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Phase-shifting interferometry suffers from two main sources of error: phase-shift miscalibration and
detector nonlinearity. Algorithms that calculate the phase of a measured wave front require a high
degree of tolerance for these error sources. An extended method for deriving such error-compensating
algorithms patterned on the sequential application of the averaging technique is proposed here. Two
classes of algorithms were derived. One class is based on the popular three-frame technique, and the
other class is based on the 4-frame technique. The derivation of algorithms in these classes was
calculated for algorithms with up to six frames. The new 5-frame algorithm and two new 6-frame
algorithms have smaller phase errors caused by phase-shifter miscalibration than any of the common 3-,
4- or 5-frame algorithms. An analysis of the errors resulting from algorithms in both classes is provided
by computer simulation and by an investigation of the spectra of sampling functions.
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1. Introduction

In interferometry the phase-shifting technique is well
known as a method for retrieving a wave-front phase
encoded in the interference fringes. This technique
requires the registration of a few frames of fringes by
means of CCD camera. The interfering reference
wave front is sequentially shifted in phase from frame
to frame with respect to the measured wave front.
This method of phase measurement has been applied
to many areas of precisionmetrology, where the phase
shift can be realized in a number of ways.1,2 The
conventional phase-shifting technique is based on the
synchronous detection method,3 in which the phase of
the incoming sinusoidal signal is measured. The
sinusoidal signal is sampled and correlated with
sinusoidal and cosinusoidal reference signals. In
interferometry the intensity of the incoming signal to
each pixel is modulated in the sinusoidal fashion as
the reference wave front is being shifted. The phase
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of the signal can then be calculated according to
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where Im 5 I1x, y251 1 g1x, y2cos3w1x, y2 1 2p1m 2 12@ M46 is
the intensity distribution in the sampled mth frame,
w1x, y2 is a measured wave front 1phase2, g1x, y2 is the
fringe contrast, and 2p@M is a temporal phase shift.
For four acquired frames the phase shift equals p@2,
simplifying the equation to
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which is the algorithm for the conventional four-
frame method.4
Other simple phase-shifting algorithms exist; how-

ever, they result in relatively large phase errors.2
Some of those algorithms are based on analytical
solutions,5 and others are based on the least-squares
technique,6,7 which is a more general phase-calculat-
ing method that utilizes a synchronous detection
technique. In an attempt to reduce phase error,
researchers developed families of error-compensating
algorithms withM 1 1 samples over one full period of



signal8,9; themost common of these was the five-frame
algorithm.10 While still requiring a relatively low
number of grabbed frames, this algorithm produces
the smallest error resulting from phase-shift miscali-
bration and is insensitive to detector nonlinearity.
A different approach to the derivation of error-
compensating algorithms, called the averaging tech-
nique, was proposed by Schwider et al.11 in 1983.
Our paper extends this method for deriving algo-
rithms.
A new error-compensating algorithm can be calcu-

lated from an existing algorithm if two sets of data
with a p@2 shift in the initial phase are taken. This
process may require the acquisition of twice as many
frames and may result in a complicated algorithm.
However, if the averaging technique is applied to
algorithms that require a p@2 phase shift between
frames, then only one more frame is needed and a
simple algorithm can be derived. Recently Schwider
et al.12 derived a new 4-frame error-compensating
algorithm with a p@2 phase shift that produced
smaller errors than the conventional 4-framemethod.
This paper demonstrates that the averaging tech-
nique procedure can be applied sequentially and that
each new algorithm yields smaller errors than the
algorithm from which it was derived. Two classes, A
and B, of error-compensating algorithms were calcu-
lated by use of this procedure. Class A is based on
the 3-frame method and class B is based on the
4-frame method. In each class, algorithms requiring
up to six frames were derived 1grouped in Subsection
3.B2, but further extensions to seven frames 1and so
on2 are possible.
We provide a sequential discussion of both classes

of algorithms, starting with a review of the basic
algorithms 1Subsections 2.B and 2.C2 and continuing
to our discussion of the new 5- and 6-frame algorithms.
The 5-frame algorithm from class A and the 6-frame
algorithms from class A and B have not yet been
presented in the literature and are derived in Section
3. These new error-compensating algorithms are
less sensitive to phase-shift miscalibration than any
of the existing algorithms while still requiring a
reasonably small number of collected frames. We
demonstrate the effectiveness of these new algo-
rithms in Subsections 4.A and 4.B by comparing the
phase errors caused by phase-shift miscalibration and
second-order detector nonlinearity with errors in the
previously known 4- and 5-frame algorithms. The
error analysis presented here is done in two ways.
The first analysis is based on computer simulation
rather than a theoretical derivation of the residual
error, because the computer simulation permits a
closer approximation of actual conditions. The sec-
ond analysis investigates the spectra of the sampling
functions to judge the sensitivity of the algorithms to
different error sources; this is explained in detail in
Subsection 4.C.

