYY
< XXXXXX+YYY
« XXXXXX+YYY
< XXXXXXH+YYY
< XXXXXX+YYY
« XXXXXX+YYY
«XXXXXX+YYY

FLA{¥§§§3§/C
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
«XXXXXX+YYY
o XXAXXXHYYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+HYYY
o XXXXXX+YYY
« XXXXXX+YYY

Sample Page 6.

EDGEWISE

(LB~-1 NZ);{QR
« XXXXXX+YYY
« XXXXXX+HYYY
« XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
« XKXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
.XXXXXX+YY¥
« XXXXXX+YYY

EDGEWISE I/C
(IN**3)

« XXXXXX+YYY
o XXXXXX+YYY
«XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
« X XXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX+HYYY
« X XXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+HYYY
« XXXXXX+YYY



291

DELTA X

« X XXXXX
« XXXXXX
« XXXXXX
« XXXXXX
« XXXXXX
« XXXXXX
« X XXXXX
« XXXXXX
« XXXXXX
« XXXXXX
« XXXXXX
« XXXXXX
o XXXXXX
« XXOIXXX
« XXXXXX
« XXXXXX
« XXXXXX
« XXXXXX
« X XXXXX
« X XXXXX

T« XXXXXX

GJEFF/R
(LB-IN2)/1IN

<X XXXXX+YYY
X XXXXXHYYY
<X XXXXX+YYY
<X XXXXX+YYY
«XXXXXX4YYY
<X XXXXX+YYY
« XXXXXX+YYY
<X XXXXXHYYY
<X XXXXXH+YYY
« XXXXXXH+YYY
X XXXXX+YYY
<X XXXXX+YYY
<X XXXXXAYYY
X XXXXX+YYY
SXXXXXHYYY
<X XXXXXHYYY
<X XXKXX+YYY
« XXXXXXHYYY
X XKXXXHYYY
<X XXXXX+YYY
<X XXXXXHYYY

Sample

GJ/R
(LB-1IN2)/IN

« XXXXXX+HYYY
« XXX XXXHYYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+HYYY
o XXXXXX+YYY
« XXXXXX+YYY
o XXXXXXHYYY
« XXXXXX+HYYY
« XXXXXX+YYY
« XXXXXX+YYY
« XXX XXX+YYY
« XXXXXX+YYY
«XXXXXX+YYY
« XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
o XXX XXX+YYY

Page 7.

KA/R

« XXXXXX-YYY
o XKXXXX-YYY
« XXAXXX-YYY
« XXXXXX-YYY
o XXXXXX-YYY
« XXXXXX-YYY
o XXXXXX~-YYY
o XXXXXX-YYY
« XXXXXX-YYY
« XXXXXX-YYY
« XXXXXX-YYY
« XXXXXX-YYY
« XXXXXX-YYY
« XXXXXX-YYY
o XXXXXX-YYY
« XXKXXXX-YYY
« X XXXXX-YYY
o XXXXXX~-YYY
o XXXXXX~-YYY
« X XXXXX-YYY
o XXXXXX-YYY



€91

FLATWISE FREQUENCIES =

N X XFH
XX JXXXXX  JXXXXX
XX JXXXXX  JXXXXX
XX JXKXXX  JXXXXX
XX JXXXXX  JXXXXX
XX JXXKXX  JXXXXX
XX JXXXXX  LXXKXX
XX JXXXXX  LJXXXXX
© XX JXXXXX JXXXXX
XX LJXXKXX L XXXXX
XX JXXKXX L XOKXX
XX JXXXXX  XXXXX
XX JXXKXX  JXXXXX
SUMMATION( ... )DX
( MG )
( M*G*X )
( M*G*G )
« ¢ )
( 6 )
(C*(x**2))
(G*(x**3))
(G*(x**4))
(G*(x**5))
((G**2)*x)
((G*x)**+2)

XXX« XXXXX

XXX.XXXXX CPS

// MODE (1)
XXX XXXXX
XXX o XXXXX
XXX. XXXXX
XXX XXXXX
XXX . XXXXX
XXX XXXXX
XXX XXKXX
XXX+ XXXXX
XXX X XXXX
XXX . XXXXX

XXX XXXXX
XXX XXXXX

« XXXX-YYY
«XXXX-YYY
«XXXX-YYY
«XXXXHYYY
«XXXX+YYY
o« XXXX+YYY
<XXXX+HYYY
« XXXX+YYY
« XXXX+YYY
< XXXX+YYY
«XXXX+YYY

\ST DERV
XXX XXXXX
XXX« XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX

XXX. XXXXX
XXX XXXXX

2ND DERV // MODE (2)

XXX XXXXX
XXX« XXXXX
XXXo XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX. XXXXX
XXX« XXXXX

XXX XXXXX
XXX.XXXXX

XXX XXXXX
XXX.XXXXX CPS

XXX XXXXX XXX,
XXX XXXXX XXX,
XXX XXXXX XXX.
XXX.XXXXX XXX.
XXX XXXXX XXX.
XXX XXXXX XXX.
XXX XXXXX XXX.
XXX XXXXX XXX,
XXX.XXXXX XXX,
XXX XXXXX XXX,

XXX XXXXX XXX.
XXX XXXXX  XXX.

<XXXX-YYY
« XXXX-YYY
«XXXX-YYY
<X XXX-YYY
« XXXX-YYY
SXXXX-YYY
< XXXX-YYY
« XXXX-YYY
«XXXX-YYY
«XXXX-YYY
«XXXX=YYY

Sample Page 8.

1ST DERV

XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX

.
.
.
.

XXXXX
XXXXX

XXX« XXXXX
XXX XXXXX
XXX o XXXXX
XXX« XXXXX
XXX XXXXX
XXX X XXXX
XXX XXXXX
XXX XXXXX
XXX X XXXX
XXX XXXXX

XXX XXXXX

XXX X XXXX

XXX« XXXXX

XXX XXXXX CPS
2ND DERV // MODE (3)

XXX« X XXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX

IST DERV
XXX X XXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XX0(XX
XXX. X XXXX
XXX XXXXX
XXX . XXXXX
XXX. X XXXX
XXX, XXXXX

.
:

XXX.XXXXX XXX.XXXXX

XXX XXXXX

XXAX-YYY
o XXXX-YYY
o XXXX-YYY
X XXX-YYY
SXXXX-YYY
SXXXXX-YYY
X XXX-YYY
X XXX-YYY
XXXX-YYY
XXXX-YYY
XXXX-YYY

XXX« XXXXX

2ND DERV
XXX o XXAXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXXo XXXXX
XXX o XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX

XXX XXXXX
XXX XXXXX

(LB-SEC2/FT2)
(LB-SEC2/FT2)
(LB-SEC2/FT2)



and the type of modal data being output is clearly indicated. The first two rows
of Sample Page 8 give the natural frequencies of the flatwise modes in increasing
order. The units of these frequencies, as given in the first row, are either in
rad/sec or per rotor rev depending on whether the input rotor speed is zero or
nonzero, respectively. The second row values are always the same respective
frequencies, but in units of Hz (cycles/sec). The twelve columns which follow on
this sample page consist first of descriptors for the selected blade radial
stations. The second column (labeled X) gives the nondimensional spanwise
stations as measured from the axis of rotation, whereas the third column (labeled
XFH) gives the similar information, but instead from the offset point. The
remaining three groups of three columns give, for up to three modes, the mode
shape and the lst and 2nd mode shape spanwise derivative information, as
indicated.

The mode shapes are determined from the E159 eigensolution preprocessor,
using the method of determinate iteration. These uncoupled beam bending vibra-
tion modes are normalized with respect to the blade tip. For all applications
except the semi-articulated or articulated rotors, the mode shapes and deriva-
tives are calculated at the additional first "segment" (N=0) as well as at the
remaining the radial stations. The mode shapes and derivatives are provided at
the additional first segment to define a more refined blade breakup at the root
for cantilever applications.

The remaining three columns of output at the bottom of the sample page give,
for each respective mode, various summations of internally calculated modal
integration constants (integration over the blade span). These E159 integration
constants are provided as a "back of the envelope' list of terms which could be
used in various simplified, linearized aeromechanical dynamics calculations. G
refers to the respective mode shape array given directly above each of these
three lower columns. The integrals for the flatwise modes are respectively:

Jm v, dr (coupling of the flatwise mode with hub translation),
i
Jm v, rdr (coupling of the flatwise mode with hub rotation or rigid
i
flapping),
JSm Yi. dr (generalized mass of the flatwise mode),
i
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Jy. dr

Yi
fy, rdr
Yi
wa. r2dr
i
(simplified aerodynamic integrations terms),
wa. rddr
i
4
wair dr
Iv,. rodr
i
wa? rdr (aerodynamic damping term),
i
and
waz r2dr (used in aerodynamic terms).

The units of the first three integrals are lb-sec?/ft?, and the remainder of
the units are nondimensional. These integrals are not used in the G400 proper
portion of the code but are potentially useful in simplified aeromechanical
analyses (other than G400).

Sample Page 9 presents 5 columns of torsionally relevant inertial
information, beginning again with the blade segment breakup including the extra
first segment, if present. The second column (labeled IXX) presents the section
polar torsion inertia (in-lb-sec?), which is the sum of the chordwise and thick-
nesswise mass moments of inertia. These values are determined from the spanwise
locations and from the input torsional inertia table (locations (E)1039-(E)1188).
The third column presents the difference between the chordwise and thicknesswise
mass moments of inertia, AIXX (in-1b-sec?). This difference of inertia distribu-
tion is the one which determines the so-called '"propeller moment" torsional
stiffening effect. The remaining columns are the thicknesswise and chordwise
mass radius of gyration distributions which, along with the output lumped equiva-
lent masses, produce the IXX and AIXX values. The thicknesswise mass radii of
gyration (in) are input in locatioms (E)1541-(E)1560.

Sample Page 10 summarizes modal results for the torsion modes. As with
bending mode output, the first two rows of Sample Page 10 give the modal natural
frequencies first in either rad/sec or per rotor rev, and then in the second row,
cycles/sec. The remaining columns follow closely the format discussed above for
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99T

DELTA X

« X XXXXX
« XXXXXX
« X XXXXX
« XXXXXX
« XXXXXX
« XXXXXX
o XXXXXX
« XXXXXX
« X XXXXX
- XX000XX

« XXXXX

« XXXXXX
« XXXXXX
« XXXXXX
« X XXXXX
« X XXXXX
« XXXXXX
« X XXXXX
« XXXXXX
« X XXXXX
« XXXXXX

(IN-LB-8EC2)
« XXXXXX

< XXKXXX~YYY
<X XXXXX-YYY
< XXXXXX-YYY
X XXXXX-YYY
<X XKXXX-YYY
X XOXXX-YYY
X XXXXX-YYY
<X XXXXX-YYY
. XXXXXX-YYY
X XKXXX-YYY
XXXXXX-YYY
«XXXXXX-YYY
X XXXXX-YYY
X XXXXX-YYY
X XXXXX-YYY
« XXXXXX-YYY

© e XXXXXX-YYY

« XXXXXX-YYY
« XXXXXX-YYY
« X XXXXX-YYY

DELTA( IXX
(IN-LB-SEC2)

« XXXXXX

«XXXXXX-YYY
« XXXXXX~-YYY
o XXXXXX-YYY
o XXXXXX-YYY
« XXXXXX-YYY
o XXXXXX-YYY
«XXXXXX~YYY
o XXXXXX~YYY
« XXXXXX-YYY
« XXXXXX-YYY
« XXXXXX-YYY
« XXXXXX~-YYY
« XXXXXX~-YYY
« XXXXXX-YYY
o XXXXXX-YYY
« XXXXXX-YYY
« XXXXXX~-YYY
« XXX XXX-YYY
« XXXXXX-YYY
o XXXXXX-YYY

Sample Page 9.

KYL0
(IN)

« XXXXXX

« XXXXXX+YYY
o XXXXXX+YYY
« XXXXXX+YYY
« X XXXXX+YYY
X XXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX+YYY
o XXXXXX-YYY
o XXXXXX-YYY
o XXXXXX~-YYY
«XXXXXX~-YYY
« XXXXXX-YYY
« XXXXXX~-YYY
« XXXXXX-YYY
o XXXXXX~-YYY
o XXXXXX-YYY
« XXXXXX-YYY
.xxxxxX—YYY
« XXXXXX~-YYY

N

< XXKXXX.

