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1 Introduction

Bondi-van der Burg-Metzner-Sachs (BMS) group is a symmetry of asymptotically flat four-

dimensional spacetimes at null infinity [1, 2]. It is a semi-direct product of the SL(2,C)

subgroup of global conformal transformations of the celestial sphere CS2 at null infinity

(isomorphic to Lorentz transformations) times the abelian subgroup of so-called super-

translations. In 2009, Barnich and Troessaert [3] argued that SL(2,C) should be extended

to the group of all local conformal transformations (diffeomorphisms) of celestial sphere,

a.k.a. superrotations. In 2013, Strominger showed that such extended BMS is also a sym-

metry of the S-matrix describing elementary particles and gravitons [4]. This symmetry

plays central role in Strominger’s proposal of a flat spacetime hologram on CS2 [5].1 In

1For a review of more recent developments, see ref. [6]. For an earlier proposal of flat holography, see

ref. [7].
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particular, superrotations set the stage for two-dimensional celestial conformal field theory

(CCFT) on CS2 which, according to Strominger, should encode four-dimensional physics.

In CCFT, each particle is associated to a conformal field operator. The correlators of

these operators are identified with four-dimensional S-matrix elements transformed to the

basis of conformal wave packets. They can be obtained by applying Mellin transformations

(with respect to the energies of external particles) to traditional, momentum space ampli-

tudes [8–11]. Within this framework, the operator insertion points z ∈ CS2 are identified

with the asymptotic directions of four-momenta while their dimensions ∆ are identified

with the dimensions of wave packets. The conformal wave packets associated to stable,

helicity ℓ particles have conformal weights (h, h̄) = (∆+ℓ
2 , ∆−ℓ

2 ) with Re(∆) = 1 [12]. Two

of us have recently shown that, given the proper definition of CCFT energy-momentum

tensor, the operators representing gauge bosons and gravitons do indeed transform under

diffeomorphisms of CS2 (superrotations) as primary conformal fields [13].

There are two special cases of conformal dimensions that lead to important insights into

CCFT. For gauge bosons, it is the “conformally soft” limit of ∆ = 1 [14] in which conformal

wave packets describe pure gauge fields. They correspond to asymptotically “large” gauge

configurations that have observable effects similar to Goldstone modes. The operators

emerging in the ∆ = 1 (h = 1, h̄ = 0) limit of gauge boson operators are the holomorphic

currents Ja carrying gauge group charges. In ref. [15], we derived OPEs of Ja with other

operators and showed that respective Ward identities agree with soft theorems. For gravi-

tons, both ∆ = 0 and ∆ = 1 spin 2 wave packets represent (large) diffeomorphisms. Upon a

shadow transformation, the operator associated to ∆ = 0 (h = 1, h̄ = −1) graviton (which

is outside the Re(∆) = 1 stability domain) changes its dimension to ∆ = 2 (h = 2, h̄ = 0)

and becomes the CCFT energy-momentum tensor T generating superrotations [16, 17].

The graviton associated to ∆ = 1 (h = 3/2, h̄ = −1/2) yields a primary field operator with

a single-derivative descendant P that generates supertranslations. Hence BMS symmetries

are controlled by ∆ = 0 and ∆ = 1 soft limits. On the other hand, collinear limits are use-

ful for studying OPEs because identical momentum directions correspond to the operator

insertion points coinciding on CS2. We will utilize them together with the soft limits in

the following discussion of the extended BMS symmetry algebra bms4.

While BMS is a highly nontrivial symmetry of asymptotically flat spacetimes, its im-

plementation in CCFT is rather straightforward. Virasoro subalgebra must emerge from

the standard OPE of TT products. We also know what to expect from the OPE of the

supertranslation operator P with T because P is a well-defined descendant of a primary

field. What is non-trivial in the context of CCFT is to show that such OPEs follow from

the properties of Einstein-Yang-Mills (EYM) theory of gauge bosons coupled to gravitons.

In this work, we extract bms4 from the collinear and soft limits of EYM amplitudes.

The paper is organized as follows. In section 2, we revisit OPEs of the operators asso-

ciated to gauge bosons and gravitons previously discussed in refs. [15] and [18]. We rewrite

them in uniform normalization coventions. The relevant collinear limits are collected in

appendix A, where they are derived by using EYM Feynman rules. In section 3, we derive

the OPEs of superrotations generated by the energy-momentum tensor and of supertrans-

lations generated by a descendant of a soft graviton operator, with the operators associated
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to gauge bosons and gravitons. Although the energy-momentum tensor is defined by a non-

local shadow integral, its OPEs are always localized. In section 4, we use soft theorems [15,

19–23] to derive the OPEs of BMS generators.2 In section 5 we connect OPEs with bms4.

2 Preliminaries: OPEs of spin 1 and 2 operators

The connection between light-like four-momenta pµ of massless particles and points z ∈ CS2

relies on the following parametrization:

pµ = ωqµ, qµ =
1

2
(1 + |z|2, z + z̄,−i(z − z̄), 1− |z|2) , (2.1)

where ω is the light-cone energy and qµ is a null vector — the direction along which

the massless state propagates, determined by z. The basis of wave functions required

for transforming scattering amplitudes into CCFT correlators consist of conformal wave

packets characterized by z, dimension ∆ and helicity ℓ. The starting point for constructing

such packets are Mellin transforms of spin 1 and 2 plane waves:

V ∆,ℓ
µ (Xµ, z, z̄) ≡ ∂Jqµ

∫ ∞

0
dω ω∆−1e∓iωq·X−ǫω (ℓ = ±1), (2.2)

H∆,ℓ
µν (Xµ, z, z̄) ≡ ∂Jqµ∂Jqν

∫ ∞

0
dω ω∆−1e∓iωq·X−ǫω (ℓ = ±2). (2.3)

where ∂J = ∂z for ℓ = +1,+2 and ∂J = ∂z̄ for ℓ = −1,−2. The conformal (quasi-primary)

wave functions can be written as

A∆,ℓ
µ = g(∆)V ∆,ℓ

µJ + gauge , G∆,ℓ
µν = f(∆)H∆,ℓ

µν + diff (2.4)

with the normalization constants

g(∆) =
∆− 1

Γ(∆ + 1)
, f(∆) =

1

2

∆(∆− 1)

Γ(∆ + 2)
. (2.5)

The presence of these normalization factors makes it clear that, as mentioned in the Intro-

duction, fields with spin 1 become pure gauge when ∆ = 1 while fields with spin 2 become

pure diffeomorphisms for ∆ = 0, 1.

The CCFT correlators are identified with the S-matrix elements transformed from the

plane wave basis into conformal basis (2.4) by using properly normalized Mellin transfor-

mations [8–11]:

〈 N∏

n=1

O∆n,ℓn(zn, z̄n)
〉
=

( N∏

n=1

cn(∆n)

∫
dωn ω∆n−1

n

)
δ(4)

( N∑

n=1

ǫnωnqn

)

×Mℓ1...ℓN (ωn, zn, z̄n) (2.6)

where Mℓ1...ℓN are EYM Feynman’s matrix elements with helicities ℓn and cn are the

normalization constants

cn(∆n) =

{
g(∆n) for ℓn = ±1,

f(∆n) for ℓn = ±2,
(2.7)

2These OPEs have been discussed before in ref. [24] by using different methods.
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see eq. (2.5). In eq. (2.6) ǫn = +1 or −1 depending whether the particles are incoming or

outgoing, respectively. We skipped the gauge group indices and the corresponding group

factors that can always be written in the basis of single or multiple trace Chan-Paton

factors.

OPEs can be extracted from the correlators (2.6) by considering the limits of coin-

ciding insertion points, which on the r.h.s. correspond to the collinear limits of scattering

amplitudes. Furthermore, in the cases of operators with ∆ = 1 and 0, the zeros of nor-

malization constants cn must be canceled by “soft” poles. Indeed, finite OPE coefficients

appear from such singular soft and collinear limits.