2. Background of the Averaging Technique

The basic source of errors in phase-shifting interferom-
etry is phase-shift miscalibration. The resulting
phase error is proportional to cos 2w and sin 2w of the
measured phase, w. This error has been well exam-
ined, in theory, through experimentation and by
computer simulation.1,2 In phase-shifting techniques
this type of error can be a problem because the fringes
are usually nulled out, resulting in a phase error with
a large period. The fringes are nulled out to avoid
errors caused by the different traveling paths of the
reference and measured wave fronts. This error is
difficult to remove by filtering 1e.g., by 3 3 3 pixel
filtering2 because its period is usually greater than the
size of the filter window; thus this error becomes part
of themeasured wave front. To reduce this error, one
takes two data sets with a p@2 initial phase shift and
averages the resulting two phase maps.13 Schwider
proposed that instead of calculating the phase map
twice and then averaging, one could merge the two
data sets together into a phase calculation of the
following form11:

tan w 5
N1 1 N2
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where Ni and Di are the numerator and denominator
of Eq. 112 for each set of data. This is called the
averaging technique.

A. Extended Averaging Technique

The averaging technique, when applied to two sets of
M frames shifted by p@2 in the initial phase, does not
completely eliminate the twice-the-fringe-frequency
phase error as it follows from Schwider first-order
approximation,11 but it does significantly reduce this
error. We demonstrate this in Section 4. The error-
compensating algorithm for 2M frames can be calcu-
lated, although the resulting algorithmmay be compli-
cated because of the amount of data required.
However, we can reduce the acquisition and processing
time if the phase shift between the frames equals p@2.
In this case only one additional frame is needed
because the first data set overlaps with the second,
resulting in a fairly simple M 1 1 frame algorithm.
This procedure can be reapplied successively to two
sets of M 1 1 frames; we then obtain an M 1 2
algorithm with an even smaller twice-the-fringe-
frequency error. By applying the averaging tech-
nique twice in sequential fashion to data with p@2
phase shifts between frames, we require only M 1 2
frames instead of 3M frames and the phase error is
reducedwith each procedure. The sequential deriva-
tions of the new error-compensating algorithms may
be represented in the following forms. For the
M-frame algorithm we have

tan wM 5
N

D
, 14a2

which is the basic equation for successive algorithms
in this extended averaging technique.
The M 1 1-frame algorithm according to the
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averaging technique can be written as

tan wM11 5
N1 1 N2
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5
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. 14b2

Applying the averaging technique again we obtain the
M 1 2-frame algorithm:

tan wM12 5
N8 1 N9

D8 1 D9
5
N1 1 2N2 1 N3

D1 1 2D2 1 D3

, 14c2

whereN1,2,3 andD1,2,3 are the numerators and denomi-
nators for first, second, and third runs ofM data sets,
respectively, andN8,9,D8,9 are those of first and second
M1 1 data sets. The equations for a greater number
of frames follow from this procedure.
In the calculation of error-compensating algorithms

the choice of the basic equation is arbitrary, but for
the best results the equation with the smallest num-
ber of frames and the smallest phase error should be
chosen. In this paper the well-known 3- and 4-frame
algorithms with p@2 phase shift are chosen as basic
equations. By applying this technique sequentially,
one can derive the algorithm for any number of
frames. The degree of tolerance for the phase error
and the number of frames collected depends on the
user’s requirements. Note that the signal does not
have to be sampled over its period 1as in most algo-
rithms2 but rather over the multiple of p@2.