< XXXXXXHYYY
XXKXXMHYYY
X XXXXXHYYY
< XXOOOUHYYY
< XXXXXXHYYY
«XXXXXX+YYY
< XXX YY
« XXKXXHYYY
< XXKXXX4YYY
X XXXXHYYY
« XXXXXX+YYY
< XXXXXXHYYY
< XXOUXXXHYYY
< XXXXXXHYYY
XXKXIOHYYY
o XXXXXKHYYY
< XXXXXX+YYY
< XXKXXXHYYY
X XKXXXHYYY
XXXXXXHYYY
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TORSTON FREQUENCIES = XXXX.XXXXX
XXXXo.XXXXX CPS

« X XXXX
« XXXXX
« XXXXX
« XXXXX
«XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX

«XXXXX -

«XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXAXX
« X XXXX
« XXXXX

XFH
« XXXXX
« X XAXX
« XXXXX
« X XXX
« XXOXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
« XXXXX
<« XXXXX
<« XXAXX
« XXXXX
« XXXXX

// MODE (1)
XXX o XXXXX
XXX . XXXXX
XXX, X XXXX
XXX. XXUXX
XXX XX00XX
XXX, XXXXX
XXX+ XXXXX
XXX . XXXXX
XXX o XXXXX
XXX o XXXXX
XXX, XXXXX
XXX XXXXX
XXX o XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX o XXXXX
XXX XXXXX
XXX, XXXXX
XXX XXXXX
XXX XXXXX

IST DERV // MODE (2)

XXX o XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX.XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX o X XXXX
XXX. XXXXX
XXX o XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX o XXXXX
XXX« XXXXX
XXX.XXXXX

XXXXo XXXXX

XXXX.XXXXX CPS

XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX« XXXXX
XXX X XXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX« XXXXX
XXX. XXXXX
XXX XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX+ XXXXX
XXX. XXXXX

Sample Page 10.

IST DERV // MODE (3)

XXX+ XXXXX
XXX o XXXXX
XXX XXXXX
XXX XXXXX
XXX. XXXXX
XXX XXXXX
XXX. XXXXX
XXX XXXXX
XXX. X XXXX
XXX XXXXX
XXX XXXXX
XXX X XXXX
XXX. XXXXX
XXX XXXXX
XXX XXXXX
XXX. X XXXX
XXX. XXXXX
XXX, XXXXX
XXX XXXXX
XXX.XXXXX
XXX, XXXXX

XXXXo X XXXX

XXXX.XXXXX CPS

XXX« X XXXX
XXX XXXXX
XXXo XXXXX
XXX X XXXX
XXXo X XXXX
XXX XXXXX
XXX XXXXX
XXX. XXXXX
XXX X XXXX
XXX X XXXX
XXX XXXXX
XXX X XXXX
XXX XXAXX
XXX o X XXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX X XXXX

IST DERV // MODE (4)

XXX o XXXXX
XXX XXXXX
XXX XXXXX
XXXo XXXXX
XXX XXXXX
XXX X XXXX
XXX . XXXXX
XXXo XXXXX
XXX. XXXXX
XXX XXXXX
XXX XXXXX
XXX X XXX
XXX XXXXX
XXX XXAXX
XXX XXXXX
XXX XXXXX
XXX. XXXXX
XXX XXXXX
XXX o XXXXX
XXX. XXXXX
XXX XXXXX

XXXX o XXXXX

XXXX.XXXXX CPS

XXX« XXXXX
XXX XXXXX
XXX« XXXXX
XXX o X XXXX
XXX XXXXX
XXX« XXXXX
XXX, XXXXX
XXX XXXXX
XXX XXXXX
XXX . X XXXX
XXX o XXXXX
XXX XXXXX
XXXo XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX . XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX

1ST DERV
XXX« XXXXX
XXX XXXXX
XXXo XXXXX
XXX« XXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX« XXXXX
XXX XXXXX
XXX o XXXXX
XXX o XXXXX
XXX XXXXX
XXX . XXXXX
XXX o XXXXX
XXX« XXXXX
XXX o XXXXX
XXX XXXXX
XXX XXXXX
XXX« X XXXX



the bending modes, except that only the first spanwise derivative is given for
each mode. The second derivatives of the torsion mode shapes are not provided
because they are not used in the torsion equation. (The flatwise and edgewise
bending equations on the other hand require both first and second derivatives of
the flatwise and edgewise mode shapes). Therefore, up to four torsion mode
shapes and first derivatives may be presented. No modal integrations (summations
over blade span) are performed for the torsion modes.
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Listing of Remaining Input Data

Sample page 1l illustrates a listing of the variable inflow input originat-
ing from a data file prepared by the F389 code. The first group of information
on this page shows the harmonic components, at each spanwise station, of the
coefficients VLAMO, VLAMA, and VLAMB which are superimposed to yield the inflow
LAMBDA. The second group of information shows the azimuthal variation of the
inflow LAMBDA at each of the blade segments. The inflow is defined positive up,

has the units of ft/sec, and a conventioal positive Fourier series representation
is used.
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OLT

DPUTIED VARTABLE IMFLOW DTSTRIBUTIONS (OUTPUT FROM PROGRIM F383 OR EQULVALENT), FPS
HARMONIC COEFFICTENTS: LAMBDALX(J) oPS1) = RAMLAMA & { VLAMO(J) ¢ SUMCVLAMA(ToM) eCOS(NePST)

SEGe we T = 1 2 3 " -3 é 7 [ 9 10
vLANO ANXR  XRXX  AASNA XX XX AR XY AXL,¥X XAXX . X8 RXLAX A8 XX
VLAMA 1 A% XX XA XX AR XA XN AX AX XX XL, ¥X AN XX X¥o XY XXoNX XXoXa
VLAMS ) KXLXX  RAKX  AKJXA ¥R XX AR X2 XX UAX XXoXX XX o XY KA XX  XXoRA
VLAMA 2 ANGXR  RRONX  ALeXA  XNXX  AXJNY  NXLYX  MXORX  NN.NX  XalAX  XXoXa
ViLANS 2 AXLXR  RAJKX  AKJXA  XXJXX KX XL WXXX XALXNX MWL XY XK, XX XKeXX

. AXONR  XAJKN  AKSNX  AXJXX AN, XX XXXX  XNLXX  XMXY  KAeAX KKK
. AXJKE  KAJKX  AAXK  XXJNX  AXoNd  XNXX XX KX XXoXX XK XX XNoX&
VLAMA W AXGAX  NAJKX  XAJXA  XX.XX  ARYX XX XX XNGXX  MuweXX  MAL KX KA. XX
VLAME N AX AR RAJXX AR XX AN XX AXJXD AN AX XX XX XXX XRo AN XAera

AZIMUTHAL VARIATION

SEG. Mo T e 1 2 3 . s 6 7 8 9 10
PSX
O. AN XX KA.XK AL XX XNJXX A YA FRJXX XX KR NE.XY  Nal.AX  KXeka
AR, ANJEX  RXXXK  AKGNX  XXoXX  ANXE XX XX XFXX  XXeXX  XAoAX  KAsXA
XK AN XX RASAX  AAGYA  KX.XX  AX.X2 YN XX XXeXX  XNGXX  Ma.&X  KaoRR
. aAX XX XXo XX AR ¥R XX XX AN XX AN XX XX XX XA XY XA AKX AXo XK
. AN XA KAl XX AR XX XX XX AX X2 AL AX AX XX X¥ o XY N4, 4% KXot
. aX XK XL XX AR ¥R XX, XX AR YYX X AX XN XA AN XY AnAX AN XA
nxK. AXoXX  XAJXX  KaoXX  XKoXX  AKSXX  XUoXX  XNeXX  X¥oXX  XReAX  AR.XX

Sample Page 11

¢ VLANBLIIN)eSTNINGPST)) ) /ONEGA-R

11 12 13 1 14
aX,%Xx RR . XX ARJAX XKo XX AL, YY

AX UK XK XK ARJXX XXo XX AR XN
aXouX KXo XX AR XX AR XN AR Xy

aX xX A& XX AR XX XX AK XX
ANJXX  XAeXX  KANX  AXJYX AN V)

AX XX Ahe XX AR XX XX AR AX ¥y
AN XX R XX LA ¥R XN XX AR, XX

AN, XX Xho XX R XX XX XX AX X¢
AN XK RAJXX ANJXA ¥R XL ARLY .

i )2 n "w 15

X, XX AR AX AReNA  XXoXX AX A2
Al xx Ra XX KA XX XXo XX AR Y «
AX o XX XA o XX AR XA XX ¥X KX, 7Y
aXgXX XA o XX ARJEX  XXoXX AXXa
AX,uAR AR XX AR XX o XX AR XY
aXonX Xao XX AR XX XXX AR XX
AN XX Xao XX AKX XX XXe XX AR XY



Parameters Calculated from the Input Data’

Sample Pages 12, 13, 14, and 15 list a variety of intermediate parameter
calculations which apply to the bearingless, semi-articulated, and teetered
rotors. If a bearingless redundant rotor analysis is specified by setting
(C)15=1., sample pages 12, 13 and 14 appear. For a cantilevered bearingless
analysis enabled by setting (C)14=1., sample page 15 is printed. If semi-
articulated rotors are input, only sample page 14 is produced. The semi-
articulated (or fully articulated) application is specified by locations (G)10
and (G)11, and by locatioms (V)52, (V)53, (V)72, and (V)73. The teetered rotor
applications are activated primarily by input locatioms (G)3, (G)19-(G)21, (A)22,
and (S)5.

Sample page 12 presents the matrices and vectors used to define, respec-
tively, the elastic bending characteristics of the torque tube and the inboard
(snubber) end vertical deflection of the torque tube. The second and third lines
of this page show, in equation form, the relationships of the various matrices
and vectors to the total bending stiffness matrix (FDEFL) and the total inboard
deflection vector (Z5I). 1In the equations presented, TTHO (radians) represents
the total blade pitch angle at the 75 percent span. All the results outputted
for FDEFL and 251 are nondimensional.

The first matrix presented on this page consists of 8 rows and 7 columns of
information with regard to the first component (FDEFLO) of the quadratic repre-
sentation of the stiffness matrix. The rows represent, at the torque tube
respectively; in-plane shear loads in the '"5" coordinate system at the snubber
and juncture points, moment out of the plane defined by the torque tube section
at the juncture, in-plane slope in the '"5" system at the snubber, out-of-plane
shear loads in the "5" system at the snubber and junction points, moment in the
plane defined by the torque tube section at the juncture, and out-of-plane slope
in the "5" system at the snubber. The columns represent, at the flexbeam respec-
tively; in-plane deflections at the snubber and juncture points, in-plane slope
at the juncture, out-of-plane deflections at the snubber and juncture, out-of-
plane slope at the juncture, and the force of the push-rod, all in the "5"
coordinate system.

The next row defines the first component (Z5I0) of the quadratic representa-
tion of the inboard torque tube deflection vector. Its seven values represent
the same items as did the columns making up the stiffness matrix. These matrices
and vectors are repeated two more times, to define FDEFL1, Z511, FDEFL2; and
Z512.