In ref. [15], we derived the OPE coefficients of the products of spin 1 operators rep-

resenting gauge bosons. They follow from the well-known collinear limits of Yang-Mills

amplitudes. For two gauge bosons labeled by gauge indices a and b, with identical helici-

ties, we obtained

Oa
∆1,+(z, z̄)O

b
∆2,+(w, w̄) =

C(+,+)+(∆1,∆2)

z − w

∑

c

fabcOc
(∆1+∆2−1),+(w, w̄) + regular , (2.8)

with

C(+,+)+(∆1,∆2) = 1− (∆1 − 1)(∆2 − 1)

∆1∆2
(2.9)

and a similar expression with (z̄ − w̄)−1 pole and the same OPE coefficient for two −1

helicities.

Two gauge bosons of opposite helicities can fuse into a single operator in the same way

as in the case of identical helicities. The form of the corresponding OPE terms [15] follows

from the collinear limit of gauge interactions. In the case of opposite helicities, however,

gravitational interactions allow the fusion of two gauge bosons into a graviton operator [18].

As explained in appendix A, EYM amplitudes involving gravitational couplings do not

blow up in the collinear limit but contain another type of singularity. It is due to a phase

ambiguity reflecting an azimuthal asymmetry. In appendix A, we show that when z1 → z2,

M(1+, 2−, 3, . . . , N) =
1

z̄12

ω1

ω2ωP
M(P+, 3, . . . , N) +

1

z12

ω2

ω1ωP
M(P−, 3, . . . , N)

− z12
z̄12

ω2
1

ω2
P

M(P++, 3, . . . , N) − z̄12
z12

ω2
2

ω2
P

M(P−−, 3, . . . , N)

+ regular . (2.10)

Here, P is the combined momentum of the collinear pair:

P = p1 + p2 ≡ ωP qP , (2.11)

with

ωP = ω1 + ω2 qP = q1 = q2 (zP = z1 = z2, z̄P = z̄1 = z̄2) , (2.12)

and

zij ≡ zi − zj , z̄ij = z̄i − z̄j . (2.13)
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In eq. (2.10), the last two terms, which originate from gravitational couplings,3 contain the

phase factors z12/z̄12 and z̄12/z12 depending on the direction from which z1 approaches z2
or equivalently, on the azimuthal angle of the plane spanned by the collinear pair about

the axis of the combined momentum P . The “regular” part does not contain either z12 nor

z̄12 in denominators and is well-defined, finite in the z1 = z2 limit. By following the same

steps as in ref. [15], we obtain

Oa
∆1,−(z, z̄)O

b
∆2,+(w, w̄) =

C(−,+)−(∆1,∆2)

z − w

∑

c

fabcOc
(∆1+∆2−1),−(w, w̄) (2.14)

+
C(−+)+(∆1,∆2)

z̄ − w̄

∑

c

fabcOc
(∆1+∆2−1),+(w, w̄)

+ C(−+)−−(∆1,∆2)
z̄ − w̄

z − w
δabO(∆1+∆2),−2(w, w̄)

+ C(−+)++(∆1,∆2)
z − w

z̄ − w̄
δabO(∆1+∆2),+2(w, w̄) + regular ,

with

C(−,+)−(∆1,∆2) =
∆1 − 1

∆2(∆1 +∆2 − 2)
, (2.15)

C(−,+)+(∆1,∆2) =
∆2 − 1

∆1(∆1 +∆2 − 2)
, (2.16)

C(−+)−−(∆1,∆2) = − 2(∆1 − 1)(∆1 + 1)(∆2 − 1)

∆2(∆1 +∆2)(∆1 +∆2 − 1)
, (2.17)

C(−+)++(∆1,∆2) = − 2(∆2 − 1)(∆2 + 1)(∆1 − 1)

∆1(∆1 +∆2)(∆1 +∆2 − 1)
. (2.18)

The above result agrees with refs. [15, 18].

The OPEs involving gravitons can be extracted in a similar way. For two gravitons

with identical helicities, we show in appendix A that

M(1++, 2++, 3, . . . , N) =
ω2
P

ω1ω2

z̄12
z12

M(P++, 3, . . . , N) + regular . (2.19)

As a result,

O∆1,+2(z, z̄)O∆2,+2(w, w̄) = C(+2,+2)+2
z̄ − w̄

z − w
O(∆1+∆2),+2(w, w̄) + regular, (2.20)

with

C(+2,+2)+2 =
(∆1 +∆2 − 2)(∆1 +∆2 + 1)

2(∆1 + 1)(∆2 + 1)
. (2.21)

and a similar expression with the conjugated phase factor and the same OPE coefficient

for two −2 helicities.

3In our units, the gravitational and gauge coupling constants κ = 2 and gYM = 1, respectively.
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The collinear limit of two gravitons with opposite helicities is also derived in appendix

A. It reads:

M(1−−, 2++, 3, . . . , N) =
ω3
1

ω2
Pω2

z̄12
z12

M(P−−, 3, . . . , N)

+
ω3
2

ω2
Pω1

z12
z̄12

M(P++, 3, . . . , N) + regular. (2.22)

The corresponding OPE is

O∆1,−2(z, z̄)O∆2,+2(w, w̄) = C(−2,+2)−2
z̄ − w̄

z − w
O(∆1+∆2),−2(w, w̄) (2.23)

+ C(−2,+2)+2
z − w

z̄ − w̄
O(∆1+∆2),+2(w, w̄) + regular,

with

C(−2,+2)−2 =
1

2

∆1(∆1 − 1)(∆1 + 2)

(∆2 + 1)(∆1 +∆2 − 1)(∆1 +∆2)
, (2.24)

C(−2,+2)+2 =
1

2

∆2(∆2 − 1)(∆2 + 2)

(∆1 + 1)(∆1 +∆2 − 1)(∆1 +∆2)
. (2.25)

We close this section by listing the OPEs of gauge bosons with gravitons. They follow

from the collinear limits of EYM amplitudes discussed in appendix A:

M(1++, 2+, 3, . . . , N) =
ωP

ω1

z̄12
z12

M(P+, 3, . . . , N) + regular, (2.26)

M(1−−, 2+, 3, . . . , N) =
ω2
2

ωPω1

z12
z̄12

M(P+, 3, . . . , N) + regular, (2.27)

which lead to

O∆1,+(z, z̄)O∆2,+2(w, w̄) = C(+,+2)+
z̄ − w̄

z − w
O(∆1+∆2),+(w, w̄) + regular, (2.28)

O∆1,+(z, z̄)O∆2,−2(w, w̄) = C(+,−2),+
z − w

z̄ − w̄
O(∆1+∆2),+(w, w̄) + regular, (2.29)

with

C(+,+2)+ =
1

2

(∆1 − 1)(∆1 +∆2)

∆1(∆2 + 1)
, (2.30)

C(+,−2)+ =
1

2

(∆1 − 1)(∆1 + 1)

(∆2 + 1)(∆1 +∆2 − 1)
. (2.31)

The OPEs of operators with + and − interchanged have the phase factors (z − w)/(z̄− w̄)

conjugated and the same coefficients.

3 OPEs of superrotations and supertranslations with spin 1 and spin 2

operators

In this section, we discuss the OPEs of superrotations generated by the energy momentum

tensor T and of supertranslations generated by the operator P , with the operators asso-

ciated to gauge bosons and gravitons. We know what to expect from the OPE of T with

– 6 –
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primary fields. In ref. [13], we showed that the operators Oa
∆,± representing gauge bosons

are indeed such primary fields. To that end, we used the energy-momentum tensor defined

in [16, 17] as the shadow [25] of dimension ∆ = 0 graviton operator O0,−2:

T (z) ≡ Õ∆→0,−2(z, z̄) =
3!

2π

∫
d2z′

1

(z′ − z)4
O0,−2(z

′, z̄′) (3.1)

and took the collinear limit of the shadow with gauge bosons as in eq. (2.27). The limit

of ∆ → 0 was taken at the end. Actually, as we will see in this section, there is a fast way

of deriving and generalizing the results of ref. [13]. We will first take the ∆ → 0 limit and

then take the shadow transform in order to extract the OPEs. We will proceed in the same

way in the case of P :

P (z, z̄) ≡ ∂z̄O∆→1,+2 , (3.2)

by taking the ∆ → 1 limit first.

