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The application of the vortex l a t t i c e  method t o  problem not ueually 
dealt  with by t h i s  technique is  considered. It is shown t h a t  if  the  dis- 
crete vortex l a t t i c e  is  considered as en approximation to surface-dia- 
tr ibuted vor t ic i ty ,  then the concept of the generalized principal  pa r t  I 

of an in tegral  yields a residual  term to the vortex-induced velocity that 
renders the vortex l a t t i c e  method v d i d  fo r  supersonic flow, Special 
schemes fo r  simulating non-zero thickness l i f t i n g  surfaces and fusiform 
bodies with vortex l a t t i c e  elements a re  presented. Thickness e f fec t s  of 
wing-like components are simulated by a double vortex l a t t i c e  layer, end 
fusiform bodies are  represented by a vortex g r id  arranged on a ser ies  of 
concentrical cylindrical  surfaces. Numerical consideratiom peculiaz 
t o  the application of these techniques a re  b r i e f l y  discussed. 

INTRODUCTION 

The several versions or variations of the vortex l a t t i c e  method t ha t  
a r e  presently available have proven t o  be very pract ica l  and versa t i l e  
theoretical  tools for  the aerodynamic a ~ a l y s i s  and design of planar and non- 
planar configurations. The success of the method is due i n  great  pa r t  t o  
the re la t ive  simplicity of the numerical techniques involved, and t o  the 
high accuracy, within the limitations of the basic theory, of the resu l t s  
obtained. But most of the work on vortex l a t t i c e  methods appears t o  have 
concentrated on subsonic flow application. The appl icabi l i ty  of the basic 
techniques of vortex l a t t i c e  theory t o  supersonic flow has been largely 
ignored. It is one of the objectives of t h i s  paper t o  show how the vortex 
l a t t i c e  method can be eas i ly  extended t o  deal  with problems a t  supersonic 
Mach numbers wi th  the same degree of success t ha t  it enjoys in subsonic flow. 

The other objective of t h i s  paper is t o  discuss a couple of schemes 
by which it is possible t o  simulate thickness and volume e f fec t s  by using 

1 vortex l a t t i c e  elements only. This represents an a l ternat ive ,  with somewhat 
reduced computational requirements, t o  the methd of quadrilateral vortex 
rings (refs .  1 and 2). The simulation of thickness and volume e f fec t s  mker 
possible the computation of the surface pressure dis t r ibut ion on wu-body 
configurations. The fac t  t ha t  t h i s  can be done without having t o  resor t  t o  
additional types of s ingular i t ies ,  such as sources, r esu l t s  in  a simpler 

i d ig i t a l  computer code. 
! 
c 

:r 
J 
1 
f 

i 



mE BASIC EQUATIONS 

Ward has shown, ( r e f .  3 ) ,  tha t  the  small-perturbation, l inearized flow 
of an inviscid compressible f lu id  i s  governed by the three first order vector 
equations : 

V < T = T ,  V. 'i3 = Q, 'i3=\k.T ( 1 )  

on the assumption tha t  the  vor t i c i ty  r a n d  the source in tens i ty  Q are  known 
.functions of the point whose position vector is R. The vector 7 is the 
perturbation velocity with orthogonal a r t e s i a n  components u,  v, and w, and 
9 is a constant symmetrical tensor tha t  for  orthogonal cartesian coordinates 

with the x-axis aligned with the freestream direct ion has the form 

- 

1 ( 2 )  

0 01 1 

2 where M, is the freestream Mach number. If 8 = l - M a  , then the vector Ti 
has t h e  components w = p2 u T + v J + w x. This vector was first introduced 
by Robinson ( r e f .  4 ) ,  who cal led it the "reduced current velocity". If - 
denotes the t o t a l  velocity vector, i , e . ,  u = (u, + u) -i + v j + w x, and p 
the f lu id  density, then it can be shown t h a t  fo r  i r ro ta t iona l  and hornentropic 
flow - 

P 5 = P, U, + Pa 23 + higher order t e r m  ( 3 )  

where - the subscript - indicates the value of the quantity a t  upstream in f in i ty ,  
e.g., = ud5 i. Therefore, t o  a l inear  approximation, the  vector T i i s  

d i rec t ly  re la ted  t o  the perturbation mass flux a s  follows: 

The second equation of (1) ,. i.e., t he  continuity condition, shows tha t  for  
source-free flows (Q = 0) ,  w is a conserved quantity. 