B. 5A-Frame Error-Compensating Algorithm Derived from
the 4A-Frame Algorithm

Schwider et al.11 employed their averaging technique
to the conventional 4-frame method for two data sets,

2
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and derived a 5-frame error-compensating algorithm
by substituting Eqs. 152 into Eq. 132:

tan w 5 2
21I2 2 I42

I1 1 I5 2 2I3
. 162

The effectiveness of this method has been studied by
several authors.8–11,14 In examining the residual
phase error caused by linear phase-shift miscalibra-
tion in this method, Schwider et al.11 used first-order
approximations for sin1E2 and cos1E2, where E is phase-
shift miscalibration, and found that the residual error
is only a constant offset and of no interest in measure-
ment. The 5-frame method was revised and more
fully analyzed by Hariharan et al.10 In addition,
Surrel9 presented a more general approach for calcu-
lating the residual error for phase-shifting methods.
Both authors used second-order approximations for
sine and cosine functions and found that the peak-to-
valley 1P-V2 residual error is proportional to the
3612 APPLIED OPTICS @ Vol. 34, No. 19 @ 1 July 1995
square of the linear phase-shift miscalibration and
that the dependence on phase is proportional to
sin 2w. These results agree with the computer-
simulated errors obtained by Creath.14 The P-V
error in the 5-frame technique is significantly smaller
than in the conventional 4-frame technique; however,
the double-frequency character of the phase error
remains. This error-compensating method has be-
come very popular in phase-measuring interferomet-
ric systems because of its tolerance for phase-shift
miscalibration. This 4-frame algorthim is the basic
equation for algorithms in class A and is called the
4A-frame algorithm. The popular 5-frame algorithm
will be called here the 5A-frame algorithm.

C. 4B-Frame Error-Compensating Algorithm Derived from
the 3B-Frame Algorithm

Recently Schwider et al.12 reemployed the averaging
technique in deriving a 4-frame error-compensating
algorithm from the 3-frame method with p@2 phase
steps between frames. This 3-frame algorithm is the
basic equation for algorithms in class B. We call this
the 3B-frame algorithm. For the first set of data the
equation is

2
2I1 1 2I2 2 I3

I1 2 I3
5
N1

D1

, 17a2

and for the second data set with p@2 offset it is

2
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I2 2 2I3 1 I4
5
N2
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. 17b2

As a result an algorithm for a new four-framemethod,
which we call the 4B-frame algorithm, was derived:

tan w 5 2
2I1 1 3I2 2 I3 2 I4
I1 2 3I3 1 I2 1 I4

. 18a2

The simpler form of this algorithm is

tan 1w 1
p

42 5 2
21I2 2 I32

I1 2 I2 2 I3 1 I4
. 18b2

The experimental results presented in the paper by
Schwider et al.12 showed that this algorithm yielded
smaller errors than the conventional 4-frame algo-
rithm. In calculating the residual phase error caused
by phase-shift miscalibration, the authors again used
only first-order approximations, which resulted in a
constant offset in phase.

3. New Error-Compensating Algorithms

A. New 5B-Frame Error-Compensating Algorithm Derived
from the 4B-Frame Algorithm

All of the developed error-compensating algorithms
presented in the previous subsection show much
smaller errors than the algorithms from which they
were derived. Employing our extended averaging
technique to the 4B-frame algorithm, we obtained a
new 5B-frame algorithm. The two equations for two



sets of four-frame data with an initial p@2 phase shift
are in the form

2
2I1 1 3I2 2 I3 2 I4
I1 2 3I3 1 I2 1 I4
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Using Eqs. 19a2 and 19b2 in Eq. 132, we find that the new
algorithm is

tan w 5 2
2I1 1 4I2 2 4I4 1 I5

I1 1 2I2 2 6I3 1 2I4 1 I5
. 110a2

This can be simplified to

tan1w 1
p

42 5 2
3I2 2 3I3 2 I4 1 I5
I1 2 I2 2 3I3 1 3I4

. 110b2

B. Two Classes of Algorithms

We chose two basic equations, Eqs. 15a2 and 17a2, to
derive our error-compensating algorithms by using
the extended averaging technique. We carried our
derivations up to algorithms that employ six frames of
collected data. These are grouped in Table 1.
Algorithms in class A are based on the 3-frame
method; algorithms in class B are based on the
4-frame method. Each of the algorithms is pre-
sented in two forms: the first for zero phase offset in
the reference signal, and the second with offset p@4.
Essentially both forms result in the same errors from
the sources considered here, as the resulting phase
differs only by a constant offset in the wholemeasured
wave front. The algorithms from class A for M
frames are referred to as MA-frame algorithms, and
those from class B are referred to as MB-frame
algorithms.