3.1 Superrotations

We start by inserting T (z) into the correlator (2.6):

〈
T (z)

N∏

n=1

O∆n,ℓn(zn, z̄n)
〉
= lim

∆0→0

( N∏

n=0

cn(∆n)

)
3!

2π

∫
d2z0

1

(z0 − z)4

×Aℓ0=−2,ℓ1...ℓN (∆n, zn, z̄n) (3.3)

where we used the definition (3.1) and

Aℓ0=−2,ℓ1...ℓN (∆n,zn,z̄n) ≡ A−2(∆0,∆1,...,∆N ) (3.4)

=

( N∏

n=0

∫
dωnω

∆n−1
n

)
δ(4)

( N∑

n=0

ǫnωnqn

)
Mℓ0=−2,ℓ1...ℓN (ωn,zn,z̄n),

which is the Mellin-transformed amplitude with a “soft” graviton. Its ∆0 → 0 limit has

been studied in refs. [21–23], with the following result:

A−2(∆0,∆1, . . . ,∆N ) −→ 1

∆0

N∑

i=1

(z0 − zi)

(z̄0 − z̄i)

(ξ̄ − z̄i)

(ξ̄ − z̄0)

[
(z0 − zi)∂zi − 2hi

]
A(∆1, . . . ,∆N )

(3.5)

where A on the r.h.s. is the Mellin transform of the amplitude without the graviton.

Here, hi is the chiral weight of the ith operator and ξ is an arbitrary reference point on

CS2 reflecting the gauge choice for the graviton. When the reference point is varied, the

variation of eq. (3.5) vanishes as a consequence of conformal (Lorentz) Ward identities. In

our case, it is convenient to set ξ → ∞. The shadow transform can be performed by writing

1

(z0 − z)4
= − 1

3!
∂3
z0

(
1

z0 − z

)
(3.6)

and integrating by parts three times. After repeatedly using the identity

∂z0

(
1

z̄0 − z̄i

)
= 2πδ(2)(z0 − zi) , (3.7)
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we obtain

〈
T (z)

N∏

n=1

O∆n,ℓn(zn, z̄n)
〉
= lim

∆0→0

(
c0(∆0)

∆0

)
(3.8)

×
N∑

i=1

[
− 2hi

(z − zi)2
− 2

z − zi
∂zi

]〈 N∏

n=1

O∆n,ℓn(zn, z̄n)
〉
.

Note that

lim
∆0→0

(
c0(∆0)

∆0

)
= lim

∆0→0

(
f(∆0)

∆0

)
= −1

2
, (3.9)

see eq. (2.5). As a result, we obtain

T (z)O∆,ℓ(w, w̄) =
h

(z − w)2
O∆,ℓ(w, w̄) +

1

z − w
∂wO∆,ℓ(w, w̄) + regular . (3.10)

Following the same route for the antiholomorphic T̄ (z̄), one obtains

T̄ (z̄)O∆,ℓ(w, w̄) =
h̄

(z̄ − w̄)2
O∆,ℓ(w, w̄) +

1

z̄ − w̄
∂w̄O∆,ℓ(w, w̄) + regular . (3.11)

The OPEs (3.10) and (3.11), which are valid for both spin 1 and spin 2 particles, prove

that the respective CCFT operators are primary fields.

3.2 Supertranslations

We start by inserting P (z0) into the correlator (2.6):

〈
P (z0)

N∏

n=1

O∆n,ℓn(zn, z̄n)
〉
= lim

∆0→1

( N∏

n=0

cn(∆n)

)
∂z̄0Aℓ=+2,ℓ1...ℓN (∆n, zn, z̄n) (3.12)

where we used the definition (3.2). In this case, the relevant ∆0 → 1 soft limit is [21–23]:

A+2(∆0,∆1, . . . ,∆N ) −→ 1

∆0 − 1

N∑

i=1

(z̄0 − z̄i)

(z0 − zi)

(ξ − zi)
2

(ξ − z0)2
A(∆1, . . . ,∆i + 1, . . . ,∆N )

(3.13)

In this case, varying the reference point ξ does not change the form of eq. (3.13) because

its variation vanishes a consequence of Ward identities associated to momentum conserva-

tion [26]. Here again, as in eq. (3.5), we can set ξ → ∞. From eqs. (3.12) and (3.13) it

follows that

〈
P (z0)

N∏

n=1

O∆n,ℓn(zn, z̄n)
〉
= lim

∆0→1

(
c0(∆0)

∆0 − 1

) N∑

i=1

ci(∆i)

ci(∆i + 1)

1

z0 − zi
(3.14)

×
〈[ i−1∏

m=1

O∆m,ℓm(zm, z̄m)

]
O∆i+1,ℓi(zi, z̄i)

[ N∏

n=i+1

O∆n,ℓn(zn, z̄n)

]〉
.

Note that

lim
∆0→1

(
c0(∆0)

∆0 − 1

)
= lim

∆0→1

(
f(∆0)

∆0 − 1

)
=

1

4
(3.15)
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and

ci(∆i)

ci(∆i + 1)
=





g(∆i)
g(∆i+1) =

(∆i−1)(∆i+1)
∆i

for ℓi = ±1,

f(∆i)
f(∆i+1) =

(∆i−1)(∆i+2)
∆i+1 for ℓi = ±2,

(3.16)

As a result, we obtain

P (z)O∆,ℓ(w, w̄) =
(∆− 1)(∆ + 1)

4∆

1

z − w
O∆+1,ℓ(w, w̄) + regular (ℓ = ±1), (3.17)

P (z)O∆,ℓ(w, w̄) =
(∆− 1)(∆ + 2)

4(∆ + 1)

1

z − w
O∆+1,ℓ(w, w̄) + regular (ℓ = ±2), (3.18)

and similar expressions for P̄ (z̄), with complex conjugate poles.4 Note the presence of

(∆ − 1) factors in the above OPE coefficients. They imply that the products P (z)Ja(w),

P (z)J̄a(w̄), P (z)P (w) and P (z)P̄ (w̄) are regular.

P (z) is not a holomorphic current: it is a dimension 2 descendant of a primary field,

with SL(2,C) weights (3/2,1/2). Nevertheless, the r.h.s. of eq. (3.14) implies the same

Ward identity as translational symmetry of scattering amplitudes discussed in refs. [26]

and [27]. In fact, P contains the P0 + P3 component of the momentum operator which

generates translations along the light-cone directions. The remaining components can be

obtained by superrotations of P . This will be discussed in section 5.

4 OPEs of BMS generators

4.1 TT

The product of energy-momentum tensors involves two shadow transforms. Let us define

˜̃A(w, z, z2, . . . ) =

∫
d2z0

1

(z0 − w)4

∫
d2z1

1

(z1 − z)4
Aℓ0=−2,ℓ1=−2,ℓ2...ℓN . (4.1)

Then

〈
T (w)T (z)

N∏

n=2

O∆n,ℓn(zn, z̄n)
〉
=

(
3!

2π

)2

lim
∆1→0

lim
∆0→0

( N∏

n=0

cn(∆n)

)
˜̃A(w, z, z2, . . . ) . (4.2)

We take the limit ∆0 → 0 first, as in eq. (3.5):

Aℓ0=−2,ℓ1=−2,ℓ1...ℓN −→ 1

∆0

N∑

i=1

(z0 − zi)

(z̄0 − z̄i)

(ξ̄ − z̄i)

(ξ̄ − z̄0)

[
(z0 − zi)∂zi − 2hi

]
Aℓ1=−2,ℓ2...ℓN , (4.3)

which leads to

˜̃A(w,z,z2,...) ∼
∫

d2z0
(z0−w)4

∫
d2z1

(z1−z)4
(z0−z1)

(z̄0−z̄1)

(ξ̄−z̄1)

(ξ̄−z̄0)

[
(z0−z1)∂z1−2h−1

]
Aℓ1=−2,ℓ2...ℓN

+

(∫
d2z0

(z0−w)4

N∑

i=2

(z0−zi)

(z̄0−z̄i)

(ξ̄−z̄i)

(ξ̄−z̄0)

[
(z0−zi)∂zi−2hi

])
Ã(z,z2,...), (4.4)

4The same result can be obtained from eqs. (2.20), (2.23) and (2.28), derived in the previous section by

considering the collinear instead of soft limits, by taking the limit of ∆2 → 1.
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where h−1 = −1 because ℓ1 = −2, ∆1 = 0 and

Ã(z, z2, . . . ) =

∫
d2z1

(z1 − z)4
Aℓ1=−2,ℓ2...ℓN . (4.5)

In eq. (4.4), the integrals over z0 can be performed by using the conformal integrals of

ref. [28], see appendix B. With the reference point ξ → ∞, the result is

lim
∆0→0

3!