Ward has integrated the  three f i r s t  order vector  equation^ d i rec t ly  
without having t o  resor t  t o  an auxi l iary  potent ia l  function. He obtained 
two di f ferent  solutions for  7 (E) , depending on whether 82 i s  posi t ive ( sub- 
sonic flow), or negative (supersonic flow). These two solutions can be com- 
bined formally in to  u single 

K = 2  for  ) 
2 

K = 1 for id 
RI - Real pa r t  

expression i f  the following convention is used: 



f = F i n i t e  part of i n t e g r a l  a s  define! 
and 6). 
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The resu l t ing  so lu t ion  for  - t he  perturbat ion ve loc l ty  7 a t  the  point  
whose pos i t ion  vector i s  = xl i + y J + z 1, i s  given by 1 1 

This formula determines the  value of 'iT within the  region V bounded by 
the  surface S. The vector fi: i s  the u n i t  outward (from the  region V) normal 
t o  t he  surface S. Furthermore, it is understood t h a t  f o r  supersonic flow 
only those pa r t s  of V azd S lying within the  domain of dependence (Mach 
forecone) of t he  point  R a r e  t o  be included i n  t he  integrat ion.  1 

For source-fYee (Q=o), i r r o t a t i o n a l  (;SO) flow, equation ( 5 )  reduces 
t o  

This is a r e l a t i o n  between 7 inside S and the  values of x,w and K 7 
on S, b u t t h e s a  two quan t i t i e s  cannot be spec i f ied  independently on S. 

To determine the source-free,  i r r o t a t i o n a l  flow about an a r b i t r a r y  bvdy 
B by mean8 of equation ( 6 ) ,  assume t h a t  t he  surface S coincides with the 
wetted surface of the  body, with tiny t r a i l i n g  wake t h a t  it may have, and with 
a sphere of i n f i n i t e  radius enclosing the  body and the  whole flow f i e l d  about 
it, namely, S = SB + E$ + S  . 

m 

This surface S divides t he  apace i n t o  two regions, Ve ex te rna l  t o  t h e  
body, and V i  i n t e rna l  t o  it. Applying equation ( 6 )  t o  both Ve and V i ,  s ince  
the  in t eg ra l s  over S, converge t o  zerc ,  t he  following expression is obtained: 



where a - iii- -& is the un i t  normal t o  the body, or wake as the  case may be, 
positive from the in te r io r  t o  the exterior of the body, A 5f qe - Ti, and 
A V = Ve - 31. Here the  subscripts desdgmte the mlues  of the  quanti t ies on 
the corresponding a c e  of S, The first eurface in tegral  can be considered 
as representing the  contribution of a source dis t r ibut ion of surface density 
a . A V, while the second surface in tegral  gives the contribution of a vor t i -  
c i t y  d is t r ibut ion of ourface density x A V. 

If the boundary condition of zero mass f lux thraugh the surface SB + SW 
is applied t o  both external  and in ternal  flows 

then the condition f , A i7 = 0 exis ts  over SB + %, ant3 the flow f i e l d  is 
uniquely determined by 

MTJDJSION TO SUPERSONIC FLOW 

In  order t o  extend the application of the vortex l a t t i c e  method t o  
supersonic flow, it is essent ia l  t o  consider the fbndamental element of the 
method, the vortex filament, a s  a nur?r ica l  approximation scheme t o  the 
integral  expreeal.cn (9) instead of a r e a l  physical ent i ty .  The velocity f i e l d  
generated by a vortex filament can be obtained by a straightforward limiting 
procees, the resu l t  being 



8 is a dimension norm1 to  y, and d l  is the dfstcrnce element along ye In the 
c lars ical  vortex l a t t i c e  method, applicable only t o  subsonic flow, the vorti- 
c i t y  distribution w e r  the body and the wake, i.e., w a r  the rurfkce SB + %, 
i r  replaced by a suitable arrangement of vortex filaments whose velocity 
f ie lds  are  everywhere determined by equation (10). This procedure i s  no 
longer appropriate for su erronic flow. For t h i s  l a t t e r  case, it is nccesrary 
t o  go back t o  equation (9  and t o  derive an approxinnrtion to it. 'Phi8 is 
done in fhe following. 