Finally, at the bottom of this page are evaluations of FDEFL and Z5I, using
the quadratic representations, at a pitch angle equal to the inputted collective
angle (location (A)28). First, the collective angle is printed, in degrees.
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TORQUE-TUBE BENDING STIFFNESS MATRICES AND SNUBBER ATTACHMENT POINT DEFLECTION VECTORS:

FDEFL(1,J) = FDEFLO(I,J)+ TTHO*(FDEFL1(I,J)+ TTHO*FDEFL2(Y,J))

LT

Z51(J) = Z510(J) + TTHO* (Z511(J) + TTHO*Z512(J))
FDEFLO(1,J): X XXXXX XX XXXX X XXXXX X XXXXX X XXXXX X X XXXX X X XXXX
X X XXXX X« XXXXX X.XXXXX X XXXXX X o XXXXX X XXXXX X XXXXX
X X XXXX X X XXXX XX XXXX X XXXXX X« XXXXX X X XXXX X.XXXXX
X XXXXX X X XXXX XX XXXX X.XXXXX X« XXXXX X XXXXX X XXXXX
X« X XXXX X« X XXXX X .. XXXXX X XXXXX X XXXXX X XXXXX X XXXXX
X« XXXXX X X XXXX X« X XXXX X X XXXX X« XXXXX X XXXXX X. XXXXX
X« X XXXX X XXXXX X XXXXX XX XXXX Xo X XXXX X X XXXX X« XXXXX
X« XXXXX X XXXXX X X XXXX X X XXXX X o XXXXX X X XXXX X XXXXX
Z510(J): X XXXXX X XXXXX X .. XXXXX X X XXXX Xo XXXXX Xo X XXXX X.XXXXX
FDEFL1(1,J): X« XXXXX XX XXXX X X XXXX X X XXXX X« XXXXX X. XXXXX X XXXXX
X« X XXXX X XXXXX X XXXXX X X XXXX XX XXXX X XXAXXX X XXXXX
X« X XXXX X XXXXX X .. X XXXX X XXXXX X XXXXX X XXXXX X XXXXX
X XXXXX X XXXXX XX XXXX XX XXXX X o X XXXX X. XXXXX X XXXXX
X X XXXX X X XXXX X <X XXXX X X XXXX X X XXXX X« XXXXX X XXXXX
X X XXXX X X XXXX XX XXXX XX XXXX X XXXXX X X XXXX X. XXXXX
X X XXXX XX XXXX X XXXXX X XXXXX X o X XXXX X X XXXX X . XXXXX
X XXXXX X X XXXX X X XXXX < X XXXXX X o X XXXX X X XXXX X XXXXX
Z511(J): X« X XXXX XX XXXX X X XXXX X. X XXXX X XXXXX X X XXXX X XXXXX
FDEFL2(1,J): X X XXX X« X XXXX X XXXXX X X XXXX X XXXXX X. X XXXX X« XXXXX
X X XXXX X X XXXX X X XXXX X. XXXXX X XXXXX X XXXXX X XXXXX
X . X XXXX X« XXXXX X . XXXXX X XXXXX X XXXXX X. X XXXX X XXXXX
X« XXXXX X . XXXXX X XXXXX X XXXXX X XXXXX X XXXXX X XXXXX
X XXXXX X.XXXXX X« XXXXX X XXXXX X XXXXX X« X XXXX X.XXXXX
X X XXXX X« XXXXX X « X XXXX X XXXXX X« XXXXX X XXXXX X XXXXX
X« XXXXX X. XXXXX X XXXXX X XXXXX X« XXXXX X XXXXX X XXXXX
X XXXXX X XXXXX X XXXXX X XXXXX X« XXXXX X XXXXX X XXXXX
Z512(J): XX XXXX X XXXXX X . X XXXX X XXXXX X« XXXXX Xo XXXXX X. XXXXX
TTHO = THETA-75 =  X.XX DEG.
FDEFL(1,J): X XXXXX X . X XXXX X XXXXX X XXXXX X« XXXXX X« XXXXX Xo XXXXX
X o« X XXXX X. XXXXX X XXXXX X XXXXX X XXXXX X« XXXXX X XXXXX
X X XXXX X X XXXX X X XXXX X XXXXX X XXXXX X« XXXXX X XXXXX
X XXXXX X X XXXX X XXXXX X XXXXX X X XXXX X« XXXXX X XXXXX
X X XXXX X. XXXXX Xo X XXXX X XXXXX Xo X XXXX X.XXXXX X XXXXX
X XXXXX X. XXXXX X XXXXX X X XXXX X XXXXX X« XXXXX X XXXXX
X X XXXX X . XXXXX X X XXXX X X XXXX X XXXXX X XXXXX X« XXXXX
ZS51(J):. X XXXXX X. X XXXX X XXXXX X« XXXXX X XXXXX X . XXXXX X XXXXX

Sample Page 12



Then an 8 row by 7 column matrix is printed, displaying the total stiffness
matrix, FDEFL, when TTHO is set equal to the input collective angle. And
finally, the seven values for the total deflection vector, Z5I, are presented at
the same input collective angle.

Sample page 13 defines the nonlinear torsional stiffness characteristics of
the flexbeam. First, the equation is presented relating the outboard torsional
deflection to the spanwise varying torques resulting from the shears and moments
at the outboard end of the flexbeam and from the spatial curvature of its torsion
axis. Then, the seven nondimensional deflection dependent coefficients defining
the nonlinear torsional stiffness characteristics are presented in row form
(THTTHP, THTMX, THTSX, THIMO, THTMl, THTSO, and THTSI).

Sample page 14 shows the quadratic functionality coefficients for the pitch-
flat couplings (AWO, AWl, and AW2) and pitch-edge couplings (AVO, AV1, and AV2)
for each flatwise and edgewise mode. Each row represents respective modal
content. Also presented are the angular motions of the torque tube relative to
the flexbeam, at the juncture, for each of the selected flatwise (RELMW) and
edgewise (RELMV) bending modes.

The quadratic representations based on pitch angle for AW and AV are as
follows:

AWO(I) + TTHO * (AWI(I) + TTHO * AW2(I))

| AW(I)

]

AV(K) AVO(K) + TTHO * (AVI(K) + TTHO * AV2 (K))

As with the quadratic representations of the torque tube bending stiffness matrix
(FDEFL), TTHO again represents the total blade pitch angle at the 75 percent span
in radians. RELMW and RELMV are calculated only on the basis of an infinitely
rigid torque tube and are therefore not calculated (left as zeros) when the
torque tube-flexbeam redundant analyses is operative (i.e. for the cases when a
flexible torque tube is employed).

A final line appears on sample page 15 only for the semi-articulated or
fully-articulated applications. This is a statement of the pitch~flap coupling,
i.e. AB/ABp, where ABp is the change in flap angle. This value is determined
as follows:
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ZAS

FLEX-BEAM TORSIONAL STIFFNESS CHARACTERISTICS

THETA-JCT = (THITHP)*THETAP-JCT + ( THIMX) *MX5 + (THTSX) *SX 5% (Y5*25°~ Z5%Y5°)

+ (THTMO)*(MY5*Y5+ MZ5%Z5) + (THIM1)*(MY5*Y5'+ MZ5*Y5’) + (THTSO)*(SZ5*Y5- SY5*Z5) + (THTS1)*(S25*Y5’

-SY5*Z5°)
THITHP THTMX THTSX THTMO THTM1 THT SO THTS1

X.XXX X XXX i X XXXX X. XXX X XXX X. XXX X. XXX

Sample Page 13
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COEFFICIENTS FOR QUADRATIC VARIATIONS OF PITCH-FLAT AND PITCH-

W -

it

AWO(T1)
XX XXXXX
XX XXXXX
XX« XXXXX

AVO(K)

X XXXXX
X . XXXXX

AWL(T)
X XXXXX
X XXXXX

XX« XXXXX

AV 1(K)

X XXXXX
X . XXXXX

AW2(1)
XX XXXX
X o« XXXXX

XX XXXXX

AV2(K)

X XXXXX
X XXXXX

PITCH-FLAP COUPLING (DERIVED), DTHETA/DBETA

Sample Page

RELMW(T)
< XXXXX
«XXXXX
« XXXXX

RELMV(K)

« X XXXX
« XXXXX

X. XXX

14

EDGE COUPLINGS WITH PLITCH ANGLE



AB -(location (G)17 - e)

ABF location (G)18

where location (G)17 is the push-rod radial location (in), location (G)18 is the
push-rod chordwise location (in), and e is the (dimensionalized) blade root
offset (in).

Sample page 15 will vary depending upon whether the ''wobble' mode is
included by setting (C)14=1.0. If (C)14=1.0 two parameters and a table are
printed. The two parameters are respectively the displacement at the inboard
edge of a cantilevered torque tube due to a unit load at the same location yield-
ing, 2Z, a flexibility (in/1lb) and, secondly, the blade tip deflection resulting
from the same unit load applied to the torque tube inner edge. Below these two
values a table is printed summarizing the nondimensional spanwise blade deflec-
tions, slopes and curvatures arising from the unit load on the torque tube's
innermost edge. To dimensionalize the blade displacements under the column GW,
multiply the printed values by the ZZ parameter described above. This will
result in units of in/lb, interpreted as the displacement at each station along
the span due to a unit force on the inner torque tube edge.

When (C)14=0.0, the aforementioned two parameters and the table described
above are not printed since the '"wobble mode" is disabled. The remainder of
sample page 15 shows the effective torsional springs (KTHETAl, KTHETA2, and
KTHETA3) and the effective flex-beam torsional stiffnesses (GJ-EFF and TKA2) in
row form. KTHETAl represents the flex-beam torsional stiffness or spring (lb-~
ft/rad). KTHETA2 represents the equivalent root torsion spring due to control
system flexibility (lb-ft/rad). KTHETA3 is the actual control system stiffness
or spring (lb-ft/rad). The flex-beam torsional stiffnesses (1b-ft2) together
form the coefficient of the twist rate in the flex-beam torsional differential
equation.

Sample page 16 presents data pertinent to the built-in elastic axis offset
(structural sweep). The first two columns present the spanwise distribution as
identified by segment number (N), and by the non-offset radial location of the
spanwise segment center, X, (nondimensional with respect to rotor radius).
Columns 3 and 5 give the edgewise and flatwise offset distances of the elastic
axis from the Xg axis, respectively, (nondimensional with respect to rotor
radius). Columns 4 and 6 represent derived quantities. For small angles, these
quantities become the slopes (first derivatives) of the offset locations (Y1OEA
and Z10EA). The quantity DUEAO represents the foreshortening array needed to
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LLT

PSEUDO-FLATWISE MODE SHAPE (DEFLECTIONS DUE TO UNIT LOAD AT INBOARD END OF CANTILEVERED TORQUE TUBE)

77 = X.XXXXX XX IN/LB BLADE TIP DEFLECTION = .XXXXX XX IN/LB
N X GW GWP GWPP
1 X XXXXX X XXXXX X XXXXX XX, XXXXX
2 X, XXXXX X XXXXX X XXXXX XX XXXXX
3 X XXXXX X XXXXX X XXXXX XX XXXXX
N . L L] L

TORSIONAL RETENTION SPRINGS AND

EFFECTIVE FLEX-BEAM TORSIONAL STIFFNESSES

KTHETA1l KTHETA2 KTHETA3 GJ-EFF TKA2

XXX XXXXX XXXXX . XXXX

Sample Pape |

X.X XXXX . XXXXX

XXXX . XXXXX



8LT

ELASTIC AXIS OFFSET DISTRIBUTLONS AND DEFLECTION VECTORS
X Y10EA Y10EAP Z10EA Z10EAP DUEAO

« XXXXX « XXXXX « XXXXX « XXXXX « XXXXX «XXXXX
«XXXXX «XXXXX «XXXXX «XXXXX «XXXAXX «XXXXX
«XXXXX «XXXXX <X XXXX «XXXXX «XXXXX X XXXX
«XXXAXX « XXXXX «XXXXX <X XXXX «XXXXX « X XXXX
« X XXXX «XXXXX «XXXXX «XXXXX o XXXXX «XXXXX
«XXXXX - «XXXXX «XXXXX -« XXAXX « XXXXX « X XXXX
«XXXXX « X XXXX « X XXXX «XXXXX « XXXXX «XXXXX
«XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX
«XXXXX o XXXXX <X XXXX « X XXXX «XXXXX «XXXXX
«XXXXX « X XXXX «XXXXX X XXXX «XXXXX JXXXXX
« XXXXX « XXXXX «XXXXX «XXXXX «XXXAXX «XXXXX
«XXXXX «XXXXX SXXAXX - SXXXXX « XXXXX «XXXXX
« XXXXX « XXXXX «XXXXX «XXXXX «XXXXX « XXXXX
« X XXXX « XXXXX «XXXXX o XXXXX « XXXXX «XXXXX
«XXXXX «XXXXX «XXXXX «XXXXX « XXX «XXXXX
«XXXXX «XXXXX «XXXXX «XXXXX « XXXXX X XXXX
« X XXXX « XXXXX «XXXXX « XXXXX « X XXXX «XXXXX
« XXXXX « X XXXX « X XXXX « X XXXX « X XXXX «XXXXX
«XXXXX « XXXXX <X XXXX « XXAXX « X XXXX «XXXXX
«XXXXX « XXXXX « XXXXX «XXXXX « XXXXX «XXXXX

O‘O@NO‘U‘I&MN—‘O\O&NO\U&*UN—' =

DN rt st et et ot gt gt gt g b

Sample Page 16



restore the equivalent straight beam back to the originally structurally swept
position. It is determined from the input elastic axis offset data, and from the
radial distribution of the blade segments.

Sample page 17 shows typical modal information for the input flatwise and
edgewise bending modes. For each mode, the modal frequency (per rotor rev) is
printed. Also on this line, for all applications except that of the propeller,
is a statement defining the total pitch-flat or pitch-edge coupling (AW(I) or
AV(K)) for the mode. And finally on this line, is a statement of whether the
mode type is hinged or hingeless. This is determined internally by evaluating:

E1,(2) , D g , LD
R wi R wi

where the superscripts (2) and (1) refer to the second and first spanwise
segments. The EIp terms represent the section bending stiffnesses in the
flatwise direction, and Y,,; refers to the second spanwise derivative of the flat-
wise mode shape, similarly for edgewise modes. If this difference is negligible,
the mode type is defined as hingeless. Otherwise the mode type is presented as
hinged.