2π
c0(∆0)

˜̃A(w, z, z2, . . . ) =

∫
d2z1

(z − z1)4

(
h−1

(w − z1)2
+

1

w − z1
∂z1

)
Aℓ1=−2,ℓ2...ℓN

+
N∑

i=2

(
hi

(w − zi)2
+

1

w − zi
∂zi

)
Ã(z, z2, . . . ) , (4.6)

The same result can be obtained by a direct application of Ward identity (3.8).

It is clear from eq. (4.6) that the second term (involving the sum over i ≥ 2) is non-

singular in the limit of w → z, therefore only the first term needs to be included in the

derivation of OPE:

〈T (w)T (z)
N∏

n=2

O(zn, z̄n)〉 = lim
∆1→0

3!

2π

∫
d2z1

(z − z1)4

(
1

w − z1
∂z1 −

1

(w − z1)2

)
G−(z1, . . . ) ,

(4.7)

where

G−(z1, . . . ) = 〈O∆1,−2(z1, z̄1)
N∏

n=2

O(zn, z̄n)〉 .

In order to simplify notation, we introduce the following variables:

Z = z − z1, W = w − z1 . (4.8)

We anticipate a single pole term of the following form:

1

w − z
〈∂T

N∏

n=2

O(zn, z̄n)〉 = lim
∆1→0

3!

2π

1

w − z
∂z

∫
d2z1
Z4

G−(z1, . . . )

= lim
∆1→0

3!

2π

(
− 1

w − z

)∫
d2z1

(
∂z1

1

Z4

)
G−(z1, . . . )

= lim
∆1→0

3!

2π

1

w − z

∫
d2z1
Z4

∂z1G−(z1, . . . ) , (4.9)

where in the last step we used integration by parts. Indeed, we can rewrite the r.h.s. of (4.7)

as

lim
∆1→0

3!

2π

∫
d2z1

(
− 1

Z4W 2
+

1

Z4W
∂z1

)
G−(z1, . . . ) =

= lim
∆1→0

3!

2π

[
− 1

Z4W 2
+

(
1

Z4
− 1

Z3W

)
1

w − z
∂z1

]
G−(z1, . . . ) = (4.10)

= − lim
∆1→0

3!

2π

(
1

Z4W 2
+

1

w − z

1

Z3W
∂z1

)
G−(z1, . . . ) +

1

w − z
〈∂T (z) · · · 〉 .
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In the last line, the first term can be written as

lim
∆1→0

3!

2π

[
2

(w−z)2

∫
d2z1
Z4

G−(z1, . . .)−
2

w−z

∫
d2z1

(
1

w−z

1

Z3W
− 1

Z3W 2

)
G−(z1, . . .)

]

=
2

(w−z)2
〈T (z) · · · 〉− lim

∆1→0

3!

2π

2

(w−z)2

∫
d2z1

1

Z2W 2
G−(z1, . . .) . (4.11)

After combining eqs. (4.10) and (4.11), we obtain:

〈T (w)T (z)
N∏

n=2

O(zn, z̄n)〉 =
2

(w − z)2
〈T (z)

N∏

n=2

O(zn, z̄n)〉+
1

w − z
〈∂T (z)

N∏

n=2

O(zn, z̄n)〉

− lim
∆1→0

3!

2π

2

(w − z)2

∫
d2z1

1

Z2W 2
G−(z1, . . . ) . (4.12)

The final step is to show that the last term vanishes due to global conformal invariance.

To that end, we take the soft limit ∆1 → 0:

G−(z1, . . . ) →
c(∆1)

∆1

N∑

i=2

z1 − zi
z̄1 − z̄i

σ̄ − z̄i
σ̄ − z̄1

[(z1 − zi)∂i − 2hi]〈
N∏

n=2

O(zn, z̄n)〉 . (4.13)

After choosing the reference point σ = z, the derivative terms become

∫
d2z1
Z2W 2

(z1 − zi)
2

(z̄1 − z̄i)(z̄1 − z̄)
(z̄i − z̄)∂i〈

N∏

n=2

O(zn, z̄n)〉 = (4.14)

= Γ(0)

(
− 1

(z − w)3
(zi − w)2∂i +

1

(z − w)2
(zi − w)∂i

)
〈

N∏

n=2

O(zn, z̄n)〉 ,

where we used conformal integrals of ref. [28], see appendix B, in particular eq. (B.3).5

The remaining terms can be written as

−2hi∂w

∫
d2z1
Z2W

z1 − zi
(z̄1 − z̄i)(z̄1 − z̄)

(z̄i − z̄)〈
N∏

n=2

O(zn, z̄n)〉 (4.15)

= 2hiΓ(0)

(
1

(z − w)2
+ 2

w − zi
(z − w)3

)
〈

N∏

n=2

O(zn, z̄n)〉 . (4.16)

In this way, the last term of eq. (4.12) becomes

2Γ(0)

[
− 1

(z − w)3

N∑

i=2

[(zi − w)2∂i + 2hi(zi − w)]〈
N∏

n=2

O(zn, z̄n)〉
]

(4.17)

+2Γ(0)

[
1

(z − w)2

N∑

i=2

[(zi − w)∂i + hi]〈
N∏

n=2

O(zn, z̄n)〉
]
= 0 , (4.18)

5The integrals are divergent as it is obvious from the presence of the Γ(0) prefactor. We can regularize

the divergence by taking the soft limit on the shadow transform at the end. In other words use∫
d2z1

(z − z1)4+iλ(z̄ − z̄1)iλ

and take λ → 0 at the end. Our results will be the same.
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with both terms vanishing separately as a consequence of global conformal (Lorentz) in-

variance [26]:

N∑

i=2

∂i〈
N∏

n=2

O(zn, z̄n)〉 =
N∑

i=2

(zi∂i + hi) 〈
N∏

n=2

O(zn, z̄n)〉 =

=
N∑

i=2

(
z2i ∂i + 2zihi

)
〈

N∏

n=2

O(zn, z̄n)〉 = 0 .

The final result is the expected T (w)T (z) OPE:

T (w)T (z) =
2T (z)

(w − z)2
+

∂zT (z)

w − z
+ regular . (4.19)

4.2 TT

By repeating the steps leading to eq. (4.7), we obtain

〈T (w)T (z)
N∏

n=2

O(zn, z̄n)〉 = lim
∆1→0

3!

2π

∫
d2z1

(z̄ − z̄1)4

(
1

w − z1
∂z1 +

1

(w − z1)2

)
G+(z1, . . . ) ,

(4.20)

where

G+(z1, . . . ) = 〈O+
∆1,+2(z1, z̄1)

N∏

n=2

O(zn, z̄n)〉 , (4.21)

which can be simplified to

〈T (w)T (z)
N∏

n=2

O(zn, z̄n)〉 = − lim
∆1→0

3!

2π

∫
d2z1

w − z1
G+(z1, . . . )∂z1(z̄ − z̄1)

−4 .

After using

∂z1(z̄ − z̄1)
−4 =

1

3!
∂z1 ∂̄

3
z̄1

1

z̄ − z̄1
=

2π

3!
∂̄3
z̄1δ

(2)(z − z1) , (4.22)

we obtain

〈T (w)T (z)
N∏

n=2

O(zn, z̄n)〉 = − lim
∆1→0

∫
d2z1

w − z1
G+(z1, . . . )∂̄

3
z̄1δ

(2)(z − z1)

= lim
∆1→0

∂̄3
z̄

[G+(z, . . . )

w − z

]
. (4.23)

Note that in the soft limit

lim
∆1→0

G+(z, . . . ) = −1

2

N∑

i=2

z̄ − z̄i
z − zi

σ − zi
σ − z

[
(z̄ − z̄i)∂i − 2hi

]
〈

N∏

n=2

O(zn, z̄n)〉 , (4.24)

therefore the derivative ∂̄3
z̄ acting on the r.h.s. of eq. (4.23) gives zero modulo delta-function

terms localized at z = w and z = zn. These terms do not affect the Virasoro algebra

following from eq. (4.19). We conclude that up to such delta functions,

T (w)T (z) = regular . (4.25)
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4.3 TP and TP

Recall (3.2) that the supertranslation current is defined as

P (z) = ∂z̄O1,+2(z, z̄) . (4.26)

The graviton primary field operator O1,+2 has chiral weights (32 ,−1
2). We start from

〈T (w)P (z)
N∏

n=2

O(zn, z̄n)〉 = lim
∆0→0

lim
∆1→1

( N∏

n=0

c(∆n)

)
3!