I 
I f  the surface SB + &, which defines the body and its wake, is conridered 

a8 being compared of a large number of discrete f l a t  area elements r w e r  
which the surfhce vort ic i ty  density can be assumed apgroximrtely constant, 
then equation ( 9 )  can be approxinnted by the following equation: 

where N is the t o t a l  number of discrete area elements 7 .  When the poinl 
whoee position vector is R l  is not part of 75, the integral orer t h i s  die- 
crete area can be approximated by the mean value theorem a8 fcllows: 

R-R1 f y j x a  a = y J  b J X  d l  ( 12) 
b 

where CJ i s  a l ine  in r j  p r a l l e l  t o  the a k a g *  direction of 7 i n  IJ, 47 
is a distance norm1 t o  CJ, and d l  is the arc  length element along C j .  This 
means t?mt the velocity f ie ld  induced by a discrete vortici ty pstch 75 can 
be appoximsted for point8 outride of 7 J by erne mean discrete vortex l i ne  
who-,; strength per unit  length is y~ b. But i f  the point xl is part  of the 
divc:,ete area 7 ,  the integral in equation (11) has sm inherent r ingulsri ty 
of the Cauchy type due t o  the isct  that  = a t  some point within T . In 
order t o  evaluate the integral expression for t h i s  case, consider a point 
close t o  & but located jut abwe T by a distance e. A s  indicated in figure 
1, the area of integration in 7 is divided into two regions, A - , and A,. 
Obviaurly, the integr8l over A,, ha8 no Cauchy-type singularity , Hadamrd'e 
fi  ni te  part concept being euff icient t o  perform the indicated integration. 
Thus, 



The l a s t  i n t e g r a l  i n  equation ( 13) represents  the  converlt ional  d ikcre te  
vortex l i n e  contr ibut ion whose evaluation presents no d i f f i c u l t y .  In  order 
t o  determine the  in tegra t ion  denoted by I( c )  assume t h a t ,  f o r  s impl ic i ty ,  
the  coordinate system !s centered tit the  p i n t  Ei, snd thst t h e  x-y plane i s  
determined by t h e  d i s c r e t e  a rea  T .  Ther,, i f  Y denotes t h e  modulus of y, 

Y s i n  A ; x :OS .A~$ /~  b a y  

A 
{X2  - B (y'- + E 

C: 

where A is the  an  l e  between the  y-axis and the  d i r ec t ion  of the  v o r t i c i t y  
i n  r , and B2 = -89 I 0 (supersonic flow). The conponents of the vector  
cross  product u(R-Rl) = x which a r e  no(; normal t o  the plane of 7 have 
been l e f t  out of equation (14) because, when the  l i m i t  operation c-o is 
car r ied  out ,  they w i l l  vanish. The a rea  A €  i s  bounded by a l i n e  p a r a l l e l  t o  
the  v o r t i c i t y  d i r ec t ion  going through x - ( ~ + B ) c  and by the  in te rsec t ion  of t h e  
Mach forecone from the  point  ( 0 ;  o, e) with t h e  ?-plane, consequently, i f  
t he  in tegra t ion  with respect  t o  x is performed f i r s t ,  

where t = t a n  A , and 11, 12 a r e  t h e  values of y correspondi t o  the  i n t e r -  
sec t ion  of t he  l i n e  x=ty -(l+B) c with the  hyperbola . , -B ,$ + 

2 2 
3 7 .  Let 

fl = 8(1+2~)-2(1+B)&y - (B -t ) y2, then the  f in iLe  s r t  of t h e  x- 
in tegra t ion  y i e l d s  