Next, for all applications, thirteen columns of information follow. The
first two columns present the spanwise distribution, with X being the non-offset
radial location of the segment center (nondimensionalized by rotor radius).
Columns 3 through 5 echo E159 output of mode shapes, mode shape derivatives, and
mode shape second derivatives at each of the spanwise segments. The remaining
columns on the sample page, for each mode, present the various derived
incremental deflection correction function vectors which account for blade twist
and for radial foreshortening. All values are nondimensional.

Column 6 presents the DVB array, which corresponds to the first order Avg
spanwise function due to built-in twist. This set of values makes up the linear
portion (in terms of the modal time variables) of the Av deflection correction
function defined in the structural twist analysis. The array is presented in the
flatwise modal information group because it is defined using the flatwise deflec~
tions. Column 7 presents the DV2BP array, which contains the first spanwise
derivatives of the second integrals defining the Avp spanwise function (Avp
is made up of two integrals in its definition). Column 8 presents the DWWBB
(AWg) array, which corresponds to the built-in twist portion of the second
order AW functions defined in the structural twist analysis. The next column
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LINEAR AND NONLINEAR MODAL DEFLECTION VECTORS

FLATWISE MODE 1

Fe o s WNm Z

Ze e s N~ Z

EDGEWISE MODE

N

Ze v s LN

Ze o o LN =

MODAL FREQUENCY =

GWP

X XXXXX

GWPP

X o X XXXX
X o X XXXX
X o XXXXX
X o XXXXX
X X XXXX
XX XXXX
X XXXXX

XXXo X XXX

DVB DV2BP
X XXXXX X XXXXX
X XXXXX X XXXXX
X. X§§§ XoXXXXX
X XXXXX X XXXXX
X XXXXX X XXXXX
XoXXXXX X XXXXX
X XXXXX  X.XXXXX

PITCH-FLAT COUPLING,

DWWBB

X XXXXX

X X XXXX
X XXXXX
X XXXXX
XX XXXX
X XXXXX
X XXXXX

DWW2BBP DWWBC
X o X XXXX X XXXXX
XoXXXXX X XXXXX
X o XXXXX Xo X XXXX
XX XXXX X XXXXX
X XXXXX Xo X XXXX
X o XXXXX X o XXXXX
X o XXXXX Xo XXXXX

LINEAR RADIAL DEFLECTION VECTOR DUE TO ELASTIC AXIS OFFSET (DUEAF), AND

QUADRATLC DEFLECTION VECTORS DUE TO TORSION MODAL

X

X XXXXX
Xo XXXXX
X o XXXXX
X o XXXXX
X« XXXXX
X o XXXXX
X X XXXX

DUEAF

X o XXXXX
X o XXXXX
X o XXXXX
X o XXXXX

><
E
>

X< XXXXX

J =
DVE

X o XXXXX
X o XXXXX
X o« XXXXX
X o XXXXX
X o« XXXXX
X« XXXXX
X« XXXXX

MODAL FREQUENCY =

Gvp

)
DV2EP

GVPP

Xo XXXXX
X XXXXX
X XXXXX
Xo XXXXX
X XXXXX
X XXXXX
X o XXXXX

(2)

DVE DV2EP
XoXXXXX X XXXXX
X XXXXX X XXXXX
X XXXXX X XXXXX
X XXXXX  X.XXXXX
X XXXXX X XXXXX
X XXXXX X XXXXX
X XXXXX  XoXXXXX

XXX XXXX

DWB DW2BP
X XXXXX X XXXXX
X XXXXX X XXXXX
X XXXXX X« XXXXX
X XXXXX X XXXXX
X XXXXX  X.XXXXX
X XXXXX X XXXXX
X XXXXX X XXXXX

X« XXXXX
Xo XXXXX

DVVBB

X XXXXX
X XXXXX
Xo XXXXX
XX XXXX
X XXXXX
X XXXXX
Xo XXXXX

(3)
DV2EP

X XXXXX
X o XXXXX
X o XXXXX
X XXXXX
X XXXXX
X X XXXX
X XXXXX

DVV2BBP

X XXXXX
X o XXXXX
X o XXXXX
X XXXXX
X XXXXX
X XXXXX
X XXXXX

LINEAR RADIAL DEFLECTION VECTOR DUE TO ELASTIC AXIS OFFSET(DUEAE), AND
DEFLECTION VECTORS DUE TO ELASTIC (MODAL) TWIST, DWE(1,J), DW2EP(1,J), AND TO

X

X« XXXXX
X« XXXXX
X« X XXXX
Xo XXXXX
X XXXXX
X XXXXX
X o XXXXX

DUEAE

Xo XXXXX
X o« XXXXX
X o XXXXX
X« XXXXX
X« XXXXX
X XXXXX
X« XXXXX

J =
DWE

X o XXXXX
X o XXXXX
X« XXXXX
X.XXXXX
Xo XXXXX
X« XXXXX
X o XXXXX

q))
DW2EP

X XXXXX
X« XXXXX
X XXXXX
X XXXXX
X« XXXXX
X o XXXXX
X XXXXX

DWE

X XXXXX
X XXXXX
X XXXXX
X XXXXX
X o XXXXX
X « XXXXX
X< XXXXX

(2)
DW2EP

X« XXXXX
X« XXXXX
X o XXXXX
X XXXXX
X o XXXXX
X« XXXXX
X XXXXX

Sample Page 17

3)
DW2EP

/M= (1)
/

Xo XXXXX
X. XXXXX
X« XXXXX
X« XXXXX
X o XXXXX
X XXXXX
X o XXXXX

PITCH-EDGE COUPLING, AV(1)=X.XXXX

DVVBC
X o X XXXX

X« XXXXX

EDGEWISE BENDING,

X X XXXX

TWIST (DVE(1,J), DV2EP(1,J)) AND TO FLATWISE BENDING

AW(1)=X.XXXX MODE TYPE=XXXXXX

DWW2BCP DWWCC  DWw2CCP
X XXXXX X XXXXX  Xo XXXXX
X X XXXX X XXXXX  XoXXXXX
X« X XXXX X XXXXX X XXXXX
Xo X XXXX X XXXXX  XoXXXXX
X XXXXX X XXXXX  XoXXXXX
X XXXXX X XXAXX X XXXXX
Xo XXXXX X XXXXX X XXXXX

(UWWE(1,M))
(2) 3 %)
UWE
X XXX X XXXXX X XXXXX
X XXXXX Xo XXXXX  XoXXXXX
X XXXXX X XXXXX XoXXXXX
X XXXXX X XXXXX  XoXXXXX
X o XXXXX X XXXXX  X.XXXXX
X. XXXXX X XXXXX XoXXXXX
X XXXXX X XXXXX X.XXXXX
MODE TYPE=XXXXXX

DVV2BCP pvvcc  Dvv2ccCp
X o XXX XX X XXXXX  X.XXXXX
X. XXXXX X XXXXX X XXXXX
X« XXXXX X XXXXX X XXAXX
X. XXX XX X XXXXX X XXXXX
X.XXXXX X XXXXX X XXXXX
X X XXXX X XXXXX X XXXXX
Xo XXXXX X XXXXX X XXXXX

UVE(1,M)
UVE

X XXAXX X« XXXXX

X« X XXXX X o XXXXX

X+ X XXXX X o XXXXX

X XXXXX X« XXXXX

X XXXXX X o XXXXX

X o X XXXX X o XXXXX

X XXXXX X XXXXX



shows the DWW2BBP array, which lists the first spanwise derivatives of the second
integrals defining the built-in twist related AWp spanwise array.

The last four columns correspond to the portions of the second order AW
functions involving twist due to control inputs. DWWBC (AWgc) refers to
portions of the second order AW functions which contain a coupling of terms due
to built-in twist with terms due to twist resulting from control inputs. DWW2BCP
represents the first spanwise derivatives of the second integrals defining the
AWpc spanwise array. DWWCC (AWg) conmsists of strictly control-related
portions of the second order AW functions. And finally, DWW2CCP represents the
first spanwise derivatives of the second integrals defining the AWg array.

Following these thirteen columns of information appears a statement
describing the deflection vectors to be presented next. Again, thirteen more
spanwise dependent columns of information are printed. Column 3 presents the
DUEAF array corresponding to the flatwise bending deflection linear radial fore-
shortening accruing from built-in structural sweep. Columns 4 and 5, 6, and 7, 8
and 9 represent pairs of vectors arising due to torsion modal twist, for at most
three torsion modes. Above each pair of columns is a label of which torsion mode
(J) is being evaluated. For each pair, first the DVE array appears. This array
corresponds to the first order Av, spanwise function due to torsional modal
(elastic) twist. This set of values makes up the nonlinear portion of the Av
deflection correction function. Second, the DV2EP array is printed. This
contains the first spanwise derivatives of the second integrals defining the
Av, spanwise function. Columns 10 through 13 present, for at most four modes
(four flatwise or three edgewise - depending on which modal information group is
being described) the flatwise (UWE) or edgewise (UVE) bending nonlinear radial
foreshortening due to structural sweep.

The above description for the flatwise modal information applies in a
similar way to the edgewise modal information group. The various arrays corres-
pond to similarly defined spanwise functions involving twist, structural sweep,
and the edgewise modal deflection and spanwise derivative arrays.

Sample page 18 presents typical modal information for the input torsion
modes together with the derived pseudo-torsion mode shapes. The pseudo-torsion
mode description is output as spanwise variable, as is the case with the conven-
tional normal torsion modal descriptions.

First, the torsion modal frequency (per rotor rev) is printed. Then twelve
columns of spanwise distributions are printed. Columns 3 and 4 echo E159 output
of mode shapes and mode shape derivatives at each of the spanwise segments. The
remaining eight columns present first and second order deflection correction
functions accruing from structural sweep. All values are again nondimensional.
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TORSLON MODE MODAL FREQUENCY = « XXXXX

N X GT GTP DVEA DV2EAP DWEA DW2EAP DVVEA DVV2EAP DWWEA DWW2EAP
| «XXXXX «XXXXX «XXXXX <X XAXX «XXXXX SXXXXX « X XXXX «XXXXX «XXAXX « XXXXX « X XXXX
2 «XXXXX JXXXXX «XXXXX «XXXXX «XXXXX «XXXXX SXXXXX «XXXXX «XAAXX « XXX «XXXXX
3 «XXXXX «XXXXX « X XXXX <X XXXX «XXXXX «XXXXX « XXXXX « XXAXX «XXXXX «XXXXX «XXXXX
4 <X XXXX « X XXXX « X XXXX SXXXXX «XXXXX «XXXXX « X XXXX < XXXXX «XXXXX « X XXXX «XXXXX
5 SXXXXX o XXXXX « X XXXX <X XXXX X XXXX SXXXXX «XXXXX « X XXXX SXOXXXX «XXXXX «XXXXX
6 « XXXXX « XXXXX «XXXXX «XXXXX « X XXXX « X XXXX «XXXXX «XXXXX 19,9088 « XXXXX « XXXXX
7 «XXXXX «XXAXX « X XXXX » XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX
8 «XXXXX «XXXXX «XXXXX «XXXXX X XXXX «XXXXX <X XXXX «XXXXX SXXXXX <X XXXX «XXAXX
9 «XXXXX <X XXXX «XXXXX <X XXXX <X XXXX JXXXXX «XXXXX «XXXXX «XXAXX «XXXXX «XXXXX
10 «XXXXX X XXXX « X XXXX «XXXXX « XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX
11 « X XXXX <X XXXX «XXXXX «XXXUXX «XXXXX «XXXXX « X XXXX «XXAXX <X XXXX <X XXXX «XXXXX
12 « XXXXX «XXXXX «XXXXX <X XXXX «XXXXX « XXXXX « X XXXX « XXXXX «XXXXX « X XXXX « XXXXX
13 «XXXXX « XXXXX «XXAXX «XXXXX « XXXXX «XXXXX «XXAXX «XXXXX « XXXXX « XXXXX « XXXXX
14 «XXXXX « X XXXX « XXXXX «XXXXX « XXXXX «XXXXX «XXXXX « XXXXX « X XXXX «XXXXX « XXXXX
15 «XXXXX «XXXXX « X XXXX « X XXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX
16 «XXXXX <XOXXXX «XXXXX «XXXXX <X XXXX JXXXXX «XXXXX « XXXXX «XXXXX « XXAXX <XXXXX
17 «XXXXX « X XXXX o« XXXXX <X XXXX «XXXXX « X XXXX « X XXXX «XXXXX « X XXXX « X XXXX «XXXXX
18 « X XXXX «XXXXX «XXXXX « XXXXX « X XXXX « X XXXX «XXXXX «XXXXX < XXXXX « X XXXX «XXXXX
19 o XXXXX « X XXXX « X XXXX <X XXX «XXXXX S XXXXX « X XXXX « XXXXX « XXXXX « X XXXX « X XXXX
20 « XXXXX « XXXXX « X XXXX «XXXXX « X XXXX « XXXXX « XXXXX « XXXXX « X XXXX « XXXXX « X XXXX