2π

×
∫

d2z0
1

(z0 − w)4
∂z̄Aℓ0=−2,ℓ1=+2,ℓ2...ℓN . (4.27)

In the ∆0 → 0 limit, cf. eq. (4.3) with ℓ1 = +2 and the reference point ξ → ∞,

∂z̄ lim
∆0→0

( N∏

n=0

c(∆n)

)
Aℓ0=−2,ℓ1=+2,ℓ2...ℓN

= −1

2
∂z̄

(z0 − z)

(z̄0 − z̄)
[(z0 − z)∂z − 2h1]G+(z, z2, . . . )

−1

2
∂z̄

N∑

i=2

(z0 − zi)

(z̄0 − z̄i)
[(z0 − zi)∂zi − 2hi]G+(z, z2, . . . ) , (4.28)

with G+ defined in eq. (4.21) and h1 = 3
2 . As in previous cases, the sum over i ≥ 2 is

non-singular at z = w, therefore we are left with

∂z̄ lim
∆0→0

( N∏

n=0

c(∆n)

)
Aℓ0=−2,ℓ1=+2,ℓ2...ℓN (4.29)

=
1

2

[
3

z0 − z

(z̄0 − z̄)2
− (z0 − z)2

(z̄0 − z̄)2
∂z + 3

z0 − z

z̄0 − z̄
∂z̄ −

(z0 − z)2

(z̄0 − z̄)
∂z∂z̄

]
G+(z, z2, . . . ) + . . .

Upon inserting the above expression into the shadow integral of eq. (4.27), the first two

terms give rise to delta-function singularities at z = w, but vanish for z 6= w. In particular,

3

∫
d2z0

(z0 − w)4
z0 − z

(z̄0 − z̄)2
= ∂w

∫
d2z0

(z0 − w)3
z0 − z

(z̄0 − z̄)2
∼ ∂wδ

(2)(z − w) . (4.30)

where we used conformal integrals (B.1) and (B.5) from appendix B. Similarly,
∫

d2z0
(z0 − w)4

(z0 − z)2

(z̄0 − z̄)2
∼ δ(2)(z − w) (4.31)

In this way, we obtain

〈T (w)P (z)
N∏

n=2

O(zn, z̄n)〉 = (4.32)

= lim
∆1→1

3

2π

∫
d2z0

1

(z0 − w)4

[
3
z0 − z

z̄0 − z̄
∂z̄ −

(z0 − z)2

(z̄0 − z̄)
∂z∂z̄

]
G+(z, z2, . . . ) + · · ·

=
3

2π

∫
d2z0

1

(z0 − w)4

[
3
z0 − z

z̄0 − z̄
+

(z0 − z)2

(z̄0 − z̄)
∂z

]
〈P (z)

N∏

n=2

O(zn, z̄n)〉+ · · ·
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After performing the shadow integrals, we obtain

T (w)P (z) =
3

2(w − z)2
P (z) +

1

w − z
∂zP (z) + regular , (4.33)

modulo delta-function singularities at z = w. Next, we consider

〈T (w̄)P (z)
N∏

n=2

O(zn, z̄n)〉 = lim
∆0→0

lim
∆1→1

( N∏

n=0

c(∆n)

)
3!

2π

×
∫

d2z0
1

(z̄0 − w̄)4
∂zAℓ0=+2,ℓ1=+2,ℓ2...ℓN . (4.34)

After taking the ∆0 → 0 limit, we obtain

〈T (w̄)P (z)
N∏

n=2

O(zn, z̄n)〉 = (4.35)

= lim
∆1→1

3

2π

∫
d2z0

1

(z̄0 − w̄)4

[
1

z0 − z
+

z̄0 − z̄

z0 − z
∂z̄ −

(z̄0 − z̄)2

z0 − z
∂2
z̄

]
G+(z, z2, . . . ) + . . .

where, as in the previous case, we ignored delta-function singularities at z = w. As a result,

T (w̄)P (z) = −O1,+2(z, z̄)

(w̄ − z̄)3
+

1

2(w̄ − z̄)2
P (z) +

1

w̄ − z̄
∂z̄P (z) + regular, (4.36)

which is the OPE expected for a level one descendant of a primary field.

5 Extended BMS algebra

In this section, we discuss connections between the OPEs and extended BMS algebra

bms4; we also make contact with ref. [29]. The OPEs of the stress energy tensor confirm

the presence of Virasoro subalgebra with zero central charge.6 Here, we concentrate on the

role of supertranslations and derive the complete form of the algebra based on the OPEs.

It will be convenient to work with primary fields normalized in a slightly different way.

Up to this point, we considered

O∆,ℓ(z, z̄) = c(∆)φh,h̄(z, z̄) , (h, h̄) =

(
∆+ ℓ

2
,
∆− ℓ

2

)
. (5.1)

The correlation functions of “bare” φ fields are given directly by Mellin-transformed am-

plitudes:
〈 N∏

n=0

φhn,h̄n(zn, z̄n)
〉
= Aℓ1...ℓN (∆n, zn, z̄n) (5.2)

In the following discussion, the primary field operators will be identified with φh,h̄(z, z̄),

although the normalization of soft graviton operators O0,±2 and O1,±2, and of the related

T and P will remain unchanged.

6This may change once EYM quantum corrections are taken into account [24].
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The four-momentum (translation) operators were constructed in ref. [26]. Anticipating

their placement in bms4, we define

(
P− 1

2
,− 1

2

= P0 + P3 = e(∂h+∂
h̄
)/2 P− 1

2
, 1
2

= P1 − iP2 = z̄e(∂h+∂
h̄
)/2

P 1

2
,− 1

2

= P1 + iP2 = ze(∂h+∂
h̄
)/2 P 1

2
, 1
2

= P0 − P3 = zz̄e(∂h+∂
h̄
)/2

)
, (5.3)

so that [
P± 1

2
,± 1

2

, φh,h̄(z, z̄)
]
= z

1

2
± 1

2 z̄
1

2
± 1

2φh+ 1

2
,h̄+ 1

2 (z, z̄) . (5.4)

We will use P− 1

2
,− 1

2

as a starting point for constructing all supertranslation generators.

To that end, we will utilize the extended BMS algebra [29]. In addition to the Virasoro

subalgebra, bms4 consists of

[Pij , Pkl] = 0 ,

[Ln, Pkl] =

(
1

2
n− k

)
Pn+k,l + n(n2 − 1)Cn+k,l ,

[L̄n, Pkl] =

(
1

2
n− l

)
Pk,n+l + n(n2 − 1)C̄k,n+l ,

(5.5)

with m,n ∈ Z and i, j, k, l ∈ Z+ 1
2 . Here C and C̄ are possible central extension operators.