4. Error Comparison inAlgorithms fromClassesAand B

Here we compare the phase errors in the algorithms
for four, five, and six frames from both classes,
specifically examining the linear phase-shift miscali-
bration and second-order detector nonlinearity.
The phase errors and their P-V errors are presented
in the form of plots. Our analysis was done on
computer-generated interferograms with 128 3 128
pixel resolution and 8-bit intensity resolution.

A. Linear Phase-Shift Miscalibration

The actual phase shift between frames can be ex-
pressed as

a 5
p

2
11 1 d2, 1112

where p@2 is the required phase shift and d is a
normalized phase-shift miscalibration. The inten-
sity in themth interferogram is then

Im1x,y2 5 I1x, y251 1 g1x, y2cos3mp

2
11 1 d246 . 1122

For our analysis of the characteristics of phase error,
we generated five interferograms with three fringes.
No noise was added for better observation of the
twice-the-frequency phase error. The phase-shift
miscalibration was chosen to equal 20%. The phase
error was calculated for each algorithm from a single
set of interferograms. Results are presented in Fig.
1. The basic 4A-frame method results in a large
phase error at double the fringe frequency caused by
phase-shift miscalibrations. The phase error in the
4B-frame and the 5A-frame algorithms is much
smaller and of the same amplitude in both methods.
For the 5B-frame and 6A-frame algorithms the double-
fringe frequency error is even smaller but still notice-
able. The 6B-frame algorithm shows the smallest
error; its value is insignificant formost of themeasure-
ments.
To show the differing sensitivities of each of the

algorithms to phase-shift miscalibration, we dia-
grammed the P-V phase error versus the phase-shift
error, shown in Fig. 2. The interferograms were
generated without noise, so the P-V values are pure
errors caused by phase-shift error only. From the
P-V phase error plot we can see that the 4B-frame
algorithm results in the same error as the 5A-frame
technique. The only difference is that the number of
collected frames has been reduced from five to four.
Table 1. Algorithms in Classes A and B

Frame
No.

Class A Class B

2tan1w2 2tan1w 1 p@42 2tan1w2 2tan1w 1 p@42

Three
2I1 1 2I2 2 I3

I1 2 I3

I2 2 I3
2I2 1 I1

Four
I2 2 I4
I1 2 I3

I1 1 I2 2 I3 2 I4
I1 2 I2 2 I3 1 I4

2I1 1 3I2 2 I3 2 I4
I1 2 3I3 1 I2 1 I4

21I2 2 I32

I1 2 I2 2 I3 1 I4

Five
2I2 2 2I4

I1 2 2I3 1 I5

I1 1 2I2 2 2I3 2 2I4 1 I5
I1 2 2I2 2 2I3 1 2I4 1 I5

2I1 1 4I2 2 4I4 1 I5
I1 1 2I2 2 6I3 1 2I4 1 I5

3I2 2 3I3 2 I4 1 I5
I1 2 I2 2 3I3 1 3I4

Six
3I2 2 4I4 1 I6
I1 2 4I3 1 3I5

I1 1 3I2 2 4I3 2 4I4 1 3I5 1 I6
I1 2 3I2 2 4I3 1 4I4 1 3I5 2 I6

2I1 1 5I2 1 2I3 2 10I4 1 3I5 1 I6
I1 1 3I2 2 10I3 1 2I4 1 5I5 2 I6

41I2 2 I3 2 I4 1 I52

I1 2 I2 2 6I3 1 6I4 1 I5 2 I6
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Fig. 1. Phase error for three intensity fringes caused by 20% phase-shift miscalibration.
From this same plot, moreover, we can see that the
5B-frame technique yields the same error as the
6A-frame technique, requiring one less frame. The
6B-frame technique is the least sensitive to phase-
shift errors of any of the methods considered. The
algorithm’s tolerance for phase-shift miscalibration is
especially important for measurements of wave fronts
in a converging beam, where the phase shift at the
center is different from that at the edges of the
beam.15
614 APPLIED OPTICS @ Vol. 34, No. 19 @ 1 July 1995
B. Second-Order Detector Nonlinearity

The response of the detector to the incident intensity
can be nonlinear, with the most common nonlinearity
being of the second order. The detected I8 intensity
is then

I81x, y2 5 I1x, y2 1 dI 21x, y2, 1132

where I is the incident intensity and d is a normalized
error in the detected intensity.