PSEUDO~-TORSION MODE )
X GT GTP DVEA DV2EAP DWEA DW2EAP DVVEA DVV2EAP DWWEA DWW2EAP

N

1 « XXXXX <X XXXX « XXXXX « X XXXX «XXXXX « XXXXX « X XXXX «XOOXX « X XAXX «XXXXX « XXXXX
2 <XXXXX «XXXXX « XXAXX SXXXXX <X XXXX «XXXXX «XXXXX «XXXXX SXXXXX «XXAXX «XXXXX
3 «XXXXX « X XXXX «XXXXX « XXXXX «XXXXX « X XXXX « X XXXX <X XXXX «XXXXX « XXXXX «XXXXX
4 «XXXXX <X XXXX « XXXXX «XXXXX «X XXXX « X XXXX « X XXXX <X XXXX <X XXXX « X XXXX « X XXX
5 <X XXXX « X XXXX o XXXXX SXXXXX S« X XXXX «XXXXX <X XXXX X XXXX «XXAXX «XXXXX « X XXXX
6 «XXXXX « XXXXX « XXXXX «XXXXX «XXXXX « XXXXX « XXXXX «XXXXX «XXXXX « XXXXX « XXXXX
7 « X XXXX « X XXXX «XXXXX «XXXXX <X XXXX « X XXXX « X XXXX «XXXXX «XXXXX « XXXXX «XXXXX
8 «XXXXX «XXXXX « X XXXX <X XXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXXXX
9 «XXXXX <X XXXX «XXXXX JXXXXX « XXXXX « X XXXX «XXXXX X XXXX SXXXXX « XXXXX <X XXXX
10 «XXXXX «XXXXX «XXXXX <X XXXX «XXXXX JXXXXX « X XXXX X XXXX «XXXXX « XXXXX «XXXXX
Il «XXXXX «XXXXX «XXXXX «XXXXX « X XXXX «XXXXX <X XXXX <XXXXX « X XXXX « X XXXX « X XXXX
12 «XXXXX «XXXXX « XXXXX «XXXXX <X XAXX «XXAXX « XXXXX «XXXXX o XXXXX « X XXXX «XXXXX
13 «XXXXX « XXXXX «XXXXX « XXXXX «XXXXX «XXXXX «XXXXX «XXXXX «XXAXX «XXXXX «XXXXX
14 «XXXXX «XXXXX «XXAXX «XXXXX o XXXXX «XXXXX «XXXXX <X XXXX « XXNXX «XXAXX « XXXXX
15 «XXXXX «XXAXX «XXXXX «XXXXX <X XXXX « X XXXX «XXXXX <X XXXX «XXXXX «XXXXX «XXXXX
16 «XXXXX «XXXXX « XXXXX «XXXXX <X XXXX « X XXXX «XXXXX JXXXXX «XXXXX «XXXXX « X XXXX
17 «XXXXX «XXXXX « XXXXX «XXXXX «XXXXX « X XXXX «XXXXX «XXAXX «XXXXX «XXXXX « X XXXX
18 « X XXXX SXXXXX . «XXXXX «XXXXX o« X XAXX « X XXXX <X XXXX «XXXXX X XXXX «XXAXX «XXXXX
19 o X XXXX « X XAXX « X XXXX S XXXXX « X XXXX «XXXXX o X XAXX «XXXXX X XXXX « X XAXX « X XXXX
20 « XXXXX « X 200XX « XXXXX « XXXXX «XXAXX « XXXXX « XXXXX « XXXXX « XXOUXX « X XXX « XXXXX

Sample Page 18



DVEA (Avgp) represents the first order spanwise increments to the edge-
wise deflections brought about by the structural sweep of the blade. These
values are each defined by two integrals. DV2EAP represents the first spanwise
derivatives of the second integrals defining the Avgp spanwise functions.
DWEA (Awgp) represents the first order spanwise increments to the flatwise
deflections, due to structural sweep. DW2EAP represents the first spanwise
derivatives of the second integrals defining the Awgp spanwise functions.
DVVEA (AVga) is an array consisting of the second order spanwise increments
to the edgewise deflections (due to structural sweep). DVV2EAP displays the
first spanwise derivatives of the second integrals defining the AVgp spanwise
functions. DWWEA (AWga) consists of the second order spanwise increments to
the flatwise deflections. And finally, DWW2EAP represents the first spanwise
derivatives of the second integrals in the definition of the AWg, spanwise
functions.

All arrays for the pseudo-torsion mode are defined in a similar manner. In
general, the values output for the psuedo-torsion mode shapes have values of 1.0
over the blade span except, for analyses of the bearingless rotor, over the
flexbeam-torque tube portion of the blade.

The first line on Sample Page 19 represents coupled torsion information
which is produced as a means of suppressing the high frequency coupled mode.
This information 1s printed if either an explicit root torsion spring rate is
input (location (D)34), the wobble mode is included (input location (C)14), or
the redundant analysis is invoked (input location (C)15). If any of the above
items pertain, then the rigid body torsion degree-of-freedom (pseudo-torsion
mode) is used with the elastic (normal) torsion modes. The output consists of
two coupled frequencies (per rev), the first and third items printed, and the
coupled mode shape ratio, A, (nondimensional), computed internally by a simple
eigenvalue analysis. The lower of the two coupled frequencies is used in deter-
mining the coupled mode shape ratio. This ratio, A, represents a fixed propor-
tion between the cantilevered elastic torsion mode and the rigid pseudo torsion
mode. This ratio remains fixed during the time history. Note that when this
coupling is enabled by entry (D)34 as discussed above, the time-history printout
(Sample page 20) value of QTl represents the amplitude of the elastic canti-
levered component while QT2 is the corresponding rigid pseudo torsion amplitude
which is always equal to QT1*A. Also note that the values printed under the
heading 'TORSION DEFL.' represent a superposition of QT! and QT2 converted to
degree units.
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COUPLED TORSTON INFORMATION FOR TORSION MODE 1 ARE

Sample Page 19

X o XXXXXX

X« XXXXXX

XX« XXXXXX



Results of Solution Part II - Time-History Solutions

Sample Pages 20 through 22 present the pertinent details of the results from
the time-history solutions (i.e., transient aeroelastic responses). The first
row of parameters following the page title represents, for the subsequent time-
history solution, the parameters defining the flight condition. These consist of
the various control angles (in degrees), the inflow and advance ratios, LAMBDA
and MU, respectively, and the initial nondimensionalized values of the "momentum"
induced velocity components. The remainder of Sample Page 20 comprises the
typical azimuthal listing; this listing is output for every azimuth angle which
is a multiple of the print azimuth increment, loader input (s)11. Regardless of
the printout controls ((S)1l, (S)12) sample page 30 is always printed for the '
rotor initial azimuthal angle. In the following discussions each item of pages
30-33 will be discussed. '

Azimuthal Printouts

The first line appearing on all subsequent azimuthal printouts gives the
rotor azimuth angle, revolution number and time. In addition, the three compo-
nents of the instantaneous Glauert (momentum induced) inflow, LAMBDAO, LAMBDAIC,
LAMBDALS, are output. The remainder of the azimuthal printout consists of three
main groups. The first of the three groups on this sample page lists the
spanwise distributions of the pertinent aerodynamic quantities, the format of
which depends on the choice of unsteady airloads modeling selected (input
location (A)64).

Unsteady airloads options wherein the airloads depend on a single "effec—
tive" angle-of-attack are: 1i) the quasi-static modeling ((A)64 = 0.), ii) the
unstalled generalized Wagner functions modeling ((A)64 = 1.), and iii) the UTRC
synthesized unsteady stalled modeling ((A)64 = 2.). For these cases, the first
seven aerodynamic quantities are: LAMBDAS, GAMMA, PHI, ALPHA, MACH, A, and
ALPHAW. These quantities are, respectively, the aerodynamic sweep angle due only
to radial flow (in degrees), the total aerodynamic sweep angle including struc-
tural sweep (in degrees), the inflow angle and angle-of-attack (both in degrees),
Mach number, nondimensional angle-of-attack rate, and the unsteady decay para-
meter (in degrees).

Remainder of Azimuthal Printout

The aerodynamic coefficients CL, CD and CM are self-explanatory and nondim-
ensional. The airload distributions in the zg and yg directions, SAZ5 and SAY5,
respectively, have the units of 1b/in., the aerodynamic pitching moments about
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PART 11, TIME HISTORY SOLUTION OF CUMPLETE (NONLINEAR) EQUATION SE

AlS BIS THETA 75 LAMBDA

oX XXX XX XXX X XXX
PSI( )= «X DEG REV= X TIME=  .XX SEC
N  XCEN LAMBDAS GAMMA  PHI ALPHA  MACH
1 XXX <XXX XXX XX . XX XXX JXXX
2 Jonx JXXX XXX XX XX XXX XXX
3 XXX XXX XXX XX XX AXX XXX
& XXX JXXX XXX XX XX XXX XXX
S JXXXX XXX . XX XX XXX XXX
6 JXXNX XXX . XX XX XXX JXXX
7 JXXXX XXX XXX XX XX XXX  SXXX
8 .X0X XXX X XX XX XXX XXX
9 XXX XXX < XXX XX XX XXX . XXX
10 XXXX XXX XXX XX XX XXX XXX
11 XXX XXX X XX XX XXX X
12 J0X XXX XXX XX XX XXX XXX
13 JXXxX XXX XXX XX XX XXX XXX
14 XXAX « X300 XXX XX XX XXX XXX
1S «XXXX XXX XXX XX XX XX XXX
16 XXX XXX XXX xX . XXX XXX
17 «XXXX XXX XXX XX, XXX  oX
18 .XXXX XXX XXX XX XX XXX XXX
19 XXX <X XXX XX XX XXX XXX
20 <XXNX XXX XXX XX XX XXX XXX
N XCEN VERT. INPLANE TORSION sSDZS SDYS

DEFL. FL. DEFL.

1 JXXXX JXXX . XXX XXX XXX
2 XXX XXX JJXX XXX XXX JXXX
3 XXX XXX XXX JXXX XXX XXX
4 XXX XXX XXX XXX SXXX XXX
S LXXXX XXX XN XXX X SXXX
6 JXXXX XXX SO JXXX XXX XXX
7 XXX XXX XXX XXX o XXX <XXX
8 JXX < X0 XXX . XX XXX
9 XXX XXX XX WX XX XXX
10 XXAX XXX XXX JXXX «XXX XXX
11 XXX XXX XX XXX XXX XXX
12 X0 « X0 XXX JXXX «XXX XXX
13 XK XXX XXX XXX XXX XXX
“ -.qu .XXX 'xu .XXX .XXX .‘
15 «XXAX XXX XX WX XXX XXX
16 XXAX SXXX JXXA XXX XXX <XXX
17 XXXX XXX XXX WX XXX «XXX
18 XXX XXX SN XXX XXX XXX
19 X000 XXX O XXX XXX XXX
20 X0 XXX XXX JXXN XXX X

(ﬁ' W2 W3 Qi Qv

O0-YYY SXXX-YYY  JXRX-YYY G XXX-YYY SXXX=-YYY
S-; TXNX-YYY SXXX-YYY JXXX-YYY  <XXX+YYY 2= YYY
(A4 XXA-YYY oXXA-YYY o XXX-YYY JJOO-YYY  JXXX-YYY
XL OOX-YYY XO(-YYY oJXXX-YYY  oXXX-YYY X XX-YYY