The subset Pn− 1

2
,− 1

2

can be generated in the following way:

Pn− 1

2
,− 1

2

=
1

iπ(n+ 1)

∮
dwwn+1

[
T (w), P− 1

2
,− 1

2

]
. (5.6)

In order to find out how these operators act on a generic primary field, we first determine

the OPE of
[
T (w), P− 1

2
,− 1

2

]
and φh,h̄(z, z̄). We use

[P− 1

2
,− 1

2

,O0,−2(z, z̄)] = −2O1,−2(z, z̄) , (5.7)

where the factor −2 is coming from the ratio of normalization factors, f(0)/f(1) = −2,

and take the ∆ = 1 soft limit as in eq. (3.13), to show that

[O0,−2(w0, w̄0), P− 1

2
,− 1

2

]φhi,h̄i(zi, z̄i) =
1

2

w0 − zi
w̄0 − z̄i

φhi+
1

2
,h̄i+

1

2 (zi, z̄i) + regular . (5.8)

After taking the shadow transform, we obtain

[T (w), P− 1

2
,− 1

2

]φh,h̄(z, z̄) =
1

2

1

(w − z)2
φh+ 1

2
,h̄+ 1

2 (z, z̄) + regular . (5.9)

Finally, after combining eq. (5.6) with the above OPE, we obtain

[
Pn− 1

2
,− 1

2

, φh,h̄(z, z̄)
]
= znφh+ 1

2
,h̄+ 1

2 (z, z̄) , (5.10)

which agrees with eq. (5.4) for n = 0, 1 and is in agreement with supertranslations of

primary field operators proposed in ref. [29]. The remaining bms4 generators can be con-

structed as

Pn− 1

2
,m− 1

2

=
1

iπ(m+ 1)

∮
dw̄ w̄m+1

[
T̄ (w̄), Pn− 1

2
,− 1

2

]
. (5.11)
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By following the same steps as before, it is easy to show that
[
Pn− 1

2
,m− 1

2

, φh,h̄(z, z̄)
]
= znz̄mφh+ 1

2
,h̄+ 1

2 (z, z̄) . (5.12)

Following ref. [29], we can combine all supertranslation generators into one primary

field operator

P(z, z̄) ≡
∑

n,m∈Z

Pn− 1

2
,m− 1

2

z−n−1z̄−m−1 (5.13)

P is a scalar operator with dimension 3, (h, h̄) = (32 ,
3
2). The commutators (5.12) are

equivalent to the OPE

P(w, w̄)φh,h̄(z, z̄) =
1

w − z

1

w̄ − z̄
φh+ 1

2
,h̄+ 1

2 (z, z̄) + regular . (5.14)

At this point, we can make connection to the supertranslation operator P (z) discussed

in sections 3.2 and 4.3. For bare fields, the OPEs of eqs. (3.17) and (3.18) read

P (w)φh,h̄(z, z̄) =
1

4

1

w − z
φh+ 1

2
,h̄+ 1

2 (z, z̄) + regular . (5.15)

If we expand

P (z) =
∑

n∈Z

P̂n− 1

2

z−n−1 (5.16)

and compare eq. (5.15) with (5.12), we find 4P̂n− 1

2

= Pn− 1

2
,− 1

2

, therefore

P (z) =
1

8πi

∮
dz̄ P(z, z̄) (5.17)

and a similar expression for P̄ (z̄). Note that both P (z) and P̄ (z̄) miss the “mixed” oper-

ators Pn− 1

2
,m− 1

2

with n 6= 0 and m 6= 0 simultaneously. This is to be contrasted with the

primary conformal field operator P(z, z̄) of eq. (5.13) which includes all BMS supertrans-

lations.

The operator P− 1

2
,− 1

2

= P0 + P3 plays a special role in our construction of BMS

generators. With a primary field expanded as

φh,h̄(z, z̄) =
∑

m,n

φh,h̄
m,nz

−m−hz̄−n−h̄ (5.18)

P− 1

2
,− 1

2

shifts the modes as:

[
P− 1

2
,− 1

2

, φh,h̄
m,n

]
= φ

h+ 1

2
,h̄+ 1

2

m− 1

2
,n− 1

2

. (5.19)

Four-dimensional Minkowski space can be foliated by using Euclidean AdS3 slices [7, 17].

On the other hand it is known that string theory on AdS3 has a spectrum generated by using

a spectral flow transformation on the standard representations of SL(2;R). This transfor-

mation shifts conformal dimensions and the mode expansions of primary fields. The trans-

formation in (5.19) is akin to the spectral flow encountered in string theory on AdS3 [30].

To summarize, we used the correlators of primary fields, obtained from tree-level, four-

dimensional scattering amplitudes, to derive the extended BMS algebra (5.5). The method

employed here shows that the central charges C = C̄ = 0. We cannot exclude though that

these charges are non-zero after we take into account quantum loop corrections.
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6 Conclusions

Extended BMS is the symmetry of asymptotically flat spacetime and consequently, of its

hologram on CS2. According to Strominger’s proposal of flat holography, four-dimensional

physics is encoded in two-dimensional CCFT. In particular, Mellin-transformed four-

dimensional scattering amplitudes are equivalent to the correlators of primary field op-

erators on CS2. In this work, we followed this link. We investigated the structure of OPEs

of the operators generating BMS transformations by using the relation of the collinear

limit to the limit of coinciding points on CS2 and the relation of the usual soft limit to the

conformally soft limit of operators with integer dimensions. We established a connection

between these OPEs and the extended BMS algebra bms4. We also showed how the OPEs

of the operators representing gauge bosons and gravitons follow directly from the Feynman

diagrams of Einstein-Yang-Mills theory.

BMS superrotations are implemented in a rather straightforward way as diffeomor-

phisms of CS2. They are generated by the energy-momentum tensor T (z) given by a shadow

transform of the soft graviton operator with dimension 0. Although general shadow trans-

formations are non-local, we found that for soft gravitons, the shadow integrals become

localised at operator insertions. As a result, we recovered the standard OPEs which are

equivalent to the Virasoro subalgebra without central extension.7 Our analysis was based

on the tree-level approximation in Einstein-Yang-Mills theory, hence it is possible that a

Virasoro central charge will appear after taking into account loop corrections.

BMS supertranslations are more subtle. We investigated the OPEs of the supertransla-

tion operator P (z), a dimension 2 descendant of the soft graviton operator with dimension

1. Indeed, the OPEs of this operator generate shifts of primary field dimensions, as ex-

pected from translations and supertranslations. In particular, it contains the momentum

component P0 + P3 which generates a flow of chiral weights, (h, h̄) → (h + 1
2 , h̄ + 1

2). By

comparing with BMS algebra, we found however that P (z) and P̄ (z̄) contain only a subset

of supertranslations. They miss not only the non-holomorphic P0 −P3 but also an infinite

set of supertranslations. Nevertheless, we were able to generate the full set by commuting

T (z) and T̄ (z̄) with P0+P3 which we identified with the P− 1

2
,− 1

2

spectral flow generator of

bms4. All supertranslations can be assembled into a single primary field operator P(z, z̄)

of dimension 3.

In CCFT, 2D correlators of primary fields arise from 4D scattering amplitudes ex-

pressed in the basis of conformal primary wavefunctions. As shown by Pasterski and

Shao [12], the continuum of conformal wavefunctions with dimensions ∆ = 1 + iR spans

the complete set of integer spin solutions of wave equations, normalizable with respect to

the Klein-Gordon norm. The primary fields associated to gauge bosons and gravitons have

complex dimensions, therefore the theory is not unitary with respect to the usual radial

quantization. It is important to keep in mind that the notion of unitarity always relies

on a choice of time direction and a norm: radial quantization (where the “time” is the

Euclidean radial direction) is not natural on the celestial sphere.8 The questions what is

7This is also known as Witt algebra.
8We are grateful to Andy Strominger and Shu-Heng Shao for an illuminating correspondence on this
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the relation between unitarity in 2D and 4D and what is the role of central charges need

to be addressed in the future.

There are many directions for future investigations of CCFT. Since the present dis-

cussion relies on the properties of tree-level Einstein-Yang-Mills theory, it would be very

interesting to see how four-dimensional quantum corrections are implemented in CCFT.

