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Abstract—In the usual multiple target tracking systems, detec-
tions associated to the targets are considered as issued from a
single point source. This hypothesis is true if the size of the sensor
resolution cells is bigger than the size of the target and if there
is only one target in the resolution cell. Due to the increasing
resolution capabilities of modern sensors this hypothesis is
considered valid for the small targets (like ground vehicles).
However, in real situations observed with modern GMTI (Ground
Moving Target Indicator) sensors we cannot neglect the sensor
resolution phenomenon: for littoral surveillance applications, the
large targets (or extended targets) can generate more than one de-
tection at a time; in addition for ground surveillance applications
the distance between the individual targets can often be less than
the size of the resolution cell which produces only one detection
for a group of targets. On those considerations, we must adapt
our individual targets’ tracking algorithm with the extended and
group tracking algorithms. In this paper, we test a very simple
hybridization between a multiple target tracking algorithm and
the recent bayesian approach for extended object tracking and
group tracking represented by a random symmetrical positive
definite matrix.

Keywords: Group tracking, data association, Kalman fil-

tering, GMTI sensor.

I. INTRODUCTION

Most of the trackers developed in ground stations are based

on the assumption that the tracked objects are considered

as point sources. It implies that the size of the target (or

extension) is neglected with respect to the sensor resolution.

Thanks to modern sensors, the resolution increases (i.e. the

size of resolution cells diminishes) and the previous assump-

tion is no longer valid; because of the short range applications,

different scattering centers can be associated to the same

targets. As an example, in maritime surveillance applications,

super-tankers can generate several detections and a different

number of detections at each scan. The relative scattering

centers location can vary as well. On the other hand, the

limited sensor resolution results in a fluctuating number of

detections for a group where the targets evolve within a closed

space. Therefore, the tracking of individual targets based on

single measurement association is no an efficient solution since

we cannot estimate the state of a target with a fluctuating

number of validated detections. The new challenge is to deal

with extended targets, groups of targets as well as individual

targets as the same time maintaining the track continuity with

an acceptable precision.

Several Bayesian solutions exist in the literature to address

the data association problem with extended targets or convoys.

In the paper [1], the authors propose a sensor resolution

model and consider this as another association hypothesis

which is naturally evaluated with a classical MHT (Multiple

Hypotheses Tracker). Another approach has been presented

recently in [2] to extend the resolution model, given for two

partially unresolved targets, for the case of an arbitrary number

of targets. In [3], the authors introduced a tracking algorithm

that captures group tracks by using an IMM-JPBDAF (inter-

cating multiple model with a joint probabilistic and believe

data association filter) approach and a multiple validation gate

model with road networks to distinguish group members based

on movements, while the group JBPDAF approach used target

IDs to capture group tracks. On the other hand, the PHD

(Probability Hypothesis Density) filter is described in [4] as a

method for tracking a large number of targets with an unknown

number of targets moving in a closely space. This work has

been adapted in [5] to track individual targets in a close

formation by taking into account the road network information.

Starting from these approaches, we have also proposed a

solution [6] to hybridize the MHT with a GMCPHD (Gaussian

Mixture Cardinalized Probability Hypothesis Density) filter in

order to track the targets with an airborne GMTI (Ground

Moving Target Indicator) sensor and to detect the convoys in

civilian traffic. We must cite also the research works based

on sequential Monte-Carlo methods, for example in [7], for

tracking targets in close formation.

In this paper, we are interested by tracking both extended

targets and individual targets based on GMTI sensor for

ground battlefield and maritime surveillance. Airborne GMTI

sensors are able to cover a large surveillance area for a few

hours or more if several sensors are in activity. Several refer-

ences exist for the MGT (Multiple Ground Target tracking)

using contextual information with MTI reports for GMTI

sensors [8], [9]. The main results are the improvement of

the track precision and track continuity. Our algorithm [10]

is built with several concepts inspired by this literature. Based

on road segment positions, dynamic motion models under

road constraint are built and an optimized projection of the

estimated target states is used to maintain the track on the road.

A VS-IMM (Variable Structure Interacting Multiple Models)

filter is set up with a set of constrained models to deal with

the target’s maneuvers on the road. The set of models used

in the variable structure is adjusted sequentially according to
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target positions and to the road network topology.

This paper is organized as follows: we start with a short

presentation of the motion and measurement models. Then we

describe quickly the Bayesian extended object formulation. A

short description of our multiple target tracking algorithm and

its basic hybridization with the group tracking algorithm is also

presented. The paper is completed by illustrations obtained

with simulated data for a ground scenario and real GMTI data

for a maritime scenario.