X2 



Since c is a E r y  small quantity, the variation of y in  the interval  (11, Q) 
is going t o  be equally small, ma, therefore, the quantity within brackets i n  
the last integrand of equation (16) can be replaced by a mean value and taken 
outside of the integral sign. The same is not true of the  term 1/& since 
it w i l l  vary from oo for y = 11, go through f i n i t e  values in the integration 
interval, and then again increase t o  m for y = b. With t h i s  in mind, and i f  
#.I y denotes a mean value of y, I( c) can be written a s  

L 

5 
J2, i i.. , they a r e  the roots of But 11, are  the roots of ty-c = -B y 

the polynmial denoted by 8. Thus 

Introducing t h i s  expression for ./-$-into (IT), and taking the  limit 
E-0, the following value for I( c) is obtained: 

The integral  appearing i n  equation ( 19) can be eas i ly  evaluated by com- 
plex variable methods; i t s  value i s  found t o  be 



The c o n t r i h t i m  of the inherent 8ingulrsity t o  the tnlocity f ie ld  induced 
by vorticity prtch 7, within?, denoted herein by #, irr therefore givun by 

mi8 contrftnation i n  perpendicular t o  the pllne of 7, ud it bar am3y 
mica1 moaning when # > @, i.e., when the vortex liner . re  mpt in iront 
of the h c h  lineu. It is up~re88ion (21), taken in conjunction with ~ t i a  
(12), tbt makcs the vortex l a t t i ce  method applicable t o  s~perroaric now. 

The method of quadrilateral vortex ring8 placed on the actual body sur- 
face (ref. 1 )  provides a way of computing the 8urface persure  distribution 
of arbitrary bodies using discrete vortex line8 only. lOurmericaldifficultie8 
m y  occur when the above method is applied t o  the analysis of a i r fo i l s  w i t h  
8 h - p  t rai l ing edges due t o  the close proximity of two vortex surfaces of 
nearly parallel  direct ion. An alternative approach, requiring somewhat leu8 
complter storage and easier t o  handle numerically, consiets in using a double, 
or biplaasr, aheet of swept horseshoe vortices t o  modela l i f t ing  surface 
w i t h  thickness, as shown schematically in  figure 2. This constitutes an 
approxinnticm t o  the true location of the s inguhr i t ies ,  similar in nature t o  
the classical lifting surface theory approximtion of a cambered sheet. 

A l l .  the swept horseshoe vortices, and their  boundary condition control 
points, corresponding t o  a given surface, upper or lower, a re  located in a 
ssme plane. The upper and lower surface la t t ice  planes are  separated by a 
gap which represents the chordwise average of the a i r f o i l  thickness d is t r i -  
bution. The results a re  not too sensitive t o  the magnitude of th is  gap; any 
value between one h a l f  t o  the Pull maximum chordwise thickness of the a i r f o i l  
has been found t o  be adequate, the preferred value being two thirds of the 
maximum thickness. Furthermore, the gap can vary in  the direction normal t o  
the x-axis t o  allow for spenwise thicknese taper. On the other hand, the 
chordwise distribution, or spscing, of the tramverse elements of the horse- 
shoe vortices have a significant influence on the accuracy o i t h e  computed 
surfsce pressure die tribut ion. For greater accuracy, for a given chordwise 
number of horseshoe vortices, the transverse legs have t o  be longitudinally 

1 spaced according t o  the 'cosine' distribution law 

v *ere XJ - x represents the distance from the leading edge t o  the midpoint 
of the swept yeg of the J th horseshoe vortex, c is the length of the local 
chord running through the midpoint8 of a given chordwise s t r ip ,  and rJ is the 
number of horseehoe vortices per s t r ip .  The chordwine control point location 



corresponding t o  t h i s  d is t r ibut ion of vortex elements is given by 

The control points a re  located along the centerl .na,  or midpoint l i n e ,  of the 
chordwise s t r i p  ( f ig .  3) .  Ian has shown ( r e f .  7) t h a t  the chordwise 'cosine' 
collocation of the  l a t t i c e  elements, defined by equations (22) and (23), 
grea t ly  improve the accuracy of the computation of the ef fec ts  due t o  l i f t .  
H i s  r e su l t s  a re  d i rec t ly  extendable t o  the computation of surface pressure 
distr ibutions of wings with thickness by the  'biplanar ' l a t t i c e  scheme pre- 
sented herein. 