But first and foremost, it is very important to understand the spectrum of CCFT. It is

clear that supertranslations generate states very different from conformal wave packets of

stable particles. This sector, together with the role of the spectral flow, are certainly worth

investigating.
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A Collinear limits in EYM theory

In this appendix, we use the notation and conventions of ref. [31]. In order to give a precise

definition of the leading and subleading collinear parts, we need to specify how the collinear

limit is reached from a generic kinematic configuration. Let us specify to generic light-like

momenta p1, p2 and introduce two light-like vectors P and r such that the momentum

spinors decompose as [32]:

λ1 = λP cos θ − ǫλr sin θ , λ̃1 = λ̃P cos θ − ǫ̃λ̃r sin θ , (A.1)

λ2 = λP sin θ + ǫλr cos θ , λ̃2 = λ̃P sin θ + ǫ̃λ̃r cos θ , (A.2)

hence

p1 = c2P − sc(ǫλrλ̃P + ǫ̃λP λ̃r) + ǫǫ̃s2r , (A.3)

p2 = s2P + sc(ǫλrλ̃P + ǫ̃λP λ̃r) + ǫǫ̃c2r , (A.4)

where

c ≡ cos θ =
√
x , s ≡ sin θ =

√
1− x . (A.5)

We also have

〈12〉 = ǫ 〈Pr〉 , [12] = ǫ̃ [Pr] . (A.6)

The total momentum is:

p1 + p2 = P + ǫǫ̃r , (p1 + p2)
2 = 2Pr ǫǫ̃ . (A.7)

issue.
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The collinear configuration will be reached in the limit of ǫ = ǫ̃ = 0. With the momenta

parametrized by celestial sphere coordinates as in eq. (2.1), this limit corresponds to z1 =

z2, i.e.

p1 + p2 = P ≡ ωP qP , (A.8)

with

ωP = ω1 + ω2 qP = q1 = q2 (zP = z1 = z2, z̄P = z̄1 = z̄2) , (A.9)

therefore
ω1

ωP
= c2 ,

ω2

ωP
= s2 . (A.10)

Yang-Mills amplitudes are singular in the collinear limit. They contain 1/ǫ and 1/ǫ̃

poles while subleading terms are of order 1 [32]. Here, we are interested in gravitational

couplings. These contain singular ratios

〈12〉
[12]

=
ǫ

ǫ̃

〈Pr〉
[Pr]

= −z12
z̄12

,
[12]

〈12〉 =
ǫ̃

ǫ

[Pr]

〈Pr〉 = − z̄12
z12

. (A.11)

We will extract them from EYM Feynman diagrams. To that end, it is convenient to

rewrite eqs. (A.3), (A.4) as

p1 = c2P − sc√
2

(
ǫǫ+P 〈rP 〉+ ǫ̃ǫ−P [Pr]

)
+ ǫǫ̃s2r

= c2P +
sc√
2

(
ǫ+P 〈12〉 − ǫ−P [12]

)
+ ǫǫ̃s2r (A.12)

p2 = s2P +
sc√
2

(
ǫǫ+P 〈rP 〉+ ǫ̃ǫ−P [Pr]

)
+ ǫǫ̃c2r

= s2P − sc√
2

(
ǫ+P 〈12〉 − ǫ−P [12]

)
+ ǫǫ̃c2r (A.13)

Here, ǫ±P are the polarization vectors of a massless vector boson with momentum P with

the gauge reference vector r. Note that

ǫ+1 = ǫ+P −
√
2ǫ̃r

s

c〈rP 〉 , ǫ−1 = ǫ−P +
√
2ǫr

s

c[rP ]
, (A.14)

ǫ+2 = ǫ+P +
√
2ǫ̃r

c

s〈rP 〉 , ǫ−2 = ǫ−P −
√
2ǫr

c

s[rP ]
. (A.15)

For all polarization vectors labeled by i = 1, 2, P ,

ǫ±i · ǫ∓j = −1 , ǫ±i · ǫ±j = ǫ±i · r = ǫi · pi = 0. (A.16)

Other scalar products are also easy to obtain:

ǫ+1 · p2 = − 1√
2

[12]s

c
, ǫ+2 · p1 =

1√
2

[12]c

s
, (A.17)

ǫ−1 · p2 =
1√
2

〈12〉s
c

, ǫ−2 · p1 = − 1√
2

〈12〉c
s

. (A.18)

The singularities (A.11) appear only in Feynman diagrams involving “splitting” of a

massless virtual particle into the collinear pair. They originate from the propagator poles
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αβ γδ

µν

ρτ
p1 + p2

p1 p2

Figure 1. Feynman diagrams leading to collinear graviton singularities.

1/(p1 + p2)
2 ∼ (ǫǫ̃)−1. The vertices describing gravitational splitting “soften” these poles

by terms which are quadratic in ǫ and ǫ̃. Diagrams without such splitting are non-singular,

therefore collinear singularities have a universal form that can be extracted from three-point

vertices. In our discussion, we will be using the graviton polarization tensors

ǫµν(ℓ = ±2) = ǫ±µǫ±ν . (A.19)

A.1 Collinear gravitons

EYM amplitudes with external gravitons are singular when two gravitons become collinear.

Feynman diagrams contributing to collinear singularities must necessarily contain a virtual

graviton splitting into two external gravitons, as shown in figure 1. We will be considering

the “splitting” tensor

Sµν = ǫαβ1 ǫγδ2 Dµν
ρτ (p1 + p2)V

ρτ
αβ,γδ(p1, p2) , (A.20)

where V ρτ
αβ,γδ(p1, p2) is the three-graviton vertex three-graviton vertex

Vαβ,γδ,ρτ (p1,p2)= iκ

{
− 1

2
(p21+p22+(p1+p2)

2)×
[
Iσα,ρτIγδ,σβ

+Iσβ,ρτIγδ,σα+
1

4
gρτgαβgγδ−

1

2
(gρτIαβ,γδ+gαβIρτ,γδ+gγδIρτ,αβ)

]
(A.21)

+pσ1p
λ
2

[
Iαβ,γδIρτ,σλ−

1

2
(Iρτ,δσIαβ,γλ+Iρτ,γσIαβ,δλ+Iγδ,βσIρτ,αλ+Iγδ,ασIρτ,βλ)

]

−(p1+p2)
σpλ2

[
Iρτ,γδIαβ,σλ−

1

2
(Iαβ,δσIρτ,γλ+Iαβ,γσIρτ,δλ+Iγδ,ρσIαβ,τλ+Iγδ,τσIαβ,ρλ)

]

−(p1+p2)
σpλ1

[
Iρτ,αβIγδ,σλ−

1

2
(Iγδ,τλIαβ,ρσ+Iγδ,ρλIαβ,τσ+Iγδ,βσIρτ,αλ+Iγδ,ασIρτ,βλ)

]}
,

with

Iρτ,σλ =
1

2
(gρσgτλ + gρλgτσ) , (A.22)

see refs. [33] and [34]. For the graviton propagator, we use de Donder gauge with

Dµν
ρτ (p1 + p2) =

i

2

(
δµρ δ

ν
τ + δµτ δ

ν
ρ − gµνgρτ

) 1

(p1 + p2)2
(A.23)
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We first consider the (simpler) case of identical helicities with the polarization tensors

ǫαβ1 (ℓ = +2) = ǫ+α
1 ǫ+β

1 , ǫγδ2 (ℓ = +2) = ǫ+γ
2 ǫ+δ

2 . (A.24)

In the corresponding splitting tensor, most of terms disappear due to eqs. (A.16). As result,

Sµν(+2,+2) =
κ

(p1 + p2)2
(
ǫ+2 · p1 ǫ+2 · p1 ǫ+µ

1 ǫ+ν
1 − ǫ+1 · p2 ǫ+2 · p1 ǫ+µ

1 ǫ+ν
2

)
+ (1 ↔ 2) .

By using eqs. (A.12)–(A.18) and neglecting terms of order O(ǫ̃2), we obtain

Sµν(+2,+2) = −κ

2

[12]

〈12〉
1

c2s2
ǫ+µ
P ǫ+ν

P =
κ

2

ω2
P

ω1ω2

z̄12
z12

ǫ+µ
P ǫ+ν

P , (A.25)

which leads to eq. (2.19) after setting κ = 2. The result agrees with ref. [35].