II. MOTION AND MEASUREMENT MODELS

A. GIS description

The GIS (Geographical Information System) used in this

work contains both the segmented transportation network (road

and railway) and the DTED (Digital Terrain Elevation Data).

Each road segment expressed in WGS84 is converted in a

Topographic Coordinate Frame (denoted TCF). The TCF is

defined according to the origin O in such a way that the axes

X, Y and Z are respectively oriented towards the local East,

North and Up directions. The target tracking process is carried

out in the TCF.

B. Constrained motion model

The target state at the current time tk is defined in the local

horizontal plane of the TCF:

x(k) = (x(k) ẋ(k) y(k) ẏ(k))
′

(1)

where (x(k), y(k)) and (ẋ(k), ẏ(k)) define respectively the

target location and velocity in the local horizontal plane. The

dynamics of the target evolving on the road are modelled

by a first-order differential system. The target state on the

road segment s is defined by xs(k) where (xs(k), ys(k)) and

(ẋs(k), ẏs(k)) are respectively the target position and velocity

on the road segment s
The event that the target is on road segment s is noted by

es(k) = {x(k) ∈ s}. Given the event es(k) and according to

a motion model Mi, the estimation of the target state can be

improved by considering the road segment s. It follows:

xs(k) = Fs,i(T ) · xs(k − 1) + Γ(T ) · vs,i(k) (2)

where T is the sampling time, Fs,i is the state transition

matrix associated with the road segment s and adapted to a

motion model Mi, vs,i(k) is a white Gaussian random vector

with covariance matrix Qs,i(k) chosen in such a way that the

standard deviation along the road segment is higher than the

standard deviation in the orthogonal direction. It is defined by:

Qs,i(k) = Rθs ·

(

σ2
d 0
0 σ2

n

)

·R
′

θs (3)

where Rθs is the rotation matrix associated with the direction

θs defined in the plane (O,X, Y ) of the road segment s.

The matrix Γ(T ) is defined in [11]. If s = 0 the model is

unconstrained.

To improve the modeling for targets moving on a road

network, we have proposed in [10] to adapt the level of the

dynamic model’s noise based on the length of the road segment

s. The idea is to increase the standard deviation σn defined in

(3) to take into account the error on the road segment location.

After the state estimation by a Kalman filter, the state estimate

is then projected according to the road constraint es(k). This

process is detailed in [10].

C. GMTI measurement model

According to the NATO GMTI format [12], the MTI reports

received at the fusion station are expressed in the WGS84

coordinates system. The MTI reports must be converted in the

TCF. A MTI measurement z at the current time tk is given in

the TCF by:

z(k) = (x(k) y(k) ρ̇(k))′ (4)

where (x(k), y(k)) is the location of the MTI report in the

local frame (O,X, Y ). ρ̇(k) is the associated range radial

velocity measurement. Because the range radial velocity is

correlated to the MTI location components, the use of an

extended Kalman filter (EKF) is not suitable. We use an

alternative form of the EKF (called AEKF) presented in [13].

The AEKF measurement equation is given by:

z(k) = H2(k) · x(k) +w2(k) (5)

where w2(k) is a zero-mean white Gaussian noise vector with

a covariance R(k) (given in [10]) and H2(k) is defined by:

H2(k) =





1 0 0 0
0 0 1 0

0 ∂ρ̇(k)
∂ẋ 0 ∂ρ̇(k)

∂ẏ



 (6)

Because Doppler ambiguities arise in cluster (generated by a

convoy for example) we adapt the previous observation model

with the observation matrix H1(k) and the associated noise

w1(k) if the tracked target belongs to the target clusters.

H1(k) =





1 0 0 0
0 0 1 0
0 0 0 0



 (7)

For notational convenience, the measurement sequence Zk,l

represents a possible set of measurements generated by the

target up to time k (i.e., there exists a subsequence n and

a measurement j such that Zk,l =
{

Zk−1,n, ..., zj (k)
}

)

associated with the track T k,l. At the current time k, the track

T k,l is represented by a sequence of the state estimates. zj (k)
is the jth measurement available at time k among mk validated

measurements around the target measurement prediction.