The algorithms of class A are not sensitive to
second-order nonlinearity as shown in Fig. 3. The
algorithms from class B have a periodic phase error
dependence as shown in Fig. 4. The P-V phase error
plot in Fig. 3 represents maximum error changes
1detector nonlinearity is expressed in percent2. The
phase error caused by second-order detector nonlinear-
ity for class B methods exists; however, values are not
significant for most detectors.

C. Fourier Analysis of Sampling Functions

We can also examine the sensitivity of algorithms
to,phase-shift miscalibration and detector nonlinear-
ity by looking at the spectrum of the sampling func-
tion.8,16 However, to analyze algorithms in this way
we find it convenient to express the incoming and
reference signals in different mathematical forms.
The incoming intensity signal at a given pixel can be
written as

I1t2 5 I31 1 g cos12pnt 1 w24, 1142

where n is the modulation frequency and t is a
temporal phase-shift parameter. In the synchro-
nous detection process the incoming signal is corre-
lated with the reference signal 3Eq.1124. The refer-
ence signals of frequency nf and phase-shift parameter

Fig. 2. P-V phase error versus percent of phase-shift miscalibra-
tion.

Fig. 3. P-V phase error versus percent of second-order detector
nonlinearity error.
t can be written in the form of functions:

fN1t2 5 2sin12pnf t2,

fD1t2 5 cos12pnf t2. 115a2

Ideally we want the frequencies of the measured and
reference signals to be equal 1n 5 nf2. If this is not the
case then we have phase-shift miscalibration.
For the conventional phase-stepping process, func-

tions fN1t2 and fD1t2 are the equispaced samples of sine
and cosine functions, respectively 3Eq. 1124 and can be
called sampling functions. Generally these samples
can have additional weighting coefficients, and the
sampling functions can be written as

fN1t2 5 2o
m51

M

am sin12pnf t2d1t 2 tm2,

fD1t2 5 o
m51

M

bm cos12pnf t2d1t 2 tm2, 115b2

where am, bm are the weighting coefficients of themth

Fig. 4. Phase error for three intensity fringes caused by 10%
second-order detector nonlinearity error.
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discrete sample, d is a delta function, and tm gives the
sample position. For the chosen forms of the 4- and
5-frame methods presented here, the sampling func-
tions in the numerator and denominator are as follows.
For the 4A-frame algorithm, we have

fN1t25 2d1t 2
p

422 d1t2
3p

4 21 d1t2
5p

4 22 d1t2
7p

4 2 ,

fD1t2 5 d1t 2
p

42 2 d1t 2
3p

4 2 2 d1t 2
5p

4 2 1 d1t 2
7p

4 2 .
116a2

For the 5A-frame algorithm, we have

fN1t2 5 2d1t 2
p

22 1 d1t 2
3p

2 2 ,
fD1t2 5 d1t2@2 2 d1t 2 p2 1 d1t 2 2p2@2. 116b2

For the 4B-frame algorithm, we have

fN1t25 2d1t2
3p

8 21 d1t2
5p

8 2 ,

fD1t25
1

2 3d1t2
p

422 d1t2
3p

4 22d1t2
5p

4 21d1t2
7p

4 24 .
116c2

For the 5B-frame algorithm, we have

fN1t2 5
1

6 3d1t2 2 4d1t 2
p

22 1 4d1t 2
3p

2 2 2 d1t 2 2p24 ,

fD1t2 5
1

6 3d1t2 1 2d1t 2
p

22 2 6d1t 2 p2 1 2d1t 2
3p

2 2
1 d1t 2 2p24. 116d2

Equations 116a2–116d2 have been normalized so that
themaximum value equals unity. The graphic repre-
sentations for chosen forms of all the methods are
presented in Fig. 5.
As the number of frames increases, the weighting

coefficients have their maximum value at the central
sample and the values of the coefficients gradually fall
off for the surrounding samples. The importance of
weighting coefficients has been discussed in a few
papers,8,16,17 but the values of the weighting coeffi-
cients have never been explicitly given. We obtained
the set of weighting coefficients fairly easily for the
new 5- and 6-frame methods, which significantly
reduced the errors of the methods. The weighting of
data technique is often used in the Fourier transform
phase measurement18 to reduce the phase error.
To discuss the performance of algorithms we need

to look at the frequency spectra of the above sampling
functions, which are given here. For the 4A-frame
3616 APPLIED OPTICS @ Vol. 34, No. 19 @ 1 July 1995
algorithm, we have