The small perturbation boundary condition 

is applied a t  the  control  points. I n  equation (24), fi = 11 + I$ + n1, and 
E' = knj + &, where 1, m, and n a r e  the  d i rec t ion cosines of the  normal t o  
the  ac tual  a i r f o i l  surface. Equation (24) implies tha t  I l u  1 << I mv + nw I . 
The use of the smll  perturbation boundary condition is consis ;ent with the 
present 'biplanar' approach t o  the simulation of th ick  wings. 

MODELING OF mTSIF0R.M BODIES 

The modeling of f'usiform bodies with horseshoe vort ices requires a 
special  concentrical vortex l a t t i c e  i f  the  simulation of the volume displace- 
ment ef fec ts ,  and the computation of the surface pressure d is t r ibut ion,  a re  
t o  be carried out. To define t h i s  l a t t i c e ,  it is necessary t o  consider f i r s t  
an auxil iary body, ident ica l  i n  cross-sectional shape and longitudinal area 
d is t r ibut ion t o  the ac tual  body, with a s t r a igh t  barycentric l ine ,  i .e. ,  
without camber. The cross-sectional shape of t h i s  auxi l iary  body i s  then 
approximated by a polygm whose sides determine the  transverse legs of the 
horseshoe vortices. The ver t ices  of the polygon and the ax i s  of the auxi l iary  
body (which by def in i t ion  i s  r ec t i l inea r  (zero  camber) and in ternal  t o  a l l  
possible cross sections of the body) define a s e t  of r ad ia l  planes in  which 
the bound t r a i l i n g  legs of the horseshoe vort ices l i e  pa ra l l e l  t o  the ax i s  
( f i g .  4).  As the body cross section changes shape along its length, the  
corresponding polygon is allowed t o  change accordingly, but with the constraint  
tha t  the polygonal ver t ices  must always l i e  i n  the same s e t  of r ad ia l  planes. 
The a x i a l  spacing of the cross-sectional planes tha t  determine the transverse 
vorl;ex elements, or polygonal r ings,  follows the 'cosine ' law of equation (22).  
The boundary condition control points are  located on the auxi l iary  body sur- 
face, and in the bisector r ad ia l  planes, with t h e i r  longitudinal spacing given 
by equation (23).  

The boundary condition t o  be sa t i s f i ed  a t  these control  points is  the  
zero mass f lux equation 



- 2 
where a l l  the components of the scalar  product 7 . n = @ ! u + mv + nw 
a re  t o  be retained. Thus, equation (25) is a higher order condition than 
equation (24). The use of t h i s  higher order boundary condition, within the  
framework of a linearized theory, is not mathematically consistent. There- 
fore, it can only be jus t i f ied  by its resu l t s  rather than by a s t r i c t  mrthe- 
matical derivation. In the  present treatment of msiform bodies, it has been 
found that  the use of higher order, or 'exact' boundary conditions is a re- 
quis i te  for the accurate determination of the surface pressure distr ibution.  

The f a c t  that the vector F, instead of T, appears in  the  l e f t  hand member 
of equation (25) requires some elaboration. F i r s t ,  it should be pointed out - - -  
that for small perturbations F . n r  v . n'. Furthermore, for  incompressible 
flow ( @  = l ) ,  the vector i;j i s  identical  t o  the perturbation velocity T. Con- 
sequently, the boundary condition equation (24) i s  consistent with the  con- 
t inu i ty  equation, V. ? = 0, t o  a f i r s t  order f1,r compressible flow, and t o  any 
higher order for  incompressible flow, But when a higher order boundary con- 
d i t ion  i s  applied in  compressible f low t o  a l inearized solution, it should be 
remembered that  t h i s  solution s a t i s f i e s  the conservation of 7,  not of 7, i .e.,  
V. w = 0. Thus, the higher order boundary condition should involve the 

reduced current velocity, or perturbation mass f lux,  vector T, as  in  equation 
(25), rather than the perturbation velocity vector 7. 