D. Modelling of the extended object measurement

A Bayesian approach proposed by Koch in [14] for tracking

extended objects and group of targets considers both: the

kinematic state of the centroid, and the extension X(k) which

is a symmetric positive definite random matrix. According

to the extension X(k) of dimension 2 × 2, we are able to

obtain at the current time tk the shape, size and orientation of

the extended object. Let Y(k) = {zj(k), ∀j ∈ {1, . . . , nk}
be the set of nk measurements generated by the extended
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target at time tk. The centroid measurement set z̄(k) and the

corresponding scattering matrix Z̄(k) are given by:

z̄(k) =
1

nk

nk
∑

j=1

zj(k) (8)

Z̄(k) =

nk
∑

j=1

(z̄(k)− zj(k))(z̄(k)− zj(k))′ (9)

The likelihood of the set Y(k) is obtained by taking into

account the kinematic part, the extension, and the number of

measurements:

p(Y(k)|nk,xk,Xk) =

nk
∏

j=1

N (zj(k),x(k), βXk +R(k))

(10)

where N denotes the normal density and β is a scaling factor.

x(k) is the kinematic centroid state given in (1). We see that

the covariance measured extension depends on the predicted

extension and the sensor error. In fact we choose immediately

this way as described in [15], because:

- the extension could not be sufficient to compensate for

the maneuver due to the agility of the tracked object;

- we have, in critical cases, extended targets generating

only two measurements (nk ≤ 2) and if we respect the

extended covariance (9) the measurement’s error cannot

be ignored.

So, in contrary to Koch’s initial work [14], it appears that no

conjugate prior can be found for the likelihood of R(k). Thus

we will propose in the next part some approximations.

III. BAYESIAN EXTENDED OBJECT TRACKING

In this section, we present the predicted and updated equa-

tions of an extended target. The details of the hypotheses and

approximations necessary to understand the approach are not

detailed in this paper, the reader can refer to the papers [14],

[15] for further details.

A. Kinematic update step

As described in [15], the updated estimate of the uncon-

strained centroid x0(k) is calculated by using a standard

Kalman filter. The equations are obtained by considering that

the object extension X(k) is known and is replaced by its

prediction X(k|k − 1). Hence, we have

x̂0(k|k) = x̂0(k|k−1)+K(k)(z̄(k)−H1(k)x(k|k−1)) (11)

P0(k|k) = P0(k|k − 1)−K(k)S(k)K′(k) (12)

with the innovation covariance matrix

S(k) = H1(k)P(k|k − 1)H′
1(k) +

Z(k|k − 1)

nk
(13)

and with Kalman gain

K(k) = P(k|k − 1)H′
1(k)S

−1(k) (14)

The predicted covariance of a single measurement is given by

Z(k|k − 1) = Z̄(k) +R(k) (15)

B. Extension update step

To update the extension (the random matrix X), we must

use Cholesky factorization of the predicted extension in order

to maintain the symmetric positive definite structure.

X(k|k − 1) = X(k|k − 1)1/2(X(k|k − 1)1/2)′ (16)

By denoting N(k|k− 1) the covariance associated with the

centroid location, one introduces the fact that the extension

depends on the predicted extension, the covariance N̂(k|k−1),
and the covariance Ẑ(k|k − 1) in such a way that:

X(k|k) =
1

αk|k
(αk|k−1X(k|k−1)+N̂(k|k−1)+Ẑ(k|k−1))

(17)

with

N̂(k|k − 1) =X(k|k − 1)1/2S(k|k − 1)−1/2N(k|k − 1)

(S(k|k − 1)−1/2)′(X(k|k − 1)1/2)′

(18)

where

N(k|k − 1) =(z̄(k)−H1(k)x̂0(k|k − 1))

(z̄(k)−H1(k)x̂0(k|k − 1))′
(19)

and

Ŷ(k|k − 1) =X(k|k − 1)1/2Z(k|k − 1)−1/2Z̄(k|k − 1)

(Z(k|k − 1)−1/2)′(X(k|k − 1)1/2)′

(20)

The extension parameter α is assumed to follow the equation

αk|k = αk|k−1 + nk (21)

From the innovation matrix N(k|k − 1) it is possible to

estimate an unknown measurement error covariance, even

in the case of point-source targets or with extension of a

completely unresolved group of targets (i.e. when nk ≤ 1).