FN1n2 5 22i sin1p4
n

nf
2 2 2i sin13p

4

n

nf
2exp12i

3p

4

n

nf
2 ,

FD1n2 5 22 cos1p4
n

nf
2 1 2 cos13p

4

n

nf
2exp12i

3p

4

n

nf
2 .
117a2

For the 5A-frame algorithm, we have

FN1n2 5 22i sin1p2
n

nf
2exp12ip

n

nf
2 ,

FD1n2 5 321 1 cos1p n

nf
24exp12ip

n

nf
2 . 117b2

For the 4B-frame algorithm, we have

FN1n2 5 22i sin1p4
n

nf
2exp12i

3p

4

n

nf
2 ,

FD1n2 5 3cos13p

4

n

nf
2 1 cos1p4

n

nf
24exp12i

3p

4

n

nf
2 .

117c2

For the 5B-frame algorithm, we have

FN1n2 5 2
1

3
i34 sin1p2

n

nf
2 2 sin1p 2

n

nf
24exp12ip

n

nf
2 ,

FD1n2 5
1

3 326 1 4 cos1p2
n

nf
2 1 2 cos1p n

nf
24exp12ip

n

nf
2 .
117d2

We focus on both the first and second harmonics of
the spectrum, the first because it contains informa-
tion about the tolerance to the phase-shift miscali-
bration, and the second because it represents the
algorithm’s sensitivity to second-order detector non-
linearity. At the first harmonic 1normalized fre-
quency equals 12 and nearby frequencies we are
interested in the gradients of the spectra functions.
Gradients of FN and FD at the first harmonic describe
the algorithm’s sensitivity to phase-shift miscalibra-
tion. Figure 6 shows a graphic representation of
amplitudes of FN and FD for sampling functions from
Fig. 5. For the 4A-frame algorithm the gradients at
the first harmonic have different signs, resulting in
high phase error. For both classes as the number of
grabbed frames increases, the gradients around the
first harmonic come into better alignment, reducing
the error caused by phase-shift miscalibration. At
the second-order harmonic we are interested in val-
ues of both spectra. If both spectra FN and FD have a
zero value at the same time at the second harmonic
1normalized frequency equals 22, then the algorithm is
insensitive to second-order nonlinearity, provided
there is no phase-shift miscalibration, or any other
measurement nonlinearity that results in the second



Fig. 5. Sampling functions.
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Fig. 6. Frequency spectra of sampling functions.
harmonic in the fringe pattern. All the algorithms
from class A show such insensitivity. Algorithms
from class B are sensitive to second-order detector
nonlinearity, but this sensitivity decreases with the
increasing number of frames taken.

5. Summary

We have presented an extended averaging technique
based on the averaging technique introduced by
Schwider. This technique permits the derivation of
3618 APPLIED OPTICS @ Vol. 34, No. 19 @ 1 July 1995
many error-compensating algorithms in phase-shift-
ing interferometry, if the averaging technique is ap-
plied sequentially. Fairly simple algorithms can be
calculated if the phase shift between frames equals
p@2. We derived two classes of algorithms for up to
six frames of data, the first based on the common
3-frame algorithm 1class A2 and the second based on
the 4-frame algorithm 1class B2. The 5A-frame and
the 6A- and 6B-frame error-compensating algorithms
were presented for the first time 1to our knowledge2 in



the literature. We analyzed the sensitivity of the
four-, five-, and six-frame algorithms to phase-shift
miscalibration and detector nonlinearity. The five-
and six-frame methods were shown to be more toler-
ant to phase-shift miscalibration than any other
method considered. The algorithms from class A are
not sensitive to second-order detector nonlinearity.
The algorithms from class B show some sensitivity to
second-order detector nonlinearity, but the values of
the error are rather insignificant for most detectors.
The phase error caused by phase-shift miscalibration
is smaller for algorithms from class B than for those
from class A with the same number of frames. We
can further develop in sequence algorithms that yield
smaller and smaller phase errors. However, because
the fast analysis of data is a priority, a small number
of grabbed frames is more practical. The 6A-frame
method combines the advantage of high tolerance for
phase-shift miscalibration with a reasonably short
process time and no sensitivity to second-order detec-
tor nonlinearity.
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