The body camber, which was el.iminated in the definit ion of the  auxil iary 
body, is taken into  account i n  the computation of the direction cosines l , m ,  
and n, which a re  implicit i n  equation (25). Therefore, the e f fec t  of camber 
is represented in  the boundary condition but ignored i n  the spa t i a l  placement 
of the horseshoe elements. This scheme w i l l  give a f a i r  approximation t o  
cambered flisifom bodies provided that  the amount of body camber i s  not too 
large. 

THE GENERALIZED VORTEX LATTICE METHOD 

Description of Method 

The three features discussed above, i.e., the inclusion of the vor t ic i ty-  
induced residual  term w* for supersonic flow, the 'biplanar' scheme for rep- 
resenting thickness, and the use of a vortex grid of concentrical polygonal 
cylinders for the simulation of fusiform bodies, have been implemented i n  a 
computational procedrrre herein known a s  the  Generalized Vortex Latt ice (GVL) 
method. The GVL method has been codified in  a Fortran I V  computer program 
( VORIAX) , which has been widely u t i l i zed  throughout the Lockhead-Calif ornia 
Company a s  an e f f ic ien t  aerodynamic design too l  for advanced a i r c r a f t  confi- 
gurations i n  subsonic and supersonic flows. 
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The basic  element of t he  method is the  swept horseshoe vortex with 
'bound' and ' f r ee '  legs.  I n  t h e  present  version of the  method, the  f r e e  l e g s  
may t ra i l  t o  downstream i n f i n i t y  i n  any a r b i t r a r y ,  but predetermined, d i rec-  
t ion.  The l a t t i c e  formed by the  bound legs  of t he  horseshoe vo r t i ce s  is 
l a i d  out on the  proper c y l i n d r i c a l  surfaces,  t he  t r a i l i n g  l egs  being p a r a l l e l  
t o  t he  x-axis. Figure 5 i l l u s t r a t e s  schematically t he  representa t ion  of a 
simple wing-body configuration within the  context of t he  present method. The 
streamwise arrangement of t he  l a t t i c e  follows t h e  'cosine'  d i s t r i b u t i o n  l a w  
(eq. (22)), whereas the  spanwise, or  cross-flow, spacing of the  t r a i l i m  l egs  
can be a r b i t r a r i l y  specif ied.  To each horseshoe vortex the re  corresponds an  . associated cont ro l  po in t ,  placed midway between the  bound t r a i l i n g  i egs  of  
t he  horseshoe and longi tudina l ly  spaced according t o  equation (23) .  

The veloc i ty  f i e l d  induced by t h e  elementary horseshoe vortex is derived 
from equzfion (12), and it includes the  contr ibut ion given by equation (21)  
when the  ve loc i ty  induced by a horseshoe a t  i ts  own cont ro l  po in t  is evaluated 
a t  supersonic Mach numbers. This ve loc i ty  f i e l d  is used t o  generate t he  co- 
e f f i c i e n t s  of a system of l i n e a r  equations r e l a t i n g  t h e  unknown vortex 
s t rengths  t o  t he  appropriate  boundary condition a t  t h e  con t ro l  points .  This 
l i nea r  system is solved by e i t h e r  a Gauss-Seidel i t e r a t i v e  procedure ( r e f .  8) ,  
or  by a vector orthogonalization technique ( r e f .  9 ) .  

The pressure coe f f i c i en t s  a r e  computed i n  terms of the  per turba t ion  
veloci ty  components. Force and moment c a e f f i c i e n t s  a r e  determined through a 

i4 numerical in tegra t ion  process. Due account is taken of t he  leading edge 
suct ion through the  appl ica t ion  of Lan's procedure ( r e f .  7 ) ,  which the  GVL 
method d i r e c t l y  extends t o  supersonic flow. 