C. Prediction step

It is assumed that the estimates for centroid kinematics and

extension are independent. We recall that the centroid of the

extension is unconstrained. The predicted equations of the

centroid and covariance are respectively given for the motion

model Mex by:

x̂0(k|k − 1) = F0,ex(T )x̂0(k − 1|k − 1) (22)

P0(k|k − 1) = F0,ex(T )P0(k − 1|k − 1)F0,ex(T )
′

+Q0,ex(k) (23)

The motion model Mex is specially adapted to modelling the

extension dynamics. If we assume that the extension does not

change over time, we can take

X(k|k − 1) = X(k − 1|k − 1) (24)

In [15] the authors remark that the variance of the extension

is proportional to 1/(αk|k − 2) for very large αk|k as well
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as when αk|k becomes close and greater to 2. The authors

assume an exponential increase of the variance according to

αk|k−1 = 2 + exp(−T/τ)(αk−1|k−1 − 2) (25)

where τ denotes a time constant related to the agility in which

the target could change its extension over time.

D. Data association

The goal of this work is to study Koch’s Bayesian extended

object tracking algorithm in a real context where the ex-

tended target evolves in a cluttered environment with multiple

ground targets. The data association problem between the

measurements arises naturally in such a difficult context. In

a first approach, we propose to extend the NNSF (Nearest

Neighbour Standard Filter) applied to measurement subset data

association. In [16], a more robust approach using a PMHT

(Probabilistic Multi-Hypothesis Tracking) and the estimation

of the ellipsoidal shape and kinematics of each target is

proposed.

The convoy is manually initialised by the selection of a

measurement subset. Then, for all measurement validated by

a statistical test (gating), we build all possible measurements

subsets according to the maximal distance of resolution dres
(see figure 1). The set Zv(k) of validated measurements at the

current time is composed of p measurement subsets such that

Zv(k) = {S1 ∪ S2 ∪ . . . ∪ Sp}. Starting from those subsets,

we calculate the likelihood (26) of the extended object for

each partition ({S1}, {S1 ∪ S2}, . . . , {S1 ∪ S2 ∪ . . . ∪ Sp}).

This likelihood and the terms Var[∆k|k−1] and ∆k|k−1 are

detailed in [15]. It is a combination between the statistical

distance of the extended object state and the measurement

centroid, and the statistical distance of the predicted extension

and the measured extension. Afterwards, the most probable

partition of subsets is chosen as the most representative

measurement subsets of the extended object. The likelihood

of Si is mathematically given by [15] to be :

ΛSi
∝ N (z̄(k),H1(k)x̂0(k|k − 1),S(k))|̇2πVar[∆k|k−1]|

− 3

4

× etr(−
1

2
∆′

k|k−1Var[∆k|k−1]
−1∆k|k−1)

(26)

In the case where the extension grows we assume that the

convoy is separating. So for each measurement subset con-

tained in the most probable partition, new extended objects

are automatically created.

A flowchart of the extended target tracking algorithm (called

ETT) is given in the upper part of figure 2.

IV. MULTIPLE TARGET TRACKING ALGORITHM

In this section, we describe quickly our MGT tracker

used for tracking multiple ground targets. It is based on an

IMM (Interacting Multiple Model) for tracking maneuvering

targets by taking into account the contextual information. This

algorithm with a variable structure is well adapted to track

several targets in cluttered environments.

Figure 1. Validation and measurement subsets creation according to the
resolution distance dres.

A. VS IMM under Constraint

The IMM is an algorithm for combining state estimates

arising from multiple models filter to get a better global state

estimate when the target is in a maneuver mode. In section

II-B, a constrained motion model i to a road segment s, noted

M i
s, was defined. Here we extend the segment constraint to

the different dynamic models (among a set of r + 1 motion

models) that a target can follow. The model indexed by r = 0
corresponds to the stop model. When the target moves from

one segment to the next, the set of dynamic models usually

changes. In a conventional IMM estimator [8], the likelihood

of a possible track l up to time k, denoted T k,l, is given by

Λl(k) =

r
∑

i=0

p{zj(k)|M
i
s(k),Z

k−1,n} · µi(k|k − 1) (27)

where j = {0, 1, . . . ,mk} is the index of the current mea-

surement, i = {0, 1, . . . , r} is the index of the possible

modes, Zk−1,n is the subsequence of measurements associated

with the track T k,l and µi(k|k − 1) is the predicted model

probabilities [11]. The motion model likelihood contained in

the sum function of (27) takes into account the perception

of the target respecting the contextual information (terrain

obscuration, Doppler blindness,. . . ). Its expression is given in

[17].

The steps of the IMM under road segment constraint are

the same as for the classical IMM as described in [11].