MU VO
XXX «XXXXX
LAMBDA 0 = . X)XX
A ALPHAW ‘X:L

XX XX XXX
XX « XX «XAX

XX o XX XXX
u.“ .xxl

QVv3 QTt
JXXX-YYY SXXNA-YYY
X XX-YYY <X XN-YYY
SXXX-YYY X XA~YYY
SXXX-YYY «XXX-YYY
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T - AEKOELASTIC TRANSTENT RESPONSES

viC VIS
« X XXX JXXXXX
LAMBDA 1C = JXXXX LAMBDA 1S = ,XXXX
cDh SAZ5 SAYS MAXS MAYS
XXX « XXX XXX XXX «XXX XXX
« XXX XXX JXXX <X XX XXX XXX
<X XX « X300 XXX « XXX « XXX XXX
XXX « XXX <X « XX « XXX « X0
« XXX XXX XXX XXX o XXX « XXX
« XXX X0 « XXX « XXX « XXX XXX
o XXX < XXX XXX « XX « XXX « XXX
o XXX h o § « X « XXX XXX < XXX
« XX < XXX XXX XXX XXX « XXX
« XXX < XXX « XXX « XXX XXX « XXX
« XXX « X0 XXX «XXX o XXX « XXX
« XX « XA <X o XXX XXX « XXX
« XX « XXX « XXX o XXX « XXX « XXX
« XXX « X000 « XXX « XX « XXX « XXX
« XXX « X0 « X XX « XXX XXX o XXX
« XU « XXX < XXX « XXX o XXX <« XXX
« XXX « XXX « XXX X o XXX o XXX
« XXX « XXX +X0U XX o XXX XXX
# XXX o XXX « XXX . o XXX XXX
o XXX «AXX « XXX . « XXX XXX
FLATWISE EDCEWISE CORNER TORSION TORSION
STRESS STRESS STRESS STRESS MOMENT
XXX. xxx. XX X. XX, XX, XX
AXX. XXXo XX Xo AXXAX. XXX XX
XXX AXX . XX Xeo XXAX XXX XX
AXX AXX e XX Xeo AXAX o XXX XX
XXX o AXX. XX Xeo XX e XN XX
XXX o XXX. XX XXX, AXX XX
XX« XXXe XX Xeo XXAX e AAX XX
XXX. XXX XX X. XX0(X. XXX XX
AXX . XxX. XX X AXXX. XXX XX
XX, . XXX, XX, XXAX XXX XX
AXX . XXXo XX Xo XXAX. XXX . XX
AXXe XXX. XXXe. XXX AAX XX
XXX o AXX . XXX XXX AXX XX
AAX o XXX XXX XXAXe AXX. XX
AXX . XXX AXX. X XXX XXX XX
XXX o XXX, XX X XXX X XX XX
xXX. XX, AX N, XXX, XXX XX
XXX o XXX, XX X XXAX, XXX, XX
AXX» XX, AXX. AXAX. XXX XX
. XXX, XXX XX AXX .
QT2 BETA DELTA BETA-Pl BETA-P2
XXX~ YYY XXX-YYY JXXA~YYY JAXX-YYY JX-YYY
JXXXA-YYY JAXX=YYY XXX-YYY JAXX=-YYY ANA-YYY
JXXA-YYY «XXX=-YYY  XXX-YYY JI=YYY  XMA~YYY
XXX~ YYY JXXA-YYY L XXOA~YYY JNA-YYY  XXX-YYY



the x; and yg axes, MAX5 and MAY5, respectively, have the units of 1lb-in./in.

The second of the three groups on Sample Page 20 lists pertinent spanwise distri-
butions of a structural dynamic nature. The vertical and inplane deflections are
those, respectively, in the zg and yy directions and have the units of in. The
torsional deflection has the units of deg. The quantities SDZ5, SDY5 and MDX5
are "semi-dynamic" load distributions. These distributions are dimensionally the
same as those resulting from aerodynamics, but arise instead from all the dynamic
effects except the doubly time differentiated omes. The quantity MEX9 is the
nonlinear elastic torsion moment distribution as calculated using the AEL imple-
mentation; it too has the units of lb-in./in. All stress quantities have the
units of 1b/in.2, whereas the torsion moment has the units of lb-in. The third
of the three groups on Sample Page 20 lists the blade modal responses, their
nondimensional time derivatives and "right-hand-side" excitatioms. Specifically,
for each blade modal response variable (column) are given the instantaneous dis-
placement, velocity, acceleration and generalized excitation (elements on right-
hand side of the modal equation).

If a composite bearingless rotor is modeled, it should be noted that, over
the flexbeam-torque tube span, the flatwise and edgewise stresses outputted are
those only for the flexbeam whereas the torsion moments and stresses outputted
are those only for the torque tube. Also, the items on Sample Page 21 typically
occur immediately after the stress quantities are printed, and before the modal
responses. The first group of information will appear providing the outboard
attachment point (location (G)16) of the pitch-horn is beyond the first segment.
If this is the case, the integer identifier and the offset radial location of the
‘center of the segment defined as the innermost flexbeam segment (location (C)1)
will first be printed. Then, in the same row, will appear the spar/flexure
parameters, i.e. the flatwise stress (1b/in?), edgewise stress (1b/in%), corner
stress (1b/in2), torsion stress (1b/in?) and torsion moment (lb-in) at that
innermost flexbeam segment. (This segment has an assumed minimum value of 1.)
The output torsion moment is for the flexbeam immediately inboard of the junc-
ture.

The next set of values is printed only if the torque tube/flexbeam redundant
analysis is used (location (C)15). The five structural quantities (deflection
rates, loads, and moments) are outputted at four spanwise locations: outboard of
the torque tube-flexbeam~blade juncture, inboard of the flexbeam juncture, in-
board of the torque tube juncture, and at the torque tube snubber.

After the time-history solution has either converged to periodicity or run

to maximum flapping trials (input location (S)9), various integrated loads are
calculated for one additional, final blade revolution to form the aerodynamic
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SPAR/FLEXURE PARAMETERS:
1 X.XXXX

OUTB’D OF JUNCTURE .
INB‘D OF J. (FLEXBEAM)
INB‘D OF J. (T. TUBE)
AT SNUBBER  (T. TUBE)

YY5PM
« XXXXXX
« XXXXXX
« XXXXXX
« XXXXXX

ZZ5PM

« XXXXXX
« X XXXXX
« X XXXXX
« XXXXXX

SX5 SY5
XXXXX.X XXX XXX
XXXXX.X XXX. XXX
XXXXX.X XXX.XXX
XXXXX.X XXX. XXX

Sample Page 21

XXXX.

SZ5
XXX.XXX
XXX« XXX
XXX.XXX
XXX . XXX

XXXX.  XXXX.

MX5 MY5
XXXX. XX XXXX.XX
XXXX.XX XXX. XXX
XXXX. XX XXX XXX
XXXX. XXX

XX. XXX.

M2Z5

XXXX. XXX
XXXX. XXX
XXXX. XXX



performance and stress results depicted in Sample Page 22. For each of eight
performance quantities, results are presented in nondimensional coefficient form,
in nondimensional form divided by solidity, and in actual dimensional form. Note
that ten dimensional quantities are listed and the units are lb for forces and
1b-ft for moments, as appropriate. LIFT and PROP.FORCE are components of THRUST
and H-FORCE that have been rotated through the internally calculated aerodynamic
shaft angle printed as ALPHA S. The quantity EQU. DRAG (1lb) represents the
combined power expended by the rotor due to rotor rotation (torque) and transla-
tion (drag) divided by flight speed.

The next line duplicates the parameters defining the flight condition and
includes additional quantities which depend on the integrated performance for
evaluation. At the beginning of the time-history calculation, it is not known
which part of the inflow ratio being used is due to ram effects and which due to
momentum induced effects. Once the integrated rotor thrust is calculated,
however, the induced portion of the inflow can then be calculated using the
simple usual momentum formula derived for flight in an infinite continuum. The
complementary portion of the inflow represents the ram effect from which the
shaft angle-of-attack, ALPHA S, in degrees, can be calculated. The quantity VEL
ACT is the actual forward flight velocity, in knots, consistent with the advance
ratio used and the shaft angle-of-attack. For finite forward flight speeds EQU.
L/D is the lift divided by the equivalent drag; for hovering cases this quantity
is the figure of merit. PAR. AREA, the rotor parasite (drag) area, in square
feet is the rotor drag divided by dynamic pressure. The control angles, AlS,
Bl1S, THETA 75 and the shaft angle-of-attack all have the units of degrees. The
power absorbed by the rotor from the airstream in kilowatts is given by the
quantity KWATT. It will always be of opposite sign from the horsepower. The
remainder of Sample Page 22 consists of reductions of the various stresses given
in the azimuthal printout in terms of median and 1/2 peak-to-peak values.

Once the time-history solution has converged to periodicity, the program
optionally performs harmonic analyses of the azimuthal variations of various
respouse quantities. The outputs of these harmonic analyses are depicted in
Sample Pages 23 through 25. 1In each of these sample pages, the harmonic informa-
tion for each response variable is contained in the appropriate horizontal band
of five rows. The harmonics are listed by columns up to a maximum of ten
harmonics. All harmonic analysis output depicted on these sample pages assume a
negative harmonic content form in keeping with the (negative) harmonic form
conventionally assumed for the blade pitch control and rigid flapping angles.

For each harmonic of response variable five quantities are output; these quanti-
ties are, respectively, the (negative) cosine and sine components, the equivalent
amplitude and phase angle, and lastly, the amplitude of the harmonic relative to
all the other harmonic amplitudes output. Sample Page 23 depicts the harmonic
analyses of the dimensionless modal response variables selected wherein QW(I),
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AFRODYNAMIC PERFORMANCE AND STRESSES

H FORCE Y FORCE THRUST ROLL. MOM. PITCH MOM. TORQUE LIFT PROP. FORCE HORSEPOWER EQU. DRAG
Cg ; X XAXXXXXX X XXXKXXXX X XXXXXXXX  XoXXXXXXXX X XXXXXXXX X XXXXXXXX X XXXXXXXX  XoXXAXXXXX
¢l J/SIG X XXAXXXXX X XXXXXXXX X XXXXXXXX  XoXXXXXXXX X XXXXXXXX X XXXXXXXX X XXXXXXXX X XXXXXXXX
DIMENS. XXX.XX XXX.XX XXX.XX XXX XX XXX XX XXX.XX XXX. XX XXX. XX XXX.XX XXX. XX
AlS B1S THETA 75 EFF. LAMBDA EFF, MU ACT. VEL ALPHA S EQU. L/D PAR. AREA KILOWATTS
X. XXX X XXX XX. XXX X o XXXXX X. XXX XXX XX XXX XXX X XXX X XXX XXXX.XX
/ MEDIAN STRESSES / / 1/2 PTP STRESSES / / MAX CORNER / / TORSION MOMENTS [/
N X CEN FLATWISE EDGEWISE FLATWISE EDGEWISE STRESSES MEDIAN 1/2 PTP
XX « X XXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX. XX
XX JXXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX XX
XX  JXXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX, XXX XX
XX «X XXX XXXX. XXXX. XXXX. XXXX. XXXX. i XXXX. XXX. XX
XX < XXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX XX
XX JXXXX . XXXX. X XXX, XXXX. XXXX. XXXX. XXXX. XXX XX
XX  JXXXX XXXX.o XXXX. XXXX. XXXX. XXXX. XXXX. XXX XX
XX « X XXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX XX
XX - JXXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX XX .
XX  JXXXX XXXX. XXXX, XXXX. XXXX. XXXX. XXXX. XXX. XX
XX JXXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX.XX
XX  <XXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX. XX
XX JXXXX XXXXe XXXX. XXXX. XXXX.o XXXX. XXXX. XXX.XX
XX JXXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX.XX
XX  JXXXX XXXX. XXXX. X XXX, X XXX XXXX. XXXX. XXX« XX
XX  JXXXX XXXX. XXXX.o XXXX. XXXX. XXXX. XXXX. XXX. XX
XX  JXXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX.XX
XX  JXXXX XXXX. XXXX. X XXX, XXXX. XXXX. XXXX. XXX XX
XX < XXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX.XX
XX  JXXXX XXXX. XXXX. XXXX. XXXX. XXXX. XXXX. XXX.XX

Sample Page 22
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QV(K) and QT(J) are, respectively, the (I) flatwise, (K) edgew1se and (J)
torsional uncoupled mode responses.

Sample Page 24 depicts the harmonic analyses of the total shears and moments
exerted by one blade to the hub. In contrast to the steady hub loads listed in
the AERODYNAMIC PERFORMANCE AND STRESSES output (Sample Page 22) which are calcu-
lated by integrating only the aerodynamic load distributions, the total hub
loads, which are herein harmonically analyzed, are calculated by similarly
integrating the combined aerodynamic and the dynamic load distributions. The
longitudinal, lateral and vertical hub shears comprising the first three quanti-
ties of this sample page all have the dimensions of lb and are defined in the x;-
(aft), y,-(starboard), and z,-(up and along axis of rotation) axis directionms,
respectively. The roll, pitch and yaw moments comprising the latter three
quantities on this sample page have the dimensions of 1lb-ft and are defined posi-
tive (using the right-hand rule) about the x;-, y;-, and z,-axes, respectively.
Note that the aerodynamic rolling moment whose output is depicted in Sample Page
22 is defined positive starboard side down and is opposite from the harmonically
analyzed total rolling moment depicted in Sample Page 24. Sample Page 25 depicts
the harmonic analysis of the flatwise stresses at the center of each of the span-
wise segments. A similar output listing is provided for both edgewise and
torsional stresses.