Nmer i c a l  Considerations 

A t  supersonic Mach humbers, t h e  ve loc i ty  induced by a d i s c r e t e  horseshoe 
vortex becomes very l a rge  i n  the  very close proximity of the envelope of Mach 
cones generated by the  t ransverse l e g  of t he  horseshoe. A t  the  c h a r a c t e r i s t i c  
envelcpe surface i t s e l f ,  the  induced ve loc i ty  co r r ec t ly  vanishes,  due t o  t he  
f i n i t e  p a r t  concept. This s ingular  behavior of t h e  ve loc i ty  f i e l d  occurs only 
f o r  f i e l d  points  of f  the  plane of t h e  horseshoe, For t he  planar case,  the  
veloci ty  f i e l d  i s  well  behaved i n  t he  v i c i n i t y  of the  c h a r a c t e r i s t i c  surface.  
A simple procedure t o  t r e a t  t h i s  numerical s ingu la r i t y  cons is t s  of def ining 
the  cha rac t e r i s t i c  surfaces by the  equation 

where C i s  a numerical constant whose value i s  g rea t e r  than, but c lose  t o ,  1. 
It has been found t h a t  t h i s  procedure y i e lds  s a t i s f ac to ry  r e s u l t s ,  and t h a t  
these r e s u l t s  a r e  qu i t e  insens i t ive  t o  reasonable va r i a t i ons  of the  parameter 
C. 



Another numerical problem, peculiar t o  the  supersonic horseshoe vortex, 
ex i s t s  in  the planar case ( f i e l d  point in the plane of the horseshoe) when 

/ 
the f i e l d  point is close t o  a transverse vortex leg  swept exactly pa r a l l e l  
t o  the Mach l ines  (sonic vortex), while the  vortex l ines  immediately i n  front 
of and behind t h i s  sonic vortex a re  subsonic and supersonic, respectively. 

.. 
. , .. 

This problem can be handled by replacing the boundar; condition equation fo r  .. 
such sonic vortex with the averaging equation i 

where y1* is the circulatior. strength of the c r i t i c a l  horseshoe vortex, and 

'1*-1 and y ~ + ~  are  the respective circulat ion values fo r  the fore-and-aft 
adjacent subsonfc and supersonic vortices. 

The axialwash induced velocity component (u)  i s  needed for the computa- 
t ion of the surface pressure dis t r ibut ion,  and for  the formulation of the 
boundary condition for  fusiform bodies. When the f i e l d  point i s  not too 
close t o  the generating vor t i c i ty  element, the axialwash is adequately des- 
cribed by the conventional d iscre te  horseshoe vortex representation. But i f  
t h i s  point is in the close v ic in i ty  of the generating element, as may occur 
i n  the biplanar and in the concentrical cylindrical  l a t t i c e s  of the present 
method, the er ror  in  the computation of the axialwash due t o  the discret iza-  
t ion of the vor t i c i ty  becomes unacceptable. T h i s  problem is solved by resor- 
t ing t o  a vortex-spli t t ing technique, s i m i l a r  t o  the  one presented in  refer-  
ence 10. Briefly, t h i s  technique consists  of computing the axialwash induced 
by the transverse leg  of a horseshoe a s  the summation of several transverse 
legs longitudinally redistr ibuted,  according t o  an in terdigi ta t ion scheme, 
over the region that  contains the vor t ic i ty  represented by the single d iscre te  
vortex. This is done only i f  the point a t  which the s j c i a l ~ s h  value is re-  
quired l i e s  within a given near f i e l d  region surrounding the original  d is-  
crete vortex. 

COMPARISON WITH OTHER THEORIES AND EXPERIMENTAL RESULTS 

Conical flow theory provides a body of 'exact' resul ta ,  within the con- 
text  of linearized supersonic flow, for  some simple three-dimensional confi- 
gurations, These exact r esu l t s  can be used a s  bench mark cases t o  evaluate 
the accuracy of numerical techniques. This has been done rather extensively 
for  the GVL method, and very good agreement between it and conical flow theory 
has been observed in the computed aerodynamic load dis t r ibut ion and a l l  force 
and moment coefficients. Only some typical  comparisons a r e  presented in t h i s  
paper, figures 6 through 9. 