Despite the road segment constraint, the predicted state

could give a local estimate under another road segment than

the segment associated with the motion model (a road turn

for example). The change to another road segment causes

the generation of a new constrained motion model. In [10],

we have proposed an approach to activate the set of most

probable road segments. We consider r + 1 oriented graphs

which depend on the road network topology. For each graph

i, i = {0, 1, . . . , r}, each node is a constrained motion model

M i
s. The nodes are connected to each other according to

the road network configuration. In [10], the activation of the

motion model at the current time depends on the position

in the local predicted states x̂l
i,s(k|k − 1) of the track T k,l.

Consequently, we obtain a finite set of r + 1 motion models

constrained to a road section (we recall that a road section is

a set of connected road segments).

B. Multiple target tracking

For the MGT problem, we use the TO-MHT (Track Oriented

Multiple Hypotheses Tracking) presented in [18]. When the

new measurements set Z(k) is received, a standard gating
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procedure is applied in order to validate MTI reports to track

pairings. The existing tracks are updated with VS-IMMC

(Variable Structure - Interacting Multiple Model under Con-

straint) and the extrapolated and confirmed tracks are formed.

More details can be found in chapter 16 of [18]. In order

to address the association problem, we need a probabilistic

expression for the evaluation of the track formation hypotheses

that includes all aspects of the data association problem. It is

convenient to use the log-likelihood ratio (LLR) or a track

score of a track T k,l which can be expressed at current time

k in the following recursive form:

Ll(k) = Ls(k − 1) + ∆Ll(k) (28)

with

∆Ll(k) = log

(

Λl(k)

λfa

)

(29)

and

L(0) = log

(

λfa

λfa + λnt

)

(30)

where λfa and λnt are respectively the false alarm rate and the

new target rate per unit of surveillance volume and Λl(k) is

the likelihood given in (27). The LLR of each track is used to

evaluate all compatible scenarios generated in each cluster. The

tracks are pruned according to the association scenario prob-

ability and the global track probability. Surviving constraint

tracks are tested to select (if SPRT - Sequential Probability

Ratio Test - is satisfied) the most probable constrained tracks.

Surviving tracks are updated and presented to the operator.

A flowchart of the MGT is represented in the bottom part of

figure 2.

C. Basic hybridization solution

In order to take into account both the extended target

tracking algorithm and the multiple target tracking algorithm,

we propose a basic approach based on the assumption that

an individual target is not detected if it is in same resolution

cell as the extended object. So each measurement that belongs

to the most probable partition (validated by the track of the

extended object) is considered as the detection of the extended

object. Then, no individual track is initialized with those

measurements and the existing individual tracks score are

modified. In fact, for each track present in the same resolution

cell as the extended track, we modify its perception probability

and therefore its track score (28). The modification of the track

score brings a modification of the track association scenario.

The interactions between the ETT and MGT algorithms are

represented by the red arrows in figure 2.

V. ILLUSTRATIONS ON SIMULATED AND REAL DATA

We test our simple hybridization approach with simulated

GMTI data (for the ground scenario) and real GMTI data (for

the maritime scenario).

Figure 2. Design of an hybridization approach.

A. Illustration on simulated data

In the scenario, we try to track a convoy in civilian traffic.

For this, we consider that the convoy is composed of 9 targets

(1 to 9). It is moving on the road network and maneuvre

at each intersection (deceleration, turn and acceleration). The

distance between each vehicle of the convoy varies and can

be up to 150 m. At the end of the scenario, the convoy

separates into sub-convoys which leave the road network to

stop on several strategic positions (figure 3). The rest of

the 20 individual vehicles are moving on the road network

(acceleration, deceleration and stop). The GMTI sensor is

moving at 10 km away from the centre of the area (figure

3). The sampling interval is T = 5s, with 10m, 0.001rad
and 1m · s−1 range, cross-range and range-rate measurement

standard deviation respectively. The false alarm rate is high

10−6 false alarm per unit of volume. The detection probability

is fixed at 0.9 expected for the targets in the convoy where it

is fixed at 0.7 to simulate the sensor resolution. The occlusion

masks due to terrain elevation or Doppler obscuration (the

minimal detectable velocity is 1m·s−1) are taken into account.

The VS-IMMC TO-MHT has good performances for track-

ing all individual manoeuvring targets on the road network

(figure 4)and is a well known result with this algorithm. The

convoy, called “Group : 2”, is manually initialized and the

hybrid algorithm tracks the convoy with a variable number

of detections (figure 5). The ellipse in blue represents the

extension of the object. Despite the complex scenario in which

one ground target is passing the convoy with another target in

the proximity of the end of the convoy and the convoy is ma-

noeuvring at each intersection (deceleration, acceleration), the

algorithm chooses the correct partition of measurements. Track

82 at time t = 291s is approaching the convoy (figure 6).