Should major (trim) iterations be used (see description of input items (A)4l
through (A)44) output depicted on Sample Page 26 will be generated by the
program. The first line consists of the zeroth, first cosine and first and
second sine harmonics of first flatwise mode response, in radians, and an
estimate of an effective angle-of-attack on the retreating blade side (¢ = 270°),
in degrees. The nonzero elements of the depicted (G) MATRIX give, for each row,
the partial derivatives of the four trim quantities (CL’ Cpr» CpM» CrM»
respectively) with respect to the four control quantities being used (8 ,¢,

Ajgs By, and (sin a ) OF Vgs Vies Vigs and (sin ag )), for each respective
column. The elements of this matrix are formulated using numerical differentia-
tion of the Sample Page 22 performance results and are calculated for either set
of control quantities, as appropriate. The ERROR VECTOR consists of the
differences between the four requested trim quantities and those achieved in the
preceeding time-history. The two lines depicted give the error vector in dimen-
sional (1b and 1lb-ft) and nondimensional forms, respectively. The CORRECTION
VECTOR consists of those changes to the control quantities which should null the
above described error vector. The correction vector is obtained from the
premultiplication of the inverse of the G matrix with the error vector, but the
corrections are scaled, if necessary, to prevent control changes of more than 2
degrees within any one iteration. The control parameters whose increments are
depicted in this output page are, in respective order: 8 ;5, A}, By, (sin ag),
A, Cops Vos V]e» and vy i the first three have units of degrees and the remainder
are dimensionless or nondimensionalized.
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Impedance Matrices

When the analysis is optionally used to calculate impedance matrices (as
controlled by input items (S)41 through (S)50) these matrices are output as shown
in Sample Pages 27 and 28. Sample Page 27 presents the blade passage harmonic
characteristics of conventionally defined hub loads and their respective
impedances due to vibratory hub acceleration. The column denoted HUB LOADS
presents the N/rev harmonic content of the hub loads as determined by summing
contributions from all blades, where N is indicated in the first line of this
sample page. Thus, the values in this column are equal to the Nth harmonic
values shown in Sample Page 24 but mutiplied by the number of blades. Note that,
as shown in Sample Page 27, the results would be appropriate for the 4th harmonic
hub loads for a four-bladed rotor. The columns denoted LDXC, LDYC, LDZC, LDXS,
LDYS and LDZS present the derivatives of the respective HUB LOADS values with
respect to N/rev vibratory displacements in the x, y and z directions, cosine and
sine components each. The columns denoted RDXC, RDYC, ..., RDZS present similar
derivatives of the hub loads with respect to vibratory rotations about the x, y
and z axes, cosine and sine components each. Note that the units of the loads
and perturbational quantities are defined in the second line of this sample page.
The positive directions of the loads are also defined and are consistent with
those of Sample Page 24.

Sample Page 28 presents elements of an "augmented" impedance matrix
representing the partial derivatives of the HUB LOADS compounents, but with
respect to the six components of higher harmonic (pitch) control angle (HHC)
appropriate to N/rev vibratory hub loads. Normally these components consist of
the cosine and sine components each of the N-1, N and N+l harmonics. Note that
Sample Plage 28 indicates harmonic components of HHC appropriate to 4/rev
vibrations. As indicated in the first line of this sample page the pitch angle
perturbations have the units of degrees.
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SUMMARY OF ROTOR HUB 4/REV LOADS AND HUB IMPEDANCE MATRIX CALCULATIONS FOR 4/REV VIBRATORY HUB DISPLACEMENTS

UNITS... U(SHEAR) = LBS, U(MOMENT) = FT-LBS, U(LINEAR DISPLACEMENT) = FT, U(ROTATIONAL DISPLACEMENT) = RAD

CONVENTIONAL FOURIER SERIES REPRESENTATIONS

LONG. SHR (+,
LAT. SHR (+,
VERT. SHR (+,
ROLL MOMT (+,
PITCH MOMT (+,
YAW  MOMT (+,
LONG. SHR (+,
LAT. SHR (+,
VERT. SHR (+,
ROLL MOMT (+,
PITCH MOMT (+,
YAN  MOMT (+,

LONG. SHR (+,
LAT. SHR (+,
VERT. SHR (+,
ROLL MOMT (+,
PITCH MOMT (+,
YAV MOMT (+,
LONC. SHR (+,
LAT. SHR (+,
VERT. SHR (+,
ROLL MOMT (4,
PITCH MOMT (+,
YAW  MOMT (+,

AFT)
STRBD)
UP)

STRBD UP)
NOSE  UP)
OMEGA DIR.)
AFT)
STRBD)
UP)

STRBD UP)
NOSE UP)

OMEGA DIR.)

AFT)

STRBD)

uP)

STRBD UP)
NOSE  UP)
OMECA DIR.)
AFT)

STRBD)

upr)

STRBD UP)
NOSE UP)
OMEGA DIR.)

HUB LOADS

X.XXXE-YY
X XXXE-YY
X XXXE-YY
XoXXXE-YY
X XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE~YY
XoXXXE-YY

LDXC

X« XXXE-YY
Xo XXXE-YY
X XXXE-YY
X.XXXE-YY
X.XXXE-YY
X XXXE-YY
X« XXXE-YY
X XXXE-YY
X XXXE-YY
X.XXXE~-YY
X.XXXF-YY
X XXXE-YY

LDXS

X.XXXE-YY
X XXXF~YY
X XXXE~YY
X XXXE-YY
X XXXE-YY
X< XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE-YY
X XXXE-YY
X.XXXE-YY
X< XXXE-YY

LDYC

X.XXXE-YY
X XXXE-YY
X XXXE~YY
X XXXE~-YY
X XXXE-YY
X XXXE~YY
X XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE-YY

LDYS

X XXXE-YY
X XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE-YY

X XXXE-YY-

Xo XXXE-YY
X« XXXE-YY
X XXXE-YY
X.XXXE~YY
X.XXXE-YY

Sample Page

LbZC

X+ XXXE-YY
X.XXXE-YY
X XXXE~YY
X XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE-YY

X XXXE-YY .

X XXXE~-YY
X XXXE-YY
X XXXE-YY
X« XXXE~YY

LDZS

X.XXXE-YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-YY
X.XXXE-YY
X« XXXE-YY
X«XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXXE-YY
XXXXE-YY

27

RDXC

X< XXXE-YY
X XXXE-YY
X.XXXE-YY
X.XXXE-YY
XoXXXE-YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X XXXE~YY
X XXXE-YY

RDXS

X.XXXE-YY
X XXXE-YY
X« XXXE-YY
X XXXE-YY
X XXXE-YY
X« XXXE-YY
X.XXXE-YY
X« XXXE~-YY
X.XXXE-YY
X.XXXE-YY
X+ XXXE-YY
X XXXE-YY

RDYC

X.XXXE~YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-TY
X XXXE-YY
X. XXXE-YY

RDYS

X.XXXE-YY
X XXXE-YY
X XXXE~-YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY
X+ XXXE-YY
X« XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-YY
X« XXXE-TY

RDZC

X« XXXE-YY
X.XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X. XXXE-YY
X« XXXE-YY
X.XXXE-YY
X« XXXE-YY
X« XXXE~YY
XoXXXE-YY
X XXXE-YY

RDZS

X XXXE-YY
X.XXXE-YY
X.XXXE-YY
X.XXIE*YY
X XXXE-YY
X.XXXE-YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X.XXXE-YY



861

HUB IMPEDANCE MATRIX FOR HHC PITCH ANGLES (UNITS = DEG)

LONG.
LAT.
VERT.
ROLL
PITCH
YAW
LONG.
LAT.
VERT.
ROLL
PITCH
YAW

SHR (+,
SHR (+,
SHR (+,
MOMT (+,
HONT (+,
MOMT. (+,
SHR (4,
SHR (+,
SHR (+,
MOMT (+,
MONT (+,
MOMT (4,

AFT)

STRBD)

uP)

STRBD UP)
NOSE UP)
OMECA DIR.)
AFT)

STRBD)

upP)

STRBD UP)
NOSE UP)
OMEGA DIR.)

Ccos
Cos

Cos
cos
cos
SIN
SIN
SIN
SIN
SIN
SIN

A3S

X XXXE-YY
X XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE~-YY
X.XXXE-YY
X.XXXE~-YY
X.XXXE-YY
X XXXE-YY

A4S

X« XXXE-YY
X XXXE~YY
X XXXE-YY
X.XXXE-YY
X+ XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXFE-YY
X XXXE-YY
X.XXXE-YY
X+ XXXE-YY

Sample Page 28

ASS

X.XXXE-YY
X XXXE~-YY
X.XXXE-TY
X XXXE~YY
X XXXE-YY
X.XXXE-YY
X+ XXXE-YY
X.XXXE-YY
X XXXE-YY
X.XXXE~-YY
X.XXXE-YY
X.XXXE-YY

B3S

X.XXXE-YY
X XXXE-YY
X.XXXE-YY
X.XXXE-YY
X XXXE~-YY
X XXXE-YY
X« XXXE-YY

~ X.XXXE-YY

X . XXXE-YY
X .XXXE-YY
XX XXE-YY
X XXXE-YY

B4S

X.XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE~-YY
X XXXE-YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-YY

B5S

X.XXXE-YY
X XXXE-YY
X.XXXE-YY
X XXXE~YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY
X XXXE-YY
X+ XXXE-YY
X.XXXE-YY
X XXXE-YY
X XXXE-YY



Results of Solution Part III - Transient Spectral Stability Analysis

Transient time-history solutions are often difficult to interpret for
quantitative stability information. This is due to the fact that the total
responses consist of several component modes simultaneously and transiently
approaching (or departing from) multi-harmonic periodicity, and with a wide range
of natural frequencies and inherent damping levels. The extraction of the
component responses at discrete frequencies, in order to examine their individual
attenuation characteristics, is the purpose of the Transient Spectral Stability
Analysis (TSSA) portion of the program. The details of this analysis, which
utilizes Fourier Transform techniques, are treated in reference 17.

Essentially, the TSSA first performs Fourier transformations of selected
time-history data strings, which have been previously generated in the time-
history solution portion of the analysis (Solution Part II) and saved. The
purpose of the Fourier Transform is to identify, within these time-histories,
those frequencies whose amplitudes are relatively largest and are denoted as
"resonances'". Then, the TSSA calculates the transient behavior of the extracted
amplitudes of these resonances over the time-history time interval and estimates
equivalent linear stability indices (characteristic exponent, critical damping
ratio, and time to half-amplitude).

Sample Pages 29 and 30 depict the output typically generated by the TSSA.
This sequence of output is duplicated for each of the transient response channels
selected. Sample Page 29 shows the output generated by the Fourier Transform
frequency identification portion of the TSSA. Shown at the top of the page is
the transient response channel being analyzed and the frequency range wherein
resonance identification is desired (input locations (S)46 and (§)47). The
series of five output items to follow consist of parameters defining the numeri-
cal Fourier transform; note that the results of the TSSA incorporate a time
nondimensionalization based on rotor speed, ©. The tabulation of the Fourier
Transform (not shown for clarity) follows wherein, for each frequency (harmonic
of the fundamental as determined by the total nondimensional time interval), the
real and imaginary parts, the square of the amplitude and the logarithm to the
base 10 of the amplitude are output. Generally, this tabulation will consume
more than the one page. After this listing is completed, those frequencies and
their respective square amplitudes which are found to be resonances, are listed
under the last heading on sample page 29.