Finally, the capabil i ty of computing surface pressure 8ist;ributions by 
the method of t h i s  paper is i l lus t ra ted  i n  figures 10 and 11. 



cmmm REMARKS 

It h a  been s h m  that vortex l a t t i ce  theory can be extended t o  super- 
sonic flow i f  due account is taken of the principal. part of the surface vorti- 1 ?- 
c i ty  integral. Furthermore, special vortex l a t t i ce  layouts, which allow the - I simulation of thickness and volume w i t h  horseshoe vortices, have been presen- 
ted. A l l  thin greatly enhances the value of vortex l a t t i ce  theory as a com- i 
putationally efficient design and anslysir tool, a s  exemplified by i t s  exten- i 
sive use a t  the Lockheed-California Company, discussion of which has been 
precluded by space limitations. 



REFERENCES I 
I 1  

1. Maskew, B.: Calculation of t he  Three-Dimensional Po ten t i a l  Flow Around 
Li f t ing  Non-Planar Wings and Wing-Bodies Using a Surface Dis t r ibu t ion  

..-+ 

of Quadr i l a t e r a l  Vortex-Rings. Loughborough University of Technology . - .  

TT 7009, 1970. 
I 

2, Tul inius ,  J.; Clever, W . ;  Niemann, A, ;  Dunn, K.; and Gaither, B.: Theoreti-  
c a l  Predict ion of Airplane S t a b i l i t y  Derivatives a t  Subc r i t i ca l  Speeds. 
North American Rockwell NA-72-803, 1973. (Available a s  NASA CR -132681. ) 

3 .  Ward, G. N.: Linearized Theory of Steady High-Speed Flow. Cambridge 
Univers l t y  Press,  1955. 

4. Robinson, A. : On Source and Vortex Dis t r ibu t ions  i n  t h e  Linearized 
Theory of Steady Supersonic Flow. Quart.  J .  Mech. Appl. Math. I ,  
1948. 

5. Lomax, H , ;  Heaslet,  M. A.; and F u l l e r ,  F. B.: I n t eg ra l s  and In t eg ra l  
Equations i n  Linearized Wing Theory. NACA Report 1054, 1951. 

6. Hadamard, J. : Lectures on Cauchy 's Problem i n  Linear P a r t i a l  Differ-  
e n t i a l  Equations. Yale U n i v e ~ s i t y  Press ,  1923. 

7. Lan, E. C. :  A Quasi-Vortex-Lattice Method i n  Thin Wing Theory. 
Journal  of A i rc ra f t ,  Sept. 1974. 

8, Bratkovich, A * ;  and Marshall, F. J.: I t e r a t i v e  Techniques f o r  the  
Solution of Large Linear Systems i n  Computational Aerodynamics. 
Journal  of A i rc ra f t ,  Feb. 1975. 

9. Purce l l ,  E. W.: The Vector Method of Solving Simultaneous Linear 
Equations. Journal  of Mathematical Physics,  Vol. 23, 1953. 

10. Lan, E. C . ;  and Campbell, J. F.: Theoret ical  Aerodynamics of Upper- 
Surface-Blowing Jet-Wing In te rac t ion .  NASA TN D-7936, Nov. 1975. 



GI- 1 
A tan - 

B 

Figure 1.- Definition of integration regions for the 
computation of principal part. 
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Figure 2.-  Modeling of t h i c k  wing with horseshoe wrti,--s. 
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Figure 4.- Modeling of fusiform body with horseshoe vortices. 
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Figure 5.- Generalized vortex lattice model of wing-body configuration. 
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Figure 6.- Theoretical comparison of arrow wing lift slope 
and aerodynamic center location. 
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Figure 7.- Theoretical comparison of arrow wing drag-due-to-lift factor. 



CONICAL FLOW I 

Figure 8.- Theoretical. comparison of chordwise 
loading for de l ta  wing. 
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Figure 9.-  Theoretical comparison of chordwise loading 
for sweptback rectangular wing. 
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Figure 10.- Comparison with experimcntnl pressure distribution 
on wing-body model at N ~ c h  = 0 . 5 .  
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Figure 11.- Theoretical comparison of pressure 
distribution on ellipsoids at zero angle of 
at tack in incompressible flow. 