According to the modification of the perceivability probability

of the track 82 and the good selection of measurement partition

for the convoy, the continuity of track 82 is maintained (figure
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Figure 3. Trajectory of the convoy (left) and sensor trajectory and surveil-
lance area with cumulated MTI reports (right).

Figure 4. Tactical situation at time t = 156s.

7). The same observation can be made for tracks 29 and 31

which pass the convoy. The group is well tracked despite of

the big group maneuvre in the map center (figure 8). However

we observe a weakness in the algorithm when the convoy is

separating. The separation is quick and the main sub-convoy,

has the same direction and extension direction than previously.

So the most probable partition is the measurement subset of the

main sub-convoy and 2 individual tracks (because of ground

target proximity) are initialized for the 3 vehicles of the other

sub-convoy.

Figure 5. Convoy initialization and tracking at time t = 156s.

Figure 6. Tactical situation at time t = 291s.

B. Validation on real data

In this section, we test the previous approach on real

data obtained with an operational airborne GMTI sensor. The

GMTI sensor is moving away from its area of interest and

observes for two minutes the tactical situation assessment

(Figure 9). Several remarks must be made on the observed

MTI reports as shown in Figure 10:

1) the chosen scenario is not convenient for a GMTI

sensor because the area on the upper part of the map

is an industrial area which causes a high number of

false alarms, building occlusion result in many missed

detection.

2) the operational need is also to analyse the maritime

threat assessment. So we can see, according the cumu-

605



Figure 7. Tactical situation at time t = 331s.

Figure 8. Tactical situation at time t = 751s (left part) and at time t = 796s

(right part).

lated MTI reports, a boat arriving in the harbour. This

boat is an extended target because we detect, regularly,

at most two MTI reports for this target.

3) we observe a large number of false alarms on the coast

due to the backwash. We can also see that the movement

of buoys generates detections in the harbour.

In this scenario, we keep the parameters used in the previous

section. We have initialized manually the track associated with

the boat entering the harbour and a track of a group of targets

issued from the localized set of false alarms generated by the

backwash. We obtain the following results: the boat is well-

tracked in a critical case where the number of associated MTI

reports does not exceed 2 at each scan (see Figure 11). The

ellipse in white represents the extension of the object. When

two MTI reports are associated with the extended target, we

Figure 9. Sensor trajectory and surveillance area.

Figure 10. Cumulated MTI reports.

take into account the measurement matrix R(k) for updating

the extension matrix X(k|k). If there is only one MTI report

associated to the target, we use the mean of the innovation

matrix N(k|k − 1) described in III-A. On figure 11, we

compare our results for tracking this extended target based

on our hybrid approach with respect to the MTT approach.

The tracking of a small extended target (small with respect

to the sensor resolution cell) is not satisfying because the

MTT algorithm tries to obtain the most probable sequence of

measurements with the assumption that the target generates

at most one measurement. We recall that the backwash is

considered as a group of targets. The size of the false alarm

area generated by the backwash is well-estimated as shown in

figure 12. We observe also a weak variation of the movement

of this group. Comparing with the MTT approach (figure 13),

we observe that the extension used in this paper destroys all

new tracks initialized by the MTT. The buoys are tracked as
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Figure 11. Comparison of the boat tracking with the extension approach
(left part) and the MTT approach (right part).

a static object with the usual MTT.

VI. CONCLUSION

This paper evaluates the feasibility of an hybridization so-

lution between an usual MTT and the extended target tracking

approach proposed initially by Koch. The results obtained on

simulated data and real data show that the proposed algorithm

could be a satisfactory approach to track extended targets

(as well as localized clusters of false alarms) and individual

targets and to avoid the excessive track generation in a cluster.

However, more investigations are required to develop a more

robust approach to evaluate and maintain several association

scenarios for the extended object. In addition a better hy-

bridization solution to update the individual tracks in a convoy

could be proposed based on the work in [2]. In future work, we

will evaluate the performances of our approach with measures

of performance based on Monte-Carlo simulations and real

ground data for the technical validation. In addition, a more

ambitious project should consider additional information, such

as HRRR (High Range Radar Resolution) or video attributes

(correlated with MTI reports), in order to refine the hypotheses

evaluation and correct the current situation.
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