The case of opposite helicities, with

ǫαβ1 (ℓ = −2) = ǫ−α
1 ǫ−β

1 , ǫγδ2 (ℓ = +2) = ǫ+γ
2 ǫ+δ

2 . (A.26)

is a little bit more complicated. The corresponding splitting tensor reads

Sµν(−2,+2) =
κ

(p1 + p2)2

[
(ǫ−1 · p2)2ǫ+µ

2 ǫ+ν
2 − 1

2
(ǫ−1 · ǫ+2 )2p

µ
1 p

ν
2

+
1

2
(ǫ−1 · ǫ+2 )(ǫ−1 · p2)pµ1 ǫ+ν

2 +
1

2
(ǫ−1 · ǫ+2 )(ǫ−1 · p2)pν1ǫ+µ

2

−1

2
(ǫ−1 · ǫ+2 )(ǫ+2 · p1)pµ1 ǫ−ν

1 − 1

2
(ǫ−1 · ǫ+2 )(ǫ+2 · p1)pν1ǫ−µ

1

−ǫ−1 · p2 ǫ+2 · p1 ǫ−µ
1 ǫ+ν

2 +
1

2
(p1 + p2)

2ǫ−1 · ǫ+2 ǫ
−µ
1 ǫ+ν

2

]

+(1,− ↔ 2,+) . (A.27)

We are interested in terms with ǫ−1 or ǫ̃−1 poles only. These come from

Sµν(−2,+2) = −κ

2

s6

c2
〈12〉
[12]

(ǫ+P )
µ(ǫ+P )

ν − κ

2

c6

s2
[12]

〈12〉(ǫ
−
P )

µ(ǫ−P )
ν + . . .

=
κ

2

ω3
2

ω2
Pω1

z12
z̄12

(ǫ+P )
µ(ǫ+P ) +

κ

2

ω3
1

ω2
Pω2

z̄12
z12

(ǫ−P )
µ(ǫ−P )

ν , (A.28)

which leads to eq. (2.22) after setting κ = 2.

A.2 Collinear graviton and gauge boson

The amplitudes involving gauge bosons and graviton are singular in the limit when the

graviton becomes collinear with the gauge bosons. In singular Feynman diagrams, virtual

gauge bosons radiate gravitons, as shown in figure 2. We define the splitting vector

Sµ = ǫβ1 ǫ2 γδD
µα(p1 + p2)V

γδ
α,β(p1, p2) , (A.29)
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Figure 2. EYM Feynman diagrams leading to singularities for collinear gauge bosons and gravitons.

where V γδ
α,β(p1, p2) is the EYM vertex which couples two gauge bosons (with identical gauge

group indices) to the graviton:

V γδ
α,β(p1, p2) =

iκ

2

[
gαβ [(p1 + p2)

γpδ1 + (p1 + p2)
δpγ1 ]− (p1 + p2)β(p

γ
1δ

δ
α + pδ1δ

γ
α)

−p1α[(p1 + p2)
γδδβ + (p1 + p2)

δδγβ ] + p1 · (p1 + p2)(δ
γ
αδ

δ
β + δδαδ

γ
β)

−gγδ[(p1 · (p1 + p2)gαβ − p1α(p1 + p2)β ]

]
(A.30)

and the gauge boson propagator

Dµα(p1 + p2) =
−i

(p1 + p2)2
gµα (A.31)

We first consider the case of all-plus helicities:

ǫβ1 (ℓ = +1) = ǫ+β
1 , ǫγδ2 (ℓ = +2) = ǫ+γ

2 ǫ+δ
2 . (A.32)

The corresponding splitting vector reads

Sµ(+2,+1) =
κ

(p1 + p2)2
[
−ǫ+2 ·p1 ǫ+1 ·p2ǫ+µ

1 +(ǫ+1 ·p2)2ǫ+µ
2

]
= −κ

2

1

c2
[12]

〈12〉ǫ
+µ
P =

z̄12
z12

ωP

ω1
ǫ+µ
P .

(A.33)

For opposite helicities, we obtain

Sµ(−2,+1) =
κ

(p1 + p2)2
[
− ǫ+2 · p1 ǫ−1 · p2ǫ−µ

1 + (ǫ−1 · p2)2ǫ+µ
2 − ǫ−1 · ǫ+2 ǫ−1 · p2 pµ2 (A.34)

+ p1 · p2ǫ−1 · ǫ+2 ǫ
−µ
1

]
= −κ

2

〈12〉
[12]

s4

c2
ǫ+µ
P + · · · = κ

2

z12
z̄12

ω2
2

ω1ωP
ǫ+µ
P .

where we omitted terms without ǫ−1 or ǫ̃−1 poles. Eqs. (A.35) and (A.35) lead to eqs. (2.26)

and (2.27), respectively.

A.3 Gravitational corrections to the collinear limit of two gauge bosons

A virtual graviton can split into two gauge bosons, as in Feynman diagrams shown in

figure 3. In the collinear limit, the corresponding contributions are “softer” than single ǫ−1
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Figure 3. EYM Feynman diagrams leading to gravitational corrections to Yang-Mills collinear

singularities.

or ǫ̃−1 poles due to Yang-Mills interactions [31]. They contain the same type of ǫ/ǫ̃ and

ǫ̃/ǫ singularities as the gravitational interactions discussed in part A.1.

The gravitational splitting tensor of two gauge bosons is defined as

Sµν
g = ǫα1 ǫ

β
2V

γδ
α,β(p1, p2)D

µν
γδ(p1 + p2) (A.35)

with the vertex related by crossing to eq. (A.30):

V γδ
α,β(p1, p2) = − iκ

2

[
− gαβ(p

γ
1p

δ
2 + pδ1p

γ
2) + p1β(p

γ
2δ

δ
α + pδ2δ

γ
α) + p2α(p

γ
1δ

δ
β + pδ1δ

γ
β)

−p1 · p2(δγαδδβ + δδαδ
γ
β)− gγδ[−(p1 · p2)gαβ + p2αp1β ]

]
. (A.36)

It is easy to see that Sµν
g (+1,+1) and Sµν

g (−1,−1) are non-singular. On the other hand,

Sµν
g (+1,−1) =

κ

2(p1 + p2)2
[
ǫ−2 · ǫ+1 p

µ
1p

ν
2 + ǫ−2 · ǫ+1 pν1p

µ
2 − ǫ+1 · p2pµ1 ǫ−ν

2

−ǫ+1 · p2pν1ǫ−µ
2 − ǫ−2 · p1pµ2 ǫ+ν

1 − ǫ−2 · p1pν2ǫ+µ
1

]

=
κ

2

〈12〉
[12]

c4ǫ+µ
P ǫ+ν

P +
κ

2

[12]

〈12〉s
4ǫ−µ

P ǫ−ν
P + · · ·

= −κ

2

z12
z̄12

ω2
1

ω2
P

ǫ+µ
P ǫ+ν

P − κ

2

z̄12
z12

ω2
2

ω2
P

ǫ−µ
P ǫ−ν

P . (A.37)

After setting κ = 2, the above splitting tensor yields the last two terms of eq. (2.10).

B Conformal integrals

In the present paper, several integrals over celestial sphere positions have been performed

by using the formulas given in [28]. They have the general form

In =
1

π

∫
d2z fn(z)f̄n(z̄), fn(z) =

n∏

i=1

1

(z − zi)qi
, f̄n(z̄) =

n∏

i=1

1

(z̄ − z̄i)q̄i
, (B.1)

where
n∑

i=1

qi =
n∑

i=1

q̄i = 2 , qi − q̄i ∈ Z . (B.2)
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The two conditions above are necessary for In to be covariant under the group SL(2;C) of

global conformal transformations and single valued. Convergence of the integral requires

qi + q̄i < 2 for all i, but we can always extend it by using analytic continuation. When

n = 3, assuming that all zi are different, the result is given by

I3 = K123 z
q3−1
12 zq1−1

23 zq2−1
31 z̄q̄3−1

12 z̄q̄1−1
23 z̄q̄2−1

31 , (B.3)

where the normalization factor

K123 =
Γ(1− q1)Γ(1− q2)Γ(1− q3)

Γ(q̄1)Γ(q̄2)Γ(q̄3)
=

Γ(1− q̄1)Γ(1− q̄2)Γ(1− q̄3)

Γ(q1)Γ(q2)Γ(q3)
. (B.4)

If two zi’s are coincident, the integral becomes

I2 = K12(−1)q1−q̄1πδ2(q1 − q2) , (B.5)

where

K12 =
Γ(1− q1)Γ(1− q2)

Γ(q̄1)Γ(q̄2)
=

Γ(1− q̄1)Γ(1− q̄2)

Γ(q1)Γ(q2)
. (B.6)
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