Aside from their several nonlinearities, the dynamic equations of motion for
rotor blades implicitly contain several linear aerodynamic terms which, under
helicopter forward flight conditions, can become periodic. Therefore, the
aeroelastic time-history responses generated by these equatioms should manifest
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PART III. TRANSIENT SPECTRAL STABILITY ANALYSES OF SELECTED AEROELASTIC TRANSIENT RESPONSES

TRANSIENT RESPONSE CHANNEL NO. XX - FOURIER TRANSFORM AND RESONANT FREQUENCY IDENTIFICATION
DESIRED FREQUENCY RANGE = X.XX TO X.XX ( /REV)

NUMBER OF POINTS IN TIME SERIES
(ND) TIME TINCREMENT

LENGTH OF INTERVAL

FUNDAMENTAL FREQUENCY

HIGHEST FREQUENCY

- XXX
X . XXXXX RAD
XX.XXXXX RAD
X.XXXXX /REV
XX.XXXXX /REV

RESONANCE FREQUENCIES FOUND BY SEARCH ROUTINE

1 o XXXXXXX+YYY o XXXXXXX+YYY
2 . « XXXXXXX+YYY « XXXXXXX+YYY
3 « X XXXXXX+YYY o XXXXXXX+YYY
4 o XXXXXXX+YYY o XXXXXXX+YYY
5 « XXXXXXX+YYY « XXXXXXX+HYYY
6 « XXXXXXX+YYY o XXXXXXXAYYY
7 o XXXXXXX+YYY « XXXXXXX+YYY
8 o XXXXXXX+YYY « XXXXXXX+YYY
9 o XXXXXXX+YYY o XXXXXXX+HYYY
RESONANT FREQUENCIES DETERMINED TO BE FUNDAMENTALS

1 o XXXXXXX+YYY

2 o XXXXXXX+YYY

3 « XXXXXXX+YYY

4 « X XXXXXX+YYY

Sample Page 29



Floquet Theory characteristics (see reference ). In particular, the Fourier
Transform is capable of identifying "multiple resonances" which are separated by
(plus or minus) multiples of the rotor frequency and which would be found to have
approximately the same damping level as measured by characteristic exponent.
Hence, the resonant frequencies are further screened to extract only those which
have distinct noninteger values and which, within the set having the same non-
integer values, have the largest transform magnitudes. These extracted frequen-
cies are denoted "fundamental resonances" and are the only ones examined further
for stability. in the TSSA.

Sample Page 30 depicts the results of frequency fine tuning and response
stability estimation for each of the fundamental resonances extracted in the
TSSA. The top horizontal blocks of output represent the frequency fine-tuning
results. The values labeled OPTIMIZED FREQUENCY are, in nondimensional (per
rotor rev) form, the best estimates of the frequency of the fundamental resonant
frequencies. The remainder of the output on this sample page (for each funda-
mental resonance) consists of three horizontal blocks representing three alter-
nate estimates of the effective damping characteristics. These three types of
blocks are explained by considering, for each of the fundamental responses
indicated in Sample Page 30, the (nondimensional) time variatiom in the natural
logarithm of the resonant frequency content. If these amplitude logarithms
attenuate with time, then the response with that frequency content (mode) is
stable. Conversely, if the amplitude logarithms increase with time, then the
response with that frequency content is unstable. The slope of the attenuation
with time is thus a measure of the effective linear damping, and is obtained by a
sample least-square fit. If the variation of amplitude logarithms with time is
neither monotonic increasing nor decreasing, a condition of maximum or minimum
amplitude is defined. By weighting the least-square fit either uniformly or with
an appropriate function accentuating the initial or terminal ends of the ampli-
tude logarithms data string, the three latter horizontal blocks of output
depicted in Sample Page 30 are generated. Within each of these blocks, the first
quantity is the nondimensional CHARACTERISTIC EXPONENT, which is analogous to and
interpreted in the same way as the real part of the eigenvalue discussed in the
output for Solution Part I. The REVS to (MAX/MIN) AMPL is an indication of the
asymptotic behavior of the component response. STANDARD DEVIATION is the root-
mean-squared error achieved in the least-square curve-fit and is an indication of
the regularity of the amplitude logarithm function and of the accuracy of the
stability estimation. Based upon the OPTIMIZED FREQUENCY the equivalent CRITICAL
DAMPING RATIO is calculated from the characteristic exponent using standard
formulas. Finally, the output item labeled REVS TO HALF AMPLITUDE is the third
alternate way in which the equivalent linear damping result is presented.
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TRANSIENT RESPONSE CHANNEL NO. XX ~ RESONANT FREQUENCY FINE TUNING AND CRITTCAL DAMPING RATIO CALCULATIONS

INITIAL PERCENTACE XX.XX
INITIAL NO. OF DATA PTS. XXX
NO. FOURIER COEF. CALCS. XXX

FINAL NO. OF DATA PTS. XXX
INITIAL FREQUENCY ESTIMATE
REV X XXXXX
OPTIMIZED FREQUENC
/REV) X XXXXX
HARMONTC XX

UNTFORMLY WEIGHTED CHARACTERISTICS

CHARACTERISTIC EXPONENT X XXXXX
REVS TO MAX/MIN) AMPL. XX XXXXX
TANDARD DEVIATION X XXXXX

CRITICAL DAMPING RATIO X o XXXXX

REVS TO HALF AMPLITUDE XXXXX.XXXXX

INITIAL END WEIGHTED CHARACTERISTICS

RACTERISTIC EXPONENT X XXXXX
REVS (MAX/MIN) AMPL. XXo XXXXX
STANDARD DEVIATION X< XXXXX
CRITICAL DAMPING RATIO X XXXXX

REVS TO HALF AMPLITUDE XXXXX.XXXXX

TERMINAL END WEIGHTED CHARACTERISTICS

CHARACTERISTIC EXPONENT Xo X XXXX
REVS TO (MAX/MIN) AMPL. XX. XXXXX
STANDARD DEVIATION Xo XXXXX

CRITICAL DAMPING RATIO

XXX XXX

X XXXXX X XXXXX
X o X XXXX X XXXXX
XX XX

X XXXXX Xo XXXXX

XX XXXXX XX« XXXXX

X XXXXX

.

XXXX

X o XXXXX X o XXXXX
XXXXX X XXXX XXXXXoXXXXX

X.XXXXX X XXXXX
XXX XXXX XX XXXXX
X« X XXXX X XXXXX
X o XXXXX X o XXXXX

XAXXX X XXXX XXXXX.XXXXX

X X XXXX X XXXXX
XX XXXXX XX o XXXXX
X o XXXXX X XXXXX

XXXX

XXXX

XXX
X XXXXX

X XXXXX
XX

X XXXXX

XX XXXXX

X XXXXX
X o XXXXX

XXXXX o X XXXX

X XXAXX

XX XXXXX

X XXXXX
Xo XXXXX

XXXXX« X XXXX

X. XXXXX

XX XXXXX

X o XXXXX
XXXXX

X« XXXXX X.X X.X X.
REVS TO HALF AMPLITUDE XXXXX XXXXX XXXXXXXXXX XXXXXXXXXX XXXXX.XXXXX

O Ty

L2 RN

an



Subsequent Cases
Sample Page 31 is generated at the beginning of every case following the

first case of a multiple case run. The two columns are the location numbers and
data values for the next case run.
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PROGRAM G400 XXXX -

CASE 2 OF A MULTI-CASE RUN.

INPUT DATA REPRESENTING CHANGES TO THE PREVIOUS CASE ARE AS FOLLOWS:

«XXXXXXE+YY
«XXXXXXEAYY
« X XXXXXE+YY
SXXXXXXE+YY
<X XXXXXE+YY
«XXXXXXE+YY
«XXXXXXE+YY
«XXXXXXE+YY
«XXXXXXE+YY
«XXXXXXE+YY
<X XXXXXEA+YY
«XXXXXXE+YY
« XXXXXXE+YY
X XXXXXE4YY
SXXXXXXE+YY
«XXXXXXE+YY

Sample Page 31
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APPENDIX I

UPDATES TO DOCUMENTATION OF BASIC G400 ANALYSIS

Since the publication of Reference 1 the original G400 analysis has
undergone continual development. In this process many of the original formu-
lations and derivations have been reassessed, rechecked, and, where appropri-
ate, reformulated. This appendix presents some of these reformulations and
are, in fact, an errata update sheet to both References 1 and 2.

1. The first update relates to the criterion used for evaluating the
integration constants arising in the calculation of the structural twist
related deflection correction functions. In particular, while the integration
constants are properly zero for hingeless rotor blade configurations, care
must be taken with regard to articulated rotor blades. As formulated in
Reference 1, the deflection correction functions are formed from double inte-
grations of the blade curvatures. The evaluation criterion presently used for
articulated rotor configurations is that the blade elastic motions, including
those from the deflection correction terms, must be orthogonal with the rigid
body flapping and lead-lag motions. Thus, the first order terms occurring in
Eqs. (7) and (8), respectively, of Reference 1 should be written as:

AVi=A°;+C|iF (1.1a)
Aw\= Dy +Cy T (I.1b)
I/ a !
AV(|2) = AV(‘Z) + C|| (1.2a)
Avfzy- a2 c (I.2b)
K -Awk + zk .

Similarly, those second order terms occurring in Eqs. (9) and (10),
respectively, should be written as:

AV = AV, +C3, (1.3a)
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AW, = AW, + Cq, (1.3b)
AV = av @' s ¢ (1.4a)
K K 3k -4a

1 A /
Aw‘f’ e Aw‘i?) +Cg. (I.4b)
|

where the ( ) denoted quantities are the deflection correction functions
evaluated with zero valued constants of integration. The constants C , C ,
C, C are all evaluated internally (element DEFCOR) to assure orthogonality
with the rigid body degrees of freedom. Finally, as developed in Reference 7,
various new deflection correction terms have been defined relating to elastic
torsion deflections combined with elastic axis offset. These terms are
modified in the same manner.

2. The second update pertains to the formulation of the elements of the
inertia coupling matrix, [A], (Eq. (45) of Reference 1). This matrix should
be completely symmetric; the offending terms coupling with torsion should

equal their respective transposed elements and include the effects of the
nonlinear excitation functions given in Egs. (39a-d):

!
Awiei =A91w.'= ‘!"m[y,ocs)’gi(ywi—Awi) (1.5)

+ I"zgj (7W;—Awi) - I‘ygj Av, ] dr

| :
Avkej=Aejvk=-'£m[y|OCG)’ej Awk (1.6)

+ r‘ye] ()’vk- AVk) + rzei Awk] dr

|
ABej= AejB = {r?x (r-Bghust) [(yejy'°cg+rzej) cos®  (I.7)

- l"yej sin @] dr
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|
Agn =Ap.s = |M I.p)sin ®
+I'yg cos @] dr

|
=/m 2 8 - 2
Aej Bm 'O[m [(kY|Q + kzno) +ry8j l-\yem Yej 79m7|0CG (1.9)

+T2g, + 75V, T20m *+ YomYrogs)] O

3. The third and fourth updates pertain to the implementation of the
redundant analysis of flexbeam-torque tube assemblies. The first of these two
relates to the torsional stiffness characteristics of the flexbeams. A more
correct statement of the boundary conditions for the flexbeam torsion equation
(Eq. (115) of Reference 1) includes relating the flexbeam outboard twist rate,
9'(rj), to the twist rate of the outer blade:

8'(r):0' (1.10)

where the twist rate of the outer blade comes from built-in and response
contributions:

'-@'(r)+'§m “r)
©,: Bglr, - Yej r qej (1.11)

The inclusion of this generally nonzero value of twist rate has the
effect of modifying the resulting expression for the elastic torsion deflec-
tion of the flexbeam at the juncture (Eq. (129a)):

4
!
88,7 Te eps ezt lz Ti [els(fz'm*eza@ﬁ)

, (1.12)
- 323(f| Vi +e|2 ®J)]

and the symbolic expression for this deflection (Eq. (130b)) then becomes:
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$X XSFB eMx xsFa esy SYSF
+65, Sz, +6u My, +8um, M, (1.13)
?7%%Fg Y TSpg T2 “Spg

+99’-®j

4. The fourth update pertains to the calculation of internal blade
shears and moments in the blade adjacent to the juncture. As outlined in
Reference 1 a force integration approach was implemented which necessitated
extrapolations to estimate the modal accelerations. This calculation was
found to be best performed using a mode deflection method instead. Thus, Egs.
(132b) and 132f) of Reference 1 are, respectively, replaced by the following
expressions:

sy5a : -S®J 2 DSy qwi+c®4k | DS 3y QVk (1.14a)
i1zl B
Nihl NEM
Szq, 708y - DSI;qy, +se.,kz| DS3k Gy, (1.14b)
1= :
NTM
M, = ,
X5 j};' DS, ag, (1.14¢)
NFM M
= . - (1.144)
Myse c®, |Z| DS2; Qy, s@fé DS4, v,
NFM NEM ( be)
: - 1.1
Mz sqm DS2; qw, +C 8, kzz'osezk Ay, e
where:
|
DSI; =y ™ 7w, 97 (1.15a)
r
J
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DS2, :fm[(T-T,)wiiywi-?(ywi(?)-ywi(FJ))]d? (1.15b